1
|
Sundar S, Koopman A, Manzoni TJ, Xie W, Bhatti QUA, Lo CY, Damani VS, Yang AN, Pochan D, Parreno J, Engiles JB, Kayser LV, Dhong C. Kinetics and Retention of Polystyrenesulfonate for Proteoglycan Replacement in Cartilage. Biomacromolecules 2024; 25:5819-5833. [PMID: 39142342 PMCID: PMC11389691 DOI: 10.1021/acs.biomac.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Tissue hydration provides articular cartilage with dynamic viscoelastic properties. Early stage osteoarthritis (OA) is marked by loss of proteoglycans and glycosaminoglycans (GAG), lowering fixed charge density, and impairing tissue osmotic function. The most common GAG replacement, chondroitin sulfate (CS), has failed to show effectiveness. Here, we investigated a synthetic polyelectrolyte, poly(styrenesulfonate) (PSS), both as a model compound to investigate polyelectrolyte transport in cartilage, and as a potential candidate to restore bulk fixed charge density in cartilage with GAG loss. Through bovine explants and histology, we determined zonal-based effective diffusion coefficients for three different molecular weights of PSS. Compared to CS, PSS was retained longer in GAG-depleted cartilage in static and compression-based desorption experiments. We explained enhanced solute performance of PSS by its more compact morphology and higher charge density by small-angle X-ray scattering. This study may improve design of GAG mimetic molecules for repairing osmotic function in OA cartilage.
Collapse
Affiliation(s)
- Shalini Sundar
- Department
of Biomedical Engineering, University of
Delaware, Newark 19716, Delaware, United States
| | - Allison Koopman
- Department
of Materials Science and Engineering, University
of Delaware, Newark 19716, Delaware, United States
| | - Thomas J. Manzoni
- Department
of Biological Sciences, University of Delaware, Newark 19716, Delaware, United States
| | - Weiran Xie
- Department
of Materials Science and Engineering, University
of Delaware, Newark 19716, Delaware, United States
| | - Qurat-Ul-Ain Bhatti
- Department
of Materials Science and Engineering, University
of Delaware, Newark 19716, Delaware, United States
| | - Chun-Yuan Lo
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark 19716, Delaware, United States
| | - Vidhika S. Damani
- Department
of Materials Science and Engineering, University
of Delaware, Newark 19716, Delaware, United States
| | - Ai Nin Yang
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark 19716, Delaware, United States
| | - Darrin Pochan
- Department
of Materials Science and Engineering, University
of Delaware, Newark 19716, Delaware, United States
| | - Justin Parreno
- Department
of Biomedical Engineering, University of
Delaware, Newark 19716, Delaware, United States
- Department
of Biological Sciences, University of Delaware, Newark 19716, Delaware, United States
| | - Julie B. Engiles
- Department
of Clinical Studies, University of Pennsylvania
School of Veterinary Medicine, Kennett Square 19348, Pennsylvania, United States
- Department
of Pathobiology, University of Pennsylvania
School of Veterinary Medicine, Kennett Square, Pennsylvania 19348, United States
| | - Laure V. Kayser
- Department
of Materials Science and Engineering, University
of Delaware, Newark 19716, Delaware, United States
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark 19716, Delaware, United States
| | - Charles Dhong
- Department
of Biomedical Engineering, University of
Delaware, Newark 19716, Delaware, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark 19716, Delaware, United States
| |
Collapse
|
2
|
Ulker D, Neal TJ, Crawford A, Armes SP. Thermoresponsive Poly( N, N'-dimethylacrylamide)-Based Diblock Copolymer Worm Gels via RAFT Solution Polymerization: Synthesis, Characterization, and Cell Biology Applications. Biomacromolecules 2023; 24:4285-4302. [PMID: 37616242 PMCID: PMC10498450 DOI: 10.1021/acs.biomac.3c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Indexed: 08/26/2023]
Abstract
RAFT solution polymerization is used to polymerize 2-hydroxypropyl methacrylate (HPMA). The resulting PHPMA precursor is then chain-extended using N,N'-dimethylacrylamide (DMAC) to produce a series of thermoresponsive PHPMA-PDMAC diblock copolymers. Such amphiphilic copolymers can be directly dispersed in ice-cold water and self-assembled at 20 °C to form spheres, worms, or vesicles depending on their copolymer composition. Construction of a pseudo-phase diagram is required to identify the pure worm phase, which corresponds to a rather narrow range of PDMAC DPs. Such worms form soft, free-standing gels in aqueous solution at around ambient temperature. Rheology studies confirm the thermoresponsive nature of such worms, which undergo a reversible worm-to-sphere on cooling below ambient temperature. This morphological transition leads to in situ degelation, and variable temperature 1H NMR studies indicate a higher degree of (partial) hydration for the weakly hydrophobic PHPMA chains at lower temperatures. The trithiocarbonate end-group located at the end of each PDMAC chain can be removed by treatment with excess hydrazine. The resulting terminal secondary thiol group can form disulfide bonds via coupling, which produces PHPMA-PDMAC-PHPMA triblock copolymer chains. Alternatively, this reactive thiol group can be used for conjugation reactions. A PHPMA141-PDMAC36 worm gel was used to store human mesenchymal stem cells (MSCs) for up to three weeks at 37 °C. MSCs retrieved from this gel subsequently underwent proliferation and maintained their ability to differentiate into osteoblastic cells.
Collapse
Affiliation(s)
- Damla Ulker
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
- Faculty
of Pharmacy, Department of Pharmaceutical Basic Sciences, Near East University, Nicosia, Northern Cyprus TR-99138, Turkey
| | - Thomas J. Neal
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| | - Aileen Crawford
- School
of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, South Yorkshire S10 2TA, UK
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| |
Collapse
|
3
|
Brotherton EE, Josland D, György C, Johnson EC, Chan DH, Smallridge MJ, Armes SP. Histidine-Functionalized Diblock Copolymer Nanoparticles Exhibit Enhanced Adsorption onto Planar Stainless Steel. Macromol Rapid Commun 2023; 44:e2200903. [PMID: 36534428 PMCID: PMC11497266 DOI: 10.1002/marc.202200903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RAFT aqueous emulsion polymerization of isopropylideneglycerol monomethacrylate (IPGMA) is used to prepare a series of PGEO5MA46 -PIPGMAy nanoparticles, where PGEO5MA is a hydrophilic methacrylic steric stabilizer block bearing pendent cis-diol groups. TEM studies confirm a spherical morphology while dynamic light scattering (DLS) analysis indicated that the z-average particle diameter can be adjusted by varying the target degree of polymerization for the core-forming PIPGMA block. Periodate oxidation is used to convert the cis-diol groups on PGEO5MA46 -PIPGMA500 and PGEO5MA46 -PIPGMA1000 nanoparticles into the analogous aldehyde-functionalized nanoparticles, which are then reacted with histidine via reductive amination. In each case, the extent of functionalization is more than 99% as determined by 1 H NMR spectroscopy. Aqueous electrophoresis studies indicate that such derivatization converts initially neutral nanoparticles into zwitterionic nanoparticles with an isoelectric point at pH 7. DLS studies confirm that such histidine-derivatized nanoparticles remain colloidally stable over a wide pH range. A quartz crystal microbalance is employed at 25°C to assess the adsorption of both the cis-diol- and histidine-functionalized nanoparticles onto planar stainless steel at pH 6. The histidine-bearing nanoparticles adsorb much more strongly than their cis-diol counterparts. For the highest adsorbed amount of 70.5 mg m-2 , SEM indicates a fractional surface coverage of 0.23 for the adsorbed nanoparticles.
Collapse
Affiliation(s)
- Emma E. Brotherton
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Daniel Josland
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Csilla György
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Edwin C. Johnson
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Derek H.H. Chan
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | | | - Steven P. Armes
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| |
Collapse
|
4
|
Buksa H, Neal TJ, Varlas S, Hunter SJ, Musa OM, Armes SP. Synthesis and Characterization of Charge-Stabilized Poly(4-hydroxybutyl acrylate) Latex by RAFT Aqueous Dispersion Polymerization: A New Precursor for Reverse Sequence Polymerization-Induced Self-Assembly. Macromolecules 2023; 56:4296-4306. [PMID: 37333840 PMCID: PMC10273316 DOI: 10.1021/acs.macromol.3c00534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/12/2023] [Indexed: 06/20/2023]
Abstract
The reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 4-hydroxybutyl acrylate (HBA) is conducted using a water-soluble RAFT agent bearing a carboxylic acid group. This confers charge stabilization when such syntheses are conducted at pH 8, which leads to the formation of polydisperse anionic PHBA latex particles of approximately 200 nm diameter. The weakly hydrophobic nature of the PHBA chains confers stimulus-responsive behavior on such latexes, which are characterized by transmission electron microscopy, dynamic light scattering, aqueous electrophoresis, and 1H NMR spectroscopy. Addition of a suitable water-miscible hydrophilic monomer such as 2-(N-(acryloyloxy)ethyl pyrrolidone) (NAEP) leads to in situ molecular dissolution of the PHBA latex, with subsequent RAFT polymerization leading to the formation of sterically stabilized PHBA-PNAEP diblock copolymer nanoparticles of approximately 57 nm diameter. Such formulations constitute a new approach to reverse sequence polymerization-induced self-assembly, whereby the hydrophobic block is prepared first in aqueous media.
