1
|
Zhang Z, Wang S, Wang Q, Ye Q, Wang W. Experimental and Theoretical Investigation of the Formation of Daidzein Ion-pair Compounds: Solubility, Hydrogen Bonds, Stability. AAPS PharmSciTech 2025; 26:60. [PMID: 39930293 DOI: 10.1208/s12249-025-03049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Ion pairs represent a robust molecular force arising from the union of oppositely charged ions, held together by Coulomb attraction. Daidzein (Dai), categorized as a BCS IV drug, faces limitations in clinical application due to its relatively low solubility. To enhance the drug's solubility, a Dai ion pair was prepared, and the mechanism underlying ion-pair formation was investigated. A comprehensive approach, combining experimental techniques and theoretical calculations, such as scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, X-ray Photoelectron Spectroscopy, and computational simulation was employed to explore the ion-pair formation mechanism. The findings indicate a significant improvement in Dai solubility through the preparation of Arg and Lys ion-pair compounds. The results revealed that the Dai-Lys ion pair exhibited more short hydrogen bonds and fewer long hydrogen bonds than did the Dai-Arg ion pair, strengthening the intermolecular interactions and improving crystal structure stability. This study effectively enhanced the solubility of Dai and offers valuable insights into the mechanisms underlying ion pair formation in ionizable drugs.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Center for Scientific Research of Anhui Medical University, Hefei, 230032, China.
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, 230032, China
| | - Qianlei Wang
- Center for Scientific Research of Anhui Medical University, Hefei, 230032, China
| | - Qian Ye
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wenjuan Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
2
|
Chen X, Qin Y, Wang L, Zhu Y, Zhang H, Liu W, Zeng M, Dai Q. Co-amorphous systems of sulfasalazine with matrine-type alkaloids: Enhanced solubility behaviors and synergistic therapeutic potential. Eur J Pharm Biopharm 2024; 203:114475. [PMID: 39216557 DOI: 10.1016/j.ejpb.2024.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Sulfasalazine (SULF), a sulfonamide antibiotic, has been utilized in the treatment of rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) since its discovery. However, its poor water solubility causes the high daily doses (1---3 g) for patients, which may lead to the intolerable toxic and side effects for their lifelong treatment for RA and IBD. In this work, two water-soluble natural anti-inflammatory alkaloids, matrine (MAR) and sophoridine (SPD), were employed to construct the co-amorphous systems of SULF for addressing its solubility issue. These newly obtained co-amorphous forms of SULF were comprehensively characterized by powder X-ray diffraction (PXRD), temperature-modulated differential scanning calorimetry (mDSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). We also investigated their dissolution behavior, including powder dissolution, in vitro release, and intrinsic dissolution rate. Both co-amorphous systems exhibited superior dissolution performance compared to crystalline SULF. The underlying mechanism responsible for the enhanced dissolution behaviors in co-amorphous systems were also elucidated. These mechanisms include the inhibition of nucleation, complexation, increased hydrophilicity, and robust intermolecular interactions in aqueous solutions. Importantly, these co-amorphous systems demonstrated satisfactory physical stability under various storage conditions. Network pharmacological analysis was utilized to investigate the potential therapeutic targets of both co-amorphous systems against RA, revealing similar yet distinct multi-target synergistic therapeutic mechanisms in the treatment of this condition. Our study suggests these drug-drug co-amorphous systems hold promise for optimizing SULF dosage in the future and providing a potential drug combination strategy.
Collapse
Affiliation(s)
- Xin Chen
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| | - Yirui Qin
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Lijun Wang
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yujing Zhu
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Hailu Zhang
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China; Interdisciplinary Institute of NMR and Molecular Sciences (NMR-X), School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Wenhu Liu
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| | - Mei Zeng
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qian Dai
- Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| |
Collapse
|
3
|
Wang L, Pang Y, Zheng Q, Ruan J, Fang L, Liu C. Development of mabuterol transdermal patch: Molecular mechanism study of ion-pair improving patch stability. Int J Pharm 2023; 644:123302. [PMID: 37572858 DOI: 10.1016/j.ijpharm.2023.123302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
This paper aimed to prepare a Mabuterol (MAB) patch for treating asthma by ion-pair strategy to overcome the drug's thermal instability and elucidate the molecular mechanisms of the stabilization effect. The formulation factor, including counter-ion and pressure-sensitive adhesive (PSA), was optimized by the stability and in vitro skin permeation studies. The molecular mechanism of ion-pair stability was characterized using TGA, Raman, FT-IR, NMR, XPS, and molecular modeling. The optimized patch comprised MAB-Lactic acid (MAB-LA) and hydroxyl adhesive (AAOH) as the matrix, with Q = 126.47 ± 9.75 μg/cm2 and Fabs = 75.27%. The increased TGA (213.11 °C), disproportionation energy (ΔG = 97.44 KJ), and ion-pair lifetime (Tlife = 2.21 × 103) indicated that the counter-ion improved MAB stability through strong ionic and hydrogen bonds with LA. The remaining drug content in the MAB-LA patch was 15% higher than that of the pure MAB patch after storage for 12 months at room temperature, which was visualized by Raman imaging. The interaction between MAB-LA and AAOH PSA via hydrogen bond decreased the diffusion rate and increased the drug stability further. This study successfully developed the MAB patch, which provided a reference for applying ion-pairing strategies to improve the stability of transdermal patches.
Collapse
Affiliation(s)
- Liuyang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| | - Yu Pang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| | - Qi Zheng
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| | - Jiuheng Ruan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| | - Liang Fang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| | - Chao Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
4
|
Tranilast-matrine co-amorphous system: Strong intermolecular interactions, improved solubility, and physiochemical stability. Int J Pharm 2023; 635:122707. [PMID: 36764418 DOI: 10.1016/j.ijpharm.2023.122707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
There is a great interest to develop co-amorphous drug delivery systems to enhance the solubility of biopharmaceutics classification system (BCS) class II and IV drugs. However, most reported systems only resulted in severalfold solubility improvement. Tranilast (TRA) is an anti-allergic drug used to treat bronchial asthma and allergic rhinitis. It is a BCS class II drug and its poor aqueous solubility affects its absorption in vivo. To address this issue, a natural alkaloid matrine (MAR) with interesting biological activities was chosen to form a co-amorphous system with TRA, based on the solubility parameter and phase solubility experiment. The TRA-MAR drug-drug co-amorphous system was prepared by the solvent evaporation method, and further characterized by powder X-ray diffraction and modulated temperature differential scanning calorimetry. Fourier transform infrared spectroscopy, FT-Raman, and X-ray photoelectron spectroscopy revealed the formation of salt and the presence of strong intermolecular interactions in the TRA-MAR co-amorphous system, which are also supported by molecular dynamics simulations, showing ionic and hydrogen bonding interactions. This co-amorphous system exhibited excellent physical stability at both 25 °C and 40 °C under anhydrous silica gel condition. Finally, co-amorphous TRA-MAR showed greatly enhanced solubility (greater than 100-fold) and rapid release behavior in the vitro release experiments. NMR spectroscopy revealed the strong intermolecular interactions between TRA and MAR in both DMSO‑d6 and D2O. Our study resulted in a TRA-MAR co-amorphous drug system with significant solubility improvement and showcased the great potential to improve the dissolution behaviors of BCS class II and IV drugs through the co-amorphization approach.
