1
|
Lulic K, Muller G, Gutierrez R, Little H, Duhamel J. Flexibility of Poly(alkyl methacrylate)s Characterized by Their Persistence Length Determined through Pyrene Excimer Formation. Polymers (Basel) 2024; 16:2126. [PMID: 39125153 PMCID: PMC11314411 DOI: 10.3390/polym16152126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
A series of poly(alkyl methacrylate)s and poly(oligo(ethylene glycol) methyl ether methacrylate)s labeled with 1-pyrenebutanol were referred to as the PyC4-PCnMA samples with n = 1, 4, 6, 8, 12, and 18 and the PyC4-PEGnMA samples with n = 0-5, 9, 16, and 19, respectively. Pyrene excimer formation (PEF) upon the encounter between an excited and a ground-state pyrenyl labels was employed to determine their persistence length (lp) in o-xylene. The fluorescence decays of the PyC4-PCnMA and PyC4-PEGnMA samples were acquired and analyzed with the fluorescence blob model to yield the number (Nblob) of structural units in the volume probed by an excited pyrenyl label. Nblob was found to decrease with an increasing number (NS) of non-hydrogen atoms in the side chain, reaching a plateau for the PyC4-PEGnMA samples with a longer side chain (n = 16 and 19). The Nblob values were used to determine lp. The lp values for the PyC4-PCnMA and PyC4-PEGnMA samples increased linearly with increasing NS2 as predicted theoretically, which agreed with the lp values obtained by viscometry for a series of PCnMA samples. The good agreement between the lp values retrieved by PEF and viscometry served to validate the PEF-based methodology for determining lp for linear polymers.
Collapse
Affiliation(s)
| | | | | | | | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (K.L.); (G.M.); (R.G.); (H.L.)
| |
Collapse
|
2
|
Ramírez J, Gibson GM, Tassieri M. Optical Halo: A Proof of Concept for a New Broadband Microrheology Tool. MICROMACHINES 2024; 15:889. [PMID: 39064399 PMCID: PMC11278636 DOI: 10.3390/mi15070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Microrheology, the study of material flow at micron scales, has advanced significantly since Robert Brown's discovery of Brownian motion in 1827. Mason and Weitz's seminal work in 1995 established the foundation for microrheology techniques, enabling the measurement of viscoelastic properties of complex fluids using light-scattering particles. However, existing techniques face limitations in exploring very slow dynamics, crucial for understanding biological systems. Here, we present a proof of concept for a novel microrheology technique called "Optical Halo", which utilises a ring-shaped Bessel beam created by optical tweezers to overcome existing limitations. Through numerical simulations and theoretical analysis, we demonstrate the efficacy of the Optical Halo in probing viscoelastic properties across a wide frequency range, including low-frequency regimes inaccessible to conventional methods. This innovative approach holds promise for elucidating the mechanical behaviour of complex biological fluids.
Collapse
Affiliation(s)
- Jorge Ramírez
- Departamento de Ingeniería Química, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain;
| | - Graham M. Gibson
- School of Physics and Astronomy, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK;
| | - Manlio Tassieri
- Division of Biomedical Engineering, James Watt School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| |
Collapse
|
3
|
Thoma JL, Little H, Duhamel J, Zhang L, Leung KT. Persistence Length of PEGMA Bottle Brushes Determined by Pyrene Excimer Fluorescence. Polymers (Basel) 2023; 15:3958. [PMID: 37836007 PMCID: PMC10575010 DOI: 10.3390/polym15193958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Seven pyrene-labeled poly(oligo(ethylene glycol) methyl ether methacrylate)s (PyEG5-PEGnMAs) were prepared with n = 0, 3, 4, 5, 7, 9, and 19 ethylene glycol units by copolymerizing a small amount of penta(ethylene glycol) 1-pyrenemethyl ether methacrylate with an EGnMA monomer. The conformation of the PyEG5-PEGnMA polymers evolved from a random coil for PyEG5-PEG0MA or poly(methyl methacrylate) to a polymeric bottle brush (PBB) architecture with increasing side chain length. The fluorescence decays of the PyEG5-PEGnMA samples were fitted according to the fluorescence blob model (FBM) whose parameters were used, in combination with the Kratky-Porod equation, to calculate the persistence length of these polymers. The persistence lengths obtained from the PEF experiments were found to increase with the square of the number (NS) of non-hydrogen atoms in the side chain as expected theoretically. The persistence lengths found with the PyEG5-PEGnMA samples in DMF also matched those found earlier for another series of PEGnMA samples labeled with 1-pyrenebutanol. The good agreement found between the persistence lengths obtained with the PEGnMA samples labeled with two different pyrene derivatives illustrates the robustness of the method and its applicability for measuring the unknown persistence length of polydisperse polymer samples.