Collapse
Affiliation(s)
- Hubert Buksa
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Thomas J. Neal
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Spyridon Varlas
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Saul J. Hunter
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Osama M. Musa
- Ashland
Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
5
|
Prudlik A, Mohebbati N, Hildebrandt L, Heck A, Nuhn L, Francke R. TEMPO-Modified Polymethacrylates as Mediators in Electrosynthesis: Influence of the Molecular Weight on Redox Properties and Electrocatalytic Activity. Chemistry 2023; 29:e202202730. [PMID: 36426862 DOI: 10.1002/chem.202202730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Homogeneous catalysts ("mediators") are frequently employed in organic electrosynthesis to control selectivity. Despite their advantages, they can have a negative influence on the overall energy and mass balance if used only once or recycled inefficiently. Polymediators are soluble redox-active polymers applicable as electrocatalysts, enabling recovery by dialysis or membrane filtration. Using anodic alcohol oxidation as an example, we have demonstrated that TEMPO-modified polymethacrylates (TPMA) can act as efficient and recyclable catalysts. In the present work, the influence of the molecular size on the redox properties and the catalytic activity was carefully elaborated using a series of TPMAs with well-defined molecular weight distributions. Cyclic voltammetry studies show that the polymer chain length has a pronounced impact on the key-properties. Together with preparative-scale electrolysis experiments, an optimum size range was identified for polymediator-guided sustainable reaction control.
Collapse
Affiliation(s)
- Adrian Prudlik
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Nayereh Mohebbati
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Laura Hildebrandt
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Alina Heck
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Chair of Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Chair of Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Robert Francke
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| |
Collapse
|
6
|
Fortenberry AW, Jankoski PE, Stacy EK, McCormick CL, Smith AE, Clemons TD. A Perspective on the History and Current Opportunities of Aqueous RAFT Polymerization. Macromol Rapid Commun 2022; 43:e2200414. [PMID: 35822936 PMCID: PMC10697073 DOI: 10.1002/marc.202200414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Indexed: 02/06/2023]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerization has proven itself as a powerful polymerization technique affording facile control of molecular weight, molecular weight distribution, architecture, and chain end groups - while maintaining a high level of tolerance for solvent and monomer functional groups. RAFT is highly suited to water as a polymerization solvent, with aqueous RAFT now utilized for applications such as controlled synthesis of ultra-high molecular weight polymers, polymerization induced self-assembly, and biocompatible polymerizations, among others. Water as a solvent represents a non-toxic, cheap, and environmentally friendly alternative to organic solvents traditionally utilized for polymerizations. This, coupled with the benefits of RAFT polymerization, makes for a powerful combination in polymer science. This perspective provides a historical account of the initial developments of aqueous RAFT polymerization at the University of Southern Mississippi from the McCormick Research Group, details practical considerations for conducting aqueous RAFT polymerizations, and highlights some of the recent advances aqueous RAFT polymerization can provide. Finally, some of the future opportunities that this versatile polymerization technique in an aqueous environment can offer are discussed, and it is anticipated that the aqueous RAFT polymerization field will continue to realize these, and other exciting opportunities into the future.
Collapse
Affiliation(s)
| | - Penelope E Jankoski
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Evan K Stacy
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Charles L McCormick
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Adam E Smith
- Department of Chemical Engineering, The University of Mississippi, Oxford, MS, 38677, USA
| | - Tristan D Clemons
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
7
|
Wang Z, Delille F, Bartier S, Pons T, Lequeux N, Louis B, Kim J, Gacoin T. Zwitterionic Polymers toward the Development of Orientation-Sensitive Bioprobes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10512-10519. [PMID: 35979644 DOI: 10.1021/acs.langmuir.2c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamics with an orientational degree of freedom are fundamental in biological events. Probes with polarized luminescence enable a determination of the orientation. Lanthanide-doped nanocrystals can provide more precise analysis than quantum dots due to the nonphotoblinking/bleaching nature and the multiple line-shaped emission. However, the intrinsic polarization property of the original nanocrystals often deteriorates in complex physiological environments because the colloidal stability easily breaks and the probes aggregate in the media with abundant salts and macromolecules. Engineering the surface chemistry of the probes is thus essential to be compatible with biosystems, which has remained a challenging task that should be exclusively addressed for each specific probe. Here, we demonstrate a facile and efficient surface functionalization of lanthanide-doped nanorods by zwitterionic block copolymers. Due to the steric interaction and the intrinsic zwitterionic nature of the polymers, high colloidal stability of the zwitterionic nanorod suspension is achieved over wide ranges of pH and concentration of salts, even giving rise to the lyotropic liquid crystalline behavior of the nanorods in physiological media. The shear-aligned ability is shown to be unaltered by the coated polymers, and thus, the strongly polarized emission of Eu3+ is preserved. Besides, biological experiments reveal good biocompatibility of the zwitterionic nanorods with negligible nonspecific binding. This study is a stepping stone for the use of the nanorods as orientation probes in biofluids and validates the strategy of coupling zwitterions to lanthanide-doped nanocrystals for various bioapplications.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Fanny Delille
- Laboratoire de Physique et d'Étude des Materiaux, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Sophie Bartier
- Université Paris Est Créteil, IMRB, INSERM, CNRS, 94010 Créteil, France
| | - Thomas Pons
- Laboratoire de Physique et d'Étude des Materiaux, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d'Étude des Materiaux, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Bruno Louis
- Université Paris Est Créteil, IMRB, INSERM, CNRS, 94010 Créteil, France
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
8
|
McBride RJ, Miller JF, Blanazs A, Hähnle HJ, Armes SP. Synthesis of High Molecular Weight Water-Soluble Polymers as Low-Viscosity Latex Particles by RAFT Aqueous Dispersion Polymerization in Highly Salty Media. Macromolecules 2022; 55:7380-7391. [PMID: 36118598 PMCID: PMC9476848 DOI: 10.1021/acs.macromol.2c01071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/30/2022] [Indexed: 11/29/2022]
Abstract
![]()
We report the synthesis of sterically-stabilized diblock
copolymer
particles at 20% w/w solids via reversible addition–fragmentation
chain transfer (RAFT) aqueous dispersion polymerization of N,N′-dimethylacrylamide (DMAC) in
highly salty media (2.0 M (NH4)2SO4). This is achieved by selecting a well-known zwitterionic water-soluble
polymer, poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC),
to act as the salt-tolerant soluble precursor block. A relatively
high degree of polymerization (DP) can be targeted for the salt-insoluble
PDMAC block, which leads to the formation of a turbid free-flowing
dispersion of PDMAC-core particles by a steric stabilization mechanism. 1H NMR spectroscopy studies indicate that relatively high DMAC
conversions (>99%) can be achieved within a few hours at 30 °C.
Aqueous GPC analysis indicates high blocking efficiencies and unimodal
molecular weight distributions, although dispersities increase monotonically
as higher degrees of polymerization (DPs) are targeted for the PDMAC
block. Particle characterization techniques include dynamic light
scattering (DLS) and electrophoretic light scattering (ELS) using
a state-of-the-art instrument that enables accurate ζ potential
measurements in a concentrated salt solution. 1H NMR spectroscopy
studies confirm that dilution of the as-synthesized dispersions using
deionized water lowers the background salt concentration and hence
causes in situ molecular dissolution of the salt-intolerant PDMAC
chains, which leads to a substantial thickening effect and the formation
of transparent gels. Thus, this new polymerization-induced self-assembly
(PISA) formulation enables high molecular weight water-soluble polymers
to be prepared in a highly convenient, low-viscosity form. In principle,
such aqueous PISA formulations are highly attractive: there are various
commercial applications for high molecular weight water-soluble polymers,
while the well-known negative aspects of using a RAFT agent (i.e.,
its cost, color, and malodor) are minimized when targeting such high
DPs.
