1
|
Walkowiak K, Paszkiewicz S. Modifications of Furan-Based Polyesters with the Use of Rigid Diols. Polymers (Basel) 2024; 16:2064. [PMID: 39065381 PMCID: PMC11280799 DOI: 10.3390/polym16142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The replacement of polymers derived from petrochemical resources has been a prominent area of focus in recent decades. Polymers used in engineering materials must exhibit mechanical strength and stiffness while maintaining performance through a broad temperature range. Most of the polyesters used as engineering materials are based on terephthalic acid (TPA) and its derivatives, which provide necessary rigidity to molecular chains due to an aromatic ring. Bio-based alternatives for TPA-based polyesters that are gaining popularity are the polyesters derived from 2,5-furandicarboxylic acid (FDCA). To broaden applicational possibilities, one effective way to achieve specific properties in targeted applications is to adjust the composition and structure of polymers using advanced polymer chemistry techniques. The incorporation of rigid diols such as isosorbide, 1,4-cyclohexanedimethanol (CHDM), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) should result in a greater stiffness of the molecular chains. This review extensively explores the effect of incorporating rigid diols on material properties through a review of research articles as well as patents. Moreover, this review mainly focuses on the polyesters and copolyesters synthesized via two-step melt polycondensation and its alterations due to the industrial importance of this method. Innovative synthesis strategies and the resulting material properties are presented.
Collapse
Affiliation(s)
- Konrad Walkowiak
- Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, 70-310 Szczecin, Poland;
| | | |
Collapse
|
2
|
Toledano O, Gálvez O, Sanz M, Garcia Arcos C, Rebollar E, Nogales A, García-Gutiérrez MC, Santoro G, Irska I, Paszkiewicz S, Szymczyk A, Ezquerra TA. Study of the Crystal Structure and Hydrogen Bonding during Cold Crystallization of Poly(trimethylene 2,5-furandicarboxylate). Macromolecules 2024; 57:2218-2229. [PMID: 38495385 PMCID: PMC10938886 DOI: 10.1021/acs.macromol.3c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Here, we present a detailed description of the in situ isothermal crystallization of poly(trimethylene 2,5-furandicarboxylate)(PTF) as revealed by real-time Fourier transform infrared spectroscopy (FTIR) and grazing incidence wide-angle X-ray scattering (GIWAXS). From FTIR experiments, the evolution of hydrogen bonding with crystallization time can be monitored in real time, while from GIWAXS, crystal formation can be followed. Density functional theory (DFT) calculations have been used to simulate FTIR spectra for different theoretical structures, enabling a precise band assignment. In addition, based on DFT ab initio calculations, the influence of hydrogen bonding on the evolution with crystallization time can be understood. Moreover, from DFT calculations and comparison with both FTIR and GIWAXS experiments, a crystalline structure of poly(trimethylene 2,5-furandicarboxylate) is proposed. Our results demonstrate that hydrogen bonding is present in both the crystalline and the amorphous phases and its rearrangement can be considered as a significant driving force for crystallization of poly(alkylene 2,5-furanoate)s.
Collapse
Affiliation(s)
- Oscar Toledano
- CICECO
− Aveiro Institute of Materials, Universidade de Aveiro, Aveiro 3810-193, Portugal
- Instituto
de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
| | - Oscar Gálvez
- Depto.
Física Interdisciplinar, Universidad
Nacional de Educación a Distancia (UNED), Fac. Ciencias Av. de Esparta s/n, 28232 Las Rozas de Madrid, Spain
- NANOesMAT,
UNED, Unidad Asociada al CSIC por el IEM y el IQF, Av. de Esparta s/n, 28232 Las Rozas de Madrid, Spain
| | - Mikel Sanz
- Depto.
Física Interdisciplinar, Universidad
Nacional de Educación a Distancia (UNED), Fac. Ciencias Av. de Esparta s/n, 28232 Las Rozas de Madrid, Spain
- NANOesMAT,
UNED, Unidad Asociada al CSIC por el IEM y el IQF, Av. de Esparta s/n, 28232 Las Rozas de Madrid, Spain
| | - Carlos Garcia Arcos
- Depto.
Física Interdisciplinar, Universidad
Nacional de Educación a Distancia (UNED), Fac. Ciencias Av. de Esparta s/n, 28232 Las Rozas de Madrid, Spain
- NANOesMAT,
UNED, Unidad Asociada al CSIC por el IEM y el IQF, Av. de Esparta s/n, 28232 Las Rozas de Madrid, Spain
| | - Esther Rebollar
- Instituto
de Química Física Blas Cabrera, IQF-CSIC, Serrano 119, 28006 Madrid, Spain
- NANOesMAT,
UNED, Unidad Asociada al CSIC por el IEM y el IQF, Av. de Esparta s/n, 28232 Las Rozas de Madrid, Spain
| | - Aurora Nogales
- Instituto
de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
- NANOesMAT,
UNED, Unidad Asociada al CSIC por el IEM y el IQF, Av. de Esparta s/n, 28232 Las Rozas de Madrid, Spain
| | - Mari Cruz García-Gutiérrez
- Instituto
de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
- NANOesMAT,
UNED, Unidad Asociada al CSIC por el IEM y el IQF, Av. de Esparta s/n, 28232 Las Rozas de Madrid, Spain
| | - Gonzalo Santoro
- Instituto
de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
- NANOesMAT,
UNED, Unidad Asociada al CSIC por el IEM y el IQF, Av. de Esparta s/n, 28232 Las Rozas de Madrid, Spain
| | - Izabela Irska
- Department
of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Al. Piastów 19, PL 70310 Szczecin, Poland
| | - Sandra Paszkiewicz
- Department
of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Al. Piastów 19, PL 70310 Szczecin, Poland
| | - Anna Szymczyk
- Department
of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Al. Piastów 19, PL 70310 Szczecin, Poland
| | - Tiberio A. Ezquerra
- Instituto
de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
- NANOesMAT,
UNED, Unidad Asociada al CSIC por el IEM y el IQF, Av. de Esparta s/n, 28232 Las Rozas de Madrid, Spain
| |
Collapse
|
3
|
Shi O, Li P, Yang C, Jiang H, Qin L, Liu W, Li X, Chen Z. Melting Behaviors of Bio-Based Poly(propylene 2,5-furan dicarboxylate)-b-poly(ethylene glycol) Co Polymers Related to Their Crystal Morphology. Polymers (Basel) 2023; 16:97. [PMID: 38201762 PMCID: PMC10780312 DOI: 10.3390/polym16010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
In this experiment, a series of poly(propylene 2,5-furan dicarboxylate)-b-poly(ethylene glycol) (PPFEG) copolymers with different ratios were synthesized using melt polycondensation of dimethylfuran-2,5-dicarboxylate (DMFD), 1,3-propanediol (PDO) and poly(ethylene glycol) (PEG). The effect of PEG content on the crystallization behavior of the poly(propylene 2,5-furan dicarboxylate) (PPF) copolymers was investigated. For PPF, the nucleation density of the β-crystals was higher than that of α-crystals. As Tc increases, the β crystals are suppressed more, but at Tc = 140 °C, the bulk of PPF has already been converted to α crystals, which crystallize faster at higher nucleation densities, resulting in a difference in polymer properties. For this case, we chose to add a soft segment material, PEG, which led to an early multi-melt crystallization behavior of the PPF. The addition of PEG led to a decrease in the crystallization temperature of PPF, as well as a decrease in the cold crystallization peak of PPF. From the crystalline morphology, it can be seen that the addition of PEG caused the transformation of the PPF crystalline form to occur earlier. From the crystalline morphology of PPF at 155 °C, it can be observed that the ring-banded spherical crystals of the PPF appear slowly with increasing time. With the addition of PEG, spherical crystals of the ring band appeared earlier, and even appeared first, and then disappeared slowly.