Collapse
Affiliation(s)
- Janine L. Thoma
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (J.L.T.); (H.L.)
| | - Hunter Little
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (J.L.T.); (H.L.)
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (J.L.T.); (H.L.)
| | - Lei Zhang
- Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (L.Z.); (K.T.L.)
| | - Kam Tong Leung
- Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (L.Z.); (K.T.L.)
| |
Collapse
|
4
|
Domínguez-García P, Pinto JR, Akrap A, Jeney S. Micro-mechanical response and power-law exponents from the longitudinal fluctuations of F-actin solutions. SOFT MATTER 2023; 19:3652-3660. [PMID: 37165665 PMCID: PMC10208217 DOI: 10.1039/d2sm01445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
We investigate the local fluctuations of filamentous actin (F-actin), with a focus on the skeletal thin filament, using single-particle optical trapping interferometry. This experimental technique allows us to detect the Brownian motion of a tracer bead immersed in a complex fluid with nanometric resolution at the microsecond time-scale. The mean square displacement, loss modulus, and velocity autocorrelation function (VAF) of the trapped microprobes in the fluid follow power-law behaviors, whose exponents can be determined in the short-time/high-frequency regime over several decades. We obtain 7/8 subdiffusive power-law exponents for polystyrene depleted microtracers at low optical trapping forces. Microrheologically, the elastic modulus of these suspensions is observed to be constant up to the limit of high frequencies, confirming that the origin of this subdiffusive exponent is the local longitudinal fluctuations of the polymers. Deviations from this value are measured and discussed in relation to the characteristic length scales of these F-actin networks and probes' properties, and also in connection with the different power-law exponents detected in the VAFs. Finally, we observed that the thin filament, composed of tropomyosin (Tm) and troponin (Tn) coupled to F-actin in the presence of Ca2+, shows exponent values less dispersed than that of F-actin alone, which we interpret as a micro-measurement of the filament stabilization.
Collapse
Affiliation(s)
- Pablo Domínguez-García
- Dep. Física Interdisciplinar, Universidad Nacional de Educación a Distancia (UNED), Madrid 28040, Spain.
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Florida, USA
| | - Ana Akrap
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| | - Sylvia Jeney
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Zhou H, Jung W, Farhana TI, Fujimoto K, Kim T, Yokokawa R. Durability of Aligned Microtubules Dependent on Persistence Length Determines Phase Transition and Pattern Formation in Collective Motion. ACS NANO 2022; 16:14765-14778. [PMID: 36098647 DOI: 10.1021/acsnano.2c05593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Collective motion is a ubiquitous phenomenon in nature. The collective motion of cytoskeleton filaments results mainly from dynamic collisions and alignments; however, the detailed mechanism of pattern formation still needs to be clarified. In particular, the influence of persistence length, which is a measure of filament flexibility, on collective motion is still unclear and lacks experimental verifications although it is likely to directly affect the orientational flexibility of filaments. Here, we investigated the collective motion of microtubules with different persistence lengths using a microtubule-kinesin motility system. We showed that local interactions between microtubules significantly vary depending on their persistence length. We demonstrated that the bundling of microtubules is enhanced by more durable alignment, rather than by greater likelihood of alignment. An agent-based computational model confirmed that the rigidity-dependent durability of microtubule alignment dominates their collective behavior.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tamanna Ishrat Farhana
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
6
|
Yu D, Garcia A, Blum SA, Welsher KD. Growth Kinetics of Single Polymer Particles in Solution via Active-Feedback 3D Tracking. J Am Chem Soc 2022; 144:14698-14705. [PMID: 35867381 DOI: 10.1021/jacs.2c04990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ability to directly observe chemical reactions at the single-molecule and single-particle level has enabled the discovery of behaviors otherwise obscured by ensemble averaging in bulk measurements. However powerful, a common restriction of these studies to date has been the absolute requirement to surface tether or otherwise immobilize the chemical reagent/reaction of interest. This constraint arose from a fundamental limitation of conventional microscopy techniques, which could not track molecules or particles rapidly diffusing in three dimensions, as occurs in solution. However, many chemical processes occur entirely in the solution phase, leaving single-particle/-molecule analysis of this critical area of science beyond the scope of available technology. Here, we report the first kinetics studies of freely diffusing and actively growing single polymer-particles at the single-particle level freely diffusing in solution. Active-feedback single-particle tracking was used to capture three-dimensional (3D) trajectories and real-time volumetric images of freely diffusing polymer particles (D ≈ 10-12 m2/s) and extract the growth rates of individual particles in the solution phase. The observed growth rates show that the average growth rate is a poor representation of the true underlying variability in polymer-particle growth behavior. These data revealed statistically significant populations of faster- and slower-growing particles at different depths in the sample, showing emergent heterogeneity while particles are still freely diffusing in solution. These results go against the prevailing premise that chemical processes in freely diffusing solution will exhibit uniform kinetics. We anticipate that these studies will launch new directions of solution-phase, nonensemble-averaged measurements of chemical processes.
