1
|
Lin J, Ma Z, Zuo W, Zhu M. Triple-function porphyrin in glycopolymeric photosensitizers: from photoATRP to targeted PDT. Chem Sci 2024; 15:20388-20396. [PMID: 39583554 PMCID: PMC11579898 DOI: 10.1039/d4sc06466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024] Open
Abstract
Porphyrin derivatives serve as photocatalysts in reversible-deactivation radical polymerization and as photosensitizers in photodynamic therapy (PDT). Herein, a triple function porphyrin, ZnTPPC6Br, was synthesized as a photocatalyst and initiator for photoATRP. Oxygen-tolerant photoATRP produced fructose-based star-shaped glycopolymers as targeted photosensitizers for PDT. ZnTPPC6Br/CuII/PMDETA could synthesize polymer photosensitizers with predictable M n and low Đ. Mechanistic studies unveiled the transition of ZnTPPC6Br from a singlet excited state (1PC*) to a triplet excited state (3PC*), enabling the activator CuI/L generation and initiating photoATRP. The excess ligands facilitate return of the active species to the ground state, while the presence of DMSO assists in oxygen depletion. Three fructose-based monomers with different polymerizable groups (acrylated, methacrylated, and p-vinylbenzoated) were employed to scale up polymerization, yielding glycopolymeric photosensitizers post-deprotection. In vitro cellular studies showed enhanced PDT efficacy of glycopolymeric photosensitizers against MCF-7 cells, attributed to specific GLUT5 binding for targeted endocytosis, highlighting their potential for precise cancer treatment compared to L929 cells. The multifunctional capabilities of ZnTPPC6Br are anticipated to serve as a strategic avenue for the advancement of polymer photosensitizers with potential PDT applications.
Collapse
Affiliation(s)
- Jiahui Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University 2999 North Renmin Road Shanghai 201620 China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University 2999 North Renmin Road Shanghai 201620 China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University 2999 North Renmin Road Shanghai 201620 China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University 2999 North Renmin Road Shanghai 201620 China
| |
Collapse
|
2
|
Williams CA, Stone DJ, Joshi SY, Yilmaz G, Farzeen P, Jeon S, Harris-Ryden Z, Becer CR, Deshmukh SA, Callmann CE. Systematic Evaluation of Macromolecular Carbohydrate-Lectin Recognition Using Precision Glycopolymers. Biomacromolecules 2024; 25:7985-7994. [PMID: 39503854 DOI: 10.1021/acs.biomac.4c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The precise modulation of protein-carbohydrate interactions is critical in glycobiology, where multivalent binding governs key cellular processes. As such, synthetic glycopolymers are useful for probing these interactions. Herein, we developed precision glycopolymers (PGPs) with unambiguous local chemical composition and well-defined global structure and systematically evaluated the effect of polymer length, hydrophobicity, and backbone hybridization as well as glycan density and identity on the binding to both mammalian and plant lectins. Our studies identified glycan density as a critical factor, with PGPs below 50% grafting density showing significantly weaker lectin interactions. Coarse-grained molecular dynamics simulations suggest that the observed phenomena may be due to a decrease in carbohydrate-carbohydrate interactions in fully grafted PGPs, leading to improved solvent accessibility. In functional assays, these PGPs reduced the cell viability and migration in 4T1 breast cancer cells. Our findings establish a structure-activity relationship in glycopolymers, providing new strategies for designing synthetic glycomacromolecules for a myriad of applications.
Collapse
Affiliation(s)
- Cole A Williams
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel J Stone
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Soumil Y Joshi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Parisa Farzeen
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sungjin Jeon
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zamira Harris-Ryden
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Cassandra E Callmann
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Roy S, Paul S, Mukherjee S, De P, Mukherjee A. Unraveling Mechanism and Enhancing Selectivity of a Ru II-bis-bipyridyl-morphocumin Complex with RAFT-Generated Glycopolymer Exploiting Warburg Effect in Cancer. Chemistry 2024:e202403695. [PMID: 39614769 DOI: 10.1002/chem.202403695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Indexed: 12/12/2024]
Abstract
The Warburg effect, which generates increased demand of glucose in cancer cells is a relatively underexplored phenomenon in existing commercial drugs to enhance uptake in cancer cells. Here, we present a chemotherapeutic strategy employing a Ru(II)-bis-bipyridyl-morphocumin complex (2) encapsulated in a self-assembling glucose-functionalized copolymer P(G-EMA-co-MMA) (where G=glucose; MMA=methyl methacrylate; EMA=ethyl methacrylate), designed to exploit this effect for enhanced selectivity in cancer treatment. The P(G-EMA-co-MMA) polymer, synthesized via reversible-addition fragmentation chain transfer (RAFT) polymerization, has a number average molecular weight (Mn,NMR) of 8000 g/mol. Complex 2, stable in aqueous media, selectively releases a cytotoxic, lysosome-targeting compound, morphocumin, in the presence of excess hydrogen peroxide (H₂O₂), a reactive oxygen species (ROS) prevalent in tumor microenvironments. Additionally, complex 2 promotes ROS accumulation, which may further enhance morphocumin release through a synergistic domino effect. Comparative studies reveal that 2 outperforms its curcumin Ru(II) complex (1) analog in solution stability, organelle specificity, and cellular mechanisms. Both 1 and 2 exhibit phototherapeutic effects under low-intensity visible light, but their chemotoxicity significantly increases with incubation time in the dark, highlighting the superior chemotherapeutic efficacy of the O,O-coordinating Ru(II) ternary polypyridyl complexes. Complex 2 induces apoptosis via the intrinsic pathway and shows a 9-fold increase in selectivity for pancreatic cancer cells (MIA PaCa-2) over non-cancerous HEK293 cells when encapsulated in the glucose-conjugated polymer (DP@2). Glucose deprivation in the culture medium further enhances drug efficacy by an additional 5-fold. This work underscores the potential of glucose-functionalized polymers and ROS-responsive Ru(II) complexes in targeted cancer therapy.
