1
|
Petrikaitė V, Talaikis M, Mikoliūnaitė L, Gkouzi AM, Trusovas R, Skapas M, Niaura G, Stankevičius E. Stability and SERS signal strength of laser-generated gold, silver, and bimetallic nanoparticles at different KCl concentrations. Heliyon 2024; 10:e34815. [PMID: 39144937 PMCID: PMC11320324 DOI: 10.1016/j.heliyon.2024.e34815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Noble metal nanoparticles, specifically gold and silver, are extensively utilized in sensors, catalysts, surface-enhanced Raman scattering (SERS), and optical-electronic components due to their unique localized surface plasmon resonance (LSPR) properties. The production of these nanoparticles involves various methods, but among the environmentally friendly approaches, laser ablation stands out as it eliminates the need for toxic chemicals during purification. However, nanoparticle aggregation poses a challenge in laser ablation, necessitating the addition of extra materials that contaminate the otherwise clean process. In this study, we investigate the effectiveness of a biocompatible material, potassium chloride (KCl), in preventing particle aggregation. Although salt is known to trigger aggregation, we observed that certain concentrations of KCl can slow down this process. Over an eight-week period, we examined the aggregation rate, extinction behavior, and stability of gold, silver, and hybrid nanoparticles generated in different KCl concentrations. Extinction spectra, SEM images, SERS signal strength, and zeta potential were analyzed. Our results demonstrate that laser ablation in water and salt solutions yields nanoparticles with a spherical shape and a negative zeta potential. Importantly, we identified the optimal concentration of potassium chloride salt that maintains solution stability and SERS signal strength. Adsorbed chloride ions on silver nanoparticles were evidenced by low-frequency SERS band near 242 cm-1. A better understanding of the effect of KCl concentration on the properties of noble metal nanoparticles can lead to improved generation protocols and the development of tailored nanoparticle systems with enhanced stability and SERS activity.
Collapse
Affiliation(s)
- Vita Petrikaitė
- Department of Laser Technologies, Center for Physical Sciences and Technology (FTMC), Savanoriu 231, LT-02300, Vilnius, Lithuania
| | - Martynas Talaikis
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania
| | - Lina Mikoliūnaitė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania
| | - Aikaterini-Maria Gkouzi
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania
| | - Romualdas Trusovas
- Department of Laser Technologies, Center for Physical Sciences and Technology (FTMC), Savanoriu 231, LT-02300, Vilnius, Lithuania
| | - Martynas Skapas
- Department of Characterization of Materials Structure, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania
| | - Gediminas Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania
| | - Evaldas Stankevičius
- Department of Laser Technologies, Center for Physical Sciences and Technology (FTMC), Savanoriu 231, LT-02300, Vilnius, Lithuania
| |
Collapse
|
2
|
Wu Y, Wu Z, Xu W, Zeng R, Weng J, Sun L. A label-free colorimetric biosensor utilizing natural material for highly sensitive exosome detection. Talanta 2024; 275:126182. [PMID: 38701706 DOI: 10.1016/j.talanta.2024.126182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Exosomes, extracellular vesicles secreted by cells, play a crucial role in intercellular communication by transferring information from source cells to recipient cells. These vesicles carry important biomarkers, including nucleic acids and proteins, which provide valuable insights into the parent cells' status. As a result, exosomes have emerged as noninvasive indicators for the early diagnosis of cancer. Colorimetric biosensors have garnered significant attention due to their cost-effectiveness, simplicity, rapid response, and reproducibility. In this study, we employ sporopollenin microcapsules (SP), a natural biopolymer material derived from pollen, as a substrate for gold nanoparticles (AuNPs). By modifying the SP-Au complex with CD63 aptamers, we develop a label-free colorimetric biosensor for exosome detection. In the absence of exosomes, the SP-Au complex catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), resulting in a color change from colorless to blue. However, the addition of exosomes inhibits the catalytic activity of the SP-Au complex due to coverage of exosomes on AuNPs. This colorimetric biosensor exhibits high sensitivity and selectivity for exosome detection, with a detection limit of 10 particles/μL and a wide linear range of 10 - 108 particles/μL. Additionally, the SP-Au biosensor demonstrates remarkable resistance to serum protein adsorption and excellent catalytic stability even in harsh environments, making it highly suitable for clinical diagnostics.
Collapse
Affiliation(s)
- Yibin Wu
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen, China
| | - Zhaojie Wu
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen, China
| | - Wan Xu
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen, China
| | - Ru Zeng
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jian Weng
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen, China
| | - Liping Sun
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Mims JT, Tsuna L, Spangler EJ, Laradji M. Nanoparticles insertion and dimerization in polymer brushes. J Chem Phys 2024; 160:084906. [PMID: 38415837 DOI: 10.1063/5.0188915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024] Open
Abstract
Molecular dynamics simulations are conducted to systematically investigate the insertion of spherical nanoparticles (NPs) in polymer brushes as a function of their size, strength of their interaction with the polymers, polymer grafting density, and polymer chain length. For attractive interactions between the NPs and the polymers, the depth of NPs' penetration in the brush results from a competition between the enthalpic gain due to the favorable polymer-NP interaction and the effect of osmotic pressure resulting from displaced polymers by the NP's volume. A large number of simulations show that the average depth of the NPs increases by increasing the strength of the interaction strength. However, it decreases by increasing the NPs' diameter or increasing the polymer grafting density. While the NPs' effect on the polymer density is local, their effect on their conformations is long-ranged and extends laterally over length scales larger than the NP's size. This effect is manifested by the emergence of laterally damped oscillations in the normal component of the chains' radius of gyration. Interestingly, we found that for high enough interaction strength, two NPs dimerize in the polymer brush. The dimer is parallel to the substrate if the NPs' depth in the brush is shallow. However, the dimer is perpendicular to the substrate if the NPs' are deep in the brush. These results imply that polymer brushes can be used as a tool to localize and self-assemble NPs in polymer brushes.
Collapse
Affiliation(s)
- Jacob T Mims
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Lavi Tsuna
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Eric J Spangler
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
4
|
Tabassum H, Maity A, Singh K, Bagchi D, Prasad A, Chakraborty A. Effect of Lipid Corona on Phenylalanine-Functionalized Gold Nanoparticles to Develop Stable and Corona-Free Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4531-4543. [PMID: 38357868 DOI: 10.1021/acs.langmuir.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Conventional gold nanoparticles (Au NPs) have many limitations, such as aggregation and subsequent precipitation in the medium of high ionic strength and protein molecules. Furthermore, when exposed to biological fluids, nanoparticles form a protein corona, which controls different biological processes such as the circulation lifetime, drug release profile, biodistribution, and in vivo cellular distribution. These limitations reduce the functionality of Au NPs in targeted delivery, bioimaging, gene delivery, drug delivery, and other biomedical applications. To circumvent these problems, there are numerous attempts to design corona-free and stable nanoparticles. Here, we report for the first time that lipid corona (coating of lipid) formation on phenylalanine-functionalized Au NPs (AuPhe NPs) imparts excellent stability against the high ionic strength of bivalent metal ions, amino acids, and proteins of different charges as compared to bare nanoparticles. Moreover, this work is focused on the ability of lipid corona formation on AuPhe NPs to prevent protein adsorption in the presence of cell culture medium (CCM), oppositely charged protein (e.g., histone 3), and human serum albumin (HSA). The results demonstrate that the lipid corona successfully protects the AuPhe NPs from protein adsorption, leading to the development of corona-free character. This unique achievement has profound implications for enhancing the biomedical utility and safety of these nanoparticles.
Collapse
Affiliation(s)
- Huma Tabassum
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Avijit Maity
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Krishna Singh
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Debanjan Bagchi
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Abhinav Prasad
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Anjan Chakraborty
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
5
|
Schobesberger S, Thumfart H, Selinger F, Schlimp CJ, Zipperle J, Ertl P. Development of a Paper-based Hematocrit Test and a Lateral Flow Assay to Detect Critical Fibrinogen Concentrations Using a Bottom-Up Pyramid Workflow Approach. ACS OMEGA 2024; 9:8533-8542. [PMID: 38405462 PMCID: PMC10882670 DOI: 10.1021/acsomega.3c10045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Fibrinogen is a coagulation factor in human blood and the first one to reach critical levels in major bleeding. Hypofibrinogenemia (a too low fibrinogen concentration in blood) poses great challenges to first responders, clinicians, and healthcare providers since it represents a risk factor for exsanguination and massive transfusion requirements. Thus, the rapid assessment of the fibrinogen concentration at the point of care has gained considerable importance in preventing and managing major blood loss. However, in whole blood measurements, hematocrit variations affect the amount (volume fraction) of plasma that passes the detection zone. In an attempt to accurately determine realistic critical levels of fibrinogen (<1.5 mg/mL) in patients needing immediate treatment and medical interventions, we have developed novel diagnostic systems capable of estimating hematocrit and critical fibrinogen concentrations. A lateral flow assay (LFA) for the detection of fibrinogen has been developed by establishing a workflow employing rapid characterization methods to streamline LFA development. The integration of two detection lines enables (i) the identification of fibrinogen (first line) present in the sample and (ii) the determination of the clinically critical fibrinogen concentrations below 1.5 mg/mL (second line). Furthermore, the paper-based separation of blood cells from plasma provides a semiquantitative estimate of the hematocrit by analyzing the fractions. Initial validation of the point-of-care (PoC) hematocrit test revealed good comparability to a standard laboratory method. The developed diagnostic systems have the ability to accelerate decision-making in cases with major bleeding.