Collapse
Affiliation(s)
- Ouyang Shi
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (O.S.); (C.Y.); (W.L.)
| | - Peng Li
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (O.S.); (C.Y.); (W.L.)
- Guangxi Key Laboratory of Comprehensive Utilization of Calcium Carbonate Resources, College of Materials and Environmental Engineering, Hezhou University, Hezhou 542899, China; (H.J.); (L.Q.)
| | - Chao Yang
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (O.S.); (C.Y.); (W.L.)
| | - Haitian Jiang
- Guangxi Key Laboratory of Comprehensive Utilization of Calcium Carbonate Resources, College of Materials and Environmental Engineering, Hezhou University, Hezhou 542899, China; (H.J.); (L.Q.)
| | - Liyue Qin
- Guangxi Key Laboratory of Comprehensive Utilization of Calcium Carbonate Resources, College of Materials and Environmental Engineering, Hezhou University, Hezhou 542899, China; (H.J.); (L.Q.)
| | - Wentao Liu
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (O.S.); (C.Y.); (W.L.)
| | - Xiaolin Li
- Guangxi HuaLong Resin Co., Ltd., Hezhou 542899, China;
| | - Zhenming Chen
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (O.S.); (C.Y.); (W.L.)
- Guangxi Key Laboratory of Comprehensive Utilization of Calcium Carbonate Resources, College of Materials and Environmental Engineering, Hezhou University, Hezhou 542899, China; (H.J.); (L.Q.)
| |
Collapse
|
4
|
Venianakis T, Siskos MG, Papamokos G, Gerothanassis IP. Structural Studies of Monounsaturated and ω-3 Polyunsaturated Free Fatty Acids in Solution with the Combined Use οf NMR and DFT Calculations-Comparison with the Liquid State. Molecules 2023; 28:6144. [PMID: 37630396 PMCID: PMC10459368 DOI: 10.3390/molecules28166144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Molecular structures, in chloroform and DMSO solution, of the free fatty acids (FFAs) caproleic acid, oleic acid, α-linolenic acid, eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) are reported with the combined use of NMR and DFT calculations. Variable temperature and concentration chemical shifts of the COOH protons, transient 1D NOE experiments and DFT calculations demonstrate the major contribution of low molecular weight aggregates of dimerized fatty acids through intermolecular hydrogen bond interactions of the carboxylic groups, with parallel and antiparallel interdigitated structures even at the low concentration of 20 mM in CDCl3. For the dimeric DHA, a structural model of an intermolecular hydrogen bond through carboxylic groups and an intermolecular hydrogen bond between the carboxylic group of one molecule and the ω-3 double bond of a second molecule is shown to play a role. In DMSO-d6 solution, NMR and DFT studies show that the carboxylic groups form strong intermolecular hydrogen bond interactions with a single discrete solvation molecule of DMSO. These solvation species form parallel and antiparallel interdigitated structures of low molecular weight, as in chloroform solution. This structural motif, therefore, is an intrinsic property of the FFAs, which is not strongly affected by the length and degree of unsaturation of the chain and the hydrogen bond ability of the solvent.
Collapse
Affiliation(s)
| | | | - George Papamokos
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.V.); (M.G.S.)
| | - Ioannis P. Gerothanassis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.V.); (M.G.S.)
| |
Collapse
|
5
|
Bianchi E, Guidotti G, Soccio M, Siracusa V, Gazzano M, Salatelli E, Lotti N. Biobased and Compostable Multiblock Copolymer of Poly(l-lactic acid) Containing 2,5-Furandicarboxylic Acid for Sustainable Food Packaging: The Role of Parent Homopolymers in the Composting Kinetics and Mechanism. Biomacromolecules 2023; 24:2356-2368. [PMID: 37094251 DOI: 10.1021/acs.biomac.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
In the last years, the exponential growth in the demand of petroleum-based plastic materials, besides the extreme exploitation of nonrenewable resources, lead to the mismanagement of their disposal and to serious ecological issues related to their dispersion in the environment. Among the possible practical solutions, the design of biobased and biodegradable polymers represents one of the most innovative challenges. In such a context, the eco-design of an aromatic-aliphatic multiblock copolymer based on poly(lactic acid) and containing 2,5-furandicarboxylic acid was carried out with the aim of improving the properties of poly(l-lactic acid) for sustainable packaging applications. The synthetic method followed a novel top-down approach, starting from industrial high-molecular-weight poly(l-lactic acid) (PLLA), which was reacted with 1,5-pentanediol to get hydroxyl-terminated PLLA and then chain-extended with hydroxyl-terminated poly(pentamethylene furanoate) (PPeF-OH). The final copolymer, called P(LLA50PeF50)-CE, was subjected to molecular, structural, and thermal characterization. Tensile and gas permeability tests were also carried out. According to the results obtained, PLLA thermal stability was improved, being the range of processing temperatures widened, and its stiffness and brittleness were decreased, making the new material suitable for the realization of films for flexible packaging. The oxygen permeability of PLLA was decreased by 40% and a similar improvement was measured also for carbon dioxide. P(LLA50PeF50)-CE was found to be completely biodegraded within 60 days of composting treatment. In terms of mechanism, the blocks of PPeF and PLLA were demonstrated to undergo surface erosion and bulk hydrolysis, respectively. In terms of kinetics, PPeF blocks degraded slower than PLLA ones.