Collapse
Affiliation(s)
- Souryadip Roy
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Soumya Paul
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Sujato Mukherjee
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Priyadarsi De
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Arindam Mukherjee
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| |
Collapse
|
4
|
Pandey S, Kannaujiya VK. Bacterial extracellular biopolymers: Eco-diversification, biosynthesis, technological development and commercial applications. Int J Biol Macromol 2024; 279:135261. [PMID: 39244116 DOI: 10.1016/j.ijbiomac.2024.135261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Synthetic polymers have been widely thriving as mega industries at a commercial scale in various commercial sectors over the last few decades. The extensive use of synthetic polymers has caused several negative repercussions on the health of humans and the environment. Recently, biopolymers have gained more attention among scientists of different disciplines by their potential therapeutic and commercial applications. Biopolymers are chain-like repeating units of molecules isolated from green sources. They are self-degradable, biocompatible, and non-toxic in nature. Recently, eco-friendly biopolymers such as extracellular polymeric substances (EPSs) have received much attention for their wide applications in the fields of emulsification, flocculation, preservatives, wastewater treatment, nanomaterial functionalization, drug delivery, cosmetics, glycomics, medicinal chemistry, and purification technology. The dynamicity of applications has raised the industrial and consumer demands to cater to the needs of mankind. This review deals with current insights and highlights on database surveys, potential sources, classification, extremophilic EPSs, bioprospecting, patents, microenvironment stability, biosynthesis, and genetic advances for production of high valued ecofriendly polymers. The importance of high valued EPSs in commercial and industrial applications in the global market economy is also summarized. This review concludes with future perspectives and commercial applications for the well-being of humanity.
Collapse
Affiliation(s)
- Saumi Pandey
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Vinod K Kannaujiya
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Hsu FT, Chen YT, Chin YC, Chang LC, Chiang SC, Yang LX, Liu HS, Yueh PF, Tu HL, He RY, Jeng LB, Shyu WC, Hu SH, Chiang IT, Liu YC, Chiu YC, Wu GC, Yu CC, Su WP, Huang CC. Harnessing the Power of Sugar-Based Nanoparticles: A Drug-Free Approach to Enhance Immune Checkpoint Inhibition against Glioblastoma and Pancreatic Cancer. ACS NANO 2024; 18:28764-28781. [PMID: 39383310 DOI: 10.1021/acsnano.4c07903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Cancer cells have a high demand for sugars and express diverse carbohydrate receptors, offering opportunities to improve delivery with multivalent glycopolymer materials. However, effectively delivering glycopolymers to tumors while inhibiting cancer cell activity, altering cellular metabolism, and reversing tumor-associated macrophage (TAM) polarization to overcome immunosuppression remains a challenging area of research due to the lack of reagents capable of simultaneously achieving these objectives. Here, the glycopolymer-like condensed nanoparticle (∼60 nm) was developed by a one-pot carbonization reaction with a single precursor, promoting multivalent interactions for the galactose-related receptors of the M2 macrophage (TAM) and thereby regulating the STAT3/NF-κB pathways. The subsequently induced M2-to-M1 transition was increased with the condensed level of glycopolymer-like nanoparticles. We found that the activation of the glycopolymer-like condensed galactose (CG) nanoparticles influenced monocarboxylate transporter 4 (MCT-4) function, which caused inhibited lactate efflux (similar to inhibitor effects) from cancer cells. Upon internalization via galactose-related endocytosis, CG NPs induced cellular reactive oxygen species (ROS), leading to dual functionalities of cancer cell death and M2-to-M1 macrophage polarization, thereby reducing the tumor's acidic microenvironment and immunosuppression. Blocking the nanoparticle-MCT-4 interaction with antibodies reduced their toxicity in glioblastoma (GBM) and affected macrophage polarization. In orthotopic GBM and pancreatic cancer models, the nanoparticles remodeled the tumor microenvironment from "cold" to "hot", enhancing the efficacy of anti-PD-L1/anti-PD-1 therapy by promoting macrophage polarization and activating cytotoxic T lymphocytes (CTLs) and dendritic cells (DCs). These findings suggest that glycopolymer-like nanoparticles hold promise as a galactose-elicited adjuvant for precise immunotherapy, particularly in targeting hard-to-treat cancers.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
| | - Ying-Tzu Chen
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
| | - Yu-Cheng Chin
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Li-Chan Chang
- Institute of Clinical Medicine College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Shu-Chin Chiang
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
| | - Li-Xing Yang
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Hua-Shan Liu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan, R.O.C
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Po-Fu Yueh
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 115, Taiwan, R.O.C
| | - Ruei-Yu He
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 115, Taiwan, R.O.C
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
- Cell Therapy Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
- School of Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Woei-Cheang Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan, R.O.C
- Department of Occupational Therapy, Asia University, Taichung 413, Taiwan, R.O.C
- Translational Medicine Research Center and Department of Neurology, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C
| | - I-Tsang Chiang
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan, R.O.C
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, R.O.C
- Medical Administrative Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
| | - Yu-Chang Liu
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan, R.O.C
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, R.O.C
| | - Yi-Chun Chiu
- Division of Urology, Department of Surgery, Yangming Branch, Taipei City Hospital, Taipei 111, Taiwan, R.O.C
- Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
- Department of Exercise and Health Sciences, University of Taipei, Taipei 111, Taiwan, R.O.C
| | - Guan-Chun Wu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 115, Taiwan, R.O.C
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C
| | - Ching-Ching Yu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 115, Taiwan, R.O.C
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C
| | - Wen-Pin Su
- Institute of Clinical Medicine College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
6
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
7
|
Duan Y, Ma X, Guo J, Shan F, Pan Y, Chen Y, Chen H, Chen G. Fe 0-MAP Prepared Glycosurfaces for Selective Cell Capture: From Adherent to Suspended Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39357029 DOI: 10.1021/acsami.4c11627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The specific capture of live cells is crucial for various biomedical applications. Existing methods often are limited by complex production processes. This study introduces Fe0-mediated monomer-adaptation polymerization (Fe0-MAP), a convenient and rapid synthesis approach for selective cell capture using surface-engineered glycopolymer brushes. This method utilizes surface-initiated zerovalent iron-mediated reversible-deactivation radical polymerization (Fe0-SI-RDRP), offering advantages like simplicity, biocompatibility and oxygen-tolerance due to the use of iron sheet as catalysts. We successfully employed Fe0-MAP to selective capture both adherent (HeLa, L929) and suspended cells (Ramos, U937) in mammalian cell cultures. Combining excellent biocompatibility, specific and reusable cell capture capabilities, and applicability to suspended cells, Fe0-MAP establishes itself as a promising strategy for selective cell capture, holding significant potential for diverse biomedical applications.