Collapse
|
5
|
Correa-Soto CE, Gao Y, Indulkar AS, Zhang GGZ, Taylor LS. Release Enhancement by Plasticizer Inclusion for Amorphous Solid Dispersions Containing High T g Drugs. Pharm Res 2023; 40:777-790. [PMID: 36859747 DOI: 10.1007/s11095-023-03483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Plasticizers are commonly used in the preparation of amorphous solid dispersions (ASDs) with the main goal of aiding processability; however, to the best of our knowledge, the impact of plasticizers on drug release has not been explored. The goal of this study was to evaluate diverse plasticizers, including glycerol and citrate derivatives, as additives to increase the drug loading where good drug release could be achieved from copovidone (PVPVA)-based dispersions, focusing on high glass transition (Tg) drugs, atazanavir (ATZ) and ledipasvir (LED). METHODS ASDs were prepared using the high Tg compounds, atazanavir (ATZ) and ledipasvir (LED), as model drugs. Release was evaluated using surface normalized dissolution testing. Differential scanning calorimetry was used to measure glass transition temperature and water vapor sorption was performed on select samples. RESULTS The presence of a plasticizer at 5% w/w for ATZ and 10% w/w for LED ASDs, led to improved drug release. For ATZ ASDs, in the absence of plasticizer, release was very poor at drug loadings of 10% w/w and above. Good release was obtained for plasticized ASDs up to a drug loading of 25%. The corresponding improvement for LED was from 5 to 20% DL. Interestingly, for a low Tg compound, ritonavir, relatively smaller improvements in release as a function of drug loading were achieved through plasticizer incorporation. CONCLUSIONS The use of plasticizers represents a potential new strategy to increase drug loading in ASDs for high Tg compounds with a low tendency to crystallize and may help improve a major limitation of ASD formulations, namely the high excipient burden.
Collapse
Affiliation(s)
- Clara E Correa-Soto
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Pivotal Drug Product, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, USA
| | - Yi Gao
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Anura S Indulkar
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Pugliese A, Tobyn M, Hawarden LE, Abraham A, Blanc F. New Development in Understanding Drug-Polymer Interactions in Pharmaceutical Amorphous Solid Dispersions from Solid-State Nuclear Magnetic Resonance. Mol Pharm 2022; 19:3685-3699. [PMID: 36037249 PMCID: PMC9644399 DOI: 10.1021/acs.molpharmaceut.2c00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/08/2023]
Abstract
Pharmaceutical amorphous solid dispersions (ASDs) represent a widely used technology to increase the bioavailability of active pharmaceutical ingredients (APIs). ASDs are based on an amorphous API dispersed in a polymer, and their stability is driven by the presence of strong intermolecular interactions between these two species (e.g., hydrogen bond, electrostatic interactions, etc.). The understanding of these interactions at the atomic level is therefore crucial, and solid-state nuclear magnetic resonance (NMR) has demonstrated itself as a very powerful technique for probing API-polymer interactions. Other reviews have also reported exciting approaches to study the structures and dynamic properties of ASDs and largely focused on the study of API-polymer miscibility and on the identification of API-polymer interactions. Considering the increased use of NMR in the field, the aim of this Review is to specifically highlight recent experimental strategies used to identify API-polymer interactions and report promising recent examples using one-dimensional (1D) and two-dimensional (2D) experiments by exploiting the following emerging approaches of very-high magnetic field and ultrafast magic angle spinning (MAS). A range of different ASDs spanning APIs and polymers with varied structural motifs is targeted to illustrate new ways to understand the mechanism of stability of ASDs to enable the design of new dispersions.
Collapse
Affiliation(s)
- Andrea Pugliese
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Michael Tobyn
- Drug
Product Development, Bristol-Myers Squibb, Moreton CH46 1QW, United Kingdom
| | - Lucy E. Hawarden
- Drug
Product Development, Bristol-Myers Squibb, Moreton CH46 1QW, United Kingdom
| | - Anuji Abraham
- Drug
Product Development, Bristol-Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Frédéric Blanc
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
7
|
Chen X, Li D, Zhang H, Duan Y, Huang Y. Co-amorphous Systems of Sinomenine with Platensimycin or Sulfasalazine: Physical Stability and Excipient-Adjusted Release Behavior. Mol Pharm 2022; 19:4370-4381. [PMID: 36251509 DOI: 10.1021/acs.molpharmaceut.2c00785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is strong interest to develop affordable treatments for the infection-associated rheumatoid arthritis (RA). Here, we present a drug-drug co-amorphous strategy against RA and the associated bacterial infection by the preparation and characterization of two co-amorphous systems of sinomenine (SIN) with platensimycin (PTM) or sulfasalazine (SULF), two potent antibiotics. Both of them were comprehensively characterized using powder X-ray diffraction, temperature-modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The co-amorphous forms of SIN-PTM and SIN-SULF exhibited high Tgs at 139.10 ± 1.0 and 153.3 ± 0.2 °C, respectively. After 6 months of accelerated tests and 1 month of drug-excipient compatibility experiments, two co-amorphous systems displayed satisfactory physical stability. The formation of salt and strong intermolecular interactions between SIN and PTM or SULF, as well as the decreased molecular mobility in co-amorphous systems, may be the intrinsic mechanisms underlying the excellent physical stability of both co-amorphous systems. In dissolution tests, two co-amorphous systems displayed distinct reduced SIN-accumulative releases (below 20% after 6 h of release experiments), which may lead to its poor therapeutic effect. Hence, we demonstrated a controlled release strategy for SIN by the addition of a small percentage of polymers and a small-molecule surfactant to these two co-amorphous samples as convenient drug excipients, which may also be used to improve the unsatisfactory dissolution behaviors of the previously reported SIN co-amorphous systems. Several hydrogen bonding interactions between SIN and PTM or SULF could be identified in NMR experiments in DMSO-d6, which may be underlying reasons of decreased dissolution behaviors of both co-amorphous forms. These drug-drug co-amorphous systems could be a potential strategy for the treatment of infection-associated RA.
Collapse
Affiliation(s)
- Xin Chen
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan410013, PR China
| | - Duanxiu Li
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, PR China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan528200, PR China
| | - Hailu Zhang
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, PR China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan410013, PR China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha410011, PR China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan410011, PR China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan410013, PR China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan410011, PR China
| |
Collapse
|
8
|
Cheng D, Theivendran S, Tang J, Cai L, Zhang J, Song H, Yu C. Surface chemistry of spiky silica nanoparticles tailors polyethyleneimine binding and intracellular DNA delivery. J Colloid Interface Sci 2022; 628:297-305. [PMID: 35998455 DOI: 10.1016/j.jcis.2022.08.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Cellular delivery of DNA using silica nanoparticles has attracted great attention. Typically, polyethyleneimine (PEI) is used to form a silica/PEI composite vector. Understanding the interactions at the silica and PEI interface is important for successful DNA delivery and transfection, especially for silica with different surface functionality. Herein, we report that a higher content of hydrogen boning formed between PEI molecules and phosphonate modified silica nanoparticles could slow down the PEI dissolution from the freeze-dried solid composites into aqueous solution than the bare silica counterpart. The pronounced PEI retention ability through phosphonation of silica nanoparticles effectively improves the transfection efficiency due to the high DNA binding affinity extracellularly, effective lysosome escape and high nuclear entry of both PEI and DNA intracellularly. Our study provides a fundamental understanding on designing effective silica-PEI-based nano-vectors for DNA delivery applications.