Collapse
Affiliation(s)
- Enrico Bianchi
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40131 Bologna, Italy
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Massimo Gazzano
- Institute for Organic Synthesis and Photoreactivity, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Elisabetta Salatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40131 Bologna, Italy
- Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, 40131 Bologna, Italy
| |
Collapse
|
6
|
Venianakis T, Siskos M, Papamokos G, Gerothanassis IP. NMR and DFT studies of monounsaturated and ω-3 polyunsaturated free fatty acids in the liquid state reveal a novel atomistic structural model of DHA. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Paszkiewicz S, Irska I, Zubkiewicz A, Walkowiak K, Rozwadowski Z, Dryzek J, Linares A, Nogales A, Ezquerra TA. Supramolecular structure, relaxation behavior and free volume of bio-based poly(butylene 2,5-furandicarboxylate)- block-poly(caprolactone) copolyesters. SOFT MATTER 2023; 19:959-972. [PMID: 36633480 DOI: 10.1039/d2sm01359b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the present study, a fully plant-based sustainable copolyester series, namely poly(butylene 2,5-furandicarboxylate)-block-poly(caprolactone)s (PBF-block-PCL)s were successfully synthesized by melt polycondensation combining butylene 2,5-furandicarboxylate with polycaprolactone diol (PCL) at different weight ratios. Differential scanning calorimetry (DSC) showed that only PBF underwent melting, crystallization from the melt, and cold crystallization. Thermogravimetric analysis (TGA) revealed outstanding thermal stability, exceeding 305 °C, with further improvement in thermal and thermo-oxidative stability with increasing PCL content. Broadband dielectric spectroscopy (BDS) revealed that at low temperatures, below the glass transition (Tg) all copolyesters exhibited two relaxation processes (β1 and β2), whereas the homopolymer PBF exhibited a single β-relaxation, which is associated with local dynamics of the different chemical bonds present in the polymer chain. Additionally, it was proved that an increase in PCL content affected the dynamics of the chain making it more flexible, thus providing an increase in the value of the room temperature free volume fractions (fv) and the value of elongation at break. These effects are accompanied by a decrease in hardness, Young's modulus, and tensile strength. The described synthesis enables a facile approach to obtain novel fully multiblock biobased copolyesters based on PBF and PCL polyesters with potential industrial implementation capabilities.
Collapse
Affiliation(s)
- Sandra Paszkiewicz
- Department of Materials Technologies, West Pomeranian University of Technology, Al. Piastow 19, PL-70310 Szczecin, Poland.
| | - Izabela Irska
- Department of Materials Technologies, West Pomeranian University of Technology, Al. Piastow 19, PL-70310 Szczecin, Poland.
| | - Agata Zubkiewicz
- Department of Physics, West Pomeranian University of Technology, Al. Piastow 48, PL-70311 Szczecin, Poland
| | - Konrad Walkowiak
- Department of Materials Technologies, West Pomeranian University of Technology, Al. Piastow 19, PL-70310 Szczecin, Poland.
| | - Zbigniew Rozwadowski
- Department of Inorganic and Analytical Chemistry, West Pomeranian University of Technology, Al. Piastów 42, PL-71065 Szczecin, Poland
| | - Jerzy Dryzek
- Institute of Nuclear Physics PAS, ul. Radzikowskiego 152, PL-31342 Cracow, Poland
| | - Amelia Linares
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| | - Aurora Nogales
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| | - Tiberio A Ezquerra
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| |
Collapse
|
8
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Wang C, Chen M, Jiang Z, Qiu Z. Synthesis, Thermal and Mechanical Properties of Fully Biobased Poly (hexamethylene succinate- co-2,5-furandicarboxylate) Copolyesters. Polymers (Basel) 2023; 15:polym15020427. [PMID: 36679305 PMCID: PMC9866186 DOI: 10.3390/polym15020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Poly (hexamethylene succinate) (PHS) is a biobased and biodegradable polyester. In this research, two fully biobased high-molecular-weight poly (hexamethylene succinate-co-2,5-furandicarboxylate) (PHSF) copolyesters with low hexamethylene furandicarboxylate (HF) unit contents (about 5 and 10 mol%) were successfully synthesized through a two-step transesterification/esterification and polycondensation method. The basic thermal behavior, crystal structure, isothermal crystallization kinetics, melting behavior, thermal stability, and tensile mechanical property of PHSF copolyesters were studied in detail and compared with those of PHS. PHSF showed a decrease in the melt crystallization temperature, melting temperature, and equilibrium melting temperature while showing a slight increase in the glass transition temperature and thermal decomposition temperature. PHSF copolyesters displayed the same crystal structure as PHS. Compared with PHS, PHSF copolyesters showed the improved mechanical property. The presence of about 10 mol% of HF unit increased the tensile strength from 12.9 ± 0.9 MPa for PHS to 39.2 ± 0.8 MPa; meanwhile, the elongation at break also increased from 498.5 ± 4.78% to 1757.6 ± 6.1%.