Collapse
Affiliation(s)
- Yu Duan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoliang Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Nantong No.2 Middle School, 500 Changtai Road, Nantong 226300, P. R. China
| | - Jiangping Guo
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Fangjian Shan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuchun Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuru Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
8
|
Jäck N, Hemming A, Hartmann L. Synthesis of Dual-Responsive Amphiphilic Glycomacromolecules: Controlled Release of Glycan Ligands via pH and UV Stimuli. Macromol Rapid Commun 2024; 45:e2400439. [PMID: 39037337 DOI: 10.1002/marc.202400439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Indexed: 07/23/2024]
Abstract
This work presents a versatile strategy for the synthesis of dual stimuli-responsive amphiphilic glycomacromolecules with tailored release properties. Amphiphilic precision glycomacromolecules (APGs) derived from tailor-made building blocks using solid phase polymer synthesis form glycofunctionalized micelles, a versatile class of materials with applications in drug delivery, as antiinfection agents as well as simple cell mimetics. In this work, this concept is extended by integrating cleavable building blocks into APGs now allowing stimuli-responsive release of glycan ligands or destruction of the micelles. This study incorporates a newly designed acid-labile building block, 4-(4-(((((9H-fluoren-9-yl)methoxy)carbonyl)amino)methyl)-1,3-dioxolan-2-yl)benzoic acid (DBA), suitable also for other types of solid phase or amide chemistry, and an established UV-cleavable 2-nitrobenzyl linker (PL). The results demonstrate that both linkers can be cleaved independently and thus allow dual stimuli-responsive release from the APG micelles. By choosing the APG design e.g., placing the cleavable linkers between glycomacromolecular blocks presenting different types of carbohydrates, they can tune APG and micellar stability as well as the interaction and cluster formation with a carbohydrate-recognizing lectin. Such dual-responsive glycofunctionalized micelles have wide potential for use in drug delivery applications or for the development as anti-adhesion agents in antiviral and antibacterial treatments.
Collapse
Affiliation(s)
- Nicholas Jäck
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany
| | - Arne Hemming
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Laura Hartmann
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany
| |
Collapse
|
9
|
Zhang Y, Li Y, Gu J, Wu J, Ma Y, Lu G, Barboiu M, Chen J. Glycopolymeric Micellar Nanoparticles for Platelet-Mediated Tumor-Targeted Delivery of Docetaxel for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44528-44537. [PMID: 39155662 DOI: 10.1021/acsami.4c09548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The high level of accumulation of therapeutic agents in tumors is crucial for cancer treatment. Compared to the passive tumor-targeting effect, active tumor-targeting delivery systems, primarily mediated by peptides with high production costs and reduced circulation time, are highly desired. Platelet-driven technologies have opened new avenues for targeted drug delivery prevalently through a membrane coating strategy that involves intricate manufacturing procedures or the fucoidan-mediated hitchhiking method with limited platelet affinity. Here, a novel type of amphiphilic glycopolymer self-assembled micellar nanoparticle has been developed to adhere to naturally activated platelets in the blood. The simultaneous integration of fucose and sialic acid segments into glycopolymers enables closer mimicry of the structure of P-selectin glycoprotein ligand-1 (PSGL-1), thereby increasing the affinity for activated platelets. It results in the formation of glycopolymeric micelle-platelet hybrids, facilitating targeted drug delivery to tumors. The selective platelet-assisted cellular uptake of docetaxel (DTX)-loaded glycopolymeric micelles leads to lower IC50 values against 4T1 cells than that of free DTX. The directed tumor-targeting effect of activated platelets has significantly improved the tumor accumulation capacity of the glycopolymeric nanoparticles, with up to 21.0% found in tumors within the initial 0.2 h. Additionally, with acid-responsive drug release and inherent antimetastasis properties, the glycopolymeric nanoparticles ensured potent therapeutic efficacy, prolonged survival time, and reduced cardiotoxicity, presenting a new and unexplored strategy for platelet-directed drug delivery to tumors, showing promising prospects in treating localized tumors and preventing tumor metastasis.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yi Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jieyu Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jun Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Guodong Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, 34095 Montpellier, France
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
10
|
Zhang H, Heng X, Yang H, Rao Y, Yao L, Zhu Z, Chen G, Chen H. Metal-Free Atom Transfer Radical Polymerization to Prepare Recylable Micro-Adjuvants for Dendritic Cell Vaccine. Angew Chem Int Ed Engl 2024; 63:e202402853. [PMID: 38598262 DOI: 10.1002/anie.202402853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
In the development of dendritic cell (DC) vaccines, the maturation of DCs is a critical stage. Adjuvants play a pivotal role in the maturation of DCs, with a major concern being to ensure both efficacy and safety. This study introduces an innovative approach that combines high efficacy with safety through the synthesis of micro-adjuvants grafted with copolymers of 2-(methacrylamido) glucopyranose (MAG) and methacryloxyethyl trimethyl ammonium chloride (DMC). The utilization of metal-free surface-initiated atom transfer radical polymerization enables the production of safe and recyclable adjuvants. These micrometer-sized adjuvants surpass the optimal size range for cellular endocytosis, enabling the retrieval and reuse of them during the ex vivo maturation process, mitigating potential toxicity concerns associated with the endocytosis of non-metabolized nanoparticles. Additionally, the adjuvants exhibit a "micro-ligand-mediated maturation enhancement" effect for DC maturation. This effect is influenced by the shape of the particle, as evidenced by the distinct promotion effects of rod-like and spherical micro-adjuvants with comparable sizes. Furthermore, the porous structure of the adjuvants enables them to function as cargo-carrying "micro-shuttles", releasing antigens upon binding to DCs to facilitate efficient antigen delivery.