Collapse
Affiliation(s)
- Rory J. McBride
- Chemistry Department, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - John F. Miller
- Enlighten Scientific LLC, Hillsborough, North Carolina 27278, United States
| | - Adam Blanazs
- BASF SE, RAM/OB - B001, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Hans-Joachim Hähnle
- BASF SE, RAM/OB - B001, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Steven P. Armes
- Chemistry Department, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
9
|
Bennett MR, Moloney C, Catrambone F, Turco F, Myers B, Kovacs K, Hill PJ, Alexander C, Rawson FJ, Gurnani P. Oxygen-Tolerant RAFT Polymerization Initiated by Living Bacteria. ACS Macro Lett 2022; 11:954-960. [PMID: 35819106 PMCID: PMC9387098 DOI: 10.1021/acsmacrolett.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Living organisms can synthesize a wide range of macromolecules
from a small set of natural building blocks, yet there is potential
for even greater materials diversity by exploiting biochemical processes
to convert unnatural feedstocks into new abiotic polymers. Ultimately,
the synthesis of these polymers in situ might aid the coupling of
organisms with synthetic matrices, and the generation of biohybrids
or engineered living materials. The key step in biohybrid materials
preparation is to harness the relevant biological pathways to produce
synthetic polymers with predictable molar masses and defined architectures
under ambient conditions. Accordingly, we report an aqueous, oxygen-tolerant
RAFT polymerization platform based on a modified Fenton reaction,
which is initiated by Cupriavidus metallidurans CH34,
a bacterial species with iron-reducing capabilities. We show the synthesis
of a range of water-soluble polymers under normoxic conditions, with
control over the molar mass distribution, and also the production
of block copolymer nanoparticles via polymerization-induced self-assembly.
Finally, we highlight the benefits of using a bacterial initiation
system by recycling the cells for multiple polymerizations. Overall,
our method represents a highly versatile approach to producing well-defined
polymeric materials within a hybrid natural-synthetic polymerization
platform and in engineered living materials with properties beyond
those of biotic macromolecules.
Collapse
Affiliation(s)
- Mechelle R Bennett
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, United Kingdom
| | - Cara Moloney
- School of Medicine, BioDiscovery Institute, University of Nottingham, University Park Campus, Nottingham NG7 2RD, United Kingdom
| | - Francesco Catrambone
- School of Life Sciences, BioDiscovery Institute, University of Nottingham, University Park Campus, Nottingham NG7 2RD, United Kingdom
| | - Federico Turco
- School of Pharmacy, BioDiscovery Institute, University of Nottingham, University Park Campus, Nottingham NG7 2RD, United Kingdom
| | - Benjamin Myers
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, United Kingdom
| | - Katalin Kovacs
- Division of Molecular Therapeutics, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, United Kingdom
| | - Philip J Hill
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, United Kingdom
| | - Cameron Alexander
- Division of Molecular Therapeutics, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, United Kingdom
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, United Kingdom
| | - Pratik Gurnani
- Division of Molecular Therapeutics, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
10
|
Luo X, Li Z, Zhang L, Chen Y, Tan J. Mechanistic Investigation of the Position of Reversible Addition–Fragmentation Chain Transfer (RAFT) Groups in Heterogeneous RAFT Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinyi Luo
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongchuan Li
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
11
|
Luo X, Zhang K, Zeng R, Chen Y, Zhang L, Tan J. Segmented Copolymers Synthesized by Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization Using an Asymmetric Difunctional RAFT Agent and the Utilization in RAFT-Mediated Dispersion Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xinyi Luo
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Kunlun Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiming Zeng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
12
|
Mohebbati N, Prudlik A, Scherkus A, Gudkova A, Francke R. TEMPO‐Modified Polymethacrylates as Mediators in Electrosynthesis – Redox Behavior and Electrocatalytic Activity toward Alcohol Substrates. ChemElectroChem 2021. [DOI: 10.1002/celc.202100768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nayereh Mohebbati
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Adrian Prudlik
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Anton Scherkus
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Aija Gudkova
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Robert Francke
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| |
Collapse
|
13
|
Mann JL, Maikawa CL, Smith AAA, Grosskopf AK, Baker SW, Roth GA, Meis CM, Gale EC, Liong CS, Correa S, Chan D, Stapleton LM, Yu AC, Muir B, Howard S, Postma A, Appel EA. An ultrafast insulin formulation enabled by high-throughput screening of engineered polymeric excipients. Sci Transl Med 2021; 12:12/550/eaba6676. [PMID: 32611683 DOI: 10.1126/scitranslmed.aba6676] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Insulin has been used to treat diabetes for almost 100 years; yet, current rapid-acting insulin formulations do not have sufficiently fast pharmacokinetics to maintain tight glycemic control at mealtimes. Dissociation of the insulin hexamer, the primary association state of insulin in rapid-acting formulations, is the rate-limiting step that leads to delayed onset and extended duration of action. A formulation of insulin monomers would more closely mimic endogenous postprandial insulin secretion, but monomeric insulin is unstable in solution using present formulation strategies and rapidly aggregates into amyloid fibrils. Here, we implement high-throughput-controlled radical polymerization techniques to generate a large library of acrylamide carrier/dopant copolymer (AC/DC) excipients designed to reduce insulin aggregation. Our top-performing AC/DC excipient candidate enabled the development of an ultrafast-absorbing insulin lispro (UFAL) formulation, which remains stable under stressed aging conditions for 25 ± 1 hours compared to 5 ± 2 hours for commercial fast-acting insulin lispro formulations (Humalog). In a porcine model of insulin-deficient diabetes, UFAL exhibited peak action at 9 ± 4 min, whereas commercial Humalog exhibited peak action at 25 ± 10 min. These ultrafast kinetics make UFAL a promising candidate for improving glucose control and reducing burden for patients with diabetes.
Collapse
Affiliation(s)
- Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anton A A Smith
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA.,Department of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sam W Baker
- Department of Comparative Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Gillie A Roth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Catherine M Meis
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Emily C Gale
- Department of Biochemistry, Stanford University, Palo Alto, CA 94305, USA
| | - Celine S Liong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Santiago Correa
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Doreen Chan
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Anthony C Yu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Ben Muir
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Shaun Howard
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Almar Postma
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA. .,Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.,Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Scherger M, Räder HJ, Nuhn L. Self-Immolative RAFT-Polymer End Group Modification. Macromol Rapid Commun 2021; 42:e2000752. [PMID: 33629782 DOI: 10.1002/marc.202000752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Indexed: 11/07/2022]
Abstract
Reversible modifications of reversible addition-fragmentation chain transfer (RAFT)-polymerization derived end groups are usually limited to reductive degradable disulfide conjugates. However, self-immolative linkers can promote ligation and traceless release of primary and secondary amines as well as alcohols via carbonates or carbamates in β-position to disulfides. In this study, these two strategies are combined and the concept of self-immolative RAFT-polymer end group modifications is introduced: As model compounds, benzylamine, dibenzylamine, and benzyl alcohol are first attached as carbamates or carbonates to a symmetrical disulfide, and in a straightforward one-pot reaction these groups are reversibly attached to aminolyzed trithiocarbonate end groups of RAFT-polymerized poly(N,N-dimethylacrylamide). Quantitative end group modification is confirmed by 1 H NMR spectroscopy, size exclusion chromatography, and mass spectrometry, while reversible release of attached compounds under physiological reductive conditions is successfully monitored by diffusion ordered NMR spectroscopy and thin layer chromatography. Additionally, this concept is further expanded to protein-reactive, self-immolative carbonate species that enable reversible bioconjugation of lysozyme and α-macrophage mannose receptor (MMR) nanobodies as model proteins. Altogether, self-immolative RAFT end group modifications can form the new basis for reversible introduction of various functionalities to polymer chain ends including protein bioconjugates and, thus, opening novel opportunities for stimuli-responsive polymer hybrids.
Collapse
Affiliation(s)
- Maximilian Scherger
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Hans Joachim Räder
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
15
|
Du Y, Jia S, Chen Y, Zhang L, Tan J. Type I Photoinitiator-Functionalized Block Copolymer Nanoparticles Prepared by RAFT-Mediated Polymerization-Induced Self-Assembly. ACS Macro Lett 2021; 10:297-306. [PMID: 35570791 DOI: 10.1021/acsmacrolett.1c00014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type I photoinitiators have been widely used in UV-vis curing technology for the fabrication of functional polymer materials such as coatings, inks, and adhesives. To overcome the drawbacks of using small molecular type I photoinitiators and expand the potential applications of UV-vis curing technology, attaching type I photoinitiators onto the surface of polymer colloids is an attractive strategy. Here we report a robust strategy for the efficient preparation of type I photoinitiator-functionalized block copolymer nanoparticles with various morphologies via aqueous reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization-induced self-assembly (PISA), in which the photoinitiating ability of the type I photoinitiator end group provides a landscape for further functionalization. These block copolymer nanoparticles could also be used as heterogeneous photoinitiators to generate hydrogels with nanoparticles embedded inside. Significantly, the properties and functionalities of these hydrogels could be further controlled by using different block copolymer nanoparticles. This study provides a robust strategy toward the preparation of type I photoinitiator-functionalized block copolymer nanoparticles with the capacity to be modified with varying functionalities.