Collapse
Affiliation(s)
- Dan Cheng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shevanuja Theivendran
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Larry Cai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Chen X, Li D, Duan Y, Huang Y. Characterization of co-amorphous sinomenine-tranilast systems with strong intermolecular interactions and sustained release profiles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Wang P, Wang Y, Suo Z, Zhai Y, Li H. Cyclodextrin and its derivatives as effective excipients for amorphous ulipristal acetate systems. RSC Adv 2022; 12:9170-9178. [PMID: 35424854 PMCID: PMC8985104 DOI: 10.1039/d1ra09420c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Many efforts have been devoted to screening new solid-state forms of poorly soluble drugs in the pharmaceutical industry, thus modulating the drug properties without changing the pharmacological nature. It is a wise strategy to prepare amorphous series with cyclodextrin (CD) and its derivatives as excipients to enhance the aqueous solubility, dissolution, and bioavailability of water-insoluble drugs. In this study, four binary amorphous mixtures of ulipristal acetate (UPA) with CDs (β-CD, γ-CD, dimethyl-β-CD, hydroxypropyl-β-CD) were prepared by the co-milling method and characterized in the solid-state. According to powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC), UPA existed in the noncrystalline form in the four binary amorphous mixtures. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) indicated that UPA interacted with the four CDs, which was also verified by molecular docking. Compared with the crystalline and amorphous UPA, the solubility, dissolution, and stability of the drug in the four amorphous UPA systems were significantly improved, so they were considered potentially advantageous solid forms. Our research shows that CDs can be used as new effective excipients in amorphous systems for active pharmaceutical ingredients (API).
Collapse
Affiliation(s)
- Peng Wang
- College of Chemical Engineering, Sichuan University Chengdu Sichuan China +86 028 85401207 +86 028 85405149
| | - Yan Wang
- Sichuan Center for Disease Control and Prevention Chengdu Sichuan China
| | - Zili Suo
- College of Chemical Engineering, Sichuan University Chengdu Sichuan China +86 028 85401207 +86 028 85405149
| | - Yuanming Zhai
- Analytical & Testing Center, Sichuan University P. R. China
| | - Hui Li
- College of Chemical Engineering, Sichuan University Chengdu Sichuan China +86 028 85401207 +86 028 85405149
| |
Collapse
|
11
|
He H, Zheng M, Liu Q, Liu J, Zhao J, Zhuang Y, Liu X, Xu Q, Kirk SR, Yin D. Hydroxyl-assisted selective epoxidation of perillyl alcohol with hydrogen peroxide by vanadium-substituted phosphotungstic acid hinged on imidazolyl activated carbon. NEW J CHEM 2022. [DOI: 10.1039/d2nj00040g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanadium-substituted phosphotungstic acid hinged on imidazolyl activated carbon catalyzed efficiently and stably the selective epoxidation of perillyl alcohol with H2O2.
Collapse
Affiliation(s)
- Huiting He
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Min Zheng
- College of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
- College of Material Science & Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiang Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Jian Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Juan Zhao
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Yuting Zhuang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Xianxiang Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Qiong Xu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Steven R. Kirk
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| | - Dulin Yin
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081, China
| |
Collapse
|
12
|
Zhang Z, Li L, Dong L, Tian J, Meng T, Zhao Q, Yang J. Molecular mechanisms involved in supersaturation of Emodin ternary solid dispersions based on bonding agents. J Pharm Sci 2022; 111:2000-2010. [DOI: 10.1016/j.xphs.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
|
13
|
Hiew TN, Zemlyanov DY, Taylor LS. Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug-Polymer Interactions. Mol Pharm 2021; 19:392-413. [PMID: 34494842 DOI: 10.1021/acs.molpharmaceut.1c00481] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone-vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid-methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine-PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine-PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved.
Collapse
Affiliation(s)
- Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Yao X, Neusaenger AL, Yu L. Amorphous Drug-Polymer Salts. Pharmaceutics 2021; 13:pharmaceutics13081271. [PMID: 34452231 PMCID: PMC8401805 DOI: 10.3390/pharmaceutics13081271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Amorphous formulations provide a general approach to improving the solubility and bioavailability of drugs. Amorphous medicines for global health should resist crystallization under the stressful tropical conditions (high temperature and humidity) and often require high drug loading. We discuss the recent progress in employing drug–polymer salts to meet these goals. Through local salt formation, an ultra-thin polyelectrolyte coating can form on the surface of amorphous drugs, immobilizing interfacial molecules and inhibiting fast crystal growth at the surface. The coated particles show improved wetting and dissolution. By forming an amorphous drug–polymer salt throughout the bulk, stability can be vastly enhanced against crystallization under tropical conditions without sacrificing the dissolution rate. Examples of these approaches are given, along with suggestions for future work.
Collapse
|
15
|
Carrascal JJ, Pinal R, Carvajal T, Pérez LD, Baena Y. Benzoic acid complexes with Eudragit E100®: New alternative antimicrobial preservatives. Int J Pharm 2021; 607:120991. [PMID: 34390811 DOI: 10.1016/j.ijpharm.2021.120991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
Given that the use of some preservatives in cosmetics has been restricted, novel alternative preservatives are needed. The aim of this study was to characterize the physicochemical and antimicrobial properties of two polyelectrolyte complexes (EuB100 and EuB75Cl25), which were developed through hot melt extrusion (HME) using benzoic acid (BA) and Eudragit E100. Based on phase diagrams and an experimental statistical design, the solubility of the acid in the polymer and the HME conditions were established. Intermolecular interactions were evaluated through Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRPD). Release behavior was determined for the systems. Antibacterial activity and ζ-potential were determined on Escherichia coli. FTIR revealed acid-base interaction, and XPS showed that the percentages of protonated nitrogen N1s were 13.5% for EuB100 and 20.3% for EuB75Cl25. The BA released showed a non-Fickian behavior, and a satisfactory antibacterial activity against E. coli was demonstrated at pH 6.9. The complexes modified ζ-potential, destabilizing the membrane functionality of E. coli. These complexes are potential antimicrobial preservatives with a greater spectrum of action, with bactericidal activity against E. coli in a wider pH range than uncomplexed BA, even at pH 6.9.
Collapse
Affiliation(s)
- Juan José Carrascal
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias -Departamento de Farmacia - Grupo de investigación Sistemas para liberación controlada de moléculas biológicamente activas, Carrera 30 # 45-03, Bogotá D.C, 111321, Colombia
| | - Rodolfo Pinal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
| | - Teresa Carvajal
- Department of Agricultural & Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093, USA
| | - León Darío Pérez
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias -Departamento de Química - Grupo de investigación en Macromoléculas, Carrera 30 # 45-03, Bogotá D.C 111321, Colombia
| | - Yolima Baena
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias -Departamento de Farmacia - Grupo de investigación Sistemas para liberación controlada de moléculas biológicamente activas, Carrera 30 # 45-03, Bogotá D.C, 111321, Colombia.
| |
Collapse
|
16
|
Yao X, Kim S, Gui Y, Chen Z, Yu J, Jones KJ, Yu L. Amorphous drug-polymer salt with high stability under tropical conditions and fast dissolution: The challenging case of lumefantrine-PAA. J Pharm Sci 2021; 110:3670-3677. [PMID: 34371071 DOI: 10.1016/j.xphs.2021.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
Lumefantrine (LMF), a high-mobility and easy-to-crystallize WHO drug for treating malaria, can form an amorphous salt with poly(acrylic acid) (PAA) that is remarkably stable against crystallization at high humidity and temperature and has fast dissolution rate. The amorphous salt up to 75 % drug loading was synthesized under a mild slurry condition easily implemented in basic facilities for global health. Salt formation was confirmed by IR spectroscopy and the much elevated glass transition temperature. At 50 % drug loading, the amorphous salt resists crystallization for at least 18 months under the highly stressful condition of 40°C and 75 % RH. In contrast, the dispersion containing neutral LMF in PVP fully crystallized in 4 d and the dispersion in HPMCAS, a weak polyelectrolyte of lower charge density than PAA, crystallized by 50 % in 7 d. The amorphous salt at 50 % drug loading showed much faster dissolution than crystalline LMF: In SGF, the area under the curve (AUC) was 30 times larger within the gastric emptying time (4 h); in FaSSIF, the enhancement was even larger - by 200 times. Nanodroplets were detected during the dissolution in SGF, possibly accounting for the apparent enhancement of dissolution rate. The LMF-PAA example as a challenging case, along with the previously reported clofazimine-PAA, demonstrates the general utility of amorphous drug-polymer salts to achieve high stability under tropical conditions and enhanced dissolution and bioavailability.
