1
|
Wu T, Wu H, Wang Q, He X, Shi P, Yu B, Cong H, Shen Y. Current status and future developments of biopolymer microspheres in the field of pharmaceutical preparation. Adv Colloid Interface Sci 2024; 334:103317. [PMID: 39461111 DOI: 10.1016/j.cis.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Polymer composite microspheres offer several advantages including highly designable structural properties, adjustable micro-nano particle size distribution, easy surface modification, large specific surface area, and high stability. These features make them valuable in various fields such as medicine, sensing, optics, and display technologies, with significant applications in clinical diagnostics, pathological imaging, and drug delivery in the medical field. Currently, microspheres are primarily used in biomedical research as long-acting controlled-release agents and targeted delivery systems, and are widely applied in bone tissue repair, cancer treatment, and wound healing. Different types of polymer microspheres offer distinct advantages and application prospects. Efforts are ongoing to transition successful experimental research to industrial production by expanding various fabrication technologies. This article provides an overview of materials used in microsphere manufacturing, different fabrication methods, modification techniques to enhance their properties and applications, and discusses the role of microspheres in drug delivery engineering.
Collapse
Affiliation(s)
- Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Qiubo Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiangqiong He
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Pengbao Shi
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Moseson DE, Li N, Rantanen J, Ueda K, Zhang GGZ. Professor Lynne S. Taylor: Scientist, educator, and adventurer. J Pharm Sci 2024:S0022-3549(24)00454-4. [PMID: 39426563 DOI: 10.1016/j.xphs.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
This special edition of the Journal of Pharmaceutical Sciences is dedicated to Professor Lynne S. Taylor (Retter Distinguished Professor of Pharmacy, Department of Industrial and Molecular Pharmaceutics, Purdue University), to honor her distinguished career as a pharmaceutical scientist and educator. The goal of this commentary is to provide an overview of Professor Taylor's career path, summarize her key research contributions, and provide some insight into her personal and professional contributions as an educator, mentor, wife, mother, friend, and adventurer.
Collapse
Affiliation(s)
- Dana E Moseson
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States.
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Geoff G Z Zhang
- ProPhysPharm LLC, Lincolnshire, Illinois 60069, United States; Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Sokač K, Miloloža M, Kučić Grgić D, Žižek K. Polymeric Amorphous Solid Dispersions of Dasatinib: Formulation and Ecotoxicological Assessment. Pharmaceutics 2024; 16:551. [PMID: 38675212 PMCID: PMC11053848 DOI: 10.3390/pharmaceutics16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Dasatinib (DAS), a potent anticancer drug, has been subjected to formulation enhancements due to challenges such as significant first-pass metabolism, poor absorption, and limited oral bioavailability. To improve its release profile, DAS was embedded in a matrix of the hydrophilic polymer polyvinylpyrrolidone (PVP). Drug amorphization was induced in a planetary ball mill by solvent-free co-grinding, facilitating mechanochemical activation. This process resulted in the formation of amorphous solid dispersions (ASDs). The ASD capsules exhibited a notable enhancement in the release rate of DAS compared to capsules containing the initial drug. Given that anticancer drugs often undergo limited metabolism in the body with unchanged excretion, the ecotoxicological effect of the native form of DAS was investigated as well, considering its potential accumulation in the environment. The highest ecotoxicological effect was observed on the bacteria Vibrio fischeri, while other test organisms (bacteria Pseudomonas putida, microalgae Chlorella sp., and duckweed Lemna minor) exhibited negligible effects. The enhanced drug release not only contributes to improved oral absorption but also has the potential to reduce the proportion of DAS that enters the environment through human excretion. This comprehensive approach highlights the significance of integrating advances in drug development while considering its environmental implications.
Collapse
Affiliation(s)
- Katarina Sokač
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.K.G.); (K.Ž.)
| | - Martina Miloloža
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.K.G.); (K.Ž.)
| | | | | |
Collapse
|
4
|
Ramirez-Olea H, Herrera-Cruz S, Chavez-Santoscoy RA. Microencapsulation and controlled release of Bacillus clausii through a novel non-digestible carbohydrate formulation as revolutionizing probiotic delivery. Heliyon 2024; 10:e24923. [PMID: 38304817 PMCID: PMC10830856 DOI: 10.1016/j.heliyon.2024.e24923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Probiotics have gained significant attention in recent years due to the growing awareness of physical health and well-being. However, maintaining high concentrations of probiotics throughout the product's shelf life and during the gastrointestinal tract is crucial for ensuring their health-promoting effects. After determining an optimal formulation through a fractional factorial model, this study optimizes probiotic Bacillus Clausii delivery through spray-drying microencapsulation using a novel maltodextrin-alginate-inulin (MDX-ALG-IN) formulation (optimized ratio: 7:2:1). Notably, this formulation exclusively comprises non-digestible carbohydrates, marking a novel approach in probiotic encapsulation. Achieving a high Product Yield (51.06 %) and Encapsulation Efficiency (80.53 %), the study employed SEM for morphological analysis, revealing an irregular form and extensive surface in dentations characteristic of maltodextrin involvement. With a low moisture content of 3.02 % (±0.23 %) and 90.52 % solubility, the powder displayed exceptional properties. Probiotic viability remained robust, surviving up to 60 % even after 180 days at 4 °C, 25 °C, and 37 °C. Thermal characterization unveiled microcapsule resilience, exhibiting a glass transition temperature (Tg) at 138.61 °C and a melting point of 177.28 °C. The study systematically addresses crucial aspects of microencapsulation, including formulation optimization, morphological characteristics, and powder properties. Notably, the MDX-ALG-IN microcapsules demonstrated stability in simulated gastrointestinal conditions, indicating potential application for supplements and complex food matrices. In summary, this research contributes to microencapsulation understanding, emphasizing the MDX-ALG-IN formulation's efficacy in preserving probiotic viability across production stages and simulated digestive processes.
Collapse
Affiliation(s)
- Hugo Ramirez-Olea
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada, 2501 Sur, C. P. 64849 Monterrey, N. L., Mexico
| | - Sebastian Herrera-Cruz
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada, 2501 Sur, C. P. 64849 Monterrey, N. L., Mexico
| | - Rocio Alejandra Chavez-Santoscoy
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada, 2501 Sur, C. P. 64849 Monterrey, N. L., Mexico
| |
Collapse
|
5
|
Al-Japairai K, Hamed Almurisi S, Mahmood S, Madheswaran T, Chatterjee B, Sri P, Azra Binti Ahmad Mazlan N, Al Hagbani T, Alheibshy F. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method. Int J Pharm 2023; 647:123536. [PMID: 37865133 DOI: 10.1016/j.ijpharm.2023.123536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Oral administration of drugs is preferred over other routes for several reasons: it is non-invasive, easy to administer, and easy to store. However, drug formulation for oral administration is often hindered by the drug's poor solubility, which limits its bioavailability and reduces its commercial value. As a solution, amorphous solid dispersion (ASD) was introduced as a drug formulation method that improves drug solubility by changing the molecular structure of the drugs from crystalline to amorphous. The hot melt extrusion (HME) method is emerging in the pharmaceutical industry as an alternative to manufacture ASD. However, despite solving solubility issues, ASD also exposes the drug to a high risk of crystallisation, either during processing or storage. Formulating a successful oral administration drug using ASD requires optimisation of the formulation, polymers, and HME manufacturing processes applied. This review presents some important considerations in ASD formulation, including strategies to improve the stability of the final product using HME to allow more new drugs to be formulated using this method.