Collapse
Affiliation(s)
- Yang Du
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuai Jia
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
16
|
György C, Derry MJ, Cornel EJ, Armes SP. Synthesis of Highly Transparent Diblock Copolymer Vesicles via RAFT Dispersion Polymerization of 2,2,2-Trifluoroethyl Methacrylate in n-Alkanes. Macromolecules 2021; 54:1159-1169. [PMID: 33583957 PMCID: PMC7879428 DOI: 10.1021/acs.macromol.0c02646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/06/2021] [Indexed: 01/28/2023]
Abstract
RAFT dispersion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) is performed in n-dodecane at 90 °C using a relatively short poly(stearyl methacrylate) (PSMA) precursor and 2-cyano-2-propyl dithiobenzoate (CPDB). The growing insoluble poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) block results in the formation of PSMA-PTFEMA diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). GPC analysis indicated narrow molecular weight distributions (M w/M n ≤ 1.34) for all copolymers, with 19F NMR studies indicating high TFEMA conversions (≥95%) for all syntheses. A pseudo-phase diagram was constructed to enable reproducible targeting of pure spheres, worms, or vesicles by varying the target degree of polymerization of the PTFEMA block at 15-25% w/w solids. Nano-objects were characterized using dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering. Importantly, the near-identical refractive indices for PTFEMA (1.418) and n-dodecane (1.421) enable the first example of highly transparent vesicles to be prepared. The turbidity of such dispersions was examined between 20 and 90 °C. The highest transmittance (97% at 600 nm) was observed for PSMA9-PTFEMA294 vesicles (237 ± 24 nm diameter; prepared at 25% w/w solids) in n-dodecane at 20 °C. Interestingly, targeting the same diblock composition in n-hexadecane produced a vesicle dispersion with minimal turbidity at a synthesis temperature of 90 °C. This solvent enabled in situ visible absorption spectra to be recorded during the synthesis of PSMA16-PTFEMA86 spheres at 15% w/w solids, which allowed the relatively weak n→π* band at 515 nm assigned to the dithiobenzoate chain-ends to be monitored. Unfortunately, the premature loss of this RAFT chain-end occurred during the RAFT dispersion polymerization of TFEMA at 90 °C, so meaningful kinetic data could not be obtained. Furthermore, the dithiobenzoate chain-ends exhibited a λmax shift of 8 nm relative to that of the dithiobenzoate-capped PSMA9 precursor. This solvatochromatic effect suggests that the problem of thermally labile dithiobenzoate chain-ends cannot be addressed by performing the TFEMA polymerization at lower temperatures.
Collapse
Affiliation(s)
- Csilla György
- Dainton Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | | | | | - Steven P. Armes
- Dainton Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
17
|
Saha P, Palanisamy AR, Santi M, Ganguly R, Mondal S, Singha NK, Pich A. Thermoresponsive zwitterionic poly(phosphobetaine) microgels: Effect of
macro‐RAFT
chain length and cross‐linker molecular weight on their antifouling properties. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pabitra Saha
- DWI – Leibniz‐Institute for Interactive Materials e.V Aachen Germany
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Aachen Germany
| | - Anand Raj Palanisamy
- DWI – Leibniz‐Institute for Interactive Materials e.V Aachen Germany
- Rubber Technology Centre Indian Institute of Technology Kharagpur Kharagpur India
| | - Marta Santi
- DWI – Leibniz‐Institute for Interactive Materials e.V Aachen Germany
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Aachen Germany
| | - Ritabrata Ganguly
- Rubber Technology Centre Indian Institute of Technology Kharagpur Kharagpur India
| | - Somashree Mondal
- DWI – Leibniz‐Institute for Interactive Materials e.V Aachen Germany
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
| | - Nikhil K. Singha
- Rubber Technology Centre Indian Institute of Technology Kharagpur Kharagpur India
| | - Andrij Pich
- DWI – Leibniz‐Institute for Interactive Materials e.V Aachen Germany
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Aachen Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM) Maastricht University Geleen the Netherlands
| |
Collapse
|
18
|
Takahashi M, Shimizu A, Yusa S, Higaki Y. Lyotropic Morphology Transition of Double Zwitterionic Diblock Copolymer Aqueous Solutions. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Masaya Takahashi
- Graduate School of Engineering Oita University 700 Dannoharu Oita 870‐1192 Japan
| | - Akane Shimizu
- Graduate School of Engineering Oita University 700 Dannoharu Oita 870‐1192 Japan
| | - Shin‐ichi Yusa
- Department of Applied Chemistry Graduate School of Engineering University of Hyogo 2167 Shosha, Himeji Hyogo 671‐2280 Japan
| | - Yuji Higaki
- Department of Integrated Science and Technology Faculty of Science and Technology Oita University 700 Dannoharu Oita 870‐1192 Japan
| |
Collapse
|
19
|
Chan DHH, Cockram AA, Gibson RR, Kynaston EL, Lindsay C, Taylor P, Armes SP. RAFT aqueous emulsion polymerization of methyl methacrylate: observation of unexpected constraints when employing a non-ionic steric stabilizer block. Polym Chem 2021. [DOI: 10.1039/d1py01008e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using a non-ionic steric stabilizer for the RAFT aqueous emulsion polymerization of methyl methacrylate leads to flocculated nanoparticles when targeting DPs > 100; there is no such constraint when employing an anionic stabilizer block.
Collapse
Affiliation(s)
- Derek H. H. Chan
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Amy A. Cockram
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Rebecca R. Gibson
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Emily L. Kynaston
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Christopher Lindsay
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Philip Taylor
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Steven P. Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
20
|
|
21
|
Lückerath T, Koynov K, Loescher S, Whitfield CJ, Nuhn L, Walther A, Barner‐Kowollik C, Ng DYW, Weil T. DNA-Polymer Nanostructures by RAFT Polymerization and Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2020; 59:15474-15479. [PMID: 32301556 PMCID: PMC7496909 DOI: 10.1002/anie.201916177] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/01/2020] [Indexed: 01/06/2023]
Abstract
Nanostructures derived from amphiphilic DNA-polymer conjugates have emerged prominently due to their rich self-assembly behavior; however, their synthesis is traditionally challenging. Here, we report a novel platform technology towards DNA-polymer nanostructures of various shapes by leveraging polymerization-induced self-assembly (PISA) for polymerization from single-stranded DNA (ssDNA). A "grafting from" protocol for thermal RAFT polymerization from ssDNA under ambient conditions was developed and utilized for the synthesis of functional DNA-polymer conjugates and DNA-diblock conjugates derived from acrylates and acrylamides. Using this method, PISA was applied to manufacture isotropic and anisotropic DNA-polymer nanostructures by varying the chain length of the polymer block. The resulting nanostructures were further functionalized by hybridization with a dye-labelled complementary ssDNA, thus establishing PISA as a powerful route towards intrinsically functional DNA-polymer nanostructures.
Collapse
Affiliation(s)
- Thorsten Lückerath
- Synthesis of MacromoleculesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Kaloian Koynov
- Synthesis of MacromoleculesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Sebastian Loescher
- Institute for Macromolecular ChemistryFreiburg UniversityStefan Meier Str. 3179104FreiburgGermany
- Freiburg Institute for Interactive Materials and Bioinspired Technologies (FIT)Georges-Köhler-Allee 10579104FreiburgGermany
| | - Colette J. Whitfield
- Synthesis of MacromoleculesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Lutz Nuhn
- Synthesis of MacromoleculesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Andreas Walther
- Institute for Macromolecular ChemistryFreiburg UniversityStefan Meier Str. 3179104FreiburgGermany
- Freiburg Institute for Interactive Materials and Bioinspired Technologies (FIT)Georges-Köhler-Allee 10579104FreiburgGermany
| | - Christopher Barner‐Kowollik
- Centre for Materials Science, School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetQLD4000BrisbaneAustralia
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engersserstraße 1876131KarlsruheGermany
| | - David Y. W. Ng
- Synthesis of MacromoleculesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tanja Weil
- Synthesis of MacromoleculesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
22
|
Lückerath T, Koynov K, Loescher S, Whitfield CJ, Nuhn L, Walther A, Barner‐Kowollik C, Ng DYW, Weil T. DNA‐Polymer‐Nanostrukturen durch RAFT‐Polymerisation und polymerisationsinduzierte Selbstassemblierung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thorsten Lückerath
- Synthese von Makromolekülen Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Kaloian Koynov
- Synthese von Makromolekülen Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Sebastian Loescher
- Institut für Makromolekulare Chemie Universität Freiburg Stefan Meier Straße 31 79104 Freiburg Deutschland
- Freiburger Zentrum für Interaktive Werkstoffe und Bioinspirierte Technologien (FIT) Georges-Köhler-Allee 105 79104 Freiburg Deutschland
| | - Colette J. Whitfield
- Synthese von Makromolekülen Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Lutz Nuhn
- Synthese von Makromolekülen Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Andreas Walther
- Institut für Makromolekulare Chemie Universität Freiburg Stefan Meier Straße 31 79104 Freiburg Deutschland
- Freiburger Zentrum für Interaktive Werkstoffe und Bioinspirierte Technologien (FIT) Georges-Köhler-Allee 105 79104 Freiburg Deutschland
| | - Christopher Barner‐Kowollik
- Centre for Materials Science School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
- Makromolekulare Architekturen Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| | - David Y. W. Ng
- Synthese von Makromolekülen Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Tanja Weil
- Synthese von Makromolekülen Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| |
Collapse
|
23
|
Saha P, Santi M, Frenken M, Palanisamy AR, Ganguly R, Singha NK, Pich A. Dual-Temperature-Responsive Microgels from a Zwitterionic Functional Graft Copolymer with Superior Protein Repelling Property. ACS Macro Lett 2020; 9:895-901. [PMID: 35648523 DOI: 10.1021/acsmacrolett.0c00304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work, we developed a synthetic strategy to synthesize dual-temperature-responsive low surface fouling zwitterionic microgels. Statistical poly(N-vinylcaprolactam-co-glycidyl methacrylate) copolymers were synthesized by RAFT polymerization and post-modified by thiol-epoxy click reaction with thiol end-group-modified poly(sulfobetaine) macro-RAFT (PSB-SH) to obtain poly(N-vinylcaprolactam-co-glycidyl methacrylate)-graft-poly(sulfobetaine) (PVCL-co-PGMA-g-PSB) graft copolymers. Synthesized graft copolymers were cross-linked by diamine cross-linker in water-in-oil (w/o) inverse mini-emulsion to obtain zwitterionic microgels. Using this approach, we synthesized microgels with unique microstructure, high loading and uniform distribution of poly(sulfobetaine) chains, which exhibits tunable dual-volume phase transition temperatures. The microgels also showed excellent antifouling property reflected in strongly reduced protein absorption on a microgel-coated surface observed in real time by a Quartz Crystal Microbalance with Dissipation (QCM-D) monitoring experiment with continuous flow of protein solution. Therefore, this kind of zwitterionic microgel can be potentially used for temperature-triggered drug delivery and anti-bioadhesion coating material as well.