Collapse
Affiliation(s)
- Xin Yao
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soojin Kim
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yue Gui
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhenxuan Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Junguang Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Karen J Jones
- Zeeh Pharmaceutical Experiment Station, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
17
|
|
18
|
Yang D, Liu C, Ding D, Quan P, Fang L. The molecular design of drug-ionic liquids for transdermal drug delivery: Mechanistic study of counterions structure on complex formation and skin permeation. Int J Pharm 2021; 602:120560. [PMID: 33798684 DOI: 10.1016/j.ijpharm.2021.120560] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/22/2022]
Abstract
Though ionic liquids (ILs) as novel enhancers had garnered wide attention, detailed studies elucidating molecular design of drug-ILs were missing and mechanisms of their formation and skin permeation were still lacking. Herein, we systematically investigated effects of counterions structures on formation and skin permeation of drug-ILs. Firstly, effects of counterions on formation of drug-ILs were dependent on polarizability, molecular weight (M.W.) and polar surface area of counterions. It was caused by strong charge assisted hydrogen bond and van der Waals interactions revealed through FT-IR, X-ray photoelectron spectroscopy and molecular docking, which undermined ionic interactions and reduced total interaction strength, thereby produced lower lattice energy. Then, skin permeability of drug-ILs had a good parabola relationship with M.W., polarizability and log P of counterions. The underlying mechanism was the increased drug miscibility with stratum corneum, which caused conformational disorder and phase transition of lipid bilayers characterized by ATR-FTIR, DSC and confocal laser scanning microscopy. Finally, the drug-ILs proved to be non-irritating using in vivo skin erythema analysis. In conclusion, the quantitative structure-activity relationship models based on counterions structure to predict formation and skin permeation of drug-ILs were developed, which provided basic theory for design of drug-ILs with high permeation-enhancing efficiency.
Collapse
Affiliation(s)
- Degong Yang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Dawei Ding
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
19
|
|
20
|
Yang D, Liu C, Piao H, Quan P, Fang L. Enhanced Drug Loading in the Drug-in-Adhesive Transdermal Patch Utilizing a Drug-Ionic Liquid Strategy: Insight into the Role of Ionic Hydrogen Bonding. Mol Pharm 2021; 18:1157-1166. [PMID: 33504154 DOI: 10.1021/acs.molpharmaceut.0c01054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Though pharmaceutical polymers were widely used in inhibiting drug recrystallization via strong intermolecular hydrogen and ionic bonds, the improved drug stability was achieved at the cost of the drug release rate or amount in the drug-in-adhesive transdermal patch. To overcame the difficulty, this study aimed to increase drug loading utilizing a novel drug-ionic liquid (drug-IL) strategy and illustrate the underlying molecular mechanism. Here, naproxen (NPX) and triamylamine (TAA) were chosen as the model drug and corresponding counterion, respectively. In addiiton, carboxylic pressure-sensitive adhesive (PSA) was chosen as the model polymer. The drug-IL (NPX-TAA) was synthesized and characterized by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and proton nuclear magnetic resonance. The miscibility between NPX-TAA and PSA was assessed using microscopy study, X-ray diffraction, fluorescence spectroscopy, and solubility parameter calculation. In addition, molecular mechanisms of crystallization inhibition were revealed by FT-IR, Raman spectroscopy, DSC, X-ray photoelectron spectroscopy (XPS), and molecular docking. Finally, the release pattern of the high load patch of NPX-TAA was evaluated using in vitro drug release and verified by a skin permeation experiment. The results showed that drug loading in PSA was increased by 5.0 times, which was caused by the synergistic effect of strong ionic hydrogen bonding (the decreased intensity and blue shift of the O-H peak of COOH in PSA) formed between NPX-TAA and PSA-COO- and normal hydrogen bonding (red shift of the C═O peak in PSA) formed between NPX-TAA and the carbonyl group of PSA. In addition, -NH+ of TAA was confirmed as the molecular basis of ionic hydrogen bonding through new peak appearance (binding energy: 400.0 eV) in XPS spectra. Moreover, high drug release percent (80.8 ± 1.8%) was achieved even at high drug loading compared with the control group (72.4 ± 2.2%). Thus, this study introduced an effective drug-IL method to enhance drug loading capacity and illustrated the brand-new action mechanism, which provided a powerful instrument for the development of a high drug loading-high release patch.
Collapse
Affiliation(s)
- Degong Yang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Huiqing Piao
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| |
Collapse
|
21
|
Hu J, Li M, Wang L, Zhang X. Polymer brush-modified graphene oxide membrane with excellent structural stability for effective fractionation of textile wastewater. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Kapourani A, Valkanioti V, Kontogiannopoulos KN, Barmpalexis P. Determination of the physical state of a drug in amorphous solid dispersions using artificial neural networks and ATR-FTIR spectroscopy. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100064. [PMID: 33354666 PMCID: PMC7744708 DOI: 10.1016/j.ijpx.2020.100064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
The objective of the present study was to evaluate the use of artificial neural networks (ANNs) in the development of a new chemometric model that will be able to simultaneously distinguish and quantify the percentage of the crystalline and the neat amorphous drug located within the drug-rich amorphous zones formed in an amorphous solid dispersion (ASD) system. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy was used, while Rivaroxaban (RIV, drug) and Soluplus® (SOL, matrix-carrier) were selected for the preparation of a suitable ASD model system. Adequate calibration and test sets were prepared by spiking different percentages of the crystalline and the amorphous drug in the ASDs (prepared by the melting - quench cooling approach), while a 24 full factorial experimental design was employed for the screening of ANN's structure and training parameters as well as spectra region selection and data preprocessing. Results showed increased prediction performance, measured based on the root mean squared error of prediction (RMSEp) for the test sample, for both the crystalline (RMSEp (crystal) = 0.86) and the amorphous (RMSEp (amorphous) = 2.14) drug. Comparison with traditional regression techniques, such as partial least square and principle component regressions, revealed the superiority of ANNs, indicating that in cases of high structural similarity between the investigated compounds (i.e., the crystalline and the amorphous forms of the same compound) the implementation of more powerful/sophisticated regression techniques, such as ANNs, is mandatory.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Vasiliki Valkanioti
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos N Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Ecoresources P.C., 15-17 Giannitson-Santaroza Str., Thessaloniki 54627, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
23
|
Pugliese A, Hawarden LE, Abraham A, Tobyn M, Blanc F. Solid state nuclear magnetic resonance studies of hydroxypropylmethylcellulose acetyl succinate polymer, a useful carrier in pharmaceutical solid dispersions. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1036-1048. [PMID: 31880823 DOI: 10.1002/mrc.4984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/19/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Hydroxypropylmethylcellulose (HPMC) acetyl succinate (HPMC-AS) is a key polymer used for the enablement of amorphous solid dispersions (ASDs) in oral solid dosage forms. Choice of the appropriate grade within the material is often made empirically by the manufacturer of small-scale formulations, followed by extensive real time stability. A key factor in understanding and predicting the performance of an ASD is related to the presence of hydrogen (or other) bonds between the polymer and active pharmaceutical ingredient (API), which will increase stability over the parameters captured by miscibility and predicted by the Gordon-Taylor equation. Solid state nuclear magnetic resonance (NMR) is particularly well equipped to probe spatial proximities, for example, between polymer and API; however, in the case of HPMC-AS, these interactions have been sometimes difficult to identity as the carbon-13 NMR spectra assignment is yet to be firmly established. Using feedstock, selectively substituted HPMC polymers, and NMR editing experiments, we propose here a comprehensive understanding of the chemical structure of HPMC-AS and a definitive spectral assignment of the 13 C NMR spectra of this polymer. The NMR data also capture the molar ratios of the acetate and succinate moieties present in HPMC-AS of various grades without the need for post treatment required by chromatography methods commonly use in pharmacopoeia. This knowledge will allow the prediction and measurement of interactions between polymers and APIs and therefore a rational choice of polymer grade to enhance the solid state stability of ASDs.