Collapse
Affiliation(s)
- Hengyuan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xingyu Heng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yu Rao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhichen Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
11
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Li Z, Zhang Q, Li Z, Ren L, Pan D, Gong Q, Gu Z, Cai H, Luo K. Branched glycopolymer prodrug-derived nanoassembly combined with a STING agonist activates an immuno-supportive status to boost anti-PD-L1 antibody therapy. Acta Pharm Sin B 2024; 14:2194-2209. [PMID: 38799622 PMCID: PMC11121173 DOI: 10.1016/j.apsb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 05/29/2024] Open
Abstract
Despite the great potential of anti-PD-L1 antibodies for immunotherapy, their low response rate due to an immunosuppressive tumor microenvironment has hampered their application. To address this issue, we constructed a cell membrane-coated nanosystem (mB4S) to reverse an immunosuppressive microenvironment to an immuno-supportive one for strengthening the anti-tumor effect. In this system, Epirubicin (EPI) as an immunogenic cell death (ICD) inducer was coupled to a branched glycopolymer via hydrazone bonds and diABZI as a stimulator of interferon genes (STING) agonist was encapsulated into mB4S. After internalization of mB4S, EPI was acidic-responsively released to induce ICD, which was characterized by an increased level of calreticulin (CRT) exposure and enhanced ATP secretion. Meanwhile, diABZI effectively activated the STING pathway. Treatment with mB4S in combination with an anti-PD-L1 antibody elicited potent immune responses by increasing the ratio of matured dendritic cells (DCs) and CD8+ T cells, promoting cytokines secretion, up-regulating M1-like tumor-associated macrophages (TAMs) and down-regulating immunosuppressive myeloid-derived suppressor cells (MDSCs). Therefore, this nanosystem for co-delivery of an ICD inducer and a STING agonist achieved promotion of DCs maturation and CD8+ T cells infiltration, creating an immuno-supportive microenvironment, thus potentiating the therapy effect of the anti-PD-L1 antibody in both 4T1 breast and CT26 colon tumor mice.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Qianfeng Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Long Ren
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Hao Cai
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
13
|
Yang C, Du Y, Li Q, Gao X, Zha P, Zhan W, Liu K, Bi F, Hua Z, Yang G. Morphological Transformation and Surface Engineering of Glycovesicles Driven by Bioinspired Hydrogen Bonds of Nucleobases. ACS Macro Lett 2024; 13:468-474. [PMID: 38574471 DOI: 10.1021/acsmacrolett.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Glycopolymer-based supramolecular glycoassemblies with signal-driven cascade morphological deformation and accessible surface engineering toward bioinspired functional glycomaterials have attracted much attention due to their diverse applications in fundamental and practical scenarios. Herein, we achieved the cascade morphological transformation and surface engineering of a nucleobase-containing polymeric glycovesicle through exploiting the bioinspired complementary multiple hydrogen bonds of complementary nucleobases. First, the synthesized thymine-containing glycopolymers (PGal30-b-PTAm249) are capable of self-assembling into well-defined glycovesicles. Several kinds of amphiphilic adenine-containing block copolymers with neutral, positive, and negative charges were synthesized to engineer the glycovesicles through the multiple hydrogen bonds between adenine and thymine. A cascade of morphological transformations from vesicles to ruptured vesicles with tails, to worm-like micelles, and finally to spherical micelles were observed via continuously adding the adenine-containing polymer into the thymine-containing glycovesicles. Furthermore, the surface charge properties of these glyconano-objects can be facilely regulated through incorporating various adenine-containing polymers. This work demonstrates the potential application of a unique bioinspired approach to precisely engineer the morphology and surface properties of glycovesicles for boosting their biological applications.
Collapse
Affiliation(s)
- Caiyun Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yixuan Du
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qiaoran Li
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinru Gao
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Peng Zha
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wanli Zhan
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ketao Liu
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, and Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 214002, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
14
|
Tanaka T. Recent Advances in Polymers Bearing Activated Esters for the Synthesis of Glycopolymers by Postpolymerization Modification. Polymers (Basel) 2024; 16:1100. [PMID: 38675019 PMCID: PMC11053895 DOI: 10.3390/polym16081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glycopolymers are functional polymers with saccharide moieties on their side chains and are attractive candidates for biomaterials. Postpolymerization modification can be employed for the synthesis of glycopolymers. Activated esters are useful in various fields, including polymer chemistry and biochemistry, because of their high reactivity and ease of reaction. In particular, the formation of amide bonds caused by the reaction of activated esters with amino groups is of high synthetic chemical value owing to its high selectivity. It has been employed in the synthesis of various functional polymers, including glycopolymers. This paper reviews the recent advances in polymers bearing activated esters for the synthesis of glycopolymers by postpolymerization modification. The development of polymers bearing hydrophobic and hydrophilic activated esters is described. Although water-soluble activated esters are generally unstable and hydrolyzed in water, novel polymer backbones bearing water-soluble activated esters are stable and useful for postpolymerization modification for synthesizing glycopolymers in water. Dual postpolymerization modification can be employed to modify polymer side chains using two different molecules. Thiolactone and glycine propargyl esters on the polymer backbone are described as activated esters for dual postpolymerization modification.
Collapse
Affiliation(s)
- Tomonari Tanaka
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
15
|
Tian L, Cao C, Ho J, Stenzel MH. Maximizing Aqueous Drug Encapsulation: Small Nanoparticles Formation Enabled by Glycopolymers Combining Glucose and Tyrosine. J Am Chem Soc 2024; 146:8120-8130. [PMID: 38477486 DOI: 10.1021/jacs.3c12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Highly potent heterocyclic drugs are frequently poorly water soluble, leading to limited or abandoned further drug development. Nanoparticle technology offers a powerful delivery approach by enhancing the solubility and bioavailability of hydrophobic therapeutics. However, the common usage of organic solvents causes unwanted toxicity and process complexity, therefore limiting the scale-up of nanomedicine technology for clinical translation. Here, we show that an organic-solvent-free methodology for hydrophobic drug encapsulation can be obtained using polymers based on glucose and tyrosine. An aqueous solution based on a tyrosine-containing glycopolymer is able to dissolve solid dasatinib directly without adding an organic solvent, resulting in the formation of very small nanoparticles of around 10 nm loaded with up to 16 wt % of drug. This polymer is observed to function as both a drug solubilizer and a nanocarrier at the same time, offering a simple route for the delivery of insoluble drugs.
Collapse
|
16
|
Guo J, Wang S, Yu Z, Heng X, Zhou N, Chen G. Well-Defined Oligo(azobenzene- graft-mannose): Photostimuli Supramolecular Self-Assembly and Immune Effect Regulation. ACS Macro Lett 2024; 13:273-279. [PMID: 38345474 DOI: 10.1021/acsmacrolett.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The immune system can recognize and respond to pathogens of various shapes. Synthetic materials that can change their shape have the potential to be used in vaccines and immune regulation. The ability of supramolecular assemblies to undergo reversible transformations in response to environmental stimuli allows for dynamic changes in their shapes and functionalities. A meticulously designed oligo(azobenzene-graft-mannose) was synthesized using a stepwise iterative method and "click" chemistry. This involved integrating hydrophobic and photoresponsive azobenzene units with hydrophilic and bioactive mannose units. The resulting oligomer, with its precise structure, displayed versatile assembly morphologies and chiralities that were responsive to light. These varying assembly morphologies demonstrated distinct capabilities in terms of inhibiting the proliferation of cancer cells and stimulating the maturation of dendritic cells. These discoveries contribute to the theoretical comprehension and advancement of photoswitchable bioactive materials.