Collapse
Affiliation(s)
- Pabitra Saha
- DWI − Leibniz-Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Marta Santi
- DWI − Leibniz-Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Martin Frenken
- DWI − Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Anand Raj Palanisamy
- DWI − Leibniz-Institute for Interactive Materials, Aachen, Germany
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Ritabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Nikhil K. Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Andrij Pich
- DWI − Leibniz-Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
24
|
Liu Q, Wang X, Ma L, Yu K, Xiong W, Lu X, Cai Y. Polymerization-Induced Hierarchical Electrostatic Self-Assembly: Scalable Synthesis of Multicompartment Polyion Complex Micelles and Their Monolayer Colloidal Nanosheets and Nanocages. ACS Macro Lett 2020; 9:454-458. [PMID: 35648501 DOI: 10.1021/acsmacrolett.0c00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Scalable synthesis of multicompartment polyion complex (PIC) systems has been achieved via visible light-initiated RAFT polymerization of cationic monomer in the presence of anionic diblock copolymer micelles in water at 25 °C. This polymerization-induced hierarchical electrostatic self-assembly (hierarchical PIESA) implements structural hierarchy via programmable self-assembly to form multicompartment PIC micelles and their monolayer colloidal nanosheets and nanocages. The anionic micelles play decisive roles in such a hierarchical PIESA to access biologically relevant yet otherwise inaccessible multicompartment PIC systems.
Collapse
Affiliation(s)
- Qizhou Liu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiyu Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lei Ma
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kaiwen Yu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weixing Xiong
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
25
|
György C, Hunter SJ, Girou C, Derry MJ, Armes SP. Synthesis of poly(stearyl methacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer nanoparticles via RAFT dispersion polymerization of 2-hydroxypropyl methacrylate in mineral oil. Polym Chem 2020. [DOI: 10.1039/d0py00562b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RAFT dispersion polymerization of 2-hydroxypropyl methacrylate produces diblock copolymer spheres, worms or vesicles in mineral oil; the Pickering emulsifier performance of the spheres is examined.
Collapse
Affiliation(s)
- Csilla György
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | - Saul J. Hunter
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | - Chloé Girou
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | - Matthew J. Derry
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| | - Steven P. Armes
- Dainton Building
- Department of Chemistry
- The University of Sheffield
- Sheffield
- UK
| |
Collapse
|
26
|
Gibson RR, Cornel EJ, Musa OM, Fernyhough A, Armes SP. RAFT dispersion polymerisation of lauryl methacrylate in ethanol–water binary mixtures: synthesis of diblock copolymer vesicles with deformable membranes. Polym Chem 2020. [DOI: 10.1039/c9py01768b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diblock copolymer vesicles with deformable membranes are prepared via RAFT dispersion polymerisation of lauryl methacrylate in an 80 : 20 w/w ethanol–water mixture; visible light irradiation allows facile RAFT chain-end removal from these nano-objects.
Collapse
Affiliation(s)
- R. R. Gibson
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - E. J. Cornel
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | | | | | - S. P. Armes
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|
27
|
Sponchioni M, O'Brien CT, Borchers C, Wang E, Rivolta MN, Penfold NJW, Canton I, Armes SP. Probing the mechanism for hydrogel-based stasis induction in human pluripotent stem cells: is the chemical functionality of the hydrogel important? Chem Sci 2019; 11:232-240. [PMID: 34040716 PMCID: PMC8133024 DOI: 10.1039/c9sc04734d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/11/2019] [Indexed: 11/23/2022] Open
Abstract
It is well-known that pluripotent human embryonic stem cells (hPSC) can differentiate into any cell type. Recently, we reported that hPSC colonies enter stasis when immersed in an extremely soft hydrogel comprising hydroxyl-functional block copolymer worms (I. Canton, N. J. Warren, A. Chahal, K. Amps, A. Wood, R. Weightman, E. Wang, H. Moore and S. P. Armes, ACS Centr. Sci., 2016, 2, 65-74). The gel modulus and chemical structure of this synthetic hydrogel are similar to that of natural mucins, which are implicated in the mechanism of diapause for mammalian embryos. Does stasis induction occur merely because of the very soft nature of such hydrogels or does chemical functionality also play a role? Herein, we address this key question by designing a new hydrogel of comparable softness in which the PGMA stabilizer chains are replaced with non-hydroxylated poly(ethylene glycol) [PEG]. Immunolabeling studies confirm that hPSC colonies immersed in such PEG-based hydrogels do not enter stasis but instead proliferate (and differentiate if no adhesion substrate is present). However, pluripotency is retained if an appropriate adhesion substrate is provided. Thus, the chemical functionality of the hydrogel clearly plays a decisive role in the stasis induction mechanism.
Collapse
Affiliation(s)
- M Sponchioni
- Department of Chemistry, University of Sheffield Dainton Building Sheffield S3 7HF UK
| | - C T O'Brien
- Department of Chemistry, University of Sheffield Dainton Building Sheffield S3 7HF UK
| | - C Borchers
- Department of Chemistry, University of Sheffield Dainton Building Sheffield S3 7HF UK
| | - E Wang
- Department of Biochemistry and Molecular Genetics, University of Louisville Louisville Kentucky 40202 USA
| | - M N Rivolta
- Department of Biomedical Science, University of Sheffield Western Bank Sheffield S10 2TN UK
| | - N J W Penfold
- Department of Chemistry, University of Sheffield Dainton Building Sheffield S3 7HF UK
| | - I Canton
- Department of Chemistry, University of Sheffield Dainton Building Sheffield S3 7HF UK
| | - S P Armes
- Department of Chemistry, University of Sheffield Dainton Building Sheffield S3 7HF UK
| |
Collapse
|
28
|
Alagi P, Hadjichristidis N, Gnanou Y, Feng X. Fast and Complete Neutralization of Thiocarbonylthio Compounds Using Trialkylborane and Oxygen: Application to Their Removal from RAFT-Synthesized Polymers. ACS Macro Lett 2019; 8:664-669. [PMID: 35619521 DOI: 10.1021/acsmacrolett.9b00357] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A rapid and efficient method to remove thiocarbonylthio end groups from polymers prepared by reversible addition-fragmentation chain transfer (RAFT) is described. The elimination process is obtained in less than 1 min by treating the solution of RAFT-synthesized polymers with 5 equiv of trialkylborane (TAB) in the presence of oxygen under an ambient temperature. The versatility of this method was checked on the most relevant families of thiocarbonylthio chain transfer agents (CTA), including dithioesters, trithiocarbonates, dithiocarbamates, and xanthates, carried by the corresponding RAFT-synthesized polymers. UV, NMR, and MALDI-TOF MS characterization results all confirm the complete removal of their terminal CTA groups.
