1
|
Lan T, Li P, Zhang SJ, Liu SY, Zeng XX, Chai F, Tong YH, Mao ZJ, Wang SW. Paeoniflorin promotes PPARγ expression to suppress HSCs activation by inhibiting EZH2-mediated histone H3K27 trimethylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155477. [PMID: 38489890 DOI: 10.1016/j.phymed.2024.155477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The alleviating effect of paeoniflorin (Pae) on liver fibrosis has been established; however, the molecular mechanism and specific target(s) underlying this effect remain elusive. PURPOSE This study was to investigate the molecular mechanism underlying the regulatory effect of Pae on hepatic stellate cells (HSCs) activation in liver fibrosis, with a specific focus on the role of Pae in modulating histone methylation modifications. METHODS The therapeutic effect of Pae was evaluated by establishing in vivo and in vitro models of carbon tetrachloride (CCl4)-induced mice and transforming growth factor β1 (TGF-β1)-induced LX-2 cells, respectively. Molecular docking, surface plasmon resonance (SPR), chromatin immunoprecipitation-quantitative real time PCR (ChIP-qPCR) and other molecular biological methods were used to clarify the molecular mechanism of Pae regulating HSCs activation. RESULTS Our study found that Pae inhibited HSCs activation and histone trimethylation modification in liver of CCl4-induced mice and LX-2 cells. We demonstrated that the inhibitory effect of Pae on the activation of HSCs was dependent on peroxisome proliferator-activated receptor γ (PPARγ) expression and enhancer of zeste homolog 2 (EZH2). Mechanistically, Pae directly binded to EZH2 to effectively suppress its enzymatic activity. This attenuation leaded to the suppression of histone H3K27 trimethylation in the PPARγ promoter region, which induced upregulation of PPARγ expression. CONCLUSION This investigative not only sheds new light on the precise targets that underlie the remission of hepatic fibrogenesis induced by Pae but also emphasizes the critical significance of EZH2-mediated H3K27 trimethylation in driving the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory Animal Resources Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100 Minjiang Road, Quzhou 324000, China; Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Ping Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Si-Jia Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Shi-Yu Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Fang Chai
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Hua Tong
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Zhu-Jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Si-Wei Wang
- Laboratory Animal Resources Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100 Minjiang Road, Quzhou 324000, China; Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
2
|
Aanniz T, Bouyahya A, Balahbib A, El Kadri K, Khalid A, Makeen HA, Alhazmi HA, El Omari N, Zaid Y, Wong RSY, Yeo CI, Goh BH, Bakrim S. Natural bioactive compounds targeting DNA methyltransferase enzymes in cancer: Mechanisms insights and efficiencies. Chem Biol Interact 2024; 392:110907. [PMID: 38395253 DOI: 10.1016/j.cbi.2024.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs.
Collapse
Affiliation(s)
- Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, B.P, 6203, Morocco.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco.
| | - Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco.
| | - Kawtar El Kadri
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia; Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum, 11111, Sudan.
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia.
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia; Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco.
| | - Younes Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Rebecca Shin-Yee Wong
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Department of Medical Education, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| | - Chien Ing Yeo
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, 80000, Morocco.
| |
Collapse
|
3
|
Raj R, Shen P, Yu B, Zhang J. A patent review on HMGB1 inhibitors for the treatment of liver diseases. Expert Opin Ther Pat 2024; 34:127-140. [PMID: 38557201 DOI: 10.1080/13543776.2024.2338105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION HMGB1 is a non-histone chromatin protein released or secreted in response to tissue damage or infection. Extracellular HMGB1, as a crucial immunomodulatory factor, binds with several different receptors to innate inflammatory responses that aggravate acute and chronic liver diseases. The increased levels of HMGB1 have been reported in various liver diseases, highlighting that it represents a potential biomarker and druggable target for therapeutic development. AREAS COVERED This review summarizes the current knowledge on the structure, function, and interacting receptors of HMGB1 and its significance in multiple liver diseases. The latest patented and preclinical studies of HMGB1 inhibitors (antibodies, peptides, and small molecules) for liver diseases are summarized by using the keywords 'HMGB1,' 'HMGB1 antagonist, HMGB1-inhibitor,' 'liver disease' in Web of Science, Google Scholar, Google Patents, and PubMed databases in the year from 2017 to 2023. EXPERT OPINIONS In recent years, extensive research on HMGB1-dependent inflammatory signaling has discovered potent inhibitors of HMGB1 to reduce the severity of liver injury. Despite significant progress in the development of HMGB1 antagonists, few of them are approved for clinical treatment of liver-related diseases. Developing safe and effective specific inhibitors for different HMGB1 isoforms and their interaction with receptors is the focus of future research.