Collapse
Affiliation(s)
| | - Helena Thumfart
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Florian Selinger
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoph J Schlimp
- Ludwig-Boltzmann-Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria
- Department of Anaesthesiology and Intensive Care, AUVA Trauma Center Linz, Garnisonstraße 7, 4010 Linz, Austria
| | - Johannes Zipperle
- Ludwig-Boltzmann-Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
6
|
Chi R, Lin PY, Jhuo YS, Cheng FY, Ho JAA. Colorimetric detection of African swine fever (ASF)-associated microRNA based on rolling circle amplification and salt-induced gold nanoparticle aggregation. Talanta 2024; 267:125159. [PMID: 37738746 DOI: 10.1016/j.talanta.2023.125159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/24/2023]
Abstract
African swine fever (ASF) is a severe viral disease with a high mortality rate in domestic and wild pigs, for which no effective vaccine and antiviral drugs are available. The great infectivity of the ASF virus highlights the need for sensitive, simple, and on-site detection assays of ASF. We herein developed a colorimetric sensing strategy for the detection of an ASF-associated miRNA, based on isothermal rolling circle amplification (RCA) and salt-induced gold nanoparticle aggregation. Ssc-miR-451 was selected as the target ASF biomarker due to its high expression in ASF virus-infected pigs. With a red-purple-blue color shifting, this biosensing platform offers convenient detection of ssc-miR-451 with a UV-Vis spectrometer or the naked eye. The proposed assay exhibits a dose-response relationship between the optical absorbance ratio (A525/A640) and the amounts of ssc-miR-451, with a detection limit calculated as 3.56 fmol (equivalent to 11.86 pM in 300 μL reaction mixture). This assay's coefficient of variation (CV%) was determined to be less than 5.95%, revealing its reproducibility is satisfactory. In addition, the newly developed method was successfully applied in the detection of spiked ssc-miR-451 in pig serum samples. In light of its simplicity, convenience (colorimetric), sensitivity, and energy efficiency (isothermal amplification), this biosensing strategy presents great potential to be applied in the local swine industry and pig farming for screening of viral diseases affecting pigs.
Collapse
Affiliation(s)
- Rong Chi
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan
| | - Pei-Ying Lin
- Department of Biochemical Science and Technology, National Taiwan University, 10617, Taipei, Taiwan
| | - Yi-Syuan Jhuo
- Department of Chemistry, Chinese Culture University, 11114, Taipei, Taiwan
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, 11114, Taipei, Taiwan
| | - Ja-An Annie Ho
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, 10617, Taipei, Taiwan; Center for Emerging Materials and Advanced Devices, National Taiwan University, 10617, Taipei, Taiwan; Center for Biotechnology, National Taiwan University, 10617, Taipei, Taiwan.
| |
Collapse
|
7
|
Elnagar MM, Liessem J, Im C, Mitoraj D, Kibler LA, Neumann C, Turchanin A, Leiter R, Kaiser U, Jacob T, Krivtsov I, Beranek R. Water-soluble ionic carbon nitride as unconventional stabilizer for highly catalytically active ultrafine gold nanoparticles. NANOSCALE 2023; 15:19268-19281. [PMID: 37990869 DOI: 10.1039/d3nr03375a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Ultrafine metal nanoparticles (NPs) hold promise for applications in many fields, including catalysis. However, ultrasmall NPs are typically prone to aggregation, which often leads to performance losses, such as severe deactivation in catalysis. Conventional stabilization strategies (e.g., immobilization, embedding, or surface modification by capping agents) are typically only partly effective and often lead to loss of catalytic activity. Herein, a novel type of stabilizers based on water-soluble ionic (K+ and Na+ containing) polymeric carbon nitride (i.e., K,Na-poly(heptazine imide) = K,Na-PHI) is reported that enables effective stabilization of highly catalytically active ultrafine (size of ∼2-3 nm) gold NPs. Experimental and theoretical comparative studies using different structural units of K,Na-PHI (i.e., cyanurate, melonate, cyamelurate) indicate that the presence of functionalized heptazine moieties is crucial for the synthesis and stabilization of small Au NPs. The K,Na-PHI-stabilized Au NPs exhibit remarkable dispersibility and outstanding stability even in solutions of high ionic strength, which is ascribed to more effective charge delocalization in the large heptazine units, resulting in more effective electrostatic stabilization of Au NPs. The outstanding catalytic performance of Au NPs stabilized by K,Na-PHI is demonstrated using the selective reduction of 4-nitrophenol to 4-aminophenol by NaBH4 as a model reaction, in which they outperform even the benchmark "naked" Au NPs electrostatically stabilized by excess NaBH4. This work thus establishes ionic carbon nitrides (PHI) as alternative capping agents enabling effective stabilization without compromising surface catalysis, and opens up a route for further developments in utilizing PHI-based stabilizers for the synthesis of high-performance nanocatalysts.
Collapse
Affiliation(s)
- Mohamed M Elnagar
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| | - Johannes Liessem
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| | - Changbin Im
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| | - Dariusz Mitoraj
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| | - Ludwig A Kibler
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| | - Christof Neumann
- Institute of Physical Chemistry, Jena Center for Soft Matter (JCSM) and Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry, Jena Center for Soft Matter (JCSM) and Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany
| | - Robert Leiter
- Electron Microscopy of Materials Science, Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ute Kaiser
- Electron Microscopy of Materials Science, Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Igor Krivtsov
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Radim Beranek
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| |
Collapse
|
8
|
Díaz-García V, Haensgen A, Inostroza L, Contreras-Trigo B, Oyarzun P. Novel Microsynthesis of High-Yield Gold Nanoparticles to Accelerate Research in Biosensing and Other Bioapplications. BIOSENSORS 2023; 13:992. [PMID: 38131752 PMCID: PMC10742281 DOI: 10.3390/bios13120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Gold nanoparticles (AuNPs) exhibit unique properties that make them appealing for applications in biosensing and other emerging fields. Despite the availability of numerous synthesis methods, important questions remain to be addressed regarding the volume effect on the synthesis yield and quality of AuNPs in the light of biosensing research. The present study addresses these issues by developing a novel microvolumetric citrate-reduction method to improve the synthesis of AuNPs, which were characterized by electronic microscopy, energy dispersive spectroscopy, zeta potential and colorimetric analysis. A comparison of the novel microsynthesis method with the standard Turkevich method demonstrated its superior performance in terms of yield, monodispersity, rapidity (in one step), reproducibility, and stability. The analytical behavior of AuNPs-based aptasensors prepared by microsynthesis was investigated using kanamycin detection and showed higher reproducibility and improved detection limits (3.4 times) compared to those of Turkevich AuNPs. Finally, the effect of pH was studied to demonstrate the suitability of the method for the screening of AuNP synthesis parameters that are of direct interest in biosensing research; the results showed an optimal pH range between 5.0 and 5.5. In summary, the approach described herein has the potential to improve research capabilities in biosensing, with the added benefits of lowering costs and minimizing waste generation in line with current trends in green nanotechnology.
Collapse
Affiliation(s)
- Víctor Díaz-García
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; (A.H.); (L.I.); (B.C.-T.)
| | | | | | | | - Patricio Oyarzun
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; (A.H.); (L.I.); (B.C.-T.)
| |
Collapse
|
9
|
Saputri FA, Zubaidah EU, Kenanga AWP, Jatmika C, Pratiwi R, Dhumale VA. Development of a Colorimetric Paper Sensor for Hg 2+ Detection in Water Using Cyanuric Acid-Conjugated Gold Nanoparticles. Molecules 2023; 28:6527. [PMID: 37764303 PMCID: PMC10535871 DOI: 10.3390/molecules28186527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Hg2+ is one of the most dangerous pollutants that can cause damage to organs and the immune system. The common detection methods of Hg2+ require sophisticated instrumentation and a long time for analysis. The purpose of this study was to develop a sensor for the detection of Hg2+ using filter paper immobilized by gold nanoparticles (AuNPs) conjugated with cyanuric acid (CA). The clear color change from pink to bluish purple is the response of the CA-AuNPs filter paper sensor to exposure to Hg2+. Detection can be observed visually with the naked eye and/or with imageJ software; the detection limit is 0.05 µM. The colorimetric response of the sensor was also selective towards Hg2+ after testing with different metal ions. In addition, the response from the sensor was also consistent for lake water samples spiked with Hg2+. The results of this research provide a promising basic technology for the development of sensors that are affordable, fast, portable, and easy to use for the detection and monitoring of Hg2+ levels in water.