Collapse
|
10
|
Gálvez O, Toledano O, Hermoso FJ, Linares A, Sanz M, Rebollar E, Nogales A, García-Gutiérrez MC, Santoro G, Irska I, Paszkiewicz S, Szymczyk A, Ezquerra TA. Inter and intra molecular dynamics in Poly(trimethylene 2,5-furanoate) as revealed by infrared and Broadband Dielectric Spectroscopies. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Poulopoulou N, Nikolaidis GN, Efstathiadou VL, Kapnisti M, Papageorgiou GZ. Blending as a process for controlling the properties of poly(ethylene 2,5-furandicarboxylate) (PEF): Fully biobased PEF/PBF blends. POLYMER 2023. [DOI: 10.1016/j.polymer.2022.125615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Nolasco MM, Rodrigues LC, Araújo CF, Coimbra MM, Ribeiro-Claro P, Vaz PD, Rudić S, Silvestre AJD, Bouyahya C, Majdoub M, Sousa AF. From PEF to PBF: What difference does the longer alkyl chain make a computational spectroscopy study of poly(butylene 2,5-furandicarboxylate). Front Chem 2022; 10:1056286. [PMID: 36561143 PMCID: PMC9763574 DOI: 10.3389/fchem.2022.1056286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
This work explores the conformational preferences and the structure-property correlations of poly(butylene 2,5-furandicarboxylate) (PBF), a longer chain analogue of the most well-known biobased polyester from the furan family, poly(ethylene 2,5-furandicarboxylate) (PEF). A thorough computational spectroscopic study-including infrared, Raman and inelastic neutron scattering spectroscopy, combined with discrete and periodic density functional theory calculations-allowed the identification of dominant structural motifs in the amorphous and crystalline regions. Discrete calculations and vibrational spectroscopy of semi-crystalline and amorphous samples strongly support the predominance of gauche, trans, gauche conformations of the butylene glycol fragment in both the crystalline and amorphous domains. In what concerns the furandicarboxylate fragment, amorphous domains are dominated by syn,syn conformations, while in the crystalline domains the anti,anti forms prevail. A possible crystalline structure-built from these conformational preferences and including a network of C-H···O hydrogen bond contacts-was optimized using periodic density functional theory. This proposed crystal structure avoids the unrealistic structural features of the previously proposed X-ray structure, provides an excellent description of the inelastic neutron scattering spectrum of the semi-crystalline form, and allows the correlation between microscopic structure and macroscopic properties of the polymer.
Collapse
Affiliation(s)
- Mariela M. Nolasco
- CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | | | - Catarina F. Araújo
- CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Mariana M. Coimbra
- CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | | | - Pedro D. Vaz
- Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Svemir Rudić
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | - Chaima Bouyahya
- CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, Monastir, Tunisia
| | - Mustapha Majdoub
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, Monastir, Tunisia
| | - Andreia F. Sousa
- CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Wang Q, Wang J, Dong Y, Zhang X, Hu H, OYoung L, Hu D, Zhu J. Synthesis of 2,5-furandicarboxylic acid-based biodegradable copolyesters with excellent gas barrier properties composed of various aliphatic diols. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Yang C, Ma Z, Zhi H, Li H, Hu Y, Zhang Y. Dissolution and initial esterification kinetics of 2,5‐furandicarboxylic acid in ethylene glycol without a catalyst. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cui Yang
- School of Materials Science and Engineering Shanghai University Shanghai People's Republic of China
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - Zhong‐Sen Ma
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - He‐Wen Zhi
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - Hao Li
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - Ye‐Min Hu
- School of Materials Science and Engineering Shanghai University Shanghai People's Republic of China
| | - Ya‐Jie Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| |
Collapse
|
15
|
Poulopoulou N, Nikolaidis GN, Ioannidis RO, Efstathiadou VL, Terzopoulou Z, Papageorgiou DG, Kapnisti M, Papageorgiou GZ. Aromatic But Sustainable: Poly(butylene 2,5-furandicarboxylate) as a Crystallizing Thermoplastic in the Bioeconomy. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Niki Poulopoulou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - George N. Nikolaidis
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Raphael O. Ioannidis
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Vassa L. Efstathiadou
- Department of Chemistry, Laboratory of Chemistry and Technology of Polymers and Dyes, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Zoi Terzopoulou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
- Department of Chemistry, Laboratory of Chemistry and Technology of Polymers and Dyes, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitrios G. Papageorgiou
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, U.K
| | - Maria Kapnisti
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, 57400 Thessaloniki, Greece
| | - George Z. Papageorgiou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
16
|
Sanz A, Linares A, García-Gutiérrez MC, Nogales A, Paszkiewicz S, Zubkiewicz A, Szymczyk A, Ezquerra TA. Relaxation Dynamics of Biomass-Derived Copolymers With Promising Gas-Barrier Properties. Front Chem 2022; 10:921787. [PMID: 35774857 PMCID: PMC9237226 DOI: 10.3389/fchem.2022.921787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
This article presents an experimental study on the relaxation dynamics of a series of random copolymers based on bio-friendly comonomers with interesting gas barrier properties. We analyze the relaxation response in the glassy and ultraviscous regime of poly (trimethylene furanoate/sebacate) random copolymers via dielectric spectroscopy. We report lower values of dynamic fragility [a dimensionless index introduced in 1985 (Angell, Relaxations in Complex Systems, 1985)] in comparison to popular polyesters widely used in industry, such as poly (ethylene terephthalate), suggesting that the amorphous phase of these furanoate-based polyesters adopt an efficient chain packing. This is consistent with their low permeability to gases. We also discuss on different equations (phenomenological and theory-based approaches) for fitting the temperature-evolution of the alpha relaxation time.
Collapse
Affiliation(s)
- Alejandro Sanz
- Instituto de Estructura de La Materia, IEM-CSIC, Madrid, Spain
- *Correspondence: Alejandro Sanz, ; Tiberio A. Ezquerra,
| | - Amelia Linares
- Instituto de Estructura de La Materia, IEM-CSIC, Madrid, Spain
| | | | - Aurora Nogales
- Instituto de Estructura de La Materia, IEM-CSIC, Madrid, Spain
| | - Sandra Paszkiewicz
- Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Poland
| | - Agata Zubkiewicz
- Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Poland
| | - Anna Szymczyk
- Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Poland
| | - Tiberio A. Ezquerra
- Instituto de Estructura de La Materia, IEM-CSIC, Madrid, Spain
- *Correspondence: Alejandro Sanz, ; Tiberio A. Ezquerra,
| |
Collapse
|
17
|
Walkowiak K, Irska I, Zubkiewicz A, Dryzek J, Paszkiewicz S. The Properties of Poly(ester amide)s Based on Dimethyl 2,5-Furanedicarboxylate as a Function of Methylene Sequence Length in Polymer Backbone. Polymers (Basel) 2022; 14:polym14112295. [PMID: 35683967 PMCID: PMC9182615 DOI: 10.3390/polym14112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
A series of poly(ester amide)s based on dimethyl furan 2,5-dicarboxylate (DMFDC), 1,3-propanediol (PDO), 1,6-hexylene glycol (HDO), and 1,3-diaminopropane (DAP) were synthesized via two-step melt polycondensation. The phase transition temperatures and structure of the polymers were studied by differential scanning calorimetry (DSC). The positron annihilation lifetime spectroscopy (PALS) measurement was carried out to investigate the free volume. In addition, the mechanical properties of two series of poly(ester amide)s were analyzed. The increase in the number of methylene groups in the polymer backbone resulted in a decrease in the values of the transition temperatures. Depending on the number of methylene groups and the content of the poly(propylene furanamide) (PPAF), both semi-crystalline and amorphous copolymers were obtained. The free volume value increased with a greater number of methylene groups in the polymer backbone. Moreover, with a lower number of methylene groups, the value of the Young modulus and stress at break increased.