Collapse
Affiliation(s)
- Donggeng Yu
- Department of Chemistry, Duke University; Durham, North Carolina 27708, United States
| | - Antonio Garcia
- Department of Chemistry, University of California, Irvine; Irvine, California 92697, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine; Irvine, California 92697, United States
| | - Kevin D Welsher
- Department of Chemistry, Duke University; Durham, North Carolina 27708, United States
| |
Collapse
|
7
|
Alva E, George A, Brancaleon L, Marucho M. Hydrodynamic and Polyelectrolyte Properties of Actin Filaments: Theory and Experiments. Polymers (Basel) 2022; 14:polym14122438. [PMID: 35746014 PMCID: PMC9230757 DOI: 10.3390/polym14122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Actin filament’s polyelectrolyte and hydrodynamic properties, their interactions with the biological environment, and external force fields play an essential role in their biological activities in eukaryotic cellular processes. In this article, we introduce a unique approach that combines dynamics and electrophoresis light-scattering experiments, an extended semiflexible worm-like chain model, and an asymmetric polymer length distribution theory to characterize the polyelectrolyte and hydrodynamic properties of actin filaments in aqueous electrolyte solutions. A fitting approach was used to optimize the theories and filament models for hydrodynamic conditions. We used the same sample and experimental conditions and considered several g-actin and polymerization buffers to elucidate the impact of their chemical composition, reducing agents, pH values, and ionic strengths on the filament translational diffusion coefficient, electrophoretic mobility, structure factor, asymmetric length distribution, effective filament diameter, electric charge, zeta potential, and semiflexibility. Compared to those values obtained from molecular structure models, our results revealed a lower value of the effective G-actin charge and a more significant value of the effective filament diameter due to the formation of the double layer of the electrolyte surrounding the filaments. Contrary to the data usually reported from electron micrographs, the lower values of our results for the persistence length and average contour filament length agree with the significant difference in the association rates at the filament ends that shift to sub-micro lengths, which is the maximum of the length distribution.
Collapse
|
8
|
Romo‐Uribe A. Extensional flow of stiff‐chain polymer solutions in the semidilute regime. J Appl Polym Sci 2022. [DOI: 10.1002/app.51660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Angel Romo‐Uribe
- Research & Development, Advanced Science & Technology Division Johnson & Johnson Vision Care Inc Jacksonville Florida USA
| |
Collapse
|
9
|
Constraint Release for Reptating Filaments in Semiflexible Networks Depends on Background Fluctuations. Polymers (Basel) 2022; 14:polym14040707. [PMID: 35215620 PMCID: PMC8879693 DOI: 10.3390/polym14040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Entangled semiflexible polymer networks are usually described by the tube model, although this concept has not been able to explain all experimental observations. One of its major shortcomings is neglecting the thermal fluctuations of the polymers surrounding the examined test filament, such that disentanglement effects are not captured. In this study, we present experimental evidence that correlated constraint release which has been predicted theoretically occurs in entangled, but not in crosslinked semiflexible polymer networks. By tracking single semiflexible DNA nanotubes embedded both in entangled and crosslinked F-actin networks, we observed different reptation dynamics in both systems, emphasizing the need for a revision of the classical tube theory for entangled polymer solutions.