Collapse
Affiliation(s)
- Febrina Amelia Saputri
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (E.U.Z.); (A.W.P.K.); (C.J.)
| | - Eka Ulya Zubaidah
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (E.U.Z.); (A.W.P.K.); (C.J.)
| | | | - Catur Jatmika
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (E.U.Z.); (A.W.P.K.); (C.J.)
| | - Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Vinayak A. Dhumale
- Department of Applied Science and Humanities, School of Engineering and Sciences, MIT Art, Design and Technology University, Pune 412201, India;
| |
Collapse
|
10
|
Panwar D, Shrivastava D, Kumar A, Gupta LK, Kumar NSS, Chintagunta AD. Efficient strategy to isolate exosomes using anti-CD63 antibodies conjugated to gold nanoparticles. AMB Express 2023; 13:90. [PMID: 37639159 PMCID: PMC10462597 DOI: 10.1186/s13568-023-01592-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Exosomes, a subpopulation of Extracellular vesicles (EVs), are cell-secreted vesicles found in the majority of biological fluids, including breast milk, tears, sweat, blood and, urine. The density and size of these vesicles depend on a variety of factors, including age, gender and the biological condition of the individual. Researchers are now focusing on the selective extraction of exosomes from bodily fluids due to the unique biomolecule composition of exosomes, which is critical for diagnosis, disease, and regeneration. Furthermore, current approaches for exosome isolation have limitations, necessitating the development of a simpler and more effective technique to achieve this goal. In this study, we investigated a quick and effective strategy for isolating exosomes from serum using a bench-top centrifuge. This was accomplished by raising antibodies against exosome surface tetraspanins (CD9, CD63 & CD81) in Leghorn chickens due to their phylogenetic distance from humans and cost-effectiveness for commercial use. In order to separate exosomes from a complex biological fluid, the antibodies were further coupled with gold nanoparticles (AuNPs). The findings were validated using ELISA, spectrophotometry, and transmission electron microscopy (TEM). Using this technique, exosome isolation from serum was achieved rapidly and these were captured by using anti CD63 antibodies bound to AuNPs. To summarize, exosomes were purified from serum using anti-CD63 antibodies conjugated to gold nanoparticles (IgY@AuNPs). Consequently, the approach for exosome isolation from biological fluid could be useful for clinically monitoring the biological state of the patients.
Collapse
Affiliation(s)
- Dikshita Panwar
- Vignan's Foundation for Science, Technology and Research, Guntur -Tenali Rd, Vadlamudi, 522213, Andhra Pradesh, India
| | - Deepali Shrivastava
- Vignan's Foundation for Science, Technology and Research, Guntur -Tenali Rd, Vadlamudi, 522213, Andhra Pradesh, India
| | - Arvind Kumar
- IgY Immunologix India Private Limited, Narsingi, Rangareddy, Hyderabad, 500089, Telangana, India
| | - Lavleen Kumar Gupta
- IgY Immunologix India Private Limited, Narsingi, Rangareddy, Hyderabad, 500089, Telangana, India.
| | - N S Sampath Kumar
- Vignan's Foundation for Science, Technology and Research, Guntur -Tenali Rd, Vadlamudi, 522213, Andhra Pradesh, India
| | - Anjani Devi Chintagunta
- Vignan's Foundation for Science, Technology and Research, Guntur -Tenali Rd, Vadlamudi, 522213, Andhra Pradesh, India.
| |
Collapse
|
11
|
Dabhade AH, Verma RP, Paramasivan B, Kumawat A, Saha B. Development of silver nanoparticles and aptamer conjugated biosensor for rapid detection of E. coli in a water sample. 3 Biotech 2023; 13:244. [PMID: 37346389 PMCID: PMC10279593 DOI: 10.1007/s13205-023-03663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
A simple, rapid, and sensitive electrochemical biosensor based on a screen-printed carbon electrode (SPCE) was developed for onsite detection of E. coli in real time. This work analyzed the effect of aptamer conjugation and PBS buffer solution on the colloidal stability of the silver nanoparticles (AgNPs). Aggregations of the AgNPs after aptamer conjugation in PBS buffer were observed from the particle size distribution analysis. The AgNP-aptamer conjugation and its affinity towards E. coli (DH5α) were confirmed by UV-visible spectrophotometry, which showed a linear increment in the absorption with increasing E.coli concentration. The screen-printed carbon electrodes were modified by drop-casting of AgNPs, which were used as an effective immobilization platform for E. coli-specific aptamers. The modified electrode's surface modification and redox behavior were characterized using cyclic voltammetry. Finally, E. coli was detected using differential pulse voltammetry with an optimized incubation time of 15 min. The developed biosensors showed a linear decrease in current intensity with an increase in the concentration of E. coli. The biosensor had a relative standard deviation (RSD) of 6.91% (n = 3), which showed good reproducibility. The developed biosensors are highly sensitive and have a limit of detection (LOD) as low as 150 CFU/ml. The biosensor showed good selectivity for E.coli coli when comparing the signal response obtained for bacteria other than E.coli. Also, the biosensor was found stable for four weeks at room temperature and showed high recoveries from 95.27% to 107% during the tap water sensitivity validation.
Collapse
Affiliation(s)
- Ajinkya Hariram Dabhade
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Ravi Prakash Verma
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Balasubramanian Paramasivan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Adhidesh Kumawat
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Biswajit Saha
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355 India
| |
Collapse
|
12
|
Rey M, Volpe G, Volpe G. Light, Matter, Action: Shining Light on Active Matter. ACS PHOTONICS 2023; 10:1188-1201. [PMID: 37215318 PMCID: PMC10197137 DOI: 10.1021/acsphotonics.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023]
Abstract
Light carries energy and momentum. It can therefore alter the motion of objects on the atomic to astronomical scales. Being widely available, readily controllable, and broadly biocompatible, light is also an ideal tool to propel microscopic particles, drive them out of thermodynamic equilibrium, and make them active. Thus, light-driven particles have become a recent focus of research in the field of soft active matter. In this Perspective, we discuss recent advances in the control of soft active matter with light, which has mainly been achieved using light intensity. We also highlight some first attempts to utilize light's additional properties, such as its wavelength, polarization, and momentum. We then argue that fully exploiting light with all of its properties will play a critical role in increasing the level of control over the actuation of active matter as well as the flow of light itself through it. This enabling step will advance the design of soft active matter systems, their functionalities, and their transfer toward technological applications.
Collapse
Affiliation(s)
- Marcel Rey
- Physics
Department, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Giovanni Volpe
- Physics
Department, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Giorgio Volpe
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| |
Collapse
|
13
|
Singh H, Kumar S, Aswal V. Probing Stability of the Charge-reversed Nanoparticles in Electrolyte and Surfactant Solutions. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
14
|
Xing K, Bao H, Ding N, Xiong Y, Peng J, Lai W. Plasmonic gold nanoparticles aggregate based on charge neutralization for the convenient detection of fumonisin B1 by colorimetry and SERS. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Nguyen MC, Berto P, Valentino F, Kanoufi F, Tessier G. Spectroscopy of individual Brownian nanoparticles in real-time using holographic localization. OPTICS EXPRESS 2022; 30:43182-43194. [PMID: 36523022 DOI: 10.1364/oe.463115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/18/2022] [Indexed: 06/17/2023]
Abstract
Individual nanoparticle spectroscopic characterization is fundamental, but challenging in liquids. While confocal selectivity is necessary to isolate a particle in a crowd, Brownian motion constantly offsets the particle from the light collection volume. Here, we present a system able to acquire holograms and reconstruct them to precisely determine the 3D position of a particle in real time. These coordinates drive an adaptive system comprising two galvanometric mirrors (x,y, transverse directions) and a tunable lens (z, longitudinal) which redirect light scattered from the corresponding region of space towards the confocal entrance of a spectrometer, thus allowing long spectral investigations on individual, freely-moving particles. A study of the movements and spectra of individual 100 nm Au nanoparticles undergoing two types of aggregations illustrates the possibilities of the method.