Collapse
Affiliation(s)
- Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Malaysia.
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L.Mehta Road, Mumbai 400055, India.
| | - Prasanthi Sri
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | | | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia.
| | - Fawaz Alheibshy
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, Aden University, Aden 6075, Yemen.
| |
Collapse
|
6
|
Moseson DE, Taylor LS. Crystallinity: A Complex Critical Quality Attribute of Amorphous Solid Dispersions. Mol Pharm 2023; 20:4802-4825. [PMID: 37699354 DOI: 10.1021/acs.molpharmaceut.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Does the performance of an amorphous solid dispersion rely on having 100% amorphous content? What specifications are appropriate for crystalline content within an amorphous solid dispersion (ASD) drug product? In this Perspective, the origin and significance of crystallinity within amorphous solid dispersions will be considered. Crystallinity can be found within an ASD from one of two pathways: (1) incomplete amorphization, or (2) crystal creation (nucleation and crystal growth). While nucleation and crystal growth is the more commonly considered pathway, where crystals originate as a physical stability failure upon accelerated or prolonged storage, manufacturing-based origins of crystallinity are possible as well. Detecting trace levels of crystallinity is a significant analytical challenge, and orthogonal methods should be employed to develop a holistic assessment of sample properties. Probing the impact of crystallinity on release performance which may translate to meaningful clinical significance is inherently challenging, requiring optimization of dissolution test variables to address the complexity of ASD formulations, in terms of drug physicochemical properties (e.g., crystallization tendency), level of crystallinity, crystal reference material selection, and formulation characteristics. The complexity of risk presented by crystallinity to product performance will be illuminated through several case studies, highlighting that a one-size-fits-all approach cannot be used to set specification limits, as the risk of crystallinity can vary widely based on a multitude of factors. Risk assessment considerations surrounding drug physicochemical properties, formulation fundamentals, physical stability, dissolution, and crystal micromeritic properties will be discussed.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Worldwide Research and Development Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Caggiano N, Armstrong MS, Georgiou JS, Rawal A, Wilson BK, White CE, Priestley RD, Prud’homme RK. Formulation and Scale-up of Delamanid Nanoparticles via Emulsification for Oral Tuberculosis Treatment. Mol Pharm 2023; 20:4546-4558. [PMID: 37578286 PMCID: PMC10481377 DOI: 10.1021/acs.molpharmaceut.3c00240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Delamanid (DLM) is a hydrophobic small molecule therapeutic used to treat drug-resistant tuberculosis (DR-TB). Due to its hydrophobicity and resulting poor aqueous solubility, formulation strategies such as amorphous solid dispersions (ASDs) have been investigated to enhance its aqueous dissolution kinetics and thereby improve oral bioavailability. However, ASD formulations are susceptible to temperature- and humidity-induced phase separation and recrystallization under harsh storage conditions typically encountered in areas with high tuberculosis incidence. Nanoencapsulation represents an alternative formulation strategy to increase aqueous dissolution kinetics while remaining stable at elevated temperature and humidity. The stabilizer layer coating the nanoparticle drug core limits the formation of large drug domains by diffusion during storage, representing an advantage over ASDs. Initial attempts to form DLM-loaded nanoparticles via precipitation-driven self-assembly were unsuccessful, as the trifluoromethyl and nitro functional groups present on DLM were thought to interfere with surface stabilizer attachment. Therefore, in this work, we investigated the nanoencapsulation of DLM via emulsification, avoiding the formation of a solid drug core and instead keeping DLM dissolved in a dichloromethane dispersed phase during nanoparticle formation. Initial emulsion formulation screening by probe-tip ultrasonication revealed that a 1:1 mass ratio of lecithin and HPMC stabilizers formed 250 nm size-stable emulsion droplets with 40% DLM loading. Scale-up studies were performed to produce nearly identical droplet size distribution at larger scale using high-pressure homogenization, a continuous and industrially scalable technique. The resulting emulsions were spray-dried to form a dried powder, and in vitro dissolution studies showed dramatically enhanced dissolution kinetics compared to both as-received crystalline DLM and micronized crystalline DLM, owing to the increased specific surface area and partially amorphous character of the DLM-loaded nanoparticles. Solid-state NMR and dissolution studies showed good physical stability of the emulsion powders during accelerated stability testing (50 °C/75% RH, open vial).
Collapse
Affiliation(s)
- Nicholas
J. Caggiano
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Madeleine S. Armstrong
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Joanna S. Georgiou
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Aditya Rawal
- Mark
Wainwright Analytical Centre, University
of New South Wales, Sydney, NSW 2032, Australia
| | - Brian K. Wilson
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Claire E. White
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08544, United States
| | - Rodney D. Priestley
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton
Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert K. Prud’homme
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Pajzderska A, Gonzalez MA. Molecular Dynamics Simulations of Selected Amorphous Stilbenoids and Their Amorphous Solid Dispersions with Poly(Vinylpyrrolidone). J Pharm Sci 2023; 112:2444-2452. [PMID: 36965843 DOI: 10.1016/j.xphs.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Amorphous solid dispersions (ASDs) are one of the promising strategies to improve the solubility and dissolution rate of poorly soluble compounds. In this study, Molecular Dynamics simulations were used to investigate the interactions between three selected stilbenoids with important biological activity (resveratrol, pinostilbene and pterostilbene) and poly(vinylpyrrolidone). The analysis of the pair distribution functions and hydrogen bond distributions reveals a significant weakening of the hydrogen bond network of the stilbenoids in ASDs compared to the pure (no polymer) amorphous systems. This is accompanied by an increase in the mobility of the stilbenoid molecules in the ASDs, both in the translational dynamics determined from the molecular mean square displacements, and in the molecular reorientations followed by analysing several torsional distributions.
Collapse
Affiliation(s)
- Aleksandra Pajzderska
- A. Mickiewicz University, Faculty of Physics, Uniwersytetu Poznanskiego 2, Poznan, Poland.
| | | |
Collapse
|
9
|
Choi MJ, Woo MR, Baek K, Park JH, Joung S, Choi YS, Choi HG, Jin SG. Enhanced Oral Bioavailability of Rivaroxaban-Loaded Microspheres by Optimizing the Polymer and Surfactant Based on Molecular Interaction Mechanisms. Mol Pharm 2023; 20:4153-4164. [PMID: 37433746 DOI: 10.1021/acs.molpharmaceut.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
This study aimed to develop microspheres using water-soluble carriers and surfactants to improve the solubility, dissolution, and oral bioavailability of rivaroxaban (RXB). RXB-loaded microspheres with optimal carrier (poly(vinylpyrrolidone) K30, PVP) and surfactant (sodium lauryl sulfate (SLS)) ratios were prepared. 1H NMR and Fourier transform infrared (FTIR) analyses showed that drug-excipient and excipient-excipient interactions affected RXB solubility, dissolution, and oral absorption. Therefore, molecular interactions between RXB, PVP, and SLS played an important role in improving RXB solubility, dissolution, and oral bioavailability. Formulations IV and VIII, containing optimized RXB/PVP/SLS ratios (1:0.25:2 and 1:1:2, w/w/w), had significantly improved solubility by approximately 160- and 86-fold, respectively, compared to RXB powder, with the final dissolution rates improved by approximately 4.5- and 3.4-fold, respectively, compared to those of RXB powder at 120 min. Moreover, the oral bioavailability of RXB was improved by 2.4- and 1.7-fold, respectively, compared to that of RXB powder. Formulation IV showed the highest improvement in oral bioavailability compared to RXB powder (AUC, 2400.8 ± 237.1 vs 1002.0 ± 82.3 h·ng/mL). Finally, the microspheres developed in this study successfully improved the solubility, dissolution rate, and bioavailability of RXB, suggesting that formulation optimization with the optimal drug-to-excipient ratio can lead to successful formulation development.