Collapse
Affiliation(s)
- Konrad Walkowiak
- Department of Materials Technologies, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, PL 70310 Szczecin, Poland; (I.I.); (S.P.)
- Correspondence: ; Tel.: +48-91-449-45-89
| | - Izabela Irska
- Department of Materials Technologies, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, PL 70310 Szczecin, Poland; (I.I.); (S.P.)
| | - Agata Zubkiewicz
- Department of Physics, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, PL 70311 Szczecin, Poland;
| | - Jerzy Dryzek
- Institute of Nuclear Physics Polish Academy of Sciences, PL 31342 Krakow, Poland;
| | - Sandra Paszkiewicz
- Department of Materials Technologies, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, PL 70310 Szczecin, Poland; (I.I.); (S.P.)
| |
Collapse
|
18
|
Righetti MC, Vannini M, Celli A, Cangialosi D, Marega C. Bio-based semi-crystalline PEF: Temperature dependence of the constrained amorphous interphase and amorphous chain mobility in relation to crystallization. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Perin D, Fredi G, Rigotti D, Soccio M, Lotti N, Dorigato A. Sustainable textile fibers of bioderived polylactide/poly(pentamethylene 2,
5‐furanoate
) blends. J Appl Polym Sci 2022. [DOI: 10.1002/app.51740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Davide Perin
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Daniele Rigotti
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental, and Materials Engineering University of Bologna Bologna Italy
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental, and Materials Engineering University of Bologna Bologna Italy
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| |
Collapse
|
20
|
Kasmi N, Terzopoulou Z, Chebbi Y, Dieden R, Habibi Y, Bikiaris DN. Tuning thermal properties and biodegradability of poly(isosorbide azelate) by compositional control through copolymerization with 2,5-furandicarboxylic acid. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Rapid synthesis of sustainable poly(ethylene 2,5-furandicarboxylate)-block-poly(tetramethylene oxide) multiblock copolymers with tailor-made properties via a cascade polymerization route. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Wang G, Song J. Synthesis and characterization of bio‐based polyesters derived from 1,10‐decanediol. J Appl Polym Sci 2021. [DOI: 10.1002/app.51163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Guoqiang Wang
- College of Material Science and Engineering Jilin Jianzhu University Changchun China
| | - Jiaqi Song
- College of Material Science and Engineering Jilin Jianzhu University Changchun China
| |
Collapse
|
23
|
Bianchi E, Soccio M, Siracusa V, Gazzano M, Thiyagarajan S, Lotti N. Poly(butylene 2,4-furanoate), an Added Member to the Class of Smart Furan-Based Polyesters for Sustainable Packaging: Structural Isomerism as a Key to Tune the Final Properties. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:11937-11949. [PMID: 34513341 PMCID: PMC8424682 DOI: 10.1021/acssuschemeng.1c04104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/07/2021] [Indexed: 05/10/2023]
Abstract
High-molecular-weight poly(butylene 2,4-furanoate) (2,4-PBF), an isomer of well-known poly(butylene 2,5-furanoate) (2,5-PBF), was synthesized through an eco-friendly solvent-free polycondensation process and processed in the form of an amorphous film by compression molding. Molecular characterization was carried out by NMR spectroscopy and GPC analysis, confirming the chemical structure and high polymerization degree. Thermal analyses evidenced a reduction of both glass-to-rubber transition and melting temperatures, as well as a detriment of crystallization capability, for 2,4-PBF with respect to 2,5-PBF. Nevertheless, it was possible to induce crystal phase formation by annealing treatment. Wide-angle X-ray scattering revealed that the crystal lattices developed in the two isomers are distinct from each other. The different isomerism affects also the thermal stability, being 2,4-PBF more thermally inert than 2,5-PBF. Functional properties, such as wettability, mechanical response, and gas barrier capability, were tested on both amorphous and semicrystalline 2,4-PBF films and compared with those of 2,5-PBF. Reduced hydrophilicity was determined for 2,4-isomer, in line with its lower average dipole moment, suggesting better chemical resistance to hydrolysis. Stress-strain tests have evidenced the higher flexibility and toughness of 2,4-PBF with respect to those of 2,5-PBF and the possibility of improving its mechanical resistance by annealing. Finally, the different isomerism deeply affects the gas barrier performance, being the O2- and CO2-transmission rates of 2,4-PBF 50 and 110 times lower, respectively, than those of 2,5-PBF. The gas barrier properties turned out to be outstanding under a dry atmosphere as well as in humid conditions, suggesting the presence of interchain hydrogen bonds. The gas blocking capability decreases after annealing because of the presence of disclination associated with the formation of crystals.