Collapse
Affiliation(s)
- Andrea Pugliese
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | | | - Anuji Abraham
- Bristol-Myers Squibb, Drug Product Science and Technology, New Brunswick, New Jersey
| | - Michael Tobyn
- Bristol-Myers Squibb, Biopharmaceutics R&D, Moreton, UK
| | - Frédéric Blanc
- Department of Chemistry, University of Liverpool, Liverpool, UK
- Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool, UK
| |
Collapse
|
24
|
Thakkar R, Pillai AR, Zhang J, Zhang Y, Kulkarni V, Maniruzzaman M. Novel On-Demand 3-Dimensional (3-D) Printed Tablets Using Fill Density as an Effective Release-Controlling Tool. Polymers (Basel) 2020; 12:E1872. [PMID: 32825229 PMCID: PMC7564432 DOI: 10.3390/polym12091872] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
This research demonstrates the use of fill density as an effective tool for controlling the drug release without changing the formulation composition. The merger of hot-melt extrusion (HME) with fused deposition modeling (FDM)-based 3-dimensional (3-D) printing processes over the last decade has directed pharmaceutical research towards the possibility of printing personalized medication. One key aspect of printing patient-specific dosage forms is controlling the release dynamics based on the patient's needs. The purpose of this research was to understand the impact of fill density and interrelate it with the release of a poorly water-soluble, weakly acidic, active pharmaceutical ingredient (API) from a hydroxypropyl methylcellulose acetate succinate (HPMC-AS) matrix, both mathematically and experimentally. Amorphous solid dispersions (ASDs) of ibuprofen with three grades of AquaSolveTM HPMC-AS (HG, MG, and LG) were developed using an HME process and evaluated using solid-state characterization techniques. Differential scanning calorimetry (DSC), powder X-ray diffraction (pXRD), and polarized light microscopy (PLM) confirmed the amorphous state of the drug in both polymeric filaments and 3D printed tablets. The suitability of the manufactured filaments for FDM processes was investigated using texture analysis (TA) which showed robust mechanical properties of the developed filament compositions. Using FDM, tablets with different fill densities (20-80%) and identical dimensions were printed for each polymer. In vitro pH shift dissolution studies revealed that the fill density has a significant impact (F(11, 24) = 15,271.147, p < 0.0001) and a strong negative correlation (r > -0.99; p < 0.0001) with the release performance, where 20% infill demonstrated the fastest and most complete release, whereas 80% infill depicted a more controlled release. The results obtained from this research can be used to develop a robust formulation strategy to control the drug release from 3D printed dosage forms as a function of fill density.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78705, USA; (R.T.); (A.R.P.); (J.Z.); (Y.Z.); (V.K.)
| |
Collapse
|
25
|
Molecular Interactions in Solid Dispersions of Poorly Water-Soluble Drugs. Pharmaceutics 2020; 12:pharmaceutics12080745. [PMID: 32784790 PMCID: PMC7463741 DOI: 10.3390/pharmaceutics12080745] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022] Open
Abstract
Physicochemical characterization is a crucial step for the successful development of solid dispersions, including the determination of drug crystallinity and molecular interactions. Typically, the detection of molecular interactions will assist in the explanation of different drug performances (e.g., dissolution, solubility, stability) in solid dispersions. Various prominent reviews on solid dispersions have been reported recently. However, there is still no overview of recent techniques for evaluating the molecular interactions that occur within solid dispersions of poorly water-soluble drugs. In this review, we aim to overview common methods that have been used for solid dispersions to identify different bond formations and forces via the determination of interaction energy. In addition, a brief background on the important role of molecular interactions will also be described. The summary and discussion of methods used in the determination of molecular interactions will contribute to further developments in solid dispersions, especially for quick and potent drug delivery applications.
Collapse
|
26
|
Chen BW, He YC, Sung SY, Le TTH, Hsieh CL, Chen JY, Wei ZH, Yao DJ. Synthesis and characterization of magnetic nanoparticles coated with polystyrene sulfonic acid for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:471-481. [PMID: 32939172 PMCID: PMC7476547 DOI: 10.1080/14686996.2020.1790032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 05/31/2023]
Abstract
The development of novel magnetic nanoparticles (MNPs) with satisfactory biocompatibility for biomedical applications has been the subject of extensive exploration over the past two decades. In this work, we synthesized superparamagnetic iron oxide MNPs coated with polystyrene sulfonic acid (PSS-MNPs) and with a conventional co-precipitation method. The core size and hydrodynamic diameter of the PSS-MNPs were determined as 8-18 nm and 50-200 nm with a transmission electron microscopy and dynamic light scattering, respectively. The saturation magnetization of the particles was measured as 60 emu g-1 with a superconducting quantum-interference-device magnetometer. The PSS content in the PSS-MNPs was 17% of the entire PSS-MNPs according to thermogravimetric analysis. Fourier-transform infrared spectra were recorded to detect the presence of SO3 - groups, which confirmed a successful PSS coating. The structural properties of the PSS-MNPs, including the crystalline lattice, composition and phases, were characterized with an X-ray powder diffractometer and 3D nanometer-scale Raman microspectrometer. MTT assay and Prussian-blue staining showed that, although PSS-MNPs caused no cytotoxicity in both NIH-3T3 mouse fibroblasts and SK-HEP1 human liver-cancer cells up to 1000 μg mL-1, SK-HEP1 cells exhibited significantly greater uptake of PSS-MNPs than NIH-3T3 cells. The low cytotoxicity and high biocompatibility of PSS-MNPs in human cancer cells demonstrated in the present work might have prospective applications for drug delivery.
Collapse
Affiliation(s)
- Bo-Wei Chen
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Chi He
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shian-Ying Sung
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Trang Thi Huynh Le
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiann-Yeu Chen
- Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Zung-Hang Wei
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Da-Jeng Yao
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
27
|
Sun X, Li Z, Wang X, Zhang G, Cui P, Shen H. Single-Crystal Regular Hexagonal Microplates of Two-Dimensional α-Calcium Sulfate Hemihydrate Preparation from Phosphogypsum in Na2SO4 Aqueous Solution. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiangbin Sun
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Zheng Li
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Xianshun Wang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Genlei Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
- School of Materials Science and Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
- Anhui Liuguo Chemical Co. Ltd, Tongling 244021, China
| | - Peng Cui
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Hao Shen
- Anhui Liuguo Chemical Co. Ltd, Tongling 244021, China
| |
Collapse
|
28
|
Yang D, Liu C, Quan P, Fang L. Molecular mechanism of high capacity-high release transdermal drug delivery patch with carboxyl acrylate polymer: Roles of ion-ion repulsion and hydrogen bond. Int J Pharm 2020; 585:119376. [DOI: 10.1016/j.ijpharm.2020.119376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/16/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
|
29
|
Mechanism and Improved Dissolution of Glycyrrhetinic Acid Solid Dispersion by Alkalizers. Pharmaceutics 2020; 12:pharmaceutics12010082. [PMID: 31968604 PMCID: PMC7022421 DOI: 10.3390/pharmaceutics12010082] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to increase the dissolution of glycyrrhetinic acid (GA) by preparing ternary solid dispersion (TSD) systems containing alkalizers, and to explore the modulating mechanism of alkalizers in solid dispersion systems. GA TSDs were prepared by hot melt extrusion (HME) with Kollidon® VA64 as the carrier and L-arginine/meglumine as the alkalizers. The in vitro release of the TSD was investigated with a dissolution test, and the dissociation constant (pKa) was used to describe the ionization degree of the drug in different pH buffers. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectra, X-ray photoelectron spectroscopy (XPS), and a molecular model were used for solid-state characterizations and to study the dissolution mechanism of the TSDs. It was evident that the dissolution of GA significantly increased as a result of the TSD compared to the pure drug and binary solid dispersion. SEM, DSC, and XPRD data showed that GA transformed into an amorphous form in TSD. As illustrated by FTIR, Raman, XPS, and molecular docking, high binding energy ion-pair complexes formed between GA and the alkalizers during the process of HME. These can destroy the H-bond between GA molecules. Further, intermolecular H-bonds formed between the alkalizers and Kollidon® VA64, which can increase the wettability of the drug. Our results will significantly improve the solubility and dissolution of GA. In addition, the lower pKa value of TSD indicates that higher ionization is beneficial to the dissolution of the drug. This study should facilitate further developments of TSDs containing alkalizers to improve the dissolution of weakly acidic drugs and gain a richer understanding of the mechanism of dissolution.