Collapse
Affiliation(s)
- Min-Jong Choi
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Kyungho Baek
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, South Korea
| | - Seewon Joung
- Department of Chemistry, Inha University, Incheon 22212, South Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| |
Collapse
|
10
|
Mutukuri TT, Ling J, Du Y, Su Y, Zhou QT. Effect of Buffer Salts on Physical Stability of Lyophilized and Spray-Dried Protein Formulations Containing Bovine Serum Albumin and Trehalose. Pharm Res 2023; 40:1355-1371. [PMID: 35764755 PMCID: PMC9794634 DOI: 10.1007/s11095-022-03318-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2022] [Indexed: 12/30/2022]
Abstract
This study examined the effect of buffer salts on the physical stability of spray-dried and lyophilized formulations of a model protein, bovine serum albumin (BSA). BSA formulations with various buffers were dried by either lyophilization or spray drying. The protein powders were then characterized using solid-state Fourier transform infrared spectroscopy (ssFTIR), powder X-ray diffraction (PXRD), size exclusion chromatography (SEC), solid-state hydrogen/deuterium exchange with mass spectrometry (ssHDX-MS), and solid-state nuclear magnetic resonance spectroscopy (ssNMR). Particle characterizations such as Brunauer-Emmett-Teller (BET) surface area, particle size distribution, and particle morphology were also performed. Results from conventional techniques such as ssFTIR did not exhibit correlations with the physical stability of studied formulations. Deconvoluted peak areas of deuterated samples from the ssHDX-MS study showed a satisfactory correlation with the loss of the monomeric peak area measured by SEC (R2 of 0.8722 for spray-dried formulations and 0.8428 for lyophilized formulations) in the 90-day accelerated stability study conducted at 40°C. mDSC and PXRD was unable to measure phase separation in the samples right after drying. In contrast, ssNMR successfully detected the occurrence of phase separation between the succinic buffer component and protein in the lyophilized formulation, which results in a distribution of microenvironmental acidity and the subsequent loss of long-term stability. Moreover, our results suggested that buffer salts have less impact on physical stability for the spray-dried formulations than the lyophilized solids.
Collapse
Affiliation(s)
- Tarun Tejasvi Mutukuri
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Jing Ling
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., South San Francisco, California, 94080, USA
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, USA.
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
11
|
Okur AC, Erni P, Ouali L, Benczedi D, Amstad E. Controlling the crystal structure of succinic acid via microfluidic spray-drying. RSC Adv 2023; 13:7731-7737. [PMID: 36909742 PMCID: PMC9993402 DOI: 10.1039/d2ra06380h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Many properties of materials, including their dissolution kinetics, hardness, and optical appearance, depend on their structure. Unfortunately, it is often difficult to control the structure of low molecular weight organic compounds that have a high propensity to crystallize if they are formulated from solutions wherein they have a high mobility. This limitation can be overcome by formulating these compounds within small airborne drops that rapidly dry, thereby limiting the time molecules have to arrange into the thermodynamically most stable phase. Such drops can be formed with a surface acoustic wave (SAW)-based spray-drier. In this paper, we demonstrate that the structure of a model low molecular weight compound relevant to applications in pharmacology and food, succinic acid, can be readily controlled with the supersaturation rate. Succinic acid particles preserve the metastable structure over at least 3 months if the initial succinic acid concentration is below 2% of its saturation concentration such that the supersaturation rate is high. We demonstrate that also the stability of the metastable phases against their transformation into the most stable phase increases with decreasing initial solute concentration and hence with increasing supersaturation rate of the spray-dried solution. These insights open up new opportunities to control the crystal structure and therefore properties of low molecular weight compounds that have a high propensity to crystallize.
Collapse
Affiliation(s)
- Aysu Ceren Okur
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Philipp Erni
- Firmenich SA, Corporate R&D Division PO Box 239 CH-1211 Geneva 8 Switzerland
| | - Lahoussine Ouali
- Firmenich SA, Corporate R&D Division PO Box 239 CH-1211 Geneva 8 Switzerland
| | - Daniel Benczedi
- Firmenich SA, Corporate R&D Division PO Box 239 CH-1211 Geneva 8 Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| |
Collapse
|
12
|
Yang R, Zhang GGZ, Zemlyanov DY, Purohit HS, Taylor LS. Release Mechanisms of Amorphous Solid Dispersions: Role of Drug-Polymer Phase Separation and Morphology. J Pharm Sci 2023; 112:304-317. [PMID: 36306863 DOI: 10.1016/j.xphs.2022.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
Formulating poorly soluble molecules as amorphous solid dispersions (ASDs) is an effective strategy to improve drug release. However, drug release rate and extent tend to rapidly diminish with increasing drug loading (DL). The poor release at high DLs has been postulated to be linked to the process of amorphous-amorphous phase separation (AAPS), although the exact connection between phase separation and release properties remains somewhat unclear. Herein, release profiles of ASDs formulated with ritonavir (RTV) and polyvinylpyrrolidone/vinyl acetate (PVPVA) at different DLs were determined using surface normalized dissolution. Surface morphologies of partially dissolved ASD compacts were evaluated with confocal fluorescence microscopy, using Nile red and Alexa Fluor 488 as fluorescence markers to track the hydrophobic and hydrophilic phases respectively. ASD phase behavior during hydration and release of components were also visualized in real time using a newly developed in situ confocal fluorescence microscopy method. RTV-PVPVA ASDs showed complete and rapid drug release below 30% DL, partial drug release at 30% DL and no drug release above 30% DL. It was observed that formation of discrete drug-rich droplets at lower DLs led to rapid and congruent release of both drug and polymer, whereas formation of continuous drug-rich phase at the ASD matrix-solution interface was the cause of poor release above certain DLs. Thus, the domain size and interconnectivity of phase separated drug-rich domains appear to be critical factors impacting drug release from RTV-PVPVPA ASDs.