Collapse
|
29
|
Cheng G, Xu D, Lu Z, Liu K. Chiral Self-Assembly of Nanoparticles Induced by Polymers Synthesized via Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS NANO 2019; 13:1479-1489. [PMID: 30702861 DOI: 10.1021/acsnano.8b07151] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chiral inorganic nanomaterials are of great interest because of their excellent optical properties. Most of the attention has been focused on the utilization of biomolecules or their derivatives as linkers or templates to control the chiral structure of assembled inorganic nanoparticles. Chiral polymers are promising synthetic materials that can be used to replace their biological counterparts. Here, by using poly(methacrylate hydroxyethyl-3-indole propionate) (PIPEMA) and poly(2-hydroxyethyl methacrylate) (PHEMA) synthesized via syndioselective reversible addition-fragmentation chain transfer polymerization, we successfully realized chiral self-assembly of gold nanorods with strong circular dichroism response in the vis-NIR region. Moreover, the intensity of the chiral signal of the assemblies can be regulated by the molecular weight of the polymers. Notably, although the monomers are achiral and no chiral reagents are involved in their synthesis, the main chains of PIPEMA and PHEMA exhibit a preferred-handed helical conformation, which is the origin of chirality of the nanorod assemblies. The preferred-handed helical conformation of polymers is attributed to their syndiotacticity and stabilized by the steric hindrance of the side groups. The addition of chiral carbon atoms at the side groups does not change the preferred-handedness of the polymer main chain, resulting in the assembled nanorod structures with the same chirality. This strategy provides inspiration for the rational design and synthesis of optically active functional synthetic polymers for the preparation of promising chiral nanomaterials.
Collapse
Affiliation(s)
- Guiqing Cheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , 130012 , People's Republic of China
| | - Duo Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun , 130023 , People's Republic of China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , 130012 , People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun , 130023 , People's Republic of China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , 130012 , People's Republic of China
| |
Collapse
|
30
|
Stace SJ, Vanderspikken J, Howard SC, Li G, Muir BW, Fellows CM, Keddie DJ, Moad G. Ab initio RAFT emulsion polymerization mediated by small cationic RAFT agents to form polymers with low molar mass dispersity. Polym Chem 2019. [DOI: 10.1039/c9py00893d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on low molar mass cationic RAFT agents that provide predictable molar mass and low molar mass dispersities (Đm) in ab initio emulsion polymerization.
Collapse
Affiliation(s)
- Sarah J. Stace
- School of Science and Technology
- University of New England
- Armidale
- Australia
- CSIRO Manufacturing
| | - Jochen Vanderspikken
- CSIRO Manufacturing
- Clayton South
- Australia
- Hasselt University
- Institute for Materials Research (IMO)
| | | | - Guoxin Li
- CSIRO Manufacturing
- Clayton South
- Australia
| | | | | | - Daniel J. Keddie
- School of Science and Technology
- University of New England
- Armidale
- Australia
- School of Biology
| | | |
Collapse
|
31
|
Cornel EJ, van Meurs S, Smith T, O’Hora PS, Armes SP. In Situ Spectroscopic Studies of Highly Transparent Nanoparticle Dispersions Enable Assessment of Trithiocarbonate Chain-End Fidelity during RAFT Dispersion Polymerization in Nonpolar Media. J Am Chem Soc 2018; 140:12980-12988. [PMID: 30252464 PMCID: PMC6187374 DOI: 10.1021/jacs.8b07953] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 01/09/2023]
Abstract
We report the synthesis of highly transparent poly(stearyl methacrylate)-poly(2,2,2-trifluoroethyl methacrylate) (PSMA-PTFEMA) diblock copolymer nanoparticles via polymerization-induced self-assembly (PISA) in nonpolar media at 70 °C. This was achieved by chain-extending a PSMA precursor block via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of TFEMA in n-tetradecane. This n-alkane has the same refractive index as the PTFEMA core-forming block at 70 °C, which ensures high light transmittance when targeting 33 nm spherical nanoparticles. Such isorefractivity enables visible absorption spectra to be recorded with minimal light scattering even at 30% w/w solids. However, in situ monitoring of the trithiocarbonate RAFT end-groups during PISA requires selection of a weak n → π* band at 446 nm. Conversion of TFEMA into PTFEMA causes a contraction in the reaction solution volume, leading to an initial increase in absorbance that enables the kinetics of polymerization to be monitored via dilatometry. At ∼98% TFEMA conversion, this 446 nm band remains constant for 2 h at 70 °C, indicating surprisingly high RAFT chain-end fidelity (and hence pseudoliving character) under monomer-starved conditions. In situ 19F NMR spectroscopy studies provide evidence for (i) the onset of micellar nucleation, (ii) solvation of the nanoparticle cores by TFEMA monomer, and (iii) surface plasticization of the nanoparticle cores by n-tetradecane at 70 °C. Finally, the kinetics of RAFT chain-end removal can be conveniently monitored by in situ visible absorption spectroscopy: addition of excess initiator at 70 °C causes complete discoloration of the dispersion, with small-angle X-ray scattering studies confirming no change in nanoparticle morphology under these conditions.
Collapse
Affiliation(s)
- Erik J. Cornel
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, United Kingdom
| | - Sandra van Meurs
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, United Kingdom
| | - Timothy Smith
- Lubrizol
Ltd., Nether Lane, Hazelwood, Derbyshire DE56 4AN, United Kingdom
| | - Paul S. O’Hora
- Lubrizol
Ltd., Nether Lane, Hazelwood, Derbyshire DE56 4AN, United Kingdom
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, United Kingdom
| |
Collapse
|
32
|
Golf H, O'Shea R, Braybrook C, Hutt O, Lupton DW, Hooper JF. RAFT polymer cross-coupling with boronic acids. Chem Sci 2018; 9:7370-7375. [PMID: 30542540 PMCID: PMC6237125 DOI: 10.1039/c8sc01862f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
The ability to modify the thiocarbonylthio end-groups of RAFT polymers is important for applications where an inert or highly functionalised material is required. Here we report a copper promoted cross-coupling reaction between RAFT polymer end-groups and aryl boronic acids. This method gives high conversion to the modified polymers, and is compatible with a wide variety of functional molecules.
Collapse
Affiliation(s)
- Hartwig Golf
- School of Chemistry , Monash University , Clayton , Melbourne , VIC 3800 , Australia . ;
| | - Riley O'Shea
- School of Chemistry , Monash University , Clayton , Melbourne , VIC 3800 , Australia . ;
| | | | - Oliver Hutt
- CSIRO , Research Way , Melbourne , VIC 3168 , Australia
| | - David W Lupton
- School of Chemistry , Monash University , Clayton , Melbourne , VIC 3800 , Australia . ;
| | - Joel F Hooper
- School of Chemistry , Monash University , Clayton , Melbourne , VIC 3800 , Australia . ;
| |
Collapse
|
33
|
A Critical Survey of Dithiocarbamate Reversible Addition‐Fragmentation Chain Transfer (RAFT) Agents in Radical Polymerization. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29199] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
|
35
|
Danielson AP, Van-Kuren DB, Bornstein JP, Kozuszek CT, Berberich JA, Page RC, Konkolewicz D. Investigating the Mechanism of Horseradish Peroxidase as a RAFT-Initiase. Polymers (Basel) 2018; 10:E741. [PMID: 30960666 PMCID: PMC6403633 DOI: 10.3390/polym10070741] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 12/25/2022] Open
Abstract
A detailed mechanistic and kinetic study of enzymatically initiated RAFT polymerization is performed by combining enzymatic assays and polymerization kinetics analysis. Horseradish peroxidase (HRP) initiated RAFT polymerization of dimethylacrylamide (DMAm) was studied. This polymerization was controlled by 2-(propionic acid)ylethyl trithiocarbonate (PAETC) in the presence of H₂O₂ as a substrate and acetylacetone (ACAC) as a mediator. In general, well controlled polymers with narrow molecular weight distributions and good agreement between theoretical and measured molecular weights are consistently obtained by this method. Kinetic and enzymatic assay analyses show that HRP loading accelerates the reaction, with a critical concentration of ACAC needed to effectively generate polymerization initiating radicals. The PAETC RAFT agent is required to control the reaction, although the RAFT agent also has an inhibitory effect on enzymatic performance and polymerization. Interestingly, although H₂O₂ is the substrate for HRP there is an optimal concentration near 1 mM, under the conditions studies, with higher or lower concentrations leading to lower polymerization rates and poorer enzymatic activity. This is explained through a competition between the H₂O₂ acting as a substrate, but also an inhibitor of HRP at high concentrations.
Collapse
Affiliation(s)
- Alex P Danielson
- Department of Chemistry and Biochemistry Miami University 651 E High St, Oxford, OH 45056, USA.
| | - Dylan Bailey Van-Kuren
- Department of Chemistry and Biochemistry Miami University 651 E High St, Oxford, OH 45056, USA.
| | - Joshua P Bornstein
- Department of Chemistry and Biochemistry Miami University 651 E High St, Oxford, OH 45056, USA.
| | - Caleb T Kozuszek
- Department of Chemistry and Biochemistry Miami University 651 E High St, Oxford, OH 45056, USA.
| | - Jason A Berberich
- Department of Chemical, Paper and Biomedical Engineering Miami University 650 E High St, Oxford, OH 45056, USA.
| | - Richard C Page
- Department of Chemistry and Biochemistry Miami University 651 E High St, Oxford, OH 45056, USA.