Collapse
Affiliation(s)
- Enrico Bianchi
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna 40126, Italy
| | - Valentina Siracusa
- Department
of Chemical Science, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Massimo Gazzano
- Institute
of Organic Synthesis and Photoreactivity, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | | | - Nadia Lotti
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna 40126, Italy
- Interdepartmental
Center for Agro-Food Research, CIRI-AGRO, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
24
|
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101430] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Kourtidou D, Klonos PA, Papadopoulos L, Kyritsis A, Bikiaris DN, Chrissafis K. Molecular mobility and crystallization of renewable poly(ethylene furanoate) in situ filled with carbon nanotubes and graphene nanoparticles. SOFT MATTER 2021; 17:5815-5828. [PMID: 34037062 DOI: 10.1039/d1sm00592h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigate the thermal transitions and molecular mobility in new nanocomposites of biobased poly(ethylene furanoate) (PEF), by calorimetry and dielectric spectroscopy, supplemented by X-ray diffraction, Fourier transform infra-red spectroscopy and polarized light microscopy. The emphasis is placed on the facilitation of the crystallization of PEF, which is in general low and slow due to structural limitations that result in poor nucleation. Tuning of the crystalline fraction (CF) and semicrystalline morphology are important for optimization of the mechanical performance and manipulation of the permeation of small molecules (e.g., in packaging applications). The nucleation and CF are successfully improved here by the in situ filling of PEF with 0.5-2.5 wt% of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). The improvements are discussed in connection with weak or absent interfacial polymer-filler interactions. CNTs were found to be more effective in facilitating crystallization, as compared with GNPs, possibly due to their larger aspect ratio. The segmental dynamics of PEF are both accelerated and decelerated by the addition of GNP and CNT, respectively, with complex phenomena contributing to the effects, namely, nucleation, changes in molar mass and changes in the free volume. The molecular mobility of PEF is moderately affected 'directly' by the particles, whereas stronger effects are induced by crystallization (an indirect effect) and, furthermore, by the increase in the length of alkylene sequences on the chain. Local dynamics exhibit time scale disturbances when the temperature approaches that of the glass transition, which is proposed here to be a common characteristic in the case of mobilities originating from the polymer backbone for these as well as different polyesters. Despite the weak effects on molecular mobility, the role of the fillers as nucleating agents seems to be further exploitable in the frame of envisaged applications, as the use of such fillers in combination with thermal treatment offer possibilities for manipulating the semicrystalline morphology, ion transport and, subsequently, permeation of small molecules.
Collapse
Affiliation(s)
- Dimitra Kourtidou
- School of Physics, Advanced Material and Devices Laboratory, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece. and Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece
| | - Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Konstantinos Chrissafis
- School of Physics, Advanced Material and Devices Laboratory, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
26
|
Wang W, Fenni SE, Ma Z, Righetti MC, Cangialosi D, Di Lorenzo ML, Cavallo D. Glass transition and aging of the rigid amorphous fraction in polymorphic poly(butene-1). POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Bourdet A, Araujo S, Thiyagarajan S, Delbreilh L, Esposito A, Dargent E. Molecular mobility in amorphous biobased copolyesters obtained with 2,5- and 2,4-furandicarboxylate acid. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Papadopoulos L, Klonos PA, Kluge M, Zamboulis A, Terzopoulou Z, Kourtidou D, Magaziotis A, Chrissafis K, Kyritsis A, Bikiaris DN, Robert T. Unlocking the potential of furan-based poly(ester amide)s: an investigation of crystallization, molecular dynamics and degradation kinetics of novel poly(ester amide)s based on renewable poly(propylene furanoate). Polym Chem 2021. [DOI: 10.1039/d1py00713k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, novel polyester amides (PEAs) based on renewable poly(propylene furanoate) (PPF) were prepared via traditional melt polycondensation utilizing a preformed symmetric amido diol (AD) containing two internal amide bonds.
Collapse
Affiliation(s)
- Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece
| | - Marcel Kluge
- Fraunhofer Institute for Wood Research – Wilhelm-Klauditz-Institut WKI, Bienroder Weg 54E, 38108 Braunschweig, Germany
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Zoi Terzopoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitra Kourtidou
- Laboratory of X-ray, Optical Characterization and Thermal Analysis, Physics Department, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Andreas Magaziotis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Konstantinos Chrissafis
- Laboratory of X-ray, Optical Characterization and Thermal Analysis, Physics Department, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece
| | - Dimitrios N. Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Tobias Robert
- Fraunhofer Institute for Wood Research – Wilhelm-Klauditz-Institut WKI, Bienroder Weg 54E, 38108 Braunschweig, Germany
| |
Collapse
|
29
|
Martínez-Tong DE, Soccio M, Robles-Hernández B, Guidotti G, Gazzano M, Lotti N, Alegria A. Evidence of Nanostructure Development from the Molecular Dynamics of Poly(pentamethylene 2,5-furanoate). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel E. Martínez-Tong
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU). Paseo Manuel Lardizábal 3, 20018 Donostia, Spain
- Centro de Física de Materiales (CFM, CSIC-UPV/EHU), Paseo Manuel Lardizábal 5, 20018 Donostia, Spain
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Beatriz Robles-Hernández
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU). Paseo Manuel Lardizábal 3, 20018 Donostia, Spain
- Centro de Física de Materiales (CFM, CSIC-UPV/EHU), Paseo Manuel Lardizábal 5, 20018 Donostia, Spain
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Massimo Gazzano
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Angel Alegria
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU). Paseo Manuel Lardizábal 3, 20018 Donostia, Spain
- Centro de Física de Materiales (CFM, CSIC-UPV/EHU), Paseo Manuel Lardizábal 5, 20018 Donostia, Spain
| |
Collapse
|
30
|
Robles-Hernández B, Soccio M, Castrillo I, Guidotti G, Lotti N, Alegría Á, Martínez-Tong DE. Poly(alkylene 2,5-furanoate)s thin films: Morphology, crystallinity and nanomechanical properties. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122825] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Klonos PA, Papadopoulos L, Terzopoulou Z, Papageorgiou GZ, Kyritsis A, Bikiaris DN. Molecular Dynamics in Nanocomposites Based on Renewable Poly(butylene 2,5-furan-dicarboxylate) In Situ Reinforced by Montmorillonite Nanoclays: Effects of Clay Modification, Crystallization, and Hydration. J Phys Chem B 2020; 124:7306-7317. [PMID: 32786716 DOI: 10.1021/acs.jpcb.0c04306] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study deals with poly(butylene 2,5-furan-dicarboxylate), PBF, a renewable bio-based polyester expected to replace non-eco-friendly fossil-based homologues. PBF exhibits excellent gas barrier properties, which makes it promising for packaging applications; however, its rather low and slow crystallinity affects good mechanical performance. The crystallization of this relatively new polymer is enhanced here via reinforcement by introduction in situ of 1 wt % montmorillonite, MMT, nanoclays of three types (functionalizations). We study PBF and its nanocomposites (PNCs) also from the basic research point of view, molecular dynamics. For this work, we employ the widely used combination of techniques, differential scanning calorimetry (DSC) with broad-band dielectric relaxation spectroscopy (BDS), supplemented by polarized light microscopy (PLM) and thermogravimetric analysis (TGA). In the PNCs, the crystalline rate and fraction, CF, were found to be strongly enhanced as these fillers act as additional crystallization nuclei. The improvements in crystallization here correlate quite well with those on the mechanical performance recorded recently; moreover, they occur in the same filler order, in particular, with increasing MMT interlayer distance (from ∼1 to ∼3 nm). In the amorphous fraction of the polymer, the chain diffusion (calorimetric Tg and dynamic α process) is easier in the PNCs due to their slightly smaller length, while in the semicrystalline state, it decelerates by crystal-induced constraints. The local polymer dynamics (β process, below Tg) was found to be independent of the PNC composition, however, sensitive to structural changes of the matrix. Finally, a filler-induced dynamics was additionally recorded in the PNCs (α* process), arising possibly from the polymer located at the MMT surfaces. α* follows the changes in polymer chain length and decelerates with crystallization, whereas its activation energy decreases with mild hydration. The combined results on α* with the DSC and TGA findings, provide proof for weak MMT-PBF interactions. Overall, our results, along with data from the literature, suggest that such furan-based polyesters reinforced with properly chosen nanofillers could potentially serve well as tailor-made PNCs for targeted applications.