Collapse
Affiliation(s)
- Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Geoff G Z Zhang
- Drug Product Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Hitesh S Purohit
- Drug Product Development, AbbVie Inc., North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Aikawa S, Tanaka H, Ueda H, Maruyama M, Higaki K. Formation of a Stable Co-Amorphous System for a Brick Dust Molecule by Utilizing Sodium Taurocholate with High Glass Transition Temperature. Pharmaceutics 2022; 15:84. [PMID: 36678713 PMCID: PMC9864160 DOI: 10.3390/pharmaceutics15010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Brick dust molecules are usually poorly soluble in water and lipoidal components, making it difficult to formulate them in dosage forms that provide efficient pharmacological effects. A co-amorphous system is an effective strategy to resolve these issues. However, their glass transition temperatures (Tg) are relatively lower than those of polymeric amorphous solid dispersions, suggesting the instability of the co-amorphous system. This study aimed to formulate a stable co-amorphous system for brick dust molecules by utilizing sodium taurocholate (NaTC) with a higher Tg. A novel neuropeptide Y5 receptor antagonist (AntiY5R) and NaTC with Tg of 155 °C were used as the brick dust model and coformer, respectively. Ball milling formed a co-amorphous system for AntiY5R and NaTC (AntiY5R-NaTC) at various molar ratios. Deviation from the theoretical Tg value and peak shifts in Fourier-transform infrared spectroscopy indicated intermolecular interactions between AntiY5R and NaTC. AntiY5R-NaTC at equal molar ratios resulting in an 8.5-fold increase in AntiY5R solubility over its crystalline form. The co-amorphous system remained amorphous for 1 month at 25 °C and 40 °C. These results suggest that the co-amorphous system formed by utilizing NaTC as a coformer could stably maintain the amorphous state and enhance the solubility of brick dust molecules.
Collapse
Affiliation(s)
- Shohei Aikawa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Formulation Research Department, Formulation R&D Laboratory, Shionogi & Co., Ltd., Hyogo 660-0813, Japan
| | - Hironori Tanaka
- Formulation Research Department, Formulation R&D Laboratory, Shionogi & Co., Ltd., Hyogo 660-0813, Japan
| | - Hiroshi Ueda
- Bioanalytical, Analysis and Evaluation Laboratory, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
14
|
Hiew TN, Saboo S, Zemlyanov DY, Punia A, Wang M, Smith D, Lowinger M, Solomos MA, Schenck L, Taylor LS. Improving Dissolution Performance and Drug Loading of Amorphous Dispersions Through a Hierarchical Particle Approach. J Pharm Sci 2022:S0022-3549(22)00583-4. [PMID: 36574837 DOI: 10.1016/j.xphs.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/18/2022] [Indexed: 12/26/2022]
Abstract
Co-precipitation is an emerging manufacturing strategy for amorphous solid dispersions (ASDs). Herein, the interplay between processing conditions, surface composition, and release performance was evaluated using grazoprevir and hypromellose acetate succinate as the model drug and polymer, respectively. Co-precipitated amorphous dispersion (cPAD) particles were produced in the presence and absence of an additional polymer that was either dissolved or dispersed in the anti-solvent. This additional polymer in the anti-solvent was deposited on the surfaces of the cPAD particles during isolation and drying to create hierarchical particles, which we define here as a core ASD particle with an additional water soluble component that is coating the particle surfaces. The resultant hierarchical particles were characterized using X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). Release performance was evaluated using a two-stage dissolution test. XPS analysis revealed a trend whereby cPAD particles with a lower surface drug concentration showed improved release relative to particles with a higher surface drug concentration, for nominally similar drug loadings. This surface drug concentration could be impacted by whether the secondary polymer was dissolved in the anti-solvent or dispersed in the anti-solvent prior to isolating final dried hierarchical cPAD powders. Grazoprevir exposure in dogs was higher when the hierarchical cPAD was dosed, with ∼1.8 fold increase in AUC compared to the binary cPAD. These observations highlight the important interplay between processing conditions and ASD performance in the context of cPAD particles and illustrate a hierarchical particle design as a successful approach to alter ASD surface chemistry to improve dissolution performance.
Collapse
Affiliation(s)
- Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Sugandha Saboo
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States
| | - Ashish Punia
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Wang
- Biopharmaceutics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel Smith
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Lowinger
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marina A Solomos
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
15
|
Evaluation of Different Thermoanalytical Methods for the Analysis of the Stability of Naproxen-Loaded Amorphous Solid Dispersions. Pharmaceutics 2022; 14:pharmaceutics14112508. [PMID: 36432698 PMCID: PMC9692747 DOI: 10.3390/pharmaceutics14112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this research was to investigate three thermoanalytical techniques from the glass transition temperature (Tg) determination point of view. In addition, the examination of the correlation between the measured Tg values and the stability of the amorphous solid dispersions (ASDs) was also an important part of the work. The results showed that a similar tendency of the Tg can be observed in the case of the applied methods. However, Tg values measured by thermally stimulated depolarization currents showed higher deviation from the theoretical calculations than the values measured by modulated differential scanning calorimetry, referring better to the drug-polymer interactions. Indeed, the investigations after the stress stability tests revealed that micro-thermal analysis can indicate the most sensitive changes in the Tg values, better indicating the instability of the samples. In addition to confirming that the active pharmaceutical ingredient content is a crucial factor in the stability of ASDs containing naproxen and poly(vinylpyrrolidone-co-vinyl acetate), it is worthwhile applying orthogonal techniques to better understand the behavior of ASDs. The development of stable ASDs can be facilitated via mapping the molecular mobilities with suitable thermoanalytical methods.
Collapse
|
16
|
Zhang W, Sluga KK, Yost E, Phan J, Nagapudi K, Helen Hou H. Impact of Drug Loading on the Compaction Properties of Itraconazole-PVPVA Amorphous Solid Dispersions. Int J Pharm 2022; 629:122366. [DOI: 10.1016/j.ijpharm.2022.122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
17
|
Nambiar AG, Singh M, Mali AR, Serrano DR, Kumar R, Healy AM, Agrawal AK, Kumar D. Continuous Manufacturing and Molecular Modeling of Pharmaceutical Amorphous Solid Dispersions. AAPS PharmSciTech 2022; 23:249. [PMID: 36056225 DOI: 10.1208/s12249-022-02408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Amorphous solid dispersions enhance solubility and oral bioavailability of poorly water-soluble drugs. The escalating number of drugs with poor aqueous solubility, poor dissolution, and poor oral bioavailability is an unresolved problem that requires adequate interventions. This review article highlights recent solubility and bioavailability enhancement advances using amorphous solid dispersions (ASDs). The review also highlights the mechanism of enhanced dissolution and the challenges faced by ASD-based products, such as stability and scale-up. The role of process analytical technology (PAT) supporting continuous manufacturing is highlighted. Accurately predicting interactions between the drug and polymeric carrier requires long experimental screening methods, and this is a space where computational tools hold significant potential. Recent advancements in data science, computational tools, and easy access to high-end computation power are set to accelerate ASD-based research. Hence, particular emphasis has been given to molecular modeling techniques that can address some of the unsolved questions related to ASDs. With the advancement in PAT tools and artificial intelligence, there is an increasing interest in the continuous manufacturing of pharmaceuticals. ASDs are a suitable option for continuous manufacturing, as production of a drug product from an ASD by direct compression is a reality, where the addition of multiple excipients is easy to avoid. Significant attention is necessary for ongoing clinical studies based on ASDs, which is paving the way for the approval of many new ASDs and their introduction into the market.