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry Miami University 651 E High St, Oxford, OH 45056, USA.
| |
Collapse
|
36
|
Pearson S, Pavlovic M, Augé T, Torregrossa V, Szilagyi I, D’Agosto F, Lansalot M, Bourgeat-Lami E, Prévot V. Controlling the Morphology of Film-Forming, Nanocomposite Latexes Containing Layered Double Hydroxide by RAFT-Mediated Emulsion Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00541] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Samuel Pearson
- CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), Univ Lyon, Université Claude Bernard Lyon 1, 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France
- Institut de Chimie de Clermont-Ferrand, ICCF, UMR 6296, Université Clermont Auvergne, CNRS, SIGMA-Clermont, F-63000 Clermont-Ferrand, France
| | - Marko Pavlovic
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1205 Geneva, Switzerland
| | - Thomas Augé
- CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), Univ Lyon, Université Claude Bernard Lyon 1, 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Valerian Torregrossa
- CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), Univ Lyon, Université Claude Bernard Lyon 1, 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Istvan Szilagyi
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Bela ter, 6720 Szeged, Hungary
| | - Franck D’Agosto
- CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), Univ Lyon, Université Claude Bernard Lyon 1, 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Muriel Lansalot
- CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), Univ Lyon, Université Claude Bernard Lyon 1, 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Elodie Bourgeat-Lami
- CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), Univ Lyon, Université Claude Bernard Lyon 1, 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Vanessa Prévot
- Institut de Chimie de Clermont-Ferrand, ICCF, UMR 6296, Université Clermont Auvergne, CNRS, SIGMA-Clermont, F-63000 Clermont-Ferrand, France
| |
Collapse
|
37
|
Nothling MD, McKenzie TG, Reyhani A, Qiao GG. Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition. Macromol Rapid Commun 2018; 39:e1800179. [PMID: 29744968 DOI: 10.1002/marc.201800179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/11/2018] [Indexed: 12/16/2022]
Abstract
A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H2 O2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization.
Collapse
Affiliation(s)
- Mitchell D Nothling
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Thomas G McKenzie
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Amin Reyhani
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
38
|
Schneiderman DK, Ting JM, Purchel AA, Miranda R, Tirrell MV, Reineke TM, Rowan SJ. Open-to-Air RAFT Polymerization in Complex Solvents: From Whisky to Fermentation Broth. ACS Macro Lett 2018; 7:406-411. [PMID: 35619353 DOI: 10.1021/acsmacrolett.8b00069] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigate the use of in situ enzyme degassing to facilitate the open-to-air reversible addition-fragmentation chain transfer (RAFT) polymerization of hydroxyethyl acrylate (HEA) in a wide range of complex aqueous solvents, including, beer, wine, liquor, and fermentation broth. This enzyme-assisted polymerization procedure is impressively robust, and poly(HEA) was attained with good control over molecular weight and a narrow dispersity in nearly all of the solvents tested. Kinetics experiments on HEA polymerization in whisky and spectroscopic analysis of the purified polymers suggest high end-group fidelity, as does the successful chain extension of a poly(HEA) macro chain transfer agent with narrow dispersity. These results suggest enzyme-assisted RAFT may be a powerful and underutilized tool for high-throughput screening and materials discovery and may simplify the synthesis of well-defined polymers in complex conditions.
Collapse
Affiliation(s)
- Deborah K. Schneiderman
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M. Ting
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anatolii A. Purchel
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ron Miranda
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V. Tirrell
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stuart J. Rowan
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
39
|
Enciso AE, Fu L, Russell AJ, Matyjaszewski K. A Breathing Atom-Transfer Radical Polymerization: Fully Oxygen-Tolerant Polymerization Inspired by Aerobic Respiration of Cells. Angew Chem Int Ed Engl 2018; 57:933-936. [PMID: 29240973 DOI: 10.1002/anie.201711105] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/08/2017] [Indexed: 01/11/2023]
Abstract
The first well-controlled aqueous atom-transfer radical polymerization (ATRP) conducted in the open air is reported. This air-tolerant ATRP was enabled by the continuous conversion of oxygen to carbon dioxide catalyzed by glucose oxidase (GOx), in the presence of glucose and sodium pyruvate as sequential sacrificial substrates. Controlled polymerization using initiators for continuous activator regeneration (ICAR) ATRP of oligo(ethylene oxide) methyl ether methacrylate (OEOMA, Mn =500) yielded polymers with low dispersity (1.09≤Đ≤1.29) and molecular weights (MWs) close to theoretical values in the presence of pyruvate. Without added pyruvates, lower MWs were observed due to generation of new chains by H2 O2 formed by reaction of O2 with GOx. Successful chain extension of POEOMA500 macroinitiator with OEOMA300 (Đ≤1.3) and Bovine Serum Albumin bioconjugates (Đ≤1.22) confirmed a well-controlled polymerization. The reactions in the open air in larger scale (25 mL) were also successful.
Collapse
Affiliation(s)
- Alan E Enciso
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Liye Fu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Alan J Russell
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
40
|
Enciso AE, Fu L, Russell AJ, Matyjaszewski K. A Breathing Atom‐Transfer Radical Polymerization: Fully Oxygen‐Tolerant Polymerization Inspired by Aerobic Respiration of Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711105] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alan E. Enciso
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Liye Fu
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Alan J. Russell
- Department of Chemical Engineering Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
41
|
Destarac M. Industrial development of reversible-deactivation radical polymerization: is the induction period over? Polym Chem 2018. [DOI: 10.1039/c8py00970h] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The commercial applications of polymers produced by reversible-deactivation radical polymerization are reviewed here.
Collapse
Affiliation(s)
- Mathias Destarac
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- 31062 Toulouse Cedex 9
| |
Collapse
|
42
|
Cortez-Lemus NA, Licea-Claverie A. Preparation of a Mini-Library of Thermo-Responsive Star (NVCL/NVP-VAc) Polymers with Tailored Properties Using a Hexafunctional Xanthate RAFT Agent. Polymers (Basel) 2017; 10:E20. [PMID: 30966057 PMCID: PMC6414999 DOI: 10.3390/polym10010020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023] Open
Abstract
A mini-library of star-shaped thermoresponsive polymers having six arms was prepared using a hexafunctional xanthate by reversible addition⁻fragmentation chain transfer (RAFT) polymerization. Star polymers with homopolymeric arms of poly(N-vinylcaprolactam) (PNVCL), copolymeric arms of poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) (PNVCL-co-PNVP) and also arms of block copolymers of PNVCL-b-PVAc, (PNVCL-co-PNVP)-b-PVAc, and combinations of them changing the order of the block was achieved exploiting the R-RAFT synthetic methodology (or R-group approach), wherein the thiocarbonyl group is transferred to the polymeric chain end. Taking advantage of the RAFT benefits, the molecular weight of the star polymers was controlled (Mn = 11,880⁻153,400 g/mol) to yield star polymers of different sizes and lower critical solution temperature (LCST) values. Removing the xanthate group of the star polymers allowed for the introduction of specific functional groups at the ends of the star arms and resulted in an increase of the LCST values. Star PNVCL-b-PVAc diblock copolymers with PVAc contents of 5⁻26 mol % were prepared; the hydrophobic segment (PVAc) is located at the end of the star arms. Interestingly, when the PVAc content was 5⁻7 mol %, the hydrodynamic diameter (Dh) value of the aggregates formed in water was almost the same sa the Dh of the corresponding PNVCL star homopolymers. It is proposed that these star block copolymers self-assemble into single flowerlike micelles, showing great stability in aqueous solution. Star block copolymers with the PVAc hydrophobic block in the core of the star, such as PVAc-b-(PNVCL-co-PNVP), form micellar aggregates in aqueous solution with Dh values in the range from ~115 to 245 nm while maintaining a thermoresponsive behavior. Micellar aggregates of selected star polymers were used to encapsulate methotrexate (MTX) showing their potential in the temperature controlled release of this antineoplasic drug. The importance of the order in which each block constituent is introduced in the arms of the star polymers for their solution/aggregation behavior is demonstrated.
Collapse
Affiliation(s)
- Norma Aidé Cortez-Lemus
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, A. P. 1166, Tijuana 22000, B. C., Mexico.
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, A. P. 1166, Tijuana 22000, B. C., Mexico.
| |
Collapse
|
43
|
Kumar S, Deike S, Binder WH. One-Pot Synthesis of Thermoresponsive Amyloidogenic Peptide-Polymer Conjugates via Thio-Bromo "Click" Reaction of RAFT Polymers. Macromol Rapid Commun 2017; 39. [PMID: 29076195 DOI: 10.1002/marc.201700507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Indexed: 11/09/2022]
Abstract
A synthetic strategy to efficiently prepare main-chain peptide-polymer conjugates probing their aggregation in solution is described. An in situ tandem reaction based on aminolysis/thio-bromo "click" reaction is performed to tether an amyloidogenic peptide fragment amyloid-β17-20 (Leu-Val-Phe-Phe (LVFF)) to the ω-chain end of poly(diethylene glycol methyl ether acrylate) (PDEGA), prepared via reversible addition fragmentation chain transfer polymerization. Structural confirmation of the constructed conjugates PDEGA-LVFF (Mn,SEC = 5600, Ð = 1.21), (Mn,SEC = 7600, Ð = 1.16), and (Mn,SEC = 8900, Ð = 1.15) is successfully made by combined studies of 1 H NMR, size-exclusion chromatography, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and electrospray ionization time-of-flight (ESI-TOF) mass spectrometry. The effect of the peptidic constituent on the thermoresponsive behavior of the polymer is examined by UV-vis spectroscopy, and the self-assembly behavior of the amphiphilic conjugate is further exploited, exhibiting micellar morphology in aqueous solution.