Collapse
|
16
|
Kakati A, Bera A, Al-Yaseri A. A review on advanced nanoparticle-induced polymer flooding for enhanced oil recovery. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Pothukuchi RP, Radhakrishna M. Understanding the stimuli responsive behavior of polyion grafted nanoparticles in the presence of salt and polyelectrolytes. SOFT MATTER 2022; 18:6124-6137. [PMID: 35943182 DOI: 10.1039/d2sm00650b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The design of nanoparticles (NPs) that respond to external stimuli like pH, temperature, and electric or magnetic fields has found immense interest in various fields of nanotechnology like nanomedicine, drug delivery, and cancer therapy. Nanoparticles grafted with polymeric ligands have been extensively used as building blocks in the directed self assembly of nanoparticles. These moieties not only assemble into various morphologies but also respond to a wide range of external stimuli. In this work, we have used coarse grained molecular dynamics simulations to understand the stimuli-responsive behavior of assemblies of NPs grafted with oppositely charged polyions (PGNs) in the presence of salt and polyelectrolytes. At low grafting density, a transformation from ring morphology to form dimers/strings/dispersed NPs was observed upon addition of divalent/trivalent salts. NPs grafted with longer grafts showed higher stability to remain as rings compared to shorter grafts. The change in NP morphology was a direct consequence of preferential interaction of the polyaion grafts with the oppositely charged salt ions compared to the oppositely charged grafts on the NPs. At fixed salt valency, the size of the salt ion, concentration and molecular connectivity played a crucial role in the stimuli responsive behavior of polyion grafted NPs in solutions. Further, in the presence of polyelectrolytes, these transitions occurred at lower monomer valency due to the stronger electrostatic interactions between the grafted chains and oppositely charged free polyelectrolytes in solutions. Disordered and ordered aggregates assemblies formed at higher grafting density were broken into smaller NP assemblies in the presence of salt. Drug encapsulation studies in the presence of salt and polyelectrolytes were performed on model drug moieties in order to demonstrate the potential use of the modelled stimuli responsive nanoparticle assemblies in drug delivery applications.
Collapse
Affiliation(s)
- Rajesh Pavan Pothukuchi
- Discipline of Chemical Engineering, Indian Institute of Technology (IIT), Gandhinagar, Palaj, Gujarat 382355, India.
| | - Mithun Radhakrishna
- Discipline of Chemical Engineering, Indian Institute of Technology (IIT), Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
18
|
Synthesis of Citrate-T20-Ser-Gold Nanoparticles and effect of heavy metal cations on its colloidal stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Simultaneous colorimetric and electrochemical detection of trace mercury (Hg 2+) using a portable and miniaturized aptasensor. Biosens Bioelectron 2022; 221:114419. [PMID: 35738991 DOI: 10.1016/j.bios.2022.114419] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022]
Abstract
We report a novel aptasensor for the simultaneous colorimetric and electrochemical detection of mercury (Hg2+). This device consists of a paper-based microfluidic component (μ-PAD) incorporated into a miniaturized three-electrode system fabricated through printed circuit board (PCB) technology. This biosensor is portable, rapid, versatile, and can detect Hg2+ down to 0.01 ppm based on 3σ of the blank/slope criteria. Moreover, it is highly selective against As2+, Cu2+, Zn2+, Pb2+, Cd2+, Mg2+, and Fe2+, reaching up to 13 times more of the input signal than the other heavy metals. The colorimetric detection mechanism uses aptamer functionalized polystyrene (PS)-AgNPs and Ps-AuNPs microparticles' specific aggregation. The Ps-AuNPs-based system allows qualitative detection (LOD 5 ppm) and stability over seven days (up to 97.59% signal retention). For the Ps-AgNPs-based system, the detection limit is 0.5 ppm with a linear range from 0.5 to 20 ppm (adjusted R2= 0.986) and stability over 30 days (up to 94.95% signal retention). The electrochemical component measures changes in charge transfer resistance upon target-aptamer hybridization using a [Ru (NH3)6]3+Cl3] redox probe. The latest component presents a linear range from 0.01 to 1 ppm (adjusted R2= 0.935) with a LOD of 0.01 ppm and performance stability over seven days (up to 102.52 ± 11.7 signal retention). This device offers a universal dual detection platform with multiplexing, multi-replication, quantitative color analysis, and minimization of false results. Furthermore, detection results in river samples showed recoveries up to 91.12% (RSD 0.85) and 105.61% (RSD 1.62) for the electrochemical and colorimetric components, respectively. The proposed system is highly selective with no false-positive or false-negative results in an overall wide linear range and can safeguard the accuracy of detection results in aptasensing platforms in general.
Collapse
|
20
|
Jang JD, Seo HJ, Yoon YJ, Choi SH, Han YS, Kim TH. Conformational control of two-dimensional gold nanoparticle arrays in a confined geometry within a vesicular wall. Sci Rep 2022; 12:4548. [PMID: 35296763 PMCID: PMC8927576 DOI: 10.1038/s41598-022-08607-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/09/2022] [Indexed: 11/15/2022] Open
Abstract
The two-dimensional (2D) assembly of gold nanoparticles (AuNPs) in a confined geometry is a rare phenomenon that has not been experimentally verified for complex systems. In this study, this process was investigated in detail using two types of block copolymers with hydrophobic and hydrophilic blocks and a series of AuNPs of three different sizes protected by hydrophobic ligands. In aqueous solutions, the selected block copolymers self-assembled into vesicular nanostructures with a hydrophobic domain in the wall, which functions as a confined geometrical space for hydrophobic AuNPs (i.e., it exerts a confinement effect and restricts the movement of AuNPs). Small-angle X-ray scattering studies revealed that AuNPs of different sizes assembled differently in the same confined geometry of the vesicular wall. In addition, optimal conditions for the formation of a regular NP array in the hydrophobic domain were determined. The AuNPs successfully self-assembled into a regular 2D lattice structure, forming a shell around the vesicle, when their size matched the thickness of the hydrophobic domain of the vesicular nanostructure. This study provides guidelines for the fabrication of nanoparticle arrays with controlled structures, which could enhance the functionality of materials and their physical properties.
Collapse
Affiliation(s)
- Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea.,Research Center for Advanced Nuclear Interdisciplinary Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Hyuk-Jin Seo
- Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Young-Jin Yoon
- Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, 04066, Republic of Korea
| | - Young Soo Han
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea
| | - Tae-Hwan Kim
- Research Center for Advanced Nuclear Interdisciplinary Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea. .,Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea. .,Department of Quantum System Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea. .,High-Enthalphy Plasma Research Center, Jeonbuk National University, 546 Bongdong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55317, Republic of Korea.
| |
Collapse
|
21
|
Ma Y, Nagy G, Siebenbürger M, Kaur R, Dooley KM, Bharti B. Adsorption and Catalytic Activity of Gold Nanoparticles in Mesoporous Silica: Effect of Pore Size and Dispersion Salinity. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:2531-2541. [PMID: 35178138 PMCID: PMC8842498 DOI: 10.1021/acs.jpcc.1c09573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Indexed: 05/25/2023]
Abstract
The assembled state of nanoparticles (NPs) within porous matrices plays a governing role in directing their biological, electronic, and catalytic properties. However, the effects of the spatial confinement and environmental factors, such as salinity, on the NP assemblies within the pores are poorly understood. In this study, we use adsorption isotherms, spectrophotometry, and small-angle neutron scattering to develop a better understanding of the effect of spatial confinement on the assembled state and catalytic performance of gold (Au) NPs in propylamine-functionalized SBA-15 and MCM-41 mesoporous silica materials (mSiO2). We carry out a detailed investigation of the effect of pore diameter and ionic strength on the packing and spatial distribution of AuNPs within mSiO2 to get a comprehensive insight into the structure, functioning, and activity of these NPs. We demonstrate the ability of the adsorbed AuNPs to withstand aggregation under high salinity conditions. We attribute the observed preservation of the adsorbed state of AuNPs to the strong electrostatic attraction between oppositely charged pore walls and AuNPs. The preservation of the structure allows the AuNPs to retain their catalytic activity for a model reaction in high salinity aqueous solution, here, the reduction of p-nitrophenol to p-aminophenol, which otherwise is significantly diminished due to bulk aggregation of the AuNPs. This fundamental study demonstrates the critical role of confinement and dispersion salinity on the adsorption and catalytic performance of NPs.