Collapse
Affiliation(s)
- Amritha G Nambiar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Maan Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishek R Mali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
18
|
Sulaiman Hameed G, Basim Mohsin Mohamed M, Naji Sahib M. Binary or ternary mixture of solid dispersion: Meloxicam case. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present work was carried out to assess the value of adding water insoluble polymer to meloxicam amorphous solid formulation (ASD). Meloxicam was mixed with polyvinylpyrrolidone (PVP) (1:1 ratio) as a binary mixture and with PVP and ethyl cellulose (1:1:1 ratio) as a ternary mixture. Solvent evaporation method was used to prepare ASD formulations. The differential scanning calorimetry, powder X-Ray diffraction, Cambridge Structural Database and in-vitro dissolution were performed to assess the formulas. The results showed that the addition of insoluble polymer could prevent the recrystallization process during ASD formation. However, the binary mixture showed higher drug release percentage than the ternary mixture. Therefore, a rational amount of insoluble polymer could be considered to control recrystallization and manipulate drug release from ASD formulations.
Collapse
|
19
|
Dedroog S, Adriaensens P, Van den Mooter G. Gaining Insight into the Role of the Solvent during Spray Drying of Amorphous Solid Dispersions by Studying Evaporation Kinetics. Mol Pharm 2022; 19:1604-1618. [PMID: 35362988 DOI: 10.1021/acs.molpharmaceut.2c00095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spray drying is one of the most commonly used manufacturing techniques for amorphous solid dispersions (ASDs). During spray drying, very fast solvent evaporation is enabled by the generation of small droplets and exposure of these droplets to a heated drying gas. This fast solvent evaporation leads to an increased viscosity that enables kinetic trapping of an active pharmaceutical ingredient (API) in a polymer matrix, which is favorable for the formulation of supersaturated, kinetically stabilized ASDs. In this work, the relation between the solvent evaporation rate and the kinetic stabilization of highly drug-loaded ASDs was investigated. Accordingly, thermal gravimetric analysis (TGA) was employed to study the evaporation kinetics of seven organic solvents and the influence of solutes, i.e., poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA), fenofibrate (FNB), and naproxen (NAP), on the evaporation behavior. At 10 °C below the boiling point of the respective solvent, methanol (MeOH) had the lowest evaporation rate and dichloromethane (DCM) had the highest. PVPVA decreased the evaporation rate for all solvents, yet this effect was more pronounced for the relatively faster evaporating solvents. The APIs had opposite effects on the evaporation process: FNB increased the evaporation rate, while NAP decreased it. The latter might indicate the presence of interactions between NAP and the solvent or NAP and PVPVA, which was further investigated using Fourier transform-InfraRed (FT-IR) spectroscopy. Based on these findings, spray drying process parameters were adapted to alter the evaporation rate. Increasing the evaporation rate of MeOH and DCM enabled the kinetic stabilization of higher drug loadings of FNB, while the opposite trend was observed for ASDs of NAP. Even when higher drug loadings could be kinetically stabilized by adapting the process parameters, the improvement was limited, demonstrating that the phase behavior of these ASDs of FNB and NAP immediately after preparation was predominantly determined by the API-polymer-solvent combination rather than the process parameters applied.
Collapse
Affiliation(s)
- Sien Dedroog
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg ON2, Herestraat 49 b921, Leuven 3000, Belgium
| | - Peter Adriaensens
- Applied and Analytical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan 1-Building D, Diepenbeek 3590, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg ON2, Herestraat 49 b921, Leuven 3000, Belgium
| |
Collapse
|
20
|
Yang R, Zhang GGZ, Kjoller K, Dillon E, Purohit HS, Taylor LS. Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. Int J Pharm 2022; 619:121708. [PMID: 35364219 DOI: 10.1016/j.ijpharm.2022.121708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/19/2022]
Abstract
Amorphous-amorphous phase separation (AAPS) is an important phase transition process for amorphous solid dispersion (ASD) performance both in terms of drug release as well as physical and chemical stability during storage. Addition of surfactants to ASD systems can impact both of these processes. One possible mechanism through which surfactants affect ASD performance is via their impact on AAPS. Unfortunately, despite their increasing usage in ASD formulations, the effect of surfactant on AAPS is still poorly understood, and there are limited analytical techniques that provide microstructural and composition information about phase separated ASDs. In this study, the impact of four surfactants (sodium dodecyl sulfate, Tween 80, Span 20 and Span 85) on water-induced phase separation in ASDs formulated with ritonavir and polyvinylpyrrolidone/vinyl acetate (PVPVA) was investigated using a variety of orthogonal analytical methods. Transparent films of ASDs with different compositions were prepared by spin coating. Fluorescence confocal microscopy in combination with an in situ humidity chamber was used to monitor the kinetics and morphology of phase separation following exposure to high relative humidity. Optical photothermal IR analysis of phase separated films enabled characterization of domain composition and surfactant distribution. Liquid-liquid phase separation concentration, zeta potential and solution nuclear magnetic resonance spectroscopy measurements enabled interpretation of interaction with and partition of surfactants into the drug-rich phase. It was found that phase separation kinetics and morphology were notably changed by the surfactants. Further, the surfactants showed different affinities for the drug-rich versus the aqueous/polymer-rich phases. The employed analytical techniques were found to be complementary in providing insight into surfactant location in phase separated systems. This study highlights the complexity of phase separation, especially in the presence of surfactants, and provides a foundation to understand the impact of AAPS on ASD performance.
Collapse
Affiliation(s)
- Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Geoff G Z Zhang
- Drug Product Development, AbbVie Inc., North Chicago, IL 60064, USA
| | - Kevin Kjoller
- Photothermal Spectroscopy Corp, Santa Barbara, CA 93101, USA
| | - Eoghan Dillon
- Photothermal Spectroscopy Corp, Santa Barbara, CA 93101, USA
| | - Hitesh S Purohit
- Drug Product Development, AbbVie Inc., North Chicago, IL 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
21
|
A critical review on granulation of pharmaceuticals and excipients: Principle, analysis and typical applications. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Anane-Adjei AB, Jacobs E, Nash SC, Askin S, Soundararajan R, Kyobula M, Booth J, Campbell A. Amorphous Solid Dispersions: Utilization and Challenges in Preclinical Drug Development within AstraZeneca. Int J Pharm 2021; 614:121387. [PMID: 34933082 DOI: 10.1016/j.ijpharm.2021.121387] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 01/04/2023]
Abstract
The poor aqueous solubility of many active pharmaceutical ingredients (APIs) dominates much of the early drug development portfolio and poses a major challenge in pharmaceutical development. Polymer-based amorphous solid dispersions (ASDs) are becoming increasingly common and offer a promising formulation strategy to tackle the solubility and oral absorption issues of these APIs. This review discusses the design, manufacture, and utilisation of ASD formulations in preclinical drug development, with a key focus on the pre-formulation assessments and workflows employed at AstraZeneca.