Collapse
Affiliation(s)
- Richa Raj
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
4
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
5
|
Ferreira EA, Queiroz LS, Silva Facchini GDF, Guedes MCMR, Macedo GC, de Sousa OV, Da Silva Filho AA. Baccharis dracunculifolia DC (Asteraceae) Root Extract and Its Triterpene Baccharis Oxide Display Topical Anti-Inflammatory Effects on Different Mice Ear Edema Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9923941. [PMID: 37275573 PMCID: PMC10234725 DOI: 10.1155/2023/9923941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
B. dracunculifolia is popularly used to treat skin diseases. This work aimed to evaluate the topical anti-inflammatory properties of B. dracunculifolia root extract (BdR) and its major compound baccharis oxide (BOx) on mice ear edema models. BdR was analyzed by GC-MS, and BOx was isolated by chromatographic fractionation. Topical anti-inflammatory activities were determined by using the croton oil, capsaicin, histamine, and phenol-induced mouse ear edema models. N-acetyl-β-D- glucosaminidase (NAG) and myeloperoxidase (MPO) activities, as well as NO dosage and histopathological analyses, were also evaluated. Phytochemical analysis of BdR showed BOx as one of the major constituents. BdR and BOx (both at 0.1, 0.5, and 1.0 mg/ear) significantly reduced croton oil, histamine, and phenol-induced ear edema, while only BOx was effective in reducing capsaicin-induced edema. MPO and NAG activities, as well as NO production, were significantly inhibited by BdR and BOx. Histopathological analysis confirmed the topical anti-inflammatory properties of BdR and BOx. Our findings showed that BdR and BOx demonstrated significant topical anti-inflammatory effects in mouse ear edema induced by different agents, suggesting their possible application on skin inflammatory diseases.
Collapse
Affiliation(s)
- Everton Allan Ferreira
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Lucas Sales Queiroz
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Gabriella de Faria Silva Facchini
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Maria Clara Machado Resende Guedes
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Gilson Costa Macedo
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Orlando Vieira de Sousa
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Ademar A. Da Silva Filho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| |
Collapse
|
6
|
Pal D, Raj K, Nandi SS, Sinha S, Mishra A, Mondal A, Lagoa R, Burcher JT, Bishayee A. Potential of Synthetic and Natural Compounds as Novel Histone Deacetylase Inhibitors for the Treatment of Hematological Malignancies. Cancers (Basel) 2023; 15:2808. [PMID: 37345145 PMCID: PMC10216849 DOI: 10.3390/cancers15102808] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are enzymes that remove or add acetyl groups to lysine residues of histones, respectively. Histone deacetylation causes DNA to more snugly encircle histones and decreases gene expression, whereas acetylation has the opposite effect. Through these small alterations in chemical structure, HATs and HDACs regulate DNA expression. Recent research indicates histone deacetylase inhibitors (HDACis) may be used to treat malignancies, including leukemia, B-cell lymphoma, virus-associated tumors, and multiple myeloma. These data suggest that HDACis may boost the production of immune-related molecules, resulting in the growth of CD8-positive T-cells and the recognition of nonreactive tumor cells by the immune system, thereby diminishing tumor immunity. The argument for employing epigenetic drugs in the treatment of acute myeloid leukemia (AML) patients is supported by evidence that both epigenetic changes and mutations in the epigenetic machinery contribute to AML etiology. Although hypomethylating drugs have been licensed for use in AML, additional epigenetic inhibitors, such as HDACis, are now being tested in humans. Preclinical studies evaluating the efficacy of HDACis against AML have shown the ability of specific agents, such as anobinostat, vorinostat, and tricostatin A, to induce growth arrest, apoptosis, autophagy and cell death. However, these inhibitors do not seem to be successful as monotherapies, but instead achieve results when used in conjunction with other medications. In this article, we discuss the mounting evidence that HDACis promote extensive histone acetylation, as well as substantial increases in reactive oxygen species and DNA damage in hematological malignant cells. We also evaluate the potential of various natural product-based HDACis as therapeutic agents to combat hematological malignancies.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495 009, India
| | - Khushboo Raj
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495 009, India
| | - Shyam Sundar Nandi
- Department of Biotechnology, Indian Council for Medical Research-National Institute of Virology, Mumbai 400 