Collapse
Affiliation(s)
- Jiangping Guo
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Shuyuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhihong Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xingyu Heng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
17
|
Lin J, Ma Z, Zuo W, Zhu M. Enhancing Targeted Photodynamic Therapy: Star-Shaped Glycopolymeric Photosensitizers for Improved Selectivity and Efficacy. Biomacromolecules 2024; 25:1950-1958. [PMID: 38334281 DOI: 10.1021/acs.biomac.3c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Targeted photodynamic therapy (PDT) offers advantages over nontargeted approaches, including improved selectivity, efficacy, and reduced side effects. This study developed star-shaped glycopolymeric photosensitizers using porphyrin-based initiators via ATRP. Incorporating a porphyrin core gave the polymers fluorescence and ROS generation, while adding fructose improved solubility and targeting capabilities. The photosensitizers had high light absorption, singlet oxygen production, specificity, low dark toxicity, and biocompatibility. The glycopolymers with longer sugar arms and higher density showed better uptake on MCF-7 and MDA-MB-468 cells compared to HeLa cells, indicating enhanced targeting capabilities. Inhibition of endocytosis confirmed the importance of the GLUT5 receptor. The resulting polymers exhibited good cytocompatibility under dark conditions and satisfactory PDT under light irradiation. Interestingly, the polymers containing fructose have a GLUT5-dependent elimination effect on the MCF-7 and MDA-MB-468 cells. The intracellular ROS production followed a similar pattern, indicating that the fructose polymer exhibits specific targeting toward cells with GLUT5 receptors.
Collapse
Affiliation(s)
- Jiahui Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
18
|
Odom TL, LeBroc HD, Callmann CE. Biomacromolecule-tagged nanoscale constructs for crossing the blood-brain barrier. NANOSCALE 2024; 16:3969-3976. [PMID: 38305381 DOI: 10.1039/d3nr06154j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Access to the brain is restricted by the low permeability of the blood-brain barrier (BBB), greatly hampering modern drug delivery efforts. A promising approach to overcome this boundary is to utilize biomacromolecules (peptides, nucleic acids, carbohydrates) as targeting ligands on nanoscale delivery vehicles to shuttle cargo across the BBB. In this mini-review, we highlight the most recent approaches for crossing the BBB using synthetic nanoscale constructs decorated with members of these general classes of biomacromolecules to safely and selectively deliver therapeutic materials to the brain.
Collapse
Affiliation(s)
- Tyler L Odom
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| | - Hayden D LeBroc
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| | - Cassandra E Callmann
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Shi J, Walsh D, Zou W, Rebello NJ, Deagen ME, Fransen KA, Gao X, Olsen BD, Audus DJ. Calculating Pairwise Similarity of Polymer Ensembles via Earth Mover's Distance. ACS POLYMERS AU 2024; 4:66-76. [PMID: 38371731 PMCID: PMC10870752 DOI: 10.1021/acspolymersau.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024]
Abstract
Synthetic polymers, in contrast to small molecules and deterministic biomacromolecules, are typically ensembles composed of polymer chains with varying numbers, lengths, sequences, chemistry, and topologies. While numerous approaches exist for measuring pairwise similarity among small molecules and sequence-defined biomacromolecules, accurately determining the pairwise similarity between two polymer ensembles remains challenging. This work proposes the earth mover's distance (EMD) metric to calculate the pairwise similarity score between two polymer ensembles. EMD offers a greater resolution of chemical differences between polymer ensembles than the averaging method and provides a quantitative numeric value representing the pairwise similarity between polymer ensembles in alignment with chemical intuition. The EMD approach for assessing polymer similarity enhances the development of accurate chemical search algorithms within polymer databases and can improve machine learning techniques for polymer design, optimization, and property prediction.
Collapse
Affiliation(s)
- Jiale Shi
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Dylan Walsh
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Weizhong Zou
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nathan J. Rebello
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael E. Deagen
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Katharina A. Fransen
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xian Gao
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Bradley D. Olsen
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Debra J. Audus
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
20
|
Swami R, Vij S, Sharma S. Unlocking the power of sugar: carbohydrate ligands as key players in nanotherapeutic-assisted targeted cancer therapy. Nanomedicine (Lond) 2024; 19:431-453. [PMID: 38288611 DOI: 10.2217/nnm-2023-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Cancer cells need as much as 40-times more sugar than their normal cell counterparts. This sugar demand is attained by the excessive expression of inimitable transporters on the surface of cancer cells, driven by their voracious appetite for carbohydrates. Nanotechnological advances drive research utilizing ligand-directed therapeutics and diverse carbohydrate analogs. The precise delivery of these therapeutic cargos not only mitigates toxicity associated with chemotherapy but also reduces the grim toll of mortality and morbidity among patients. This in-depth review explores the potential of these ligands in advanced cancer treatment using nanoparticles. It offers a broader perspective beyond the usual ways we deliver drugs, potentially changing the way we fight cancer.
Collapse
Affiliation(s)
- Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sahil Vij
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, 133203, India
| | - Shubham Sharma
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, 133203, India
| |
Collapse
|
21
|
Wei H, Yang C, Bi F, Li B, Xie R, Yu D, Fang S, Hua Z, Wang Q, Yang G. Structure-Controllable and Mass-Produced Glycopolymersomes as a Template of the Carbohydrate@Ag Nanobiohybrid with Inherent Antibacteria and Biofilm Eradication. Biomacromolecules 2024; 25:315-327. [PMID: 38100369 DOI: 10.1021/acs.biomac.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Glycopolymer-supported silver nanoparticles (AgNPs) have demonstrated a promising alternative to antibiotics for the treatment of multidrug-resistant bacteria-infected diseases. In this contribution, we report a class of biohybrid glycopolymersome-supported AgNPs, which are capable of effectively killing multidrug-resistant bacteria and disrupting related biofilms. First of all, glycopolymersomes with controllable structures were massively fabricated through reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly (PISA) in an aqueous solution driven by complementary hydrogen bonding interaction between the pyridine and amide groups of N-(2-methylpyridine)-acrylamide (MPA) monomers. Subsequently, Ag+ captured by glycopolymersomes through the coordination between pyridine-N and Ag+ was reduced into AgNPs stabilized by glycopolymersomes upon addition of the NaBH4 reducing agent, leading to the formation of the glycopolymersome@AgNPs biohybrid. As a result, they showed a wide-spectrum and enhanced removal of multidrug-resistant bacteria and biofilms compared to naked AgNPs due to the easier adhesion onto the bacterial surface and diffusion into biofilms through the specific protein-carbohydrate recognition. Moreover, the in vivo results revealed that the obtained biohybrid glycopolymersomes not only demonstrated an effective treatment for inhibiting the cariogenic bacteria but also were able to repair the demineralization of caries via accumulating Ca2+ through the recognition between carbohydrates and Ca2+. Furthermore, glycopolymersomes@AgNPs showed quite low in vitro hemolysis and cytotoxicity and almost negligible acute toxicity in vivo. Overall, this type of biohybrid glycopolymersome@AgNPs nanomaterial provides a new avenue for enhanced antibacterial and antibiofilm activities and the effective treatment of oral microbial-infected diseases.