Collapse
Affiliation(s)
- Akosua B Anane-Adjei
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Esther Jacobs
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Samuel C Nash
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Sean Askin
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Ramesh Soundararajan
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Mary Kyobula
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Jonathan Booth
- Pharmaceutical Technology & Development, AstraZeneca, Charter Way, Macclesfield, SK10 2NA, UK
| | - Andrew Campbell
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK.
| |
Collapse
|
23
|
Optimizing Solvent Selection and Processing Conditions to Generate High Bulk-Density, Co-Precipitated Amorphous Dispersions of Posaconazole. Pharmaceutics 2021; 13:pharmaceutics13122017. [PMID: 34959298 PMCID: PMC8705469 DOI: 10.3390/pharmaceutics13122017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Co-precipitation is an emerging method to generate amorphous solid dispersions (ASDs), notable for its ability to enable the production of ASDs containing pharmaceuticals with thermal instability and limited solubility. As is true for spray drying and other unit operations to generate amorphous materials, changes in processing conditions during co-precipitation, such as solvent selection, can have a significant impact on the molecular and bulk powder properties of co-precipitated amorphous dispersions (cPAD). Using posaconazole as a model API, this work investigates how solvent selection can be leveraged to mitigate crystallization and maximize bulk density for precipitated amorphous dispersions. A precipitation process is developed to generate high-bulk-density amorphous dispersions. Insights from this system provide a mechanistic rationale to control the solid-state and bulk powder properties of amorphous dispersions.
Collapse
|
24
|
Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, (Tony) Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B 2021; 11:2505-2536. [PMID: 34522596 PMCID: PMC8424289 DOI: 10.1016/j.apsb.2021.05.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are popular for enhancing the solubility and bioavailability of poorly water-soluble drugs. Various approaches have been employed to produce ASDs and novel techniques are emerging. This review provides an updated overview of manufacturing techniques for preparing ASDs. As physical stability is a critical quality attribute for ASD, the impact of formulation, equipment, and process variables, together with the downstream processing on physical stability of ASDs have been discussed. Selection strategies are proposed to identify suitable manufacturing methods, which may aid in the development of ASDs with satisfactory physical stability.
Collapse
Key Words
- 3DP, three-dimensional printing
- ASDs, amorphous solid dispersions
- ASES, aerosol solvent extraction system
- Amorphous solid dispersions
- CAP, cellulose acetate phthalate
- CO2, carbon dioxide
- CSG, continuous-spray granulation
- Co-precipitation
- Downstream processing
- Drug delivery
- EPAS, evaporative aqueous solution precipitation
- Eudragit®, polymethacrylates derivatives
- FDM, fused deposition modeling
- GAS, gas antisolvent
- HME, hot-melt extrusion
- HPC, hydroxypropyl cellulose
- HPMC, hydroxypropyl methylcellulose
- HPMCAS, hydroxypropyl methylcellulose acetate succinate
- HPMCP, hypromellose phthalate
- Manufacturing
- Melting process
- PCA, precipitation with compressed fluid antisolvent
- PGSS, precipitation from gas-saturated solutions
- PLGA, poly(lactic-co-glycolic acid
- PVP, polyvinylpyrrolidone
- PVPVA, polyvinylpyrrolidone/vinyl acetate
- RESS, rapid expansion of a supercritical solution
- SAS, supercritical antisolvent
- SCFs, supercritical fluids
- SEDS, solution-enhanced dispersion by SCF
- SLS, selective laser sintering
- Selection criteria
- Soluplus®, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer
- Solvent evaporation
- Stability
- Tg, glass transition temperature
- USC, ultrasound compaction
- scCO2, supercritical CO2
Collapse
Affiliation(s)
- Sonal V. Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Biplob Mitra
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Uday Jain
- Material Science and Engineering, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Yuchuan Gong
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Anjali Agrawal
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Shyam Karki
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Sumit Kumar
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
Solvent influence on manufacturability, phase behavior and morphology of amorphous solid dispersions prepared via bead coating. Eur J Pharm Biopharm 2021; 167:175-188. [PMID: 34325003 DOI: 10.1016/j.ejpb.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022]
Abstract
Bead coating or fluid-bed coating serves as an auspicious solvent-based amorphous solid dispersion (ASD) manufacturing technique in respect of minimization of potential physical stability issues. However, the impact of solvent selection on the bead coating process and its resulting pellet formulation is, to the best of our knowledge, never investigated before. This study therefore aims to investigate the influence of the solvent on the bead coating process itself (i.e. manufacturability) and on solid-state characteristics of the resulting ASDs coated onto beads. For this purpose, the drug-polymer system felodipine (FEL)-poly(vinylpyrrolidone-co-vinyl acetate) (PVP-VA) was coated onto microcrystalline cellulose (MCC) beads from acetonitrile (ACN), methanol (MeOH), ethanol (EtOH), acetone (Ac), 2-propanol (PrOH), dichloromethane (DCM) and ethyl acetate (EthAc). A drug loading screening approach with bead coating revealed analogous ability to manufacture high drug-loaded ASDs from the different organic solvents. The results show no correlation with crystallization tendency or with equilibrium solubility of the drug in the different solvents, nor with the solvent-dependent drug-polymer miscibility obtained from film casting experiments. Distinct coating morphologies were however observed for PVP-VA and FEL-PVP-VA ASDs deposited onto beads from the various solvents, which is attributed to differences in solvent evaporation kinetics.
Collapse
|
26
|
Li M, Razumtcev A, Yang R, Liu Y, Rong J, Geiger AC, Blanchard R, Pfluegl C, Taylor LS, Simpson GJ. Fluorescence-Detected Mid-Infrared Photothermal Microscopy. J Am Chem Soc 2021; 143:10809-10815. [PMID: 34270255 DOI: 10.1021/jacs.1c03269] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We demonstrate instrumentation and methods to enable fluorescence-detected photothermal infrared (F-PTIR) microscopy and then demonstrate the utility of F-PTIR to characterize the composition within phase-separated domains of model amorphous solid dispersions (ASDs) induced by water sorption. In F-PTIR, temperature-dependent changes in fluorescence quantum efficiency are shown to sensitively report on highly localized absorption of mid-infrared radiation. The spatial resolution with which infrared spectroscopy can be performed is dictated by fluorescence microscopy, rather than the infrared wavelength. Intrinsic ultraviolet autofluorescence of tryptophan and protein microparticles enabled label-free F-PTIR microscopy. Following proof of concept F-PTIR demonstration on model systems of polyethylene glycol (PEG) and silica gel, F-PTIR enabled the characterization of chemical composition within inhomogeneous ritonavir/polyvinylpyrrolidone-vinyl acetate (PVPVA) amorphous dispersions. Phase separation is implicated in the observation of critical behaviors in ASD dissolution kinetics, with the results of F-PTIR supporting the formation of phase-separated drug-rich domains upon water sorption in spin-cast films.