Collapse
Affiliation(s)
- Yingzhen Ma
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Gergely Nagy
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Miriam Siebenbürger
- Center
for Advanced Microstructures and Devices, Louisiana State University, Baton
Rouge, Louisiana 70806, United States
| | - Ravneet Kaur
- Life
and Physical Science Department, Ivy Tech
Community College of Indiana, Valparaiso, Indiana 46360, United States
| | - Kerry M. Dooley
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
22
|
Nanoceria-based lateral flow immunoassay for hydrogen peroxide-free colorimetric biosensing for C-reactive protein. Anal Bioanal Chem 2022; 414:3257-3265. [PMID: 35029693 DOI: 10.1007/s00216-022-03877-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/01/2022]
Abstract
During the recent several decades, lateral flow immunoassay (LFIA) constructed with gold nanoparticle (AuNP) has been widely utilized to conveniently detect target analyte. However, AuNP-based LFIA has limitations, such as limited detection sensitivity and quantification capability. Herein, to overcome these constraints, we have developed cerium oxide nanoparticle (nanoceria)-based LFIA for C-reactive protein (CRP) detection in human serum samples. It was fabricated with nanoceria, a notable nanozyme that shows an oxidase activity to quickly oxidize organic substrate, such as 3,3',5,5'-tetramethylbenzidine (TMB), to produce colored product without any oxidizing agent (e.g., hydrogen peroxide), which is advantageous for realizing point-of-care testing (POCT) applications. By employing human blood serum spiked with CRP, the nanoceria-based LFIA showed two blue-colored lines on the test and control region within 3 min via TMB oxidation, by the captured nanoceria through antigen-antibody interaction. The produced blue-colored lines were distinguished by naked eyes and quantitated with real images acquired by a conventional smartphone with the ImageJ software. With this strategy, target CRP was specifically determined down to 117 ng mL-1 with high detection precisions yielding coefficient of variation of 9.8-11.3% and recovery of 90.7-103.2% using human blood serum samples. This investigation demonstrates the potential of oxidase-like nanoceria for developing LFIA, which is particularly useful in instrumentation-free POCT environments.
Collapse
|
23
|
Abstract
Surface-enhanced Raman scattering (SERS), a powerful technique for trace molecular detection, depends on chemical and electromagnetic enhancements. While recent advances in instrumentation and substrate design have expanded the utility, reproducibility, and quantitative capabilities of SERS, some challenges persist. In this review, advances in quantitative SERS detection are discussed as they relate to intermolecular interactions, surface selection rules, and target molecule solubility and accessibility. After a brief introduction to Raman scattering and SERS, impacts of surface selection rules and enhancement mechanisms are discussed as they relate to the observation of activation and deactivation of normal Raman modes in SERS. Next, experimental conditions that can be used to tune molecular affinity to and density near SERS substrates are summarized and considered while tuning these parameters are conveyed. Finally, successful examples of quantitative SERS detection are discussed, and future opportunities are outlined. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ryan D Norton
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA;
| | - Hoa T Phan
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA;
| | | | - Amanda J Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA;
| |
Collapse
|
24
|
Hu S, Fang X, Liu G, Ma G, Ye F, Zhao S. A gas-pressure-assisted ratiometric atomic flame assay for the point-of-care testing of tumor-cell-derived exosomes. Analyst 2021; 147:48-54. [PMID: 34787607 DOI: 10.1039/d1an01825f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The multicolor-based point-of-care testing (POCT) of tumor cell-derived exosomes is of vital importance for understanding tumor growth and metastasis. Multicolor-based ratiometric signals most often rely on molecular optics, such as fluorescence resonance energy transfer (FRET)-dependent molecular fluorescence and localized surface plasmon resonance (LSPR)-related molecular colorimetry. However, finding acceptable FRET donor-acceptor fluorophore pairs and the kinetically slow color responses during size-related molecular colorimetry have greatly impeded POCT applications. Herein, an atomic flame was used to develop a visual sensing platform for the POCT of tumor-cell-derived exosomes. In comparison with common molecular optics, the atomic flame possessed the advantages of providing both a variety of ratiometric flame signals and fast response sensitivity. The integration of a gas-pressure-assisted flame reaction and dual-aptamer recognition guaranteed the sensitive and selective analysis of exosomes with a low limit of detection (LOD) of 7.6 × 102 particles per mL. Such a novel optical signal will inspire the development of more user-friendly POCT approaches.
Collapse
Affiliation(s)
- Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Xueting Fang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Guijing Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Guixiang Ma
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
25
|
Lima IS, Guidelli EJ, Baffa O. Dose enhancement factor caused by gold nanoparticles: influence of the dosimetric sensitivity and radiation dose assessed by electron spin resonance dosimetry. Phys Med Biol 2021; 66. [PMID: 34592720 DOI: 10.1088/1361-6560/ac2bb2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Gold nanoparticles have been extensively used to increase the sensitivity of radiation dosimeters. In this work, nanocomposites of alanine (Ala), 2-methylalanine (2MA), asparagine (Asn) and monosodium glutamate (MSG) containing gold nanoparticles were prepared. The influence of the mass percentage of gold (0.1% up to 3%), absorbed dose (2 Gy-10 kGy) and the intrinsic sensitivity of these materials on the dose enhancement factor (DEF) were investigated. The prepared nanocomposites were characterized by UV-vis absorption spectroscopy and dynamic light scattering technique. Electron spin resonance spectroscopy was employed to assess the dosimetric response. The results revealed that the gold nanoparticles aggregated in the nanocomposites of MSG and Asn but not in the Ala and 2MA samples. Higher DEFs were observed for materials with lower intrinsic sensitivities (Asn and MSG) and for lower doses of radiation, suggesting that the dosimetric response of the nanocomposite dosimeters is governed by the probability of radical recombination. The higher the radiation dose, gold mass percentage and/or intrinsic sensitivity of the dosimetric material, the higher the production of radiation-induced free-radicals, enhancing the probability of radical recombination and resulting in lower DEFs. These results bring new insights about the use of gold nanoparticles to the construction of more sensitive radiation dosimeters.
Collapse
Affiliation(s)
- Iara S Lima
- Departamento de Física, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eder J Guidelli
- Departamento de Física, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Oswaldo Baffa
- Departamento de Física, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
26
|
Besford QA, Yong H, Merlitz H, Christofferson AJ, Sommer J, Uhlmann P, Fery A. FRET-Integrated Polymer Brushes for Spatially Resolved Sensing of Changes in Polymer Conformation. Angew Chem Int Ed Engl 2021; 60:16600-16606. [PMID: 33979032 PMCID: PMC8361709 DOI: 10.1002/anie.202104204] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Polymer brush surfaces that alter their physical properties in response to chemical stimuli have the capacity to be used as new surface-based sensing materials. For such surfaces, detecting the polymer conformation is key to their sensing capabilities. Herein, we report on FRET-integrated ultrathin (<70 nm) polymer brush surfaces that exhibit stimuli-dependent FRET with changing brush conformation. Poly(N-isopropylacrylamide) polymers were chosen due their exceptional sensitivity to liquid mixture compositions and their ability to be assembled into well-defined polymer brushes. The brush transitions were used to optically sense changes in liquid mixture compositions with high spatial resolution (tens of micrometers), where the FRET coupling allowed for noninvasive observation of brush transitions around complex interfaces with real-time sensing of the liquid environment. Our methods have the potential to be leveraged towards greater surface-based sensing capabilities at intricate interfaces.
Collapse
Affiliation(s)
- Quinn A. Besford
- Institute of Physical Chemistry and Polymer PhysicsLeibniz-Institut für Polymerforschung e. V.Hohe Str. 601069DresdenGermany
| | - Huaisong Yong
- Institute Theory of PolymersLeibniz-Institut für Polymerforschung e. V.Hohe Str. 601069DresdenGermany
| | - Holger Merlitz
- Institute Theory of PolymersLeibniz-Institut für Polymerforschung e. V.Hohe Str. 601069DresdenGermany
| | | | - Jens‐Uwe Sommer
- Institute Theory of PolymersLeibniz-Institut für Polymerforschung e. V.Hohe Str. 601069DresdenGermany
| | - Petra Uhlmann
- Institute of Physical Chemistry and Polymer PhysicsLeibniz-Institut für Polymerforschung e. V.Hohe Str. 601069DresdenGermany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer PhysicsLeibniz-Institut für Polymerforschung e. V.Hohe Str. 601069DresdenGermany
| |
Collapse
|
27
|
Besford QA, Yong H, Merlitz H, Christofferson AJ, Sommer J, Uhlmann P, Fery A. FRET‐Integrated Polymer Brushes for Spatially Resolved Sensing of Changes in Polymer Conformation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Quinn A. Besford
- Institute of Physical Chemistry and Polymer Physics Leibniz-Institut für Polymerforschung e. V. Hohe Str. 6 01069 Dresden Germany
| | - Huaisong Yong
- Institute Theory of Polymers Leibniz-Institut für Polymerforschung e. V. Hohe Str. 6 01069 Dresden Germany
| | - Holger Merlitz
- Institute Theory of Polymers Leibniz-Institut für Polymerforschung e. V. Hohe Str. 6 01069 Dresden Germany
| | | | - Jens‐Uwe Sommer
- Institute Theory of Polymers Leibniz-Institut für Polymerforschung e. V. Hohe Str. 6 01069 Dresden Germany
| | - Petra Uhlmann
- Institute of Physical Chemistry and Polymer Physics Leibniz-Institut für Polymerforschung e. V. Hohe Str. 6 01069 Dresden Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics Leibniz-Institut für Polymerforschung e. V. Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|
28
|
Dietler J, Liang C, Frank S, Müller AK, Greiner A, Möglich A. Photobiologically Directed Assembly of Gold Nanoparticles. Adv Biol (Weinh) 2021; 5:e2000179. [PMID: 34028211 DOI: 10.1002/adbi.202000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/22/2020] [Indexed: 11/09/2022]
Abstract
In nature, photoreceptor proteins undergo molecular responses to light, that exhibit supreme fidelity in time and space and generally occur under mild reaction conditions. To unlock these traits for material science, the light-induced homodimerization of light-oxygen-voltage (LOV) photoreceptors is leveraged to control the assembly of gold nanoparticles. Conjugated to genetically encodable LOV proteins, the nanoparticles are monodispersed in darkness but rapidly assemble into large aggregates upon blue-light exposure. The study establishes a new modality for reaction control in macromolecular chemistry and thus augurs enhanced precision in space and time in diverse applications of gold nanoparticles.