Collapse
|
10
|
Gupta M, Chowdhury PK. Protein dynamics as a sensor for macromolecular crowding: Insights into mixed crowding. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
i-RheoFT: Fourier transforming sampled functions without artefacts. Sci Rep 2021; 11:24047. [PMID: 34911955 PMCID: PMC8674267 DOI: 10.1038/s41598-021-02922-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
In this article we present a new open-access code named “i-RheoFT” that implements the analytical method first introduced in [PRE, 80, 012501 (2009)] and then enhanced in [New J Phys 14, 115032 (2012)], which allows to evaluate the Fourier transform of any generic time-dependent function that vanishes for negative times, sampled at a finite set of data points that extend over a finite range, and need not be equally spaced. I-RheoFT has been employed here to investigate three important experimental factors: (i) the ‘density of initial experimental points’ describing the sampled function, (ii) the interpolation function used to perform the “virtual oversampling” procedure introduced in [New J Phys 14, 115032 (2012)], and (iii) the detrimental effect of noises on the expected outcomes. We demonstrate that, at relatively high signal-to-noise ratios and density of initial experimental points, all three built-in MATLAB interpolation functions employed in this work (i.e., Spline, Makima and PCHIP) perform well in recovering the information embedded within the original sampled function; with the Spline function performing best. Whereas, by reducing either the number of initial data points or the signal-to-noise ratio, there exists a threshold below which all three functions perform poorly; with the worst performance given by the Spline function in both the cases and the least worst by the PCHIP function at low density of initial data points and by the Makima function at relatively low signal-to-noise ratios. We envisage that i-RheoFT will be of particular interest and use to all those studies where sampled or time-averaged functions, often defined by a discrete set of data points within a finite time-window, are exploited to gain new insights on the systems’ dynamics.
Collapse
|
12
|
Händler T, Tutmarc C, Glaser M, Freitag JS, Smith DM, Schnauß J. Measuring structural parameters of crosslinked and entangled semiflexible polymer networks with single-filament tracing. Phys Rev E 2021; 103:062501. [PMID: 34271634 DOI: 10.1103/physreve.103.062501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/17/2021] [Indexed: 12/15/2022]
Abstract
Single-filament tracing has been a valuable tool to directly determine geometrical and mechanical properties of entangled polymer networks. However, systematically verifying how the stiffness of the tracer filament or its molecular interactions with the surrounding network impacts the measurement of these parameters has not been possible with the established experimental systems. Here we use mechanically programmable DNA nanotubes embedded in crosslinked and entangled F-actin networks, as well as in synthetic DNA networks, in order to measure fundamental, structural network properties like tube width and mesh size with respect to the stiffness of the tracers. While we confirm some predictions derived from models based purely on steric interactions, our results indicate that these models should be expanded to account for additional interfilament interactions, thereby describing the behavior of real polymer networks.
Collapse
Affiliation(s)
- Tina Händler
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Cary Tutmarc
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Martin Glaser
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Jessica S Freitag
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - David M Smith
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig Medical Faculty, 04103 Leipzig, Germany.,Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382 007, India
| | - Jörg Schnauß
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany.,Unconventional Computing Laboratory, Department of Computer Science, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
13
|
Romo‐Uribe A. Shear rheology and scaling of semiflexible polymers: Effect of polymer‐solvent interactions in the semidilute regime. J Appl Polym Sci 2021. [DOI: 10.1002/app.49712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Angel Romo‐Uribe
- R&D, Advanced Science & Technology Division Johnson & Johnson Vision Florida USA
| |
Collapse
|
14
|
Houghton MR, Walkley MA, Head DA. Anisotropic mechanical response of layered disordered fibrous materials. Phys Rev E 2020; 102:062502. [PMID: 33466009 DOI: 10.1103/physreve.102.062502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Mechanically bonded fabrics account for a significant portion of nonwoven products, and serve many niche areas of nonwoven manufacturing. Such fabrics are characterized by layers of disordered fibrous webs, but we lack an understanding of how such microstructures determine bulk material response. Here we numerically determine the linear shear response of needle-punched fabrics modeled as cross-linked sheets of two-dimensional (2D) Mikado networks. We systematically vary the intra-sheet fiber density, inter-sheet separation distance, and direction of shear, and quantify the macroscopic shear modulus alongside the degree of affinity and energy partition. For shear parallel to the sheets, the response is dominated by intrasheet fibers and follows known trends for 2D Mikado networks. By contrast, shears perpendicular to the sheets induce a softer response dominated by either intrasheet or intersheet fibers depending on a quadratic relation between sheet separation and fiber density. These basic trends are reproduced and elucidated by a simple scaling argument that we provide. We discuss the implications of our findings in the context of real nonwoven fabrics.