Collapse
Affiliation(s)
- Minghe Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aleksandr Razumtcev
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ruochen Yang
- Physical and Industrial Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Youlin Liu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiayue Rong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andreas C Geiger
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Romain Blanchard
- Pendar Technologies, 30 Spinelli Pl, Cambridge, Massachusetts 02138, United States
| | - Christian Pfluegl
- Pendar Technologies, 30 Spinelli Pl, Cambridge, Massachusetts 02138, United States
| | - Lynne S Taylor
- Physical and Industrial Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Qian K, Stella L, Jones DS, Andrews GP, Du H, Tian Y. Drug-Rich Phases Induced by Amorphous Solid Dispersion: Arbitrary or Intentional Goal in Oral Drug Delivery? Pharmaceutics 2021; 13:889. [PMID: 34203969 PMCID: PMC8232734 DOI: 10.3390/pharmaceutics13060889] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Among many methods to mitigate the solubility limitations of drug compounds, amorphous solid dispersion (ASD) is considered to be one of the most promising strategies to enhance the dissolution and bioavailability of poorly water-soluble drugs. The enhancement of ASD in the oral absorption of drugs has been mainly attributed to the high apparent drug solubility during the dissolution. In the last decade, with the implementations of new knowledge and advanced analytical techniques, a drug-rich transient metastable phase was frequently highlighted within the supersaturation stage of the ASD dissolution. The extended drug absorption and bioavailability enhancement may be attributed to the metastability of such drug-rich phases. In this paper, we have reviewed (i) the possible theory behind the formation and stabilization of such metastable drug-rich phases, with a focus on non-classical nucleation; (ii) the additional benefits of the ASD-induced drug-rich phases for bioavailability enhancements. It is envisaged that a greater understanding of the non-classical nucleation theory and its application on the ASD design might accelerate the drug product development process in the future.
Collapse
Affiliation(s)
- Kaijie Qian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Lorenzo Stella
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, 7–9 College Park E, Belfast BT7 1PS, UK;
- David Keir Building, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, UK
| | - David S. Jones
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Gavin P. Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Huachuan Du
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL 60611, USA
| | - Yiwei Tian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| |
Collapse
|
28
|
Insights into the ameliorating ability of mesoporous silica in modulating drug release in ternary amorphous solid dispersion prepared by hot melt extrusion. Eur J Pharm Biopharm 2021; 165:244-258. [PMID: 34020023 DOI: 10.1016/j.ejpb.2021.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
In this work, the application of various mesoporous silica grades in the preparation of stabilized ternary amorphous solid dispersions of Felodipine using hot melt extrusion was explored. We have demonstrated the effectiveness of mesoporous silica in these dispersions without the need for any organic solvents i.e., no pre-loading or immersion steps required. The physical and chemical properties, release profiles of the prepared formulations and the surface concentrations of the various molecular species were investigated in detail. Formulations containing 25 wt% and 50 wt% of Felodipine demonstrated enhanced stability and solubility of the drug substance compared to its crystalline counterpart. Based on the Higuchi model, ternary formulations exhibited a 2-step or 3-step release pattern which can be ascribed to the release of drug molecules from the organic polymer matrix and the external silica surface, followed by a release from the silica pore structure. According to the Korsmeyer-Peppas model, the release rate and release mechanism are governed by a complex quasi-Fickian release mechanism, in which multiple release mechanisms are occurring concurrently and consequently. Stability studies indicated that after 6 months storage of all formulation at 30% RH and 20 °C, Felodipine in all formulations remained stable in its amorphous state except for the formulation comprised of 40 wt% Syloid AL-1FP with a 50 wt% drug load.
Collapse
|
29
|
Saboo S, Bapat P, Moseson DE, Kestur US, Taylor LS. Exploring the Role of Surfactants in Enhancing Drug Release from Amorphous Solid Dispersions at Higher Drug Loadings. Pharmaceutics 2021; 13:pharmaceutics13050735. [PMID: 34067666 PMCID: PMC8156319 DOI: 10.3390/pharmaceutics13050735] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
To reduce the dosage size of amorphous solid dispersion (ASD)-based formulations, it is of interest to devise formulation strategies that allow increased drug loading (DL) without compromising dissolution performance. The aim of this study was to explore how surfactant addition impacts drug release as a function of drug loading from a ternary ASD, using felodipine as a model poorly soluble compound. The addition of 5% TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate, a surfactant) to felodipine-polyvinylpyrrolidone/vinyl acetate ASDs was found to facilitate rapid and congruent (i.e., simultaneous) release of drug and polymer at higher DLs relative to binary ASDs (drug and polymer only). For binary ASDs, good release was observed for DLs up to <20% DL; this increased to 35% DL with surfactant. Microstructure evolution in ASD films following exposure to 100% relative humidity was studied using atomic force microscopy coupled with nanoscale infrared imaging. The formation of discrete, spherical drug-rich domains in the presence of surfactant appeared to be linked to systems showing congruent and rapid release of drug and polymer. In contrast, a contiguous drug-rich phase was formed for systems without surfactant at higher DLs. This study supports the addition of surfactant to ASD formulations as a strategy to increase DL without compromising release. Furthermore, insights into the potential role of surfactant in altering ASD release mechanisms are provided.
Collapse
Affiliation(s)
- Sugandha Saboo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
- Oral Formulation Sciences and Technology, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Pradnya Bapat
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
| | - Dana E. Moseson
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
| | - Umesh S. Kestur
- Drug Product Development, Bristol-Myers Squibb Company, One Squib Drive, New Brunswick, NJ 08903, USA;
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
- Correspondence: ; Tel.: +1-765-496-6614
| |
Collapse
|
30
|
Moseson DE, Corum ID, Lust A, Altman KJ, Hiew TN, Eren A, Nagy ZK, Taylor LS. Amorphous Solid Dispersions Containing Residual Crystallinity: Competition Between Dissolution and Matrix Crystallization. AAPS JOURNAL 2021; 23:69. [PMID: 34002256 DOI: 10.1208/s12248-021-00598-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 01/28/2023]
Abstract
Crystallinity in an amorphous solid dispersion (ASD) may negatively impact dissolution performance by causing lost solubility advantage and/or seeding crystal growth leading to desupersaturation. The goal of the study was to evaluate underlying dissolution and crystallization mechanisms resulting from residual crystallinity contained within bicalutamide (BCL)/polyvinylpyrrolidone vinyl acetate copolymer (PVPVA) ASDs produced by hot melt extrusion (HME). In-line Raman spectroscopy, polarized light microscopy, and scanning electron microscopy were used to characterize crystallization kinetics and mechanisms. The fully amorphous ASD (0% crystallinity) did not dissolve completely, and underwent crystallization to the metastable polymorph (form 2), initiating in the amorphous matrix at the interface of the amorphous solid with water. Under non-sink conditions, higher extents of supersaturation were achieved because dissolution initially proceeded unhindered prior to nucleation. ASDs containing residual crystallinity had markedly reduced supersaturation. Solid-mediated crystallization (matrix crystallization) consumed the amorphous solid, growing the stable polymorph (form 1). Under sink conditions, both the fully amorphous ASD and crystalline physical mixture achieve faster release than the ASDs containing residual crystallinity. In the latter systems, matrix crystallization leads to highly agglomerated crystals with high relative surface area. Solution-mediated crystallization was not a significant driver of concentration loss, due to slow crystal growth from solution in the presence of PVPVA. The high risk stemming from residual crystallinity in BCL/PVPVA ASDs stems from (1) fast matrix crystallization propagating from crystal seeds, and (2) growth of the stable crystal form. This study has implications for dissolution performance outcomes of ASDs containing residual crystallinity.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Isaac D Corum
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Andres Lust
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Kevin J Altman
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Ayse Eren
- Charles B. Davidson School of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Zoltan K Nagy
- Charles B. Davidson School of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
31
|
Ueda H, Hirakawa Y, Tanaka H, Miyano T, Sugita K. Applicability of an Experimental Grade of Hydroxypropyl Methylcellulose Acetate Succinate as a Carrier for Formation of Solid Dispersion with Indomethacin. Pharmaceutics 2021; 13:pharmaceutics13030353. [PMID: 33800229 PMCID: PMC8001926 DOI: 10.3390/pharmaceutics13030353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
The transformation of a crystalline drug into an amorphous form is a promising way to enhance the oral bioavailability of poorly water-soluble drugs. Blending of a carrier, such as a hydrophilic polymer, with an amorphous drug is a widely used method to produce a solid dispersion and inhibit crystallization. This study investigates an experimental grade of hydroxypropyl methylcellulose acetate succinate, HPMCAS-MX (MX), as a solid dispersion carrier. Enhancement of thermal stability and reduction of the glass transition temperature (Tg) of MX compared with those of the conventional grade were evaluated through thermogravimetric analysis and differential scanning calorimetry (DSC). The formation of a homogeneous amorphous solid dispersion between MX and indomethacin was confirmed by X-ray powder diffraction analysis, DSC, and Raman mapping. It was observed that 10–30% MX did not act as an anti-plasticizer, but the utilization of >40% MX caused an increase in Tg and reduction of molecular mobility. This could be explained by a change in intermolecular interactions, inferred from infrared spectroscopy combined with principal component analysis. HPMCAS-MX exhibited similar performance to that of conventional-grade, HPMCAS-MG. Although HPMCAS-MX has thermal properties different from those of conventional-grade HPMCAS-MG, it retains its ability as a solid dispersion carrier.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Physical Chemistry, Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (T.M.); (K.S.)