Collapse
Affiliation(s)
- Hanchen Wei
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Caiyun Yang
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Feihu Bi
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bang Li
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei 230032, China
| | - Rui Xie
- Department of Plant Pathology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Deshui Yu
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuzhen Fang
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qingqing Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei 230032, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
22
|
Song X, Cai H, Shi Z, Li Z, Zheng X, Yang K, Gong Q, Gu Z, Hu J, Luo K. Enzyme-Responsive Branched Glycopolymer-Based Nanoassembly for Co-Delivery of Paclitaxel and Akt Inhibitor toward Synergistic Therapy of Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306230. [PMID: 37953442 PMCID: PMC10787093 DOI: 10.1002/advs.202306230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Combined chemotherapy and targeted therapy holds immense potential in the management of advanced gastric cancer (GC). GC tissues exhibit an elevated expression level of protein kinase B (AKT), which contributes to disease progression and poor chemotherapeutic responsiveness. Inhibition of AKT expression through an AKT inhibitor, capivasertib (CAP), to enhance cytotoxicity of paclitaxel (PTX) toward GC cells is demonstrated in this study. A cathepsin B-responsive polymeric nanoparticle prodrug system is employed for co-delivery of PTX and CAP, resulting in a polymeric nano-drug BPGP@CAP. The release of PTX and CAP is triggered in an environment with overexpressed cathepsin B upon lysosomal uptake of BPGP@CAP. A synergistic therapeutic effect of PTX and CAP on killing GC cells is confirmed by in vitro and in vivo experiments. Mechanistic investigations suggested that CAP may inhibit AKT expression, leading to suppression of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Encouragingly, CAP can synergize with PTX to exert potent antitumor effects against GC after they are co-delivered via a polymeric drug delivery system, and this delivery system helped reduce their toxic side effects, which provides an effective therapeutic strategy for treating GC.
Collapse
Affiliation(s)
- Xiaohai Song
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hao Cai
- Department of Thoracic Surgery and Institute of Thoracic OncologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610097China
| | - Zhaochen Shi
- West China School of MedicineSichuan UniversityChengdu610041China
| | - Zhiqian Li
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiuli Zheng
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kun Yang
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Qiyong Gong
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
- Department of RadiologyWest China Xiamen Hospital of Sichuan UniversityXiamen361000China
| | - Zhongwei Gu
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Research Institute for BiomaterialsTech Institute for Advanced MaterialsCollege of Materials Science and EngineeringNJTech‐BARTY Joint Research Center for Innovative Medical TechnologySuqian Advanced Materials Industry Technology Innovation CenterJiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjing Tech UniversityNanjing211816China
| | - Jiankun Hu
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kui Luo
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
23
|
Peschel JM, Reichel LS, Hoffmann T, Enzensperger C, Schubert US, Traeger A, Gottschaldt M. Modification of Branched Poly(ethylene imine) with d-Fructose for Selective Delivery of siRNA into Human Breast Cancer Cells. Macromol Biosci 2023; 23:e2300135. [PMID: 37565461 DOI: 10.1002/mabi.202300135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Branched poly(ethylene imine) (bPEI) is frequently used in RNA interference (RNAi) experiments as a cationic polymer for the delivery of small interfering RNA (siRNA) because of its ability to form stable polyplexes that facilitate siRNA uptake. However, the use of bPEI in gene delivery is limited by its cytotoxicity and a need for target specificity. In this work, bPEI is modified with d-fructose to improve biocompatibility and target breast cancer cells through the overexpressed GLUT5 transporter. Fructose-substituted bPEI (Fru-bPEI) is accessible in three steps starting from commercially available protected fructopyranosides and bPEI. Several polymers with varying molecular weights, degrees of substitution, and linker positions on d-fructose (C1 and C3) are synthesized and characterized with NMR spectroscopy, size exclusion chromatography, and elemental analysis. In vitro biological screenings show significantly reduced cytotoxicity of 10 kDa bPEI after fructose functionalization, specific uptake of siRNA polyplexes, and targeted knockdown of green fluorescent protein (GFP) in triple-negative breast cancer cells (MDA-MB-231) compared to noncancer cells (HEK293T).
Collapse
Affiliation(s)
- Jan Matthias Peschel
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Liên Sabrina Reichel
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Tim Hoffmann
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | | | - Ulrich Sigmar Schubert
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Anja Traeger
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Michael Gottschaldt
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| |
Collapse
|
24
|
Becker J, Terracciano R, Yilmaz G, Napier R, Becer CR. Step-Growth Glycopolymers with a Defined Tacticity for Selective Carbohydrate-Lectin Recognition. Biomacromolecules 2023; 24:1924-1933. [PMID: 36976928 PMCID: PMC10091353 DOI: 10.1021/acs.biomac.3c00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Glycopolymers are potent candidates for biomedical applications by exploiting multivalent carbohydrate-lectin interactions. Owing to their specific recognition capabilities, glycosylated polymers can be utilized for targeted drug delivery to certain cell types bearing the corresponding lectin receptors. A fundamental challenge in glycopolymer research, however, is the specificity of recognition to receptors binding to the same sugar unit (e.g., mannose). Variation of polymer backbone chirality has emerged as an effective method to distinguish between lectins on a molecular level. Herein, we present a facile route toward producing glycopolymers with a defined tacticity based on a step-growth polymerization technique using click chemistry. A set of polymers have been fabricated and further functionalized with mannose moieties to enable lectin binding to receptors relevant to the immune system (mannose-binding lectin, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin, and dendritic and thymic epithelial cell-205). Surface plasmon resonance spectrometry was employed to determine the kinetic parameters of the step-growth glycopolymers. The results highlight the importance of structural complexity in advancing glycopolymer synthesis, yet multivalency remains a main driving force in lectin recognition.