Collapse
|
30
|
Ran J, Pan T, Wu Y, Chu C, Cui P, Zhang P, Ai X, Fu C, Yang Z, Xu T. Endowing g‐C
3
N
4
Membranes with Superior Permeability and Stability by Using Acid Spacers. Angew Chem Int Ed Engl 2019; 58:16463-16468. [DOI: 10.1002/anie.201908786] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/27/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Jin Ran
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Ting Pan
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Yuying Wu
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Chengquan Chu
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Peng Cui
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Pengpeng Zhang
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Xinyu Ai
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Cen‐Feng Fu
- School of Chemistry and Material ScienceUniversity of Science and Technology of China Hefei 230026 P.R. China
| | - Zhengjin Yang
- School of Chemistry and Material ScienceUniversity of Science and Technology of China Hefei 230026 P.R. China
| | - Tongwen Xu
- School of Chemistry and Material ScienceUniversity of Science and Technology of China Hefei 230026 P.R. China
| |
Collapse
|
31
|
Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta Rev Cancer 2019; 1873:188319. [PMID: 31678141 DOI: 10.1016/j.bbcan.2019.188319] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
The treatment of cancer is still a major challenge. But tremendous progress in anticancer drug discovery and development has occurred in the last few decades. However, this progress has resulted in few effective oncology products due to challenges associated with anticancer drug delivery. Oral administration is the most preferred route for anticancer drug delivery, but the majority of anticancer drugs currently in product pipelines and the majority of those that have been commercially approved have inherently poor water solubility, and this cannot be mitigated without compromising their potency and stability. The poor water solubility of anticancer drugs, in conjunction with other factors, leads to suboptimal pharmacokinetic performance. Thus, these drugs have limited efficacy and safety when administered orally. The amorphous solid dispersion (ASD) is a promising formulation technology that primarily enhances the aqueous solubility of poorly water-soluble drugs. In this review, we discuss the challenges associated with the oral administration of anticancer drugs and the use of ASD technology in alleviating these challenges. We emphasize the ability of ASDs to improve not only the pharmacokinetics of poorly water-soluble anticancer drugs, but also their efficacy and safety. The goal of this paper is to rationalize the application of ASD technology in the formulation of anticancer drugs, thereby creating superior oncology products that lead to improved therapeutic outcomes.
Collapse
|
32
|
Zhang M, Suo Z, Peng X, Gan N, Zhao L, Tang P, Wei X, Li H. Microcrystalline cellulose as an effective crystal growth inhibitor for the ternary Ibrutinib formulation. Carbohydr Polym 2019; 229:115476. [PMID: 31826488 DOI: 10.1016/j.carbpol.2019.115476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 01/28/2023]
Abstract
The objective of present study is to explore whether polysaccharide could be a crystal growth inhibitor in poorly soluble antitumor drug Ibrutinib (IBR) formulation. In this work, small molecular ligands (amino or organic acids) in co-amorphous system (CAS) were preliminarily screened. A polysaccharide, microcrystalline cellulose (MCC) was selected to stabilize amorphous drug and enhance pharmacokinetic properties. Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy confirmed the ionic interaction of the ternary IBR formulation. Moreover, the biosafety of the ternary formulation was the same as that of IBR while the in vitro performance advantage of the ternary formulation was converted into higher bioavailability in vivo experiments. Overall, MCC as an effective crystal growth inhibitor in the novel ternary IBR formulation is a promising approach to improve the dissolution rate of crystalline drugs and the stability of amorphous drugs, as well as providing a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Man Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zili Suo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xu Peng
- Laboratory Animal Centre, Sichuan University, Chengdu 610065, China
| | - Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Peixiao Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xin Wei
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
33
|
Ran J, Pan T, Wu Y, Chu C, Cui P, Zhang P, Ai X, Fu C, Yang Z, Xu T. Endowing g‐C
3
N
4
Membranes with Superior Permeability and Stability by Using Acid Spacers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin Ran
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Ting Pan
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Yuying Wu
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Chengquan Chu
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Peng Cui
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Pengpeng Zhang
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Xinyu Ai
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei Anhui 230009 P.R. China
| | - Cen‐Feng Fu
- School of Chemistry and Material ScienceUniversity of Science and Technology of China Hefei 230026 P.R. China
| | - Zhengjin Yang
- School of Chemistry and Material ScienceUniversity of Science and Technology of China Hefei 230026 P.R. China
| | - Tongwen Xu
- School of Chemistry and Material ScienceUniversity of Science and Technology of China Hefei 230026 P.R. China
| |
Collapse
|
34
|
Sun X, Zhang G, Cui P. Aspect ratio-controlled preparation of α-CaSO 4·0.5H 2O from phosphogypsum in potassium tartrate aqueous solution. RSC Adv 2019; 9:21601-21607. [PMID: 35518860 PMCID: PMC9066511 DOI: 10.1039/c9ra03569a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/28/2019] [Indexed: 01/11/2023] Open
Abstract
In this study, a simple and efficient strategy is developed to synthesize rod-shaped α-CaSO4·0.5H2O crystals with tunable aspect ratio from industrial phosphogypsum only in potassium tartrate aqueous solution at a low temperature. Industrial phosphogypsum can be effectively converted into rod-shaped α-CaSO4·0.5H2O crystals with the assistance of potassium tartrate, and the aspect ratio of α-CaSO4·0.5H2O crystals gradually decreases from 52 : 1 to 1 : 1 with increasing the concentration of potassium tartrate. The formation process of the rod-shaped α-CaSO4·0.5H2O crystals in this system involves the dissolution of CaSO4·2H2O and nucleation of α-CaSO4·0.5H2O crystals. The tartrate ions from potassium tartrate in this system preferentially bind to (001) and (002) facets of α-CaSO4·0.5H2O crystals, inhibiting the growth of α-CaSO4·0.5H2O crystals along the c-axis and controlling its morphology and aspect ratio.
Collapse
Affiliation(s)
- Xiangbin Sun
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology Tunxi Road 193 Hefei 230009 PR China
| | - Genlei Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology Tunxi Road 193 Hefei 230009 PR China
- School of Materials Science and Engineering, Hefei University of Technology Tunxi Road 193 Hefei 230009 PR China
| | - Peng Cui
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology Tunxi Road 193 Hefei 230009 PR China
| |
Collapse
|
35
|
Duggirala NK, Li J, Kumar NSK, Gopinath T, Suryanarayanan R. A supramolecular synthon approach to design amorphous solid dispersions with exceptional physical stability. Chem Commun (Camb) 2019; 55:5551-5554. [DOI: 10.1039/c9cc02021g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A supramolecular synthon approach was exploited to design amorphous solid dispersions (ASDs) of drugs containing an amino aromatic nitrogen moiety and a polyacrylic acid polymer.