Collapse
Affiliation(s)
- Panagiotis A Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.,Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens, Greece
| | - Lazaros Papadopoulos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Papageorgiou
- Laboratory of Industrial and Food Chemistry, Chemistry Department, University of Ioannina, 451 10 Ioannina, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| |
Collapse
|
32
|
Side-chain crystallization and segment packing of poly(isobutylene-alt-maleic anhydride)-g-alkyl alcohol comb-like polymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
Righetti MC, Marchese P, Vannini M, Celli A, Lorenzetti C, Cavallo D, Ocando C, Müller AJ, Androsch R. Polymorphism and Multiple Melting Behavior of Bio-Based Poly(propylene 2,5-furandicarboxylate). Biomacromolecules 2020; 21:2622-2634. [PMID: 32297739 DOI: 10.1021/acs.biomac.0c00039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Furandicarboxylate-based polyesters are considered an interesting class of bio-based polymers due to their improved properties with respect to the petrol-based terephthalate homologs. An in-depth analysis of the crystal structure of poly(propylene 2,5-furandicarboxylate) (PPF), after maximum possible removal of the catalyst, was carried out. The study disclosed that purified PPF presents two different crystalline phases after crystallization from the melt. Crystallizations at temperatures lower than 120 °C lead to growth of a single crystal form (β-form), whereas two different crystal forms (α and β) were found to coexist at higher Tcs. This behavior is opposite to that previously observed for unpurified PPF. The possibility that the catalyst nucleates the α-phase, which therefore becomes the kinetically favored modification at low crystallization temperatures in the presence of a higher amount of catalyst residue, has been considered as a feasible explanation. Two concomitantly different spherulitic morphologies were observed and connected to the β- and α-phase, respectively. The association between polymorphism and melting behavior was studied. The origin of the peaks that compose the multiple melting endotherm recorded at conventional heating rates was determined by combined wide-angle X-ray scattering, differential scanning calorimetry, fast scanning chip calorimetry, and polarized light optical microscopy measurements. The higher thermal stability of the α-crystals in comparison with the β-form was thus demonstrated.
Collapse
Affiliation(s)
- Maria Cristina Righetti
- CNR-IPCF, National Research Council - Institute for Chemical and Physical Processes, Via Moruzzi 1, 56124 Pisa, Italy
| | - Paola Marchese
- Department of Civil, Chemical, Environmental, and Materials, University of Bologna, Via Terracini 38, 40131 Bologna, Italy
| | - Micaela Vannini
- Department of Civil, Chemical, Environmental, and Materials, University of Bologna, Via Terracini 38, 40131 Bologna, Italy
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental, and Materials, University of Bologna, Via Terracini 38, 40131 Bologna, Italy
| | - Cesare Lorenzetti
- Tetra Pak Packaging Solution AB, Ruben Rausing Gata, SE-221 86 Lund, Sweden
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
| | - Connie Ocando
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - René Androsch
- Interdisciplinary Center for Transfer-oriented Research in Natural Sciences, Martin Luther University Halle-Wittenberg, 06099 Halle/Saale, Germany
| |
Collapse
|
34
|
Guidotti G, Soccio M, García-Gutiérrez MC, Ezquerra T, Siracusa V, Gutiérrez-Fernández E, Munari A, Lotti N. Fully Biobased Superpolymers of 2,5-Furandicarboxylic Acid with Different Functional Properties: From Rigid to Flexible, High Performant Packaging Materials. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:9558-9568. [PMID: 33796416 PMCID: PMC8007128 DOI: 10.1021/acssuschemeng.0c02840] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Indexed: 05/10/2023]
Abstract
In the present paper, four fully biobased homopolyesters of 2,5-furandicarboxylic acid (2,5-FDCA) with a high molecular weight have been successfully synthesized by two-stage melt polycondensation, starting from the dimethyl ester of 2,5-FDCA and glycols of different lengths (the number of methylene groups ranged from 3 to 6). The synthesized polyesters have been first subjected to an accurate molecular characterization by NMR and gel-permeation chromatography. Afterward, the samples have been successfully processed into free-standing thin films (thickness comprised between 150 to 180 μm) by compression molding. Such films have been characterized from the structural (by wide-angle X-ray scattering and small-angle X-ray scattering), thermal (by differential scanning calorimetry and thermogravimetric analysis), mechanical (by tensile test), and gas barrier (by permeability measurements) point of view. The glycol subunit length was revealed to be the key parameter in determining the kind and fraction of ordered phases developed by the sample during compression molding and subsequent cooling. After storage at room temperature for one month, only the homopolymers containing the glycol subunit with an even number of -CH2- groups (poly(butylene 2,5-furanoate) (PBF) and poly(hexamethylene 2,5-furanoate) (PHF)) were able to develop a three-dimensional ordered crystalline phase in addition to the amorphous one, the other two appearing completely amorphous (poly(propylene 2,5-furanoate (PPF) and poly(pentamethylene 2,5-furanoate) (PPeF)). From X-ray scattering experiments using synchrotron radiation, it was possible to evidence a third phase characterized by a lower degree of order (one- or two-dimensional), called a mesophase, in all the samples under study, its fraction being strictly related to the glycol subunit length: PPeF was found to be the sample with the highest fraction of mesophase followed by PHF. Such a mesophase, together with the amorphous and the eventually present crystalline phase, significantly impacted the mechanical and barrier properties, these last being particularly outstanding for PPeF, the polyester with the highest fraction of mesophase among those synthesized in the present work.