Collapse
Affiliation(s)
- Julia Dietler
- Department of Biochemistry, Photobiochemistry, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Chen Liang
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Saskia Frank
- Department of Biochemistry, Photobiochemistry, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Ann-Kathrin Müller
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Andreas Möglich
- Department of Biochemistry, Photobiochemistry, University of Bayreuth, Bayreuth, D-95440, Germany
| |
Collapse
|
29
|
Wiriyachaiporn N, Sirikaew S, Chitchai N, Janchompoo P, Maneeprakorn W, Bamrungsap S, Pasomsub E, Japrung D. Pre-clinically evaluated visual lateral flow platform using influenza A and B nucleoprotein as a model and its potential applications. RSC Adv 2021; 11:18597-18604. [PMID: 35480952 PMCID: PMC9033468 DOI: 10.1039/d1ra01361k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/08/2021] [Indexed: 12/26/2022] Open
Abstract
A visual colorimetric rapid screening system based on a lateral flow device for simultaneous detection and differentiation between influenza A and B nucleoprotein as a model was developed. Monoclonal antibodies, specific for either influenza A or B nucleoproteins, were evaluated for their reactivities and were used as targeting ligands. With the best antibody pairs selected, the system exhibited good specificity to both viruses without cross reactivity to other closely related respiratory viruses. Further semi-quantitative analysis using a strip reader revealed that the system is capable of detecting influenza A and B protein content as low as 0.04 and 1 ng per test, respectively, using a sample volume as low as 100 μL, within 10 minutes (R2 = 0.9652 and 0.9718). With a performance comparison to the commercial tests, the system demonstrated a four-to-eight-fold higher sensitivity. Pre-clinical evaluation with 101 nasopharyngeal swabs reveals correlated results with a standard molecular approach, with 89% and 83% sensitivity towards influenza A and B viruses, and 100% specificity for both viruses. Visual colorimetric rapid screening system based on lateral flow device for influenza A and B virus detection as a model and its pre-clinical evaluation.![]()
Collapse
Affiliation(s)
- Natpapas Wiriyachaiporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) PathumThani 12120 Thailand
| | - Siriwan Sirikaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) PathumThani 12120 Thailand
| | - Nawakarn Chitchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) PathumThani 12120 Thailand .,Faculty of Pharmacy, Thammasat University Thailand
| | - Pareena Janchompoo
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University Bangkok Thailand
| | - Weerakanya Maneeprakorn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) PathumThani 12120 Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) PathumThani 12120 Thailand
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University Bangkok Thailand
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) PathumThani 12120 Thailand
| |
Collapse
|
30
|
Ganguly K, Patel DK, Dutta SD, Lim KT. TEMPO-Cellulose Nanocrystal-Capped Gold Nanoparticles for Colorimetric Detection of Pathogenic DNA. ACS OMEGA 2021; 6:12424-12431. [PMID: 34056393 PMCID: PMC8154114 DOI: 10.1021/acsomega.1c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/11/2021] [Indexed: 05/06/2023]
Abstract
Nanocellulose-assisted gold nanoparticles are considered promising materials for developing eco-friendly diagnostic tools for biosensing applications. In this study, we synthesized 2,2,6,6-tetramethylpiperidin-1-piperidinyloxy (TEMPO)-oxidized cellulose nanocrystal (TEMPO-CNC)-capped gold nanoparticles (AuNPs) for the colorimetric detection of unamplified pathogenic DNA oligomers of methicillin-resistant Staphylococcus aureus. The fabricated TEMPO-CNC-AuNPs (TC-AuNPs) were characterized using UV-visible spectroscopy, transmission electron microscopy, atomic force microscopy, and dynamic light scattering. The average diameter of the synthesized AuNPs was approximately 30 nm. The aqueous solution of TC-AuNPs was stable and exhibited an absorption peak at 520 nm. The chemical interaction between TC-AuNPs and the surface charge of the target and non-target DNA determined the colorimetric differences under ionic conditions. A dramatic color change (red → blue) was observed in the TC-AuNP solution with the target DNA under ionic conditions due to the aggregation of AuNPs. However, no observable color change occurred in the TC-AuNP solution with the non-target DNA under similar conditions owing to the better shielding effects of the charged moieties. The colorimetric detection limit of the TC-AuNPs was demonstrated to be as low as 20 fM pathogenic DNA. Therefore, the use of TEMPO-oxidized CNC-capped AuNPs is efficient and straightforward as a biosensor for the colorimetric detection of pathogenic DNA.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems
Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dinesh K. Patel
- Department of Biosystems
Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems
Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems
Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
31
|
Bao Y, Han K, Ding Z, Li Y, Li T, Guan M, Li G. A label-free electrochemiluminescence immunosensor for carbohydrate antigen 153 based on polypyrrole-luminol-AuNPs nanocomposites with bi-catalysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119562. [PMID: 33611216 DOI: 10.1016/j.saa.2021.119562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/29/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Polypyrrole-luminol-AuNPs nanocomposites were prepared and used to develop a sensitive label-free electrochemiluminescence (ECL) immunosensor for carbohydrate antigen 153 (CA153) detection. Firstly, polypyrrole (PPY) nanoparticles were synthesized by a chemical oxidation method using FeCl3 as an oxidizing agent, then luminol and gold nanoparticles (AuNPs) were combined with PPY nanoparticles through electrostatic interaction to form PPY-luminol-AuNPs nanocomposites. The nanocomposites were characterized by transmission electron microscopy (TEM), UV-Vis absorption spectra, atomic emission spectrometry (AES), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). Especially, iron element was also detected in the nanocomposites. The PPY-luminol-AuNPs nanocomposites showed excellent ECL activity due to the bi-catalysis of iron ion and gold nanoparticles on the ECL of luminol. Furthermore, the nanocomposites showed good film-forming property, and it can be fixed on electrode surface without the assistance of other film-forming materials. On this basis, an ECL immunosensor for CA153 was constructed by covalently immobilizing anti-CA153 on PPY-luminol-AuNPs modified indium-doped tin oxide (ITO) electrode. In the presence of CA153, a remarkable decrease in ECL signals was observed due to the formation of anti-CA153/CA153 complex. The immunosensor showed a good linear relationship in the concentration range of 0.001 to 700 U/mL for CA153, and the detection limit was 5.8 × 10-4 U/mL (S/N = 3). Furthermore, the ECL immunosensor was applied to the determination of CA153 in practical human serum sample.
Collapse
Affiliation(s)
- Ying Bao
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, PR China
| | - Kexin Han
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, PR China
| | - Zhifang Ding
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, PR China
| | - Yue Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, PR China
| | - Ting Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, PR China
| | - Ming Guan
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, PR China
| | - Guixin Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, PR China.
| |
Collapse
|
32
|
Syahruni S, Hartati YW, Yusuf M, Kusumawardani S, Wibawan IWT, Arnafia W, Sibit G, Subroto T. Development of lateral flow assay based on anti-IBDV IgY for the rapid detection of Gumboro disease in poultry. J Virol Methods 2021; 291:114065. [PMID: 33577956 DOI: 10.1016/j.jviromet.2021.114065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The poultry industry faces serious problems against infectious diseases, including Gumboro, which is caused by contagious bursal disease virus (IBDV). IBDV infects the bursa of Fabricius (BF), a lymphoid organ for controlling the B-cell maturation. Thus, it can trigger the secondary infection's vulnerability, leading to the high mortality and morbidity of the chicken. Moreover, managing the Gumboro post-outbreaks also requires considerable time and costs. Besides vaccination programs, the early detection of IBDV is vital as an outbreak control strategy. The most popular diagnostic tool is a lateral flow immunoassay or a rapid test that meets ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end-users) criteria. In this study, the lateral flow immunoassay was successfully developed based on anti-IBDV IgY as the bio receptor. Anti-IBDV IgY was successfully isolated from Isa Brown's egg yolk. The detection system showed an acceptable affinity against the inactivated IBDV sample (1.5 × 103 TCID50). In addition, it did not react with avian influenza and Newcastle disease viruses, demonstrating a good specificity of the test.