Collapse
Affiliation(s)
- M R Houghton
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - M A Walkley
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - D A Head
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
15
|
Sahoo A, Suryanarayanan R, Siegel RA. Stabilization of Amorphous Drugs by Polymers: The Role of Overlap Concentration (C*). Mol Pharm 2020; 17:4401-4406. [DOI: 10.1021/acs.molpharmaceut.0c00576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Usuelli M, Cao Y, Bagnani M, Handschin S, Nyström G, Mezzenga R. Probing the Structure of Filamentous Nonergodic Gels by Dynamic Light Scattering. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mattia Usuelli
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Yiping Cao
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Stephan Handschin
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Gustav Nyström
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
- Laboratory for Cellulose & Wood Materials, EMPA, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
- Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| |
Collapse
|
17
|
Milner ST. Unified Entanglement Scaling for Flexible, Semiflexible, and Stiff Polymer Melts and Solutions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02684] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Scott T. Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
18
|
Hanson BS, Head D, Dougan L. The hierarchical emergence of worm-like chain behaviour from globular domain polymer chains. SOFT MATTER 2019; 15:8778-8789. [PMID: 31595281 DOI: 10.1039/c9sm01656b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Biological organisms make use of hierarchically organised structures to modulate mechanical behaviour across multiple lengthscales, allowing microscopic objects to generate macroscopic effects. Within these structural hierarchies, the resultant physical behaviour of the entire system is determined not only by the intrinsic mechanical properties of constituent subunits, but also by their organisation in three-dimensional space. When these subunits are polyproteins, colloidal chains or other globular domain polymers, the Kratky-Porod model is often assumed for the individual subunits. Hence, it is implicitly asserted that the polymeric object has an intrinsic parameter, the persistence length, that defines its flexibility. However, the persistence lengths extracted from experiment vary, and are often relatively small. Through a series of simulations on polymer chains formed of globular subunits, we show that the persistence length itself is a hierarchical structural property, related not only to the intrinsic mechanical properties of the underlying monomeric subunits, but emerging due to the organisation of inhomogenous geometry along the polymer contour.
Collapse
Affiliation(s)
| | - David Head
- School of Computing, University of Leeds, Leeds, UK
| | - Lorna Dougan
- School of Physics & Astronomy, University of Leeds, Leeds, UK. and Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
19
|
Moreno-Guerra JA, Romero-Sánchez IC, Martinez-Borquez A, Tassieri M, Stiakakis E, Laurati M. Model-Free Rheo-AFM Probes the Viscoelasticity of Tunable DNA Soft Colloids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904136. [PMID: 31460707 DOI: 10.1002/smll.201904136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 05/23/2023]
Abstract
Atomic force microscopy rheological measurements (Rheo-AFM) of the linear viscoelastic properties of single, charged colloids having a star-like architecture with a hard core and an extended, deformable double-stranded DNA (dsDNA) corona dispersed in aqueous saline solutions are reported. This is achieved by analyzing indentation and relaxation experiments performed on individual colloidal particles by means of a novel model-free Fourier transform method that allows a direct evaluation of the frequency-dependent linear viscoelastic moduli of the system under investigation. The method provides results that are consistent with those obtained via a conventional fitting procedure of the force-relaxation curves based on a modified Maxwell model. The outcomes show a pronounced softening of the dsDNA colloids, which is described by an exponential decay of both the Young's and the storage modulus as a function of the salt concentration within the dispersing medium. The strong softening is related to a critical reduction of the size of the dsDNA corona, down to ≈70% of its size in a salt-free solution. This can be correlated to significant topological changes of the dense star-like polyelectrolyte forming the corona, which are induced by variations in the density profile of the counterions. Similarly, a significant reduction of the stiffness is obtained by increasing the length of the dsDNA chains, which we attribute to a reduction of the DNA density in the outer region of the corona.
Collapse
Affiliation(s)
- José A Moreno-Guerra
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150, León, Mexico
| | - Ivany C Romero-Sánchez
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150, León, Mexico
| | - Alejandro Martinez-Borquez
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150, León, Mexico
| | - Manlio Tassieri
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Emmanuel Stiakakis
- Forschungszentrum Jülich, Institute of Complex Systems 3, Leo-Brandt-Strasse, 52425, Jülich, Germany
| | - Marco Laurati
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150, León, Mexico
| |
Collapse
|
20
|
|
21
|
Golde T, Glaser M, Tutmarc C, Elbalasy I, Huster C, Busteros G, Smith DM, Herrmann H, Käs JA, Schnauß J. The role of stickiness in the rheology of semiflexible polymers. SOFT MATTER 2019; 15:4865-4872. [PMID: 31161188 DOI: 10.1039/c9sm00433e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semiflexible polymers form central structures in biological material. Modelling approaches usually neglect influences of polymer-specific molecular features aiming to describe semiflexible polymers universally. Here, we investigate the influence of molecular details on networks assembled from filamentous actin, intermediate filaments, and synthetic DNA nanotubes. In contrast to prevalent theoretical assumptions, we find that bulk properties are affected by various inter-filament interactions. We present evidence that these interactions can be merged into a single parameter in the frame of the glassy wormlike chain model. The interpretation of this parameter as a polymer specific stickiness is consistent with observations from macro-rheological measurements and reptation behaviour. Our findings demonstrate that stickiness should generally not be ignored in semiflexible polymer models.