- Correspondence:
| | - Yuya Hirakawa
- Biologics, Laboratory for Advanced Medicine Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan;
| | - Hironori Tanaka
- Formulation R&D Laboratory, Formulation Design Department, Shionogi & Co., Ltd., Hyogo 660-0813, Japan;
| | - Tetsuya Miyano
- Physical Chemistry, Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (T.M.); (K.S.)
| | - Katsuji Sugita
- Physical Chemistry, Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (T.M.); (K.S.)
| |
Collapse
|
32
|
Szabó E, Záhonyi P, Brecska D, Galata DL, Mészáros LA, Madarász L, Csorba K, Vass P, Hirsch E, Szafraniec-Szczęsny J, Csontos I, Farkas A, Van denMooter G, Nagy ZK, Marosi G. Comparison of Amorphous Solid Dispersions of Spironolactone Prepared by Spray Drying and Electrospinning: The Influence of the Preparation Method on the Dissolution Properties. Mol Pharm 2021; 18:317-327. [PMID: 33301326 PMCID: PMC7788570 DOI: 10.1021/acs.molpharmaceut.0c00965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/02/2022]
Abstract
This research aimed to compare two solvent-based methods for the preparation of amorphous solid dispersions (ASDs) made up of poorly soluble spironolactone and poly(vinylpyrrolidone-co-vinyl acetate). The same apparatus was used to produce, in continuous mode, drug-loaded electrospun (ES) and spray-dried (SD) materials from dichloromethane and ethanol-containing solutions. The main differences between the two preparation methods were the concentration of the solution and application of high voltage. During electrospinning, a solution with a higher concentration and high voltage was used to form a fibrous product. In contrast, a dilute solution and no electrostatic force were applied during spray drying. Both ASD products showed an amorphous structure according to differential scanning calorimetry and X-ray powder diffraction results. However, the dissolution of the SD sample was not complete, while the ES sample exhibited close to 100% dissolution. The polarized microscopy images and Raman microscopy mapping of the samples highlighted that the SD particles contained crystalline traces, which can initiate precipitation during dissolution. Investigation of the dissolution media with a borescope made the precipitated particles visible while Raman spectroscopy measurements confirmed the appearance of the crystalline active pharmaceutical ingredient. To explain the micro-morphological differences, the shape and size of the prepared samples, the evaporation rate of residual solvents, and the influence of the electrostatic field during the preparation of ASDs had to be considered. This study demonstrated that the investigated factors have a great influence on the dissolution of the ASDs. Consequently, it is worth focusing on the selection of the appropriate ASD preparation method to avoid the deterioration of dissolution properties due to the presence of crystalline traces.
Collapse
Affiliation(s)
- Edina Szabó
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Petra Záhonyi
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Dániel Brecska
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Dorián L. Galata
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Lilla A. Mészáros
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Lajos Madarász
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Kristóf Csorba
- Department
of Automation and Applied Informatics, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Panna Vass
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Edit Hirsch
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Joanna Szafraniec-Szczęsny
- Department
of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - István Csontos
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Attila Farkas
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Guy Van denMooter
- Department
of Pharmaceutical and Pharmacological Sciences, Drug Delivery and
Disposition, KU Leuven, Campus Gasthuisberg ON2, Herestraat
49 b921, 3000 Leuven, Belgium
| | - Zsombor K. Nagy
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - György Marosi
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics (BME), Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
33
|
Bhujbal SV, Pathak V, Zemlyanov DY, Taylor LS, Zhou QT. Physical Stability and Dissolution of Lumefantrine Amorphous Solid Dispersions Produced by Spray Anti-Solvent Precipitation. J Pharm Sci 2020; 110:2423-2431. [PMID: 33387599 PMCID: PMC8141512 DOI: 10.1016/j.xphs.2020.12.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/12/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022]
Abstract
This study aims to develop amorphous solid dispersion (ASD) of lumefantrine with a cost-effective approach of spray anti-solvent precipitation. Four acidic polymers, hydroxypropylmethylcellulose phthalate (HPMCP), hydroxypropylmethylcellulose acetate succinate (HPMCAS), poly(methacrylic acid–ethyl acrylate) (EL100) and cellulose acetate phthalate (CAP) were studied as excipients at various drug-polymer ratios. Of the studied polymers, satisfactory physical stability was demonstrated for HPMCP- and HPMCAS-based ASDs with no observed powder X-ray diffraction peaks for up to 3 months of storage at 40 °C/75% RH. HPMCP and HPMCAS ASDs also achieved greater drug release levels in the dissolution study than other polymers. The HPMCP-based ASDs with a drug:polymer ratio of 2:8 exhibited a maximum drug release of 140 μg/mL for up to 2 h, which is significantly higher than the currently marketed formulation of Coartem® (<80 ng/mL). Relatively, the CAP and EL100 ASDs indicated a higher water content and crystallized within a day when stored at 40 °C/75% RH. The choice of polymer, and the drug-polymer ratio played a crucial role in the solubility enhancement of lumefantrine. Our study indicates that the developed spray anti-solvent precipitation method could be an affordable approach for producing ASDs.
Collapse
Affiliation(s)
- Sonal V Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Vaibhav Pathak
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, IN 47907, USA
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|