Collapse
Affiliation(s)
- Jonas Becker
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
25
|
Pastuch-Gawołek G, Szreder J, Domińska M, Pielok M, Cichy P, Grymel M. A Small Sugar Molecule with Huge Potential in Targeted Cancer Therapy. Pharmaceutics 2023; 15:913. [PMID: 36986774 PMCID: PMC10056414 DOI: 10.3390/pharmaceutics15030913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The number of cancer-related diseases is still growing. Despite the availability of a large number of anticancer drugs, the ideal drug is still being sought that would be effective, selective, and overcome the effect of multidrug resistance. Therefore, researchers are still looking for ways to improve the properties of already-used chemotherapeutics. One of the possibilities is the development of targeted therapies. The use of prodrugs that release the bioactive substance only under the influence of factors characteristic of the tumor microenvironment makes it possible to deliver the drug precisely to the cancer cells. Obtaining such compounds is possible by coupling a therapeutic agent with a ligand targeting receptors, to which the attached ligand shows affinity and is overexpressed in cancer cells. Another way is to encapsulate the drug in a carrier that is stable in physiological conditions and sensitive to conditions of the tumor microenvironment. Such a carrier can be directed by attaching to it a ligand recognized by receptors typical of tumor cells. Sugars seem to be ideal ligands for obtaining prodrugs targeted at receptors overexpressed in cancer cells. They can also be ligands modifying polymers' drug carriers. Furthermore, polysaccharides can act as selective nanocarriers for numerous chemotherapeutics. The proof of this thesis is the huge number of papers devoted to their use for modification or targeted transport of anticancer compounds. In this work, selected examples of broad-defined sugars application for improving the properties of both already-used drugs and substances exhibiting anticancer activity are presented.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Julia Szreder
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Monika Domińska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mateusz Pielok
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Piotr Cichy
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
26
|
Gerling-Driessen UIM, Hoffmann M, Schmidt S, Snyder NL, Hartmann L. Glycopolymers against pathogen infection. Chem Soc Rev 2023; 52:2617-2642. [PMID: 36820794 DOI: 10.1039/d2cs00912a] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.
Collapse
Affiliation(s)
- Ulla I M Gerling-Driessen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Miriam Hoffmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. .,Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, USA
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
27
|
Bi F, Zhang J, Xie R, Yu D, Wei H, Wang Y, Hua Z, Qi X, Huang B, Yang G. Adenosine Triphosphate-Responsive Glyconanorods through Self-Assembly of β-Cyclodextrin-Based Glycoconjugates for Targeted and Effective Bacterial Sensing and Killing. Biomacromolecules 2023; 24:1003-1013. [PMID: 36651863 DOI: 10.1021/acs.biomac.2c01440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymer-based nanomaterials have exhibited promising alternative avenues to combat the globe challenge of multidrug-resistant bacterial infection. However, most of the reported polymeric nanomaterials have facially linear amphiphilic structures with positive net charges, which may lead to nonspecific binding, high hemolysis, and uncontrollable self-organization, limiting their practical applications. In this contribution, we report a one-dimensional glyconanorod (GNR) through self-assembly of well-defined β-cyclodextrin-based glycoconjugates (RMan) featuring hydrophobic carbon-based chains and amide rhodamines with an adenosine triphosphate (ATP)-recognition site and targeted and hydrophilic mannoses and positively net-charged ethylene amine groups. The GNRs show superior targeting sensing and killing for Gram-negative Escherichia coli (E. coli) dominantly through the multivalent recognition between mannoses on the nanorod and the lectin on the surface of E. coli. Moreover, red fluorescence was light on due to the hydrogen bonding between amide rhodamine and ATP. Benefiting from the designs, the GNRs are capable of possessing a higher therapeutic index and of encapsulating other antibiotics. They exhibit an enhanced effect against E. coli strains. Intriguingly, the GNRs displayed a more reduced hemolysis effect and lower cytotoxicity compared to that of ethylene glyco-modified nanorods. These results reveal that the glyconanomaterials not only feature superior and targeted bacterial sensing and antibacterial activity, but also better biocompatibility compared with the widely used PEG-covered nanomaterials. Furthermore, the in vivo studies demonstrate that the targeted and ATP-responsive GNRs complexed with antibiotics showed better treatment using a mouse model of abdominal sepsis following intraperitoneal E. coli infection. The present work describes a targeted and effective sensing and antibacterial platform based on glycoconjugates that have potential applications for the treatment of infections caused by pathogenic microorganisms.
Collapse
Affiliation(s)
- Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jin Zhang
- Department of Nephropathy, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China
| | - Rui Xie
- Department of Plant Pathology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Deshui Yu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hanchen Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiangming Qi
- Department of Nephropathy, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China.,Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
28
|
Katmerlikaya TG, Dag A, Ozgen PSO, Ersen BC. Dual-Drug Conjugated Glyco-Nanoassemblies for Tumor-Triggered Targeting and Synergistic Cancer Therapy. ACS APPLIED BIO MATERIALS 2022; 5:5356-5364. [PMID: 36346990 DOI: 10.1021/acsabm.2c00749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug-conjugated nanoassemblies potentiate the efficiency of anticancer drugs through the advantages of high drug-loading capacity and passive/active targeting ability in cancer therapy. This study describes the synthesis of gemcitabine (Gem) and cisplatin (cisPt) dual-drug-functionalized glyco-nanoassemblies (GNs) for anticancer drug delivery systems. It also investigates the pH-triggered drug delivery of the conventional anticancer drug cisPt. A Gem-functionalized well-defined glycoblock copolymer backbone (P(iprFruMA-b-MAc)-Gem), which consists of fructose and methacrylic acid segments, was synthesized via a reversible addition-fragmentation chain transfer (RAFT) polymerization method. Following the hydrolysis of the protecting groups on the backbone copolymer, cisPt functionalization of P(FruMA-b-MAc)-Gem in aqueous media was carried out during the transformation of glycoblock polymers into self-assembled spherical glyco-nanoassemblies (GN3). Monodrug-functionalized glyco-nanoassemblies were also prepared either with Gem (GN1) or cisPt (GN2) to compare the synergetic effect of dual-drug conjugated glyco-nanoassemblies (GN3). The sizes of glyco-nanoassemblies GN1, GN2, and GN3 were found as 5.76 ± 0.64, 59.80 ± 0.13, and 53.80 ± 3.90 nm and dispersity (Đ) values as 0.476, 0.292, and 0.311 by dynamic light scattering (DLS) measurement, respectively. The in vitro studies revealed that the drug-free glyco-nanoassemblies are biocompatible at concentrations higher than 296 μg/mL. The drug-conjugated glyco-nanoassemblies (GN1 and GN2) exhibited in vitro cytotoxicity against human breast cancer cell lines of MDA-MB-231 comparable to free Gem and cisPt, illustrating an efficient drug release into the tumor environment. Additionally, GNs exhibited higher selectivity and preferential cellular internalization in MDA-MB-231 when compared to healthy cell lines of CCD-1079Sk. These dual-drug conjugated GNs can effectively enhance the killing of cancer cells and increase synergistic chemotherapy.