Collapse
Affiliation(s)
- Tom Golde
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Golde T, Huster C, Glaser M, Händler T, Herrmann H, Käs JA, Schnauß J. Glassy dynamics in composite biopolymer networks. SOFT MATTER 2018; 14:7970-7978. [PMID: 30176034 PMCID: PMC6183213 DOI: 10.1039/c8sm01061g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 05/05/2023]
Abstract
The cytoskeleton is a highly interconnected meshwork of strongly coupled subsystems providing mechanical stability as well as dynamic functions to cells. To elucidate the underlying biophysical principles, it is central to investigate not only one distinct functional subsystem but rather their interplay as composite biopolymeric structures. Two of the key cytoskeletal elements are actin and vimentin filaments. Here, we show that composite networks reconstituted from actin and vimentin can be described by a superposition of two non-interacting scaffolds. Arising effects are demonstrated in a scale-spanning frame connecting single filament dynamics to macro-rheological network properties. The acquired results of the linear and non-linear bulk mechanics can be captured within an inelastic glassy wormlike chain model. In contrast to previous studies, we find no emergent effects in these composite networks. Thus, our study paves the way to predict the mechanics of the cytoskeleton based on the properties of its single structural components.
Collapse
Affiliation(s)
- Tom Golde
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
| | - Constantin Huster
- Institute for Theoretical Physics
, University of Leipzig
,
04103 Leipzig
, Germany
| | - Martin Glaser
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
- Fraunhofer Institute for Cell Therapy and Immunology
,
04103 Leipzig
, Germany
| | - Tina Händler
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
- Fraunhofer Institute for Cell Therapy and Immunology
,
04103 Leipzig
, Germany
| | - Harald Herrmann
- Molecular Genetics
, German Cancer Research Center
,
69120 Heidelberg
, Germany
- Department of Neuropathology
, University Hospital Erlangen
,
91054
, Erlangen
, Germany
| | - Josef A. Käs
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
| | - Jörg Schnauß
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
- Fraunhofer Institute for Cell Therapy and Immunology
,
04103 Leipzig
, Germany
| |
Collapse
|
23
|
Conformational Transitions of Polymer Chains in Solutions Characterized by Fluorescence Resonance Energy Transfer. Polymers (Basel) 2018; 10:polym10091007. [PMID: 30960932 PMCID: PMC6404087 DOI: 10.3390/polym10091007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022] Open
Abstract
The critical overlap concentration C* is an important concept in polymer solutions and is defined as the boundary between dilute and semidilute regimes. In this study, the chain conformational changes of polystyrene (PS) with both high (Mn = 200,000 Da) and low (Mn = 13,000 Da) molecular weights in cis-decalin were compared by intrachain fluorescence resonance energy transfer (FRET). The random labeling of donor and acceptor chromophores strategy was employed for long PS chains, whereas chain-end labeling was used for short PS chains. By monitoring the spectroscopic intensity ratio between acceptor and donor, the concentration dependence on chain conformation from dilute to semidilute solutions was determined. Both long and short chains exhibit a conformational transition concentration, above which the polymer chains begin to collapse with concentration significantly. Interestingly, for randomly labeled polymer long chains, such concentration is consistent with C* determined from the viscosity result, below which only slight conformational change of polymer chain takes place. However, for the chain-end labeled short chain, the conformational transition concentration takes place earlier than C*, below which no significant polymer conformation change is observed.
Collapse
|
24
|
Tassieri M, Ramírez J, Karayiannis NC, Sukumaran SK, Masubuchi Y. i-Rheo GT: Transforming from Time to Frequency Domain without Artifacts. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manlio Tassieri
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | | | - Nikos Ch. Karayiannis
- Institute for Optoelectronics and Microsystems (ISOM), Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Sathish K. Sukumaran
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa 992-8510, Japan
| | - Yuichi Masubuchi
- Department of Materials Physics, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|