Collapse
Affiliation(s)
- Giulia Guidotti
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Mari Cruz García-Gutiérrez
- Instituto
de Estructura de la Materia IEM-CSIC, Consejo Superior de Investigaciones
Científicas, Calle Serrano 121, 28006 Madrid, Spain
| | - Tiberio Ezquerra
- Instituto
de Estructura de la Materia IEM-CSIC, Consejo Superior de Investigaciones
Científicas, Calle Serrano 121, 28006 Madrid, Spain
| | - Valentina Siracusa
- Dipartimento
di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Edgar Gutiérrez-Fernández
- Instituto
de Estructura de la Materia IEM-CSIC, Consejo Superior de Investigaciones
Científicas, Calle Serrano 121, 28006 Madrid, Spain
| | - Andrea Munari
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadia Lotti
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|
35
|
Soccio M, Martínez-Tong DE, Guidotti G, Robles-Hernández B, Munari A, Lotti N, Alegria A. Broadband Dielectric Spectroscopy Study of Biobased Poly(alkylene 2,5-furanoate)s' Molecular Dynamics. Polymers (Basel) 2020; 12:E1355. [PMID: 32560215 PMCID: PMC7361705 DOI: 10.3390/polym12061355] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Poly(2,5-alkylene furanoate)s are bio-based, smart, and innovative polymers that are considered the most promising materials to replace oil-based plastics. These polymers can be synthesized using ecofriendly approaches, starting from renewable sources, and result into final products with properties comparable and even better than those presented by their terephthalic counterparts. In this work, we present the molecular dynamics of four 100% bio-based poly(alkylene 2,5-furanoate)s, using broadband dielectric spectroscopy measurements that covered a wide temperature and frequency range. We unveiled complex local relaxations, characterized by the simultaneous presence of two components, which were dependent on thermal treatment. The segmental relaxation showed relaxation times and strengths depending on the glycolic subunit length, which were furthermore confirmed by high-frequency experiments in the molten region of the polymers. Our results allowed determining structure-property relations that are able to provide further understanding about the excellent barrier properties of poly(alkylene 2,5-furanoate)s. In addition, we provide results of high industrial interest during polymer processing for possible industrial applications of poly(alkylene furanoate)s.
Collapse
Affiliation(s)
- Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Daniel E. Martínez-Tong
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, E-20018 San Sebastián, Spain; (B.R.-H.); (A.A.)
- Centro de Física de Materiales (CSIC–UPV/EHU), P. Manuel Lardizábal 5, E-20018 San Sebastián, Spain
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Beatriz Robles-Hernández
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, E-20018 San Sebastián, Spain; (B.R.-H.); (A.A.)
- Centro de Física de Materiales (CSIC–UPV/EHU), P. Manuel Lardizábal 5, E-20018 San Sebastián, Spain
| | - Andrea Munari
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Angel Alegria
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, E-20018 San Sebastián, Spain; (B.R.-H.); (A.A.)
- Centro de Física de Materiales (CSIC–UPV/EHU), P. Manuel Lardizábal 5, E-20018 San Sebastián, Spain
| |
Collapse
|
36
|
Sanusi OM, Papadopoulos L, Klonos PA, Terzopoulou Z, Hocine NA, Benelfellah A, Papageorgiou GZ, Kyritsis A, Bikiaris DN. Calorimetric and Dielectric Study of Renewable Poly(hexylene 2,5-furan-dicarboxylate)-Based Nanocomposites In Situ Filled with Small Amounts of Graphene Platelets and Silica Nanoparticles. Polymers (Basel) 2020; 12:E1239. [PMID: 32485937 PMCID: PMC7362010 DOI: 10.3390/polym12061239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/21/2022] Open
Abstract
Poly(hexylene 2,5 furan-dicarboxylate) (PHF) is a relatively new biobased polyester prepared from renewable resources, which is targeted for use in food packaging applications, owing to its great mechanical and gas barrier performance. Since both properties are strongly connected to crystallinity, the latter is enhanced here by the in situ introduction in PHF of graphene nanoplatelets and fumed silica nanoparticles, as well as mixtures of both, at low amounts. For this investigation, we employed Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and dielectric spectroscopy (BDS). The fillers were found to improve crystallization in both the rate (increasing Tc) and fraction (CF), which was rationalized via the concept of fillers acting as crystallization agents. This action was found stronger in the case of graphene as compared to silica. BDS allowed the detection of local and segmental dynamics, in particular in PHF for the first time. The glass transition dynamics in both BDS (α relaxation) and DSC (Tg) are mainly dominated by the relatively high CF, whereas in the PHF filled uniquely with silica strong spatial confinement effects due to crystals were revealed. Finally, all samples demonstrated the segmental-like dynamics above Tg, which screens the global chain dynamics (normal mode).
Collapse
Affiliation(s)
- Olawale Monsur Sanusi
- INSA CVL, Univ. Tours, Univ. Orléans, LaMé, 3 Rue de la Chocolaterie, CS 23410, CEDEX 41034 Blois, France; (O.M.S.); (N.A.H.); (A.B.)
| | - Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (L.P.); (Z.T.)
| | - Panagiotis A. Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (L.P.); (Z.T.)
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece;
| | - Zoi Terzopoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (L.P.); (Z.T.)
| | - Nourredine Aït Hocine
- INSA CVL, Univ. Tours, Univ. Orléans, LaMé, 3 Rue de la Chocolaterie, CS 23410, CEDEX 41034 Blois, France; (O.M.S.); (N.A.H.); (A.B.)
| | - Abdelkibir Benelfellah
- INSA CVL, Univ. Tours, Univ. Orléans, LaMé, 3 Rue de la Chocolaterie, CS 23410, CEDEX 41034 Blois, France; (O.M.S.); (N.A.H.); (A.B.)
- DRII, IPSA, 63 Boulevard de Brandebourg, 94200 Ivry-Sur-Seine, France
| | - George Z. Papageorgiou
- Laboratory of Industrial and Food chemistry, Chemistry Department, University of Ioannina, 45110 Ioannina, Greece;
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece;
| | - Dimitrios N. Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (L.P.); (Z.T.)
| |
Collapse
|