Collapse
Affiliation(s)
| | - Jinghan Li
- Department of Pharmaceutics
- University of Minnesota
- USA
| | | | - Tata Gopinath
- Department of Biochemistry
- Molecular Biology, and Biophysics, University of Minnesota
- Minneapolis
- USA
| | | |
Collapse
|
36
|
Zhao H, Liu C, Yang D, Wan X, Shang R, Quan P, Fang L. Molecular mechanism of ion-pair releasing from acrylic pressure sensitive adhesive containing carboxyl group: Roles of doubly ionic hydrogen bond in the controlled release process of bisoprolol ion-pair. J Control Release 2018; 289:146-157. [DOI: 10.1016/j.jconrel.2018.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022]
|
37
|
Zhang W, Au PI, Zhang X, Fan H, Sun C, Saunders M, Leong YK. Spherical α-Al2O3 suspensions layered sequentially with anionic and cationic polyelectrolytes: Chemistry, rheology and TEM images. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.07.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Bookwala M, Thipsay P, Ross S, Zhang F, Bandari S, Repka MA. Preparation of a crystalline salt of indomethacin and tromethamine by hot melt extrusion technology. Eur J Pharm Biopharm 2018; 131:109-119. [PMID: 30086393 DOI: 10.1016/j.ejpb.2018.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/26/2018] [Accepted: 08/04/2018] [Indexed: 10/28/2022]
Abstract
Although salt formation is the most ubiquitous and effective method of increasing the solubility and dissolution rates of acidic and basic drugs, it consumes large quantities of organic solvents and is a batch process. Herein, we show that the dissolution rate of indomethacin (a poorly water-soluble drug) can be increased by using hot melt extrusion of a 1:1 (mol/mol) indomethacin:tromethamine mixture to form a highly crystalline salt, the physicochemical properties of which are investigated in detail. Specifically, pH-solubility studies demonstrated that this salt exhibited a maximal solubility of 19.34 mg/mL (>1000 times that of pure indomethacin) at pH 8.19. A solvent evaporation technique was also used for salt formation. Spectroscopic analyses (infrared, nuclear magnetic resonance) of both; demonstrated, in situ salt formation with proton transfer. Powder X-ray diffraction and differential scanning calorimetry confirmed the crystalline nature of salts formed by both methods. Even though a number of amorphous salts of acidic drugs have been reported, the formation of a crystalline salt of an acidic drug by hot melt extrusion is completely unprecedented, which makes this study an important benchmark for the pharmaceutical production industry.
Collapse
Affiliation(s)
- Mustafa Bookwala
- Department of Pharmaceutics & Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Priyanka Thipsay
- Department of Pharmaceutics & Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Samir Ross
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Suresh Bandari
- Department of Pharmaceutics & Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics & Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
39
|
Liu X, Ma X, Kun E, Guo X, Yu Z, Zhang F. Influence of lidocaine forms (salt vs. freebase) on properties of drug–eudragit® L100-55 extrudates prepared by reactive melt extrusion. Int J Pharm 2018; 547:291-302. [DOI: 10.1016/j.ijpharm.2018.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
|
40
|
Bhujbal SV, Zemlyanov DY, Cavallaro A, Mangal S, Taylor LS, Zhou QT. Qualitative and Quantitative Characterization of Composition Heterogeneity on the Surface of Spray Dried Amorphous Solid Dispersion Particles by an Advanced Surface Analysis Platform with High Surface Sensitivity and Superior Spatial Resolution. Mol Pharm 2018; 15:2045-2053. [PMID: 29641898 DOI: 10.1021/acs.molpharmaceut.8b00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface composition critically impacts stability (e.g., crystallization) and performance (e.g., dissolution) of spray dried amorphous solid dispersion (ASD) formulations; however, traditional characterization techniques such as Raman and infrared spectroscopies may not provide useful information on surface composition on the spray dried ASD particles due to low spatial resolution, high probing depth, and lack of quantitative information. This study presents an advanced surface characterization platform consisting of two complementary techniques: X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Such a platform enables qualitative and quantitative measurements of surface composition for the fine spray dried ASD particles with ultrasurface-sensitivity (less than 10 nm from the surface) and superior spatial resolution (approximately 250 nm for ToF-SIMS). Both XPS and ToF-SIMS demonstrated that the polymer (PVPVA) was dominantly enriched on the surface of our spray dried naproxen-PVPVA ASD particles. Of a particular note was that XPS could differentiate two batches of spray dried ASD particles with a subtle difference in surface composition produced by varying feed solution solvents. This advanced surface characterization platform will provide essential surface information to understand the mechanisms underlying the impact of surface composition on stability (e.g., crystallization) and functionality (e.g., dissolution) in future studies.
Collapse
Affiliation(s)
- Sonal V Bhujbal
- Department of Industrial, Physical Pharmacy, College of Pharmacy , Purdue University , 575 Stadium Mall Drive , West Lafayette , Indiana 47907 , United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center , Purdue University , 1205 West State Street , West Lafayette , Indiana 47907 , United States
| | - Alex Cavallaro
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Sharad Mangal
- Department of Industrial, Physical Pharmacy, College of Pharmacy , Purdue University , 575 Stadium Mall Drive , West Lafayette , Indiana 47907 , United States
| | - Lynne S Taylor
- Department of Industrial, Physical Pharmacy, College of Pharmacy , Purdue University , 575 Stadium Mall Drive , West Lafayette , Indiana 47907 , United States
| | - Qi Tony Zhou
- Department of Industrial, Physical Pharmacy, College of Pharmacy , Purdue University , 575 Stadium Mall Drive , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
41
|
Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions. Pharm Res 2018; 35:65. [DOI: 10.1007/s11095-018-2364-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/08/2018] [Indexed: 11/26/2022]
|
42
|
Khattab M, Wang F, Clayton AHA. A pH-induced conformational switch in a tyrosine kinase inhibitor identified by electronic spectroscopy and quantum chemical calculations. Sci Rep 2017; 7:16271. [PMID: 29176733 PMCID: PMC5701190 DOI: 10.1038/s41598-017-16583-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are a major class of drug utilised in the clinic. During transit to their cognate kinases, TKIs will encounter different pH environments that could have a major influence on TKI structure. To address this, we report UV-Vis spectroscopic and computational studies of the TKI, AG1478, as a function of pH. The electronic absorption spectrum of AG1478 shifted by 10 nm (from 342 nm to 332 nm) from acid to neutral pH and split into two peaks (at 334 nm and 345 nm) in highly alkaline conditions. From these transitions, the pKa value was calculated as 5.58 ± 0.01. To compute structures and spectra, time-dependent density functional theory (TD-DFT) calculations were performed along with conductor-like polarizable continuum model (CPCM) to account for implicit solvent effect. On the basis of the theoretical spectra, we could assign the AG1478 experimental spectrum at acidic pH to a mixture of two twisted conformers (71% AG1478 protonated at quinazolyl nitrogen N(1) and 29% AG1478 protonated at quinazolyl nitrogen N(3)) and at neutral pH to the neutral planar conformer. The AG1478 absorption spectrum (pH 13.3) was fitted to a mixture of neutral (70%) and NH-deprotonated species (30%). These studies reveal a pH-induced conformational transition in a TKI.
Collapse
Affiliation(s)
- Muhammad Khattab
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, 3122, Australia
| | - Feng Wang
- Molecular Model Discovery Laboratory, Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, 3122, Australia.
- School of Chemistry (Bio21 Institute), University of Melbourne, Parkville, Victoria, 3052, Australia.