Collapse
Affiliation(s)
- Sari Syahruni
- Master of Biotechnology Program, School of Postgraduates, Universitas Padjadjaran, Jl. Dipati Ukur 35, Bandung, West Java, 40132 Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java, 45363 Indonesia; Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung,West Java, 40132 Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java, 45363 Indonesia; Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung,West Java, 40132 Indonesia
| | - Shinta Kusumawardani
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung,West Java, 40132 Indonesia
| | - I Wayan Teguh Wibawan
- Department of Animal Infectious Diseases and Veterinary Public Health, IPB University, Jl. Raya Dramaga, Bogor, West Java, 16680 Indonesia
| | - Wyanda Arnafia
- Research and Development Division, PT. Tekad Mandiri Citra, Jl. Mekar Raya Kav. 9, Bandung, West Java, 40292 Indonesia
| | - Gowinda Sibit
- Research and Development Division, PT. Tekad Mandiri Citra, Jl. Mekar Raya Kav. 9, Bandung, West Java, 40292 Indonesia
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java, 45363 Indonesia; Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung,West Java, 40132 Indonesia.
| |
Collapse
|
33
|
Nakamura S, Mitomo H, Ijiro K. Assembly and Active Control of Nanoparticles using Polymer Brushes as a Scaffold. CHEM LETT 2021. [DOI: 10.1246/cl.200767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Satoshi Nakamura
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
34
|
Naorungroj S, Teengam P, Vilaivan T, Chailapakul O. Paper-based DNA sensor enabling colorimetric assay integrated with smartphone for human papillomavirus detection. NEW J CHEM 2021. [DOI: 10.1039/d1nj00417d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric paper-based DNA sensor that relies on the inhibition of PNA-induced AuNPs aggregation was combined with a simple smartphone readout for the point-of-care detection of HPV type 16 DNA.
Collapse
Affiliation(s)
- Sarida Naorungroj
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE)
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
| | - Prinjaporn Teengam
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE)
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE)
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
| |
Collapse
|
35
|
Wu S, Lei L, Xia Y, Oliver S, Chen X, Boyer C, Nie Z, Shi S. PNIPAM-immobilized gold-nanoparticles with colorimetric temperature-sensing and reusable temperature-switchable catalysis properties. Polym Chem 2021. [DOI: 10.1039/d1py01180d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The temperature-responsive core–shell hybrid nanoparticles PNIPAMs-AuNP have dual-functional applications as colorimetric temperature-sensors and reusable temperature-switchable catalysts.
Collapse
Affiliation(s)
- Si Wu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Lei
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuzheng Xia
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Susan Oliver
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaonong Chen
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Zhiyong Nie
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shuxian Shi
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
36
|
Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 2020; 15:3788-3816. [PMID: 33097926 DOI: 10.1038/s41596-020-0357-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Lateral-flow assays (LFAs) are quick, simple and cheap assays to analyze various samples at the point of care or in the field, making them one of the most widespread biosensors currently available. They have been successfully employed for the detection of a myriad of different targets (ranging from atoms up to whole cells) in all type of samples (including water, blood, foodstuff and environmental samples). Their operation relies on the capillary flow of the sample throughout a series of sequential pads, each with different functionalities aiming to generate a signal to indicate the absence/presence (and, in some cases, the concentration) of the analyte of interest. To have a user-friendly operation, their development requires the optimization of multiple, interconnected parameters that may overwhelm new developers. In this tutorial, we provide the readers with: (i) the basic knowledge to understand the principles governing an LFA and to take informed decisions during lateral flow strip design and fabrication, (ii) a roadmap for optimal LFA development independent of the specific application, (iii) a step-by-step example procedure for the assembly and operation of an LF strip for the detection of human IgG and (iv) an extensive troubleshooting section addressing the most frequent issues in designing, assembling and using LFAs. By changing only the receptors, the provided example procedure can easily be adapted for cost-efficient detection of a broad variety of targets.
Collapse
|
37
|
Donahue ND, Francek ER, Kiyotake E, Thomas EE, Yang W, Wang L, Detamore MS, Wilhelm S. Assessing nanoparticle colloidal stability with single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Anal Bioanal Chem 2020; 412:5205-5216. [DOI: 10.1007/s00216-020-02783-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
|
38
|
Smith ME, Stastny AL, Lynch JA, Yu Z, Zhang P, Heineman WR. Indicator Dyes and Catalytic Nanoparticles for Irreversible Visual Hydrogen Sensing. Anal Chem 2020; 92:10651-10658. [DOI: 10.1021/acs.analchem.0c01769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael E. Smith
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Angela L. Stastny
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - John A. Lynch
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Zhao Yu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Peng Zhang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - William R. Heineman
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
39
|
Nakamura S, Mitomo H, Yonamine Y, Ijiro K. Salt-triggered Active Plasmonic Systems Based on the Assembly/Disassembly of Gold Nanorods in a DNA Brush Layer on a Solid Substrate. CHEM LETT 2020. [DOI: 10.1246/cl.200185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Satoshi Nakamura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
- Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
- Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
- Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
40
|
Song L, Huang Y, Nie Z, Chen T. Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. NANOSCALE 2020; 12:7433-7460. [PMID: 32219290 DOI: 10.1039/c9nr09420b] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the last few decades, two-dimensional monolayer films of gold nanoparticles (2D MFGS) have attracted increasing attention in various fields, due to their superior attributes of macroscopic size and accessible fabrication, controllable electromagnetic enhancement, distinctive optical harvesting and electron transport capabilities. This review will focus on the recent progress of 2D monolayer films of gold nanoparticles in construction approaches, surface engineering strategies and functional applications in the optical and electric fields. The research challenges and prospective directions of 2D MFGS are also discussed. This review would promote a better understanding of 2D MFGS and establish a necessary bridge among the multidisciplinary research fields.
Collapse
Affiliation(s)
- Liping Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Youju Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China. and College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China and National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| |
Collapse
|
41
|
Swinton DJ, Zhang H, Boroujerdi AFB, Tyree KL, Burke RA, Turner MF, Salia IH, McClary TS. Comparative Analysis of Au and Au@SiO 2 Nanoparticle-Protein Interactions for Evaluation as Platforms in Theranostic Applications. ACS OMEGA 2020; 5:6348-6357. [PMID: 32258869 PMCID: PMC7114161 DOI: 10.1021/acsomega.9b03716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/16/2020] [Indexed: 06/11/2023]
Abstract
Gold nanoparticles are utilized in a variety of sensing and detection technologies because of their unique physiochemical properties. Their tunable size, shape, and surface charge enable them to be used in an array of platforms. The purpose of this study is to conduct a thorough spectroscopic characterization of Au and functionalized hybrid Au@SiO2 nanoparticles under physiological conditions and in the presence of two proteins known to be abundant in serum, bovine serum albumin and human ubiquitin. The information obtained from this study will enable us to develop design principles to synthesize an array of surface-enhanced Raman spectroscopy-based nanoparticles as platforms for theranostic applications. We are particularly interested in tailoring the surface chemistry of the Au@SiO2 nanoparticles for applications in theranostic technologies. We employ common spectroscopic techniques, with particular emphasis on circular dichroism and heteronuclear single quantum correlation nuclear magnetic resonance (HSQC NMR) spectroscopy, as combinatorial tools to understand protein conformational dynamics, binding site interactions, and protein corona for the design of nanoparticles capable of reaching their intended target in vivo. Our results conclude that protein adsorption onto the nanoparticle surface prevents nanoparticle aggregation. We observed that varying the ionic strength and type of ion influences the aggregation and aggregation rate of each respective nanoparticle. The conformation of proteins and the absorption of proteins on the surface of Au nanoparticles are also influenced by ionic strength. Using two-dimensional [15N-1H]-HSQC NMR experiments to compare the interactions of Au and Au@SiO2 nanoparticles with 15N-ubiquitin, we observed small chemical shift perturbations in some amino acid peaks and differences in binding site interactions with ubiquitin and respective nanoparticles.