Collapse
Affiliation(s)
- Tugba Gencoglu Katmerlikaya
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, 34093Istanbul, Turkey
| | - Aydan Dag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093Istanbul, Turkey.,Pharmaceutical Application and Research Center, Bezmialem Vakif University, 34093Istanbul, Turkey
| | - Pınar Sinem Omurtag Ozgen
- Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, 34810Istanbul, Turkey.,Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Marmara University, 34854Istanbul, Turkey
| | - Busra Cetin Ersen
- Department of Chemistry, Institute of Graduate Studies, Ankara Haci Bayram Veli University, 06900Ankara, Turkey
| |
Collapse
|
29
|
Sahkulubey Kahveci EL, Kahveci MU, Celebi A, Avsar T, Derman S. Glycopolymer and Poly(β-amino ester)-Based Amphiphilic Block Copolymer as a Drug Carrier. Biomacromolecules 2022; 23:4896-4908. [PMID: 36317475 PMCID: PMC9667500 DOI: 10.1021/acs.biomac.2c01076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Glycopolymers are synthetic macromolecules having pendant sugar moieties and widely utilized to target cancer cells. They are usually considered as a hydrophilic segment of amphiphilic block copolymers to fabricate micelles as drug carriers. A novel amphiphilic block copolymer, namely, poly(2-deoxy-2-methacrylamido-d-glucose-co-2-hydroxyethyl methacrylate)-b-poly(β-amino ester) [P(MAG-co-HEMA)-b-PBAE], with active cancer cell targeting potential and pH responsivity was prepared. Tetrazine end functional P(MAG-co-HEMA) and norbornene end functional PBAE blocks were separately synthesized through reversible addition fragmentation chain transfer polymerization and Michael addition-based poly-condensation, respectively, and followed by end-group transformation. Then, inverse electron demand Diels Alder reaction between the tetrazine and the norbornene groups was performed by simply mixing to obtain the amphiphilic block copolymer. After characterization of the block copolymer in terms of chemical structure, pH responsivity, and drug loading/releasing, pH-responsive micelles were obtained with or without doxorubicin (DOX), a model anticancer drug. The micelles exhibited a sharp protonated/deprotonated transition on tertiary amine groups around pH 6.75 and the pH-specific release of DOX below this value. Eventually, the drug delivery potential was evaluated by cytotoxicity assays on both the noncancerous human umbilical vein endothelial cell (HUVEC) cell line and glioblastoma cell line, U87-MG. While the DOX-loaded polymeric micelles were not toxic in noncancerous HUVEC cells, being toxic only to the cancer cells indicates that it is a potential specific cell targeting strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Elif L. Sahkulubey Kahveci
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210Istanbul, Turkey
| | - Muhammet U. Kahveci
- Faculty
of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Sariyer, 34467Istanbul, Turkey
| | - Asuman Celebi
- Department
of Medical Biology, School of Medicine, Bahcesehir University, Goztepe, 34734Istanbul, Turkey
| | - Timucin Avsar
- Department
of Medical Biology, School of Medicine, Bahcesehir University, Goztepe, 34734Istanbul, Turkey
| | - Serap Derman
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210Istanbul, Turkey
| |
Collapse
|
30
|
Thiol-Ene Reaction of Heparin Allyl Ester, Heparin 4-Vinylbenzyl Ester and Enoxaparin. REACTIONS 2022. [DOI: 10.3390/reactions3030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Heparin allyl ester and heparin 4-vinylbenzyl ester were prepared and examined for their potential for thiol-ene reaction using both free radical initiators and photochemistry. While both undergo reaction with mercaptoacetic acid, the allyl ester adduct proved to be somewhat more labile. Several more examples of adducts from heparin 4-vinylbenzyl ester are reported. Similar reactions on enoxaparin, where the reaction site is solely at the non-reducing end of the molecule, are also reported. These reactions may show promise as a strategy in the development of drug conjugates.
Collapse
|
31
|
Ganda S, Wong CK, Biazik J, Raveendran R, Zhang L, Chen F, Ariotti N, Stenzel MH. Macrophage-Targeting and Complete Lysosomal Degradation of Self-assembled Two-Dimensional Poly(ε-caprolactone) Platelet Particles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35333-35343. [PMID: 35895018 DOI: 10.1021/acsami.2c06555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding cellular uptake and particle trafficking within the cells is essential for targeted drug delivery applications. Existing studies reveal that the geometrical aspects of nanocarriers, for example, shape and size, determine their cell uptake and sub-cellular transport pathways. However, considerable efforts have been directed toward understanding the cell uptake mechanism and trafficking of spherical particles. Detailed analysis on the uptake mechanism and downstream intracellular processing of non-spherical particles remains elusive. Here, we used polymeric two-dimensional platelets based on poly(ε-caprolactone) (PCL) prepared by living crystallization-driven self-assembly as a platform to investigate the cell uptake and intracellular transport of non-spherical particles in vitro. PCL is known to degrade only slowly, and these platelets were still stable after 2 days of incubation in artificial lysosomal media. Upon cell uptake, the platelets were transported through an endo/lysosomal pathway and were found to degrade completely in the lysosome at the end of the cell uptake cycle. We observed a morphological transformation of the lysosomes, which correlates with the stages of platelet degradation in the lysosome. Overall, we found an accelerated degradation of PCL, which was likely caused by mechanical forces inside the highly stretched endosomes.
Collapse
Affiliation(s)
- Sylvia Ganda
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chin Ken Wong
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Radhika Raveendran
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lin Zhang
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|