- School of Physics, University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Andrew H A Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, 3122, Australia.
| |
Collapse
|
43
|
|
44
|
Cerreia Vioglio P, Chierotti MR, Gobetto R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv Drug Deliv Rev 2017; 117:86-110. [PMID: 28687273 DOI: 10.1016/j.addr.2017.07.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
Abstract
In recent years many efforts have been devoted to the screening and the study of new solid-state forms of old active pharmaceutical ingredients (APIs) with salification or co-crystallization processes, thus modulating final properties without changing the pharmacological nature. Salts, hydrates/solvates, and cocrystals are the common solid-state forms employed. They offer the intriguing possibility of exploring different pharmaceutical properties for a single API in the quest of enhancing the final drug product. New synthetic strategies and advanced characterization techniques have been recently proposed in this hot topic for pharmaceutical companies. This paper reviews the recent progresses in the field particularly focusing on the characterization challenges encountered when the nature of the solid-state form must be determined. The aim of this article is to offer the state-of-the-art on this subject in order to develop new insights and to promote cooperative efforts in the fascinating field of API salt and cocrystal forms.
Collapse
Affiliation(s)
| | - Michele R Chierotti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Roberto Gobetto
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
45
|
Moriyama K, Yasuhara Y, Ota H. Visualization of Protonation/Deprotonation of Active Pharmaceutical Ingredient in Solid State by Vapor Phase Amine-Selective Alkyne Tagging and Raman Imaging. J Pharm Sci 2017; 106:1778-1785. [DOI: 10.1016/j.xphs.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 01/05/2023]
|
46
|
Nie H, Byrn SR, Zhou Q(T. Stability of pharmaceutical salts in solid oral dosage forms. Drug Dev Ind Pharm 2017; 43:1215-1228. [PMID: 28276282 DOI: 10.1080/03639045.2017.1304960] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Haichen Nie
- Formulation Sciences, Teva Pharmaceuticals, West Chester, PA, USA
| | - Stephen R. Byrn
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
47
|
de Araujo GLB, Benmore CJ, Byrn SR. Local Structure of Ion Pair Interaction in Lapatinib Amorphous Dispersions characterized by Synchrotron X-Ray diffraction and Pair Distribution Function Analysis. Sci Rep 2017; 7:46367. [PMID: 28397829 PMCID: PMC5387732 DOI: 10.1038/srep46367] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/15/2017] [Indexed: 01/21/2023] Open
Abstract
For many years, the idea of analyzing atom-atom contacts in amorphous drug-polymer systems has been of major interest, because this method has always had the potential to differentiate between amorphous systems with domains and amorphous systems which are molecular mixtures. In this study, local structure of ionic and noninonic interactions were studied by High-Energy X-ray Diffraction and Pair Distribution Function (PDF) analysis in amorphous solid dispersions of lapatinib in hypromellose phthalate (HPMCP) and hypromellose (HPMC-E3). The strategy of extracting lapatinib intermolecular drug interactions from the total PDF x-ray pattern was successfully applied allowing the detection of distinct nearest neighbor contacts for the HPMC-E3 rich preparations showing that lapatinib molecules do not cluster in the same way as observed in HPMC-P, where ionic interactions are present. Orientational correlations up to nearest neighbor molecules at about 4.3 Å were observed for polymer rich samples; both observations showed strong correlation to the stability of the systems. Finally, the superior physical stability of 1:3 LP:HPMCP was consistent with the absence of significant intermolecular interactions in (∆) in the range of 3.0 to 6.0 Å, which are attributed to C-C, C-N and C-O nearest neighbor contacts present in drug-drug interactions.
Collapse
Affiliation(s)
- Gabriel L B de Araujo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil.,Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, 47906, United States
| | - Chris J Benmore
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Illinois, 60439, United States
| | - Stephen R Byrn
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, 47906, United States
| |
Collapse
|
48
|
Liu X, Zhou L, Zhang F. Reactive Melt Extrusion To Improve the Dissolution Performance and Physical Stability of Naproxen Amorphous Solid Dispersions. Mol Pharm 2017; 14:658-673. [PMID: 28135108 DOI: 10.1021/acs.molpharmaceut.6b00960] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to investigate the reaction between naproxen (NPX) and meglumine (MEG) at elevated temperature and to study the effect of this reaction on the physical stabilities and in vitro drug-release properties of melt-extruded naproxen amorphous solid dispersions (ASDs). Differential scanning calorimetry, hot-stage polarized light microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses demonstrated that in situ salt formation with proton transfer between NPX and MEG occurred at elevated temperature during the melt extrusion process. The amorphous NPX-MEG salt was physically most stable when two components were present at a 1:1 molar ratio. Polymeric carriers, including povidone, copovidone, and SOLUPLUS, did not interfere with the reaction between NPX and MEG during melt extrusion. Compared to the traditional NPX ASDs consisting of NPX and polymer only, NPX-MEG ASDs were physically more stable and remained amorphous following four months storage at 40 °C and 75% RH (relative humidity). Based on nonsink dissolution testing and polarized light microscopy analyses, we concluded that the conventional NPX ASDs composed of NPX and polymers failed to improve the NPX dissolution rate due to the rapid recrystallization of NPX in contact with aqueous medium. The dissolution rate of NPX-MEG ASDs was two times greater than the corresponding physical mixtures and conventional NPX ASDs. This study demonstrated that the acid-base reaction between NPX and MEG during melt extrusion significantly improved the physical stability and the dissolution rate of NPX ASDs.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmacy, The University of Texas at Austin , 2409 University Avenue, A1920, Austin, Texas 78712, United States
| | - Lin Zhou
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin , 2409 University Avenue, A1920, Austin, Texas 78712, United States
| |
Collapse
|
49
|
Song Y, Zemlyanov D, Chen X, Su Z, Nie H, Lubach JW, Smith D, Byrn S, Pinal R. Acid-base interactions in amorphous solid dispersions of lumefantrine prepared by spray-drying and hot-melt extrusion using X-ray photoelectron spectroscopy. Int J Pharm 2016; 514:456-464. [DOI: 10.1016/j.ijpharm.2016.06.126] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
|
50
|
Nie H, Su Y, Zhang M, Song Y, Leone A, Taylor LS, Marsac PJ, Li T, Byrn SR. Solid-State Spectroscopic Investigation of Molecular Interactions between Clofazimine and Hypromellose Phthalate in Amorphous Solid Dispersions. Mol Pharm 2016; 13:3964-3975. [PMID: 27653759 DOI: 10.1021/acs.molpharmaceut.6b00740] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haichen Nie
- Department
of Industrial and Physical Pharmacy, Purdue University, 575 Stadium
Mall Drive, West Lafayette, Indiana 47907, United States
- Formulation
Sciences, Teva Pharmaceuticals, 145 Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Yongchao Su
- Merck Research Laboratories, 770 Sumneytown Pike, West
Point, Pennsylvania 19486, United States
| | - Mingtao Zhang
- Department
of Industrial and Physical Pharmacy, Purdue University, 575 Stadium
Mall Drive, West Lafayette, Indiana 47907, United States
| | - Yang Song
- Department
of Industrial and Physical Pharmacy, Purdue University, 575 Stadium
Mall Drive, West Lafayette, Indiana 47907, United States
- Global
DMPK, Takeda Pharmaceutical Inc., 10410 Science Center Drive, San Diego, California 92121, United States
| | - Anthony Leone
- Merck Research Laboratories, 770 Sumneytown Pike, West
Point, Pennsylvania 19486, United States
| | - Lynne S. Taylor
- Department
of Industrial and Physical Pharmacy, Purdue University, 575 Stadium
Mall Drive, West Lafayette, Indiana 47907, United States
| | - Patrick J. Marsac
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Tonglei Li
- Department
of Industrial and Physical Pharmacy, Purdue University, 575 Stadium
Mall Drive, West Lafayette, Indiana 47907, United States
| | - Stephen R. Byrn
- Department
of Industrial and Physical Pharmacy, Purdue University, 575 Stadium
Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|