Collapse
Affiliation(s)
- Sonu Kumar
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| | - Stefanie Deike
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| | - Wolfgang H Binder
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| |
Collapse
|
44
|
Ratcliffe LPD, Bentley KJ, Wehr R, Warren NJ, Saunders BR, Armes SP. Cationic disulfide-functionalized worm gels. Polym Chem 2017; 8:5962-5971. [PMID: 29308095 PMCID: PMC5735358 DOI: 10.1039/c7py01306j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022]
Abstract
The recent development of polymerization-induced self-assembly (PISA) has facilitated the rational synthesis of a range of diblock copolymer worms, which hitherto could only be prepared via traditional post-polymerization processing in dilute solution. Herein we explore a new synthetic route to aqueous dispersions of cationic disulfide-functionalized worm gels. This is achieved via the PISA synthesis of poly[(glycerol monomethacrylate-stat-glycidyl methacrylate)]-block-poly(2-hydroxypropyl methacrylate) (P(GMA-stat-GlyMA)-PHPMA) block copolymer worms via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of HPMA. A water-soluble reagent, cystamine, is then reacted with the pendent epoxy groups located within the P(GMA-stat-GlyMA) stabilizer chains to introduce disulfide functionality, while simultaneously conferring cationic character via formation of secondary amine groups. Moreover, systematic variation of the cystamine/epoxy molar ratio enables either chemically cross-linked worm gels or physical (linear) primary amine-functionalized disulfide-based worm gels to be obtained. These new worm gels were characterized using gel permeation chromatography, 1H NMR spectroscopy, transmission electron microscopy, dynamic light scattering, aqueous electrophoresis and rheology. In principle, such hydrogels may offer enhanced mucoadhesive properties.
Collapse
Affiliation(s)
- L P D Ratcliffe
- Dainton Building , Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| | - K J Bentley
- Dainton Building , Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| | - R Wehr
- Dainton Building , Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| | - N J Warren
- School of Chemical and Process Engineering , University of Leeds , Leeds , LS2 9JT , UK .
| | - B R Saunders
- School of Materials , The University of Manchester , MSS Tower , Manchester , M13 9PL , UK
| | - S P Armes
- Dainton Building , Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| |
Collapse
|
45
|
Gegenhuber T, De Keer L, Goldmann AS, Van Steenberge PHM, Mueller JO, Reyniers MF, Menzel JP, D’hooge DR, Barner-Kowollik C. Fusing Light-Induced Step-Growth Processes with RAFT Chemistry for Segmented Copolymer Synthesis: A Synergetic Experimental and Kinetic Modeling Study. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01394] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thomas Gegenhuber
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Macromolecular
Architectures, Institut für Technische Chemie and Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lies De Keer
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, 9052 Gent, Belgium
| | - Anja S. Goldmann
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Macromolecular
Architectures, Institut für Technische Chemie and Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | - Jan O. Mueller
- Macromolecular
Architectures, Institut für Technische Chemie and Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | - Jan P. Menzel
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Dagmar R. D’hooge
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, 9052 Gent, Belgium
- Centre
for Textile Science and Engineering, Ghent University, Technologiepark
907, 9052 Gent, Belgium
| | - Christopher Barner-Kowollik
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Macromolecular
Architectures, Institut für Technische Chemie and Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
46
|
Yeow J, Boyer C. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700137. [PMID: 28725534 PMCID: PMC5514979 DOI: 10.1002/advs.201700137] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/20/2017] [Indexed: 05/17/2023]
Abstract
The polymerization-induced self-assembly (PISA) process is a useful synthetic tool for the efficient synthesis of polymeric nanoparticles of different morphologies. Recently, studies on visible light initiated PISA processes have offered a number of key research opportunities that are not readily accessible using traditional thermally initiated systems. For example, visible light mediated PISA (Photo-PISA) enables a high degree of control over the dispersion polymerization process by manipulation of the wavelength and intensity of incident light. In some cases, the final nanoparticle morphology of a single formulation can be modulated by simple manipulation of these externally controlled parameters. In addition, temporal (and in principle spatial) control over the Photo-PISA process can be achieved in most cases. Exploitation of the mild room temperature polymerizations conditions can enable the encapsulation of thermally sensitive therapeutics to occur without compromising the polymerization rate and their activities. Finally, the Photo-PISA process can enable further mechanistic insights into the morphological evolution of nanoparticle formation such as the effects of temperature on the self-assembly process. The purpose of this mini-review is therefore to examine some of these recent advances that have been made in Photo-PISA processes, particularly in light of the specific advantages that may exist in comparison with conventional thermally initiated systems.
Collapse
Affiliation(s)
- Jonathan Yeow
- School of Chemical EngineeringCentre for Advanced Macromolecular Design (CAMD) and Australian Centre for Nanomedicine (ACN)UNSW SydneySydneyNSW2052Australia
| | - Cyrille Boyer
- School of Chemical EngineeringCentre for Advanced Macromolecular Design (CAMD) and Australian Centre for Nanomedicine (ACN)UNSW SydneySydneyNSW2052Australia
| |
Collapse
|
47
|
Blackman LD, Doncom KEB, Gibson MI, O'Reilly RK. Comparison of photo- and thermally initiated polymerization-induced self-assembly: a lack of end group fidelity drives the formation of higher order morphologies. Polym Chem 2017; 8:2860-2871. [PMID: 29225706 PMCID: PMC5718300 DOI: 10.1039/c7py00407a] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022]
Abstract
Polymerization-induced self-assembly (PISA) is an emerging industrially relevant technology, which allows the preparation of defined and predictable polymer self-assemblies with a wide range of morphologies. In recent years, interest has turned to photoinitiated PISA processes, which show markedly accelerated reaction kinetics and milder conditions, thereby making it an attractive alternative to thermally initiated PISA. Herein, we attempt to elucidate the differences between these two initiation methods using isothermally derived phase diagrams of a well-documented poly(ethylene glycol)-b-(2-hydroxypropyl methacrylate) (PEG-b-HPMA) PISA system. By studying the influence of the intensity of the light source used, as well as an investigation into the thermodynamically favorable morphologies, the factors dictating differences in the obtained morphologies when comparing photo- and thermally initiated PISA were explored. Our findings indicate that differences in a combination of both reaction kinetics and end group fidelity led to the observed discrepencies between the two techniques. We find that the loss of the end group in photoinitiated PISA drives the formation of higher order structures and that a morphological transition from worms to unilamellar vesicles could be induced by extended periods of light and heat irradiation. Our findings demonstrate that PISA of identical block copolymers by the two different initiation methods can lead to structures that are both chemically and morphologically distinct.
Collapse
Affiliation(s)
- Lewis D. Blackman
- Dept of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK . ;
| | - Kay E. B. Doncom
- Dept of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK . ;
| | - Matthew I. Gibson
- Dept of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK . ;
- Warwick Medical School , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Rachel K. O'Reilly
- Dept of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK . ;
| |
Collapse
|
48
|
Reyhani A, McKenzie TG, Ranji-Burachaloo H, Fu Q, Qiao GG. Fenton-RAFT Polymerization: An "On-Demand" Chain-Growth Method. Chemistry 2017; 23:7221-7226. [PMID: 28382790 DOI: 10.1002/chem.201701410] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Indexed: 01/03/2023]
Abstract
Fine control over the architecture and/or microstructure of synthetic polymers is fast becoming a reality owing to the development of efficient and versatile polymerization techniques and conjugation reactions. However, the transition of these syntheses to automated, programmable, and high-throughput operating systems is a challenging step needed to translate the vast potential of precision polymers into machine-programmable polymers for biological and functional applications. Chain-growth polymerizations are particularly appealing for their ability to form structurally and chemically well-defined macromolecules through living/controlled polymerization techniques. Even using the latest polymerization technologies, the macromolecular engineering of complex functional materials often requires multi-step syntheses and purification of intermediates, and results in sub-optimal yields. To develop a proof-of-concept of a framework polymerization technique that is readily amenable to automation requires several key characteristics. In this study, a new approach is described that is believed to meet these requirements, thus opening avenues toward automated polymer synthesis.
Collapse
Affiliation(s)
- Amin Reyhani
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Thomas G McKenzie
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hadi Ranji-Burachaloo
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
49
|
Affiliation(s)
- Sivaprakash Shanmugam
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|