Collapse
Affiliation(s)
- Derrick J. Swinton
- Department
of Chemistry, Claflin University, Orangeburg, South Carolina 29115, United States
| | - Hongxia Zhang
- Department
of Chemistry, Claflin University, Orangeburg, South Carolina 29115, United States
| | - Arezue F. B. Boroujerdi
- Department
of Chemistry, Claflin University, Orangeburg, South Carolina 29115, United States
| | - Keyana L. Tyree
- Department
of Chemistry, Claflin University, Orangeburg, South Carolina 29115, United States
| | - Ricardo A. Burke
- Department
of Chemistry, Claflin University, Orangeburg, South Carolina 29115, United States
| | - Makayla F. Turner
- Department
of Chemistry, Claflin University, Orangeburg, South Carolina 29115, United States
| | - Imrana H. Salia
- Department
of Chemistry, Claflin University, Orangeburg, South Carolina 29115, United States
| | - Tekiah S. McClary
- Department
of Biology, Spelman College, Atlanta, Georgia 30314, United States
| |
Collapse
|
42
|
Witte J, Krause P, Kyrey T, Dahl AM, Lutzki J, Schmidt BVKJ, Ganeva M, Koutsioubas A, Holderer O, Wellert S. Grazing Incidence Neutron Spin Echo Study of Poly(N-isopropylacrylamide) Brushes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Judith Witte
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Patrick Krause
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Tetyana Kyrey
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
- JCNS at Heinz Maier-Leibnitz Zentrum, 85747 Garching, Germany
| | - Anna Margarethe Dahl
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jana Lutzki
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Marina Ganeva
- JCNS at Heinz Maier-Leibnitz Zentrum, 85747 Garching, Germany
| | | | - Olaf Holderer
- JCNS at Heinz Maier-Leibnitz Zentrum, 85747 Garching, Germany
| | - Stefan Wellert
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
43
|
Li D, Kumari B, Zhang X, Wang C, Mei X, Rotello VM. Purification and separation of ultra-small metal nanoclusters. Adv Colloid Interface Sci 2020; 276:102090. [PMID: 31895988 PMCID: PMC6961975 DOI: 10.1016/j.cis.2019.102090] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Metal nanoclusters (NCs) are ultra-small nanoparticles intermediate in size between small molecule complexes and nanoparticles. NCs with tunable surface functionality feature unique physical and chemical properties, however these properties are frequently compromised by the presence of undesired components such as excess ligands or mixtures of NCs. In a typical synthesis process, different NCs can be formed with varying numbers of metal atoms and/or ligands, and even NCs with the same number of metal atoms and ligands can have different spatial structures. The separation of pure NCs is important because different species have distinct optical and catalytic behavior. However, NCs can be difficult to purify or separate for a range of reasons. In this review, we discuss established and emerging approaches for NC purification/separation, with a focus on choosing the appropriate method depending on NC and application.
Collapse
Affiliation(s)
- Dan Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst 01002, USA; Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
| | - Beena Kumari
- Department of Chemistry, University of Massachusetts Amherst, Amherst 01002, USA; Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst 01002, USA
| | - Cuiping Wang
- Key Laboratory for Functional Material, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xifan Mei
- Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst 01002, USA.
| |
Collapse
|
44
|
Mocny P, Klok HA. Complex polymer topologies and polymer—nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101185] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Zhang X, Fan X, Wang Y, Lei F, Li L, Liu J, Wu P. Highly Stable Colorimetric Sensing by Assembly of Gold Nanoparticles with SYBR Green I: From Charge Screening to Charge Neutralization. Anal Chem 2019; 92:1455-1462. [DOI: 10.1021/acs.analchem.9b04660] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Xiaoya Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yanying Wang
- Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Fengjie Lei
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Lin Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Peng Wu
- Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
46
|
Yan W, Fantin M, Spencer ND, Matyjaszewski K, Benetti EM. Translating Surface-Initiated Atom Transfer Radical Polymerization into Technology: The Mechanism of Cu 0-Mediated SI-ATRP under Environmental Conditions. ACS Macro Lett 2019; 8:865-870. [PMID: 35619512 DOI: 10.1021/acsmacrolett.9b00388] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exceptional features of Cu0-mediated surface-initiated atom transfer radical polymerization (Cu0 SI-ATRP), and its potential for implementation in technologically relevant surface functionalizations are demonstrated thanks to a comprehensive understanding of its mechanism. Cu0 SI-ATRP enables the synthesis of multifunctional polymer brushes with a remarkable degree of control, over extremely large areas and without the need for inert atmosphere or deoxygenation of monomer solutions. When a polymerization mixture is placed between a flat copper plate and an ATRP-initiator-functionalized substrate, the vertical distance between these two overlaying surfaces determines the tolerance of the grafting process toward the oxygen, while the composition of the polymerization solution emerges as the critical parameter regulating polymer-grafting kinetics. At very small distances between the copper plate and the initiating surfaces, the oxygen dissolved in the solution is rapidly consumed via oxidation of the metallic substrate. In the presence of ligand, copper species diffuse to the surface-immobilized initiators and trigger a rapid growth of polymer brushes. Concurrently, the presence and concentration of added CuII regulates the generation of CuI-based activators through comproportionation with Cu0. Hence, under oxygen-tolerant conditions, the extent of comproportionation, together with the solvent-dependent rate constant of activation (kact) of ATRP are the main determinants of the growth rate of polymer brushes.
Collapse
Affiliation(s)
- Wenqing Yan
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Nicholas D. Spencer
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Edmondo M. Benetti
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| |
Collapse
|
47
|
Marschelke C, Puretskiy N, Raguzin I, Melnyk I, Ionov L, Synytska A. Effect of Architecture of Thermoresponsive Copolymer Brushes on Switching of Their Adsorption Properties. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Claudia Marschelke
- Leibniz Institute of Polymer Research Dresden e.V. Hohe Str. 6 01069 Dresden Germany
- Institute of Physical Chemistry of Polymeric Materials Dresden University of Technology 01062 Dresden Germany
| | - Nikolay Puretskiy
- Leibniz Institute of Polymer Research Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Ivan Raguzin
- Leibniz Institute of Polymer Research Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Inga Melnyk
- Leibniz Institute of Polymer Research Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Leonid Ionov
- Faculty of Engineering ScienceUniversity of Bayreuth, Universitätsstr. 30 95440 Bayreuth Germany
- Bavarian Polymer Institute, Universitätsstr. 30 95440 Bayreuth Germany
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden e.V. Hohe Str. 6 01069 Dresden Germany
- Institute of Physical Chemistry of Polymeric Materials Dresden University of Technology 01062 Dresden Germany
| |
Collapse
|
48
|
Quesada-González D, Sena-Torralba A, Wicaksono WP, de la Escosura-Muñiz A, Ivandini TA, Merkoçi A. Iridium oxide (IV) nanoparticle-based lateral flow immunoassay. Biosens Bioelectron 2019; 132:132-135. [DOI: 10.1016/j.bios.2019.02.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022]
|
49
|
Mi X, Lucier EM, Turpeinen DG, Yeo ELL, Kah JCY, Heldt CL. Mannitol-induced gold nanoparticle aggregation for the ligand-free detection of viral particles. Analyst 2019; 144:5486-5496. [DOI: 10.1039/c9an00830f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addition of osmolytes causes viruses-coated AuNPs to aggregate and not protein-coated AuNPs. Ligand-free detection of virus was developed without the need for prior knowledge of the specific virus target.
Collapse
Affiliation(s)
- Xue Mi
- Department of Chemical Engineering
- Michigan Technological University
- USA
| | | | | | - Eugenia Li Ling Yeo
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - James Chen Yong Kah
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Caryn L. Heldt
- Department of Chemical Engineering
- Michigan Technological University
- USA
| |
Collapse
|
50
|
Boyaciyan D, Krause P, von Klitzing R. Making strong polyelectrolyte brushes pH-sensitive by incorporation of gold nanoparticles. SOFT MATTER 2018; 14:4029-4039. [PMID: 29670976 DOI: 10.1039/c8sm00411k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Doping polymer brushes with gold nanoparticles (AuNPs) results in composite materials with colorimetric sensor properties. The present paper addresses the effect of electrostatic particle-particle interaction and the effect of the polymer brush type on particle assembly formation within the polymer matrix. The prospect for long-term use as colorimetric sensors is tested. Therefore, two different types of brushes of pH-insensitive polymers, non-ionic poly(N-isopropylacrylamide) (PNIPAM) and cationic poly-[2-(methacryloyloxy)ethyl] trimethylammonium chloride (PMETAC), are studied. After incubation of the non-ionic PNIPAM brush in an aqueous suspension of AuNPs with a pH-sensitive carboxylic acid capping, hydrogen binding led to attachment of the AuNPs, but they were easily detached at high pH due to loss of the hydrogen binding. In contrast, the anionic AuNPs adhere well to cationic PMETAC brushes even after post-treatment at low pH where the charge density of the AuNPs is strongly reduced. Therefore, the PMETAC/AuNP composites were further tested with respect to their stability against pH variations and their impact for colorimetric sensors. Although the neat PMETAC brush is not pH-sensitive, after embedding pH-sensitive AuNPs, the PMETAC/AuNP composite becomes pH-sensitive in a reversible manner. This is detectable by the reversible shift of the plasmon band and the reversible thickness change of the composites by exposing them to different pH.
Collapse
Affiliation(s)
- D Boyaciyan
- Soft Matter at Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany.
| | | | | |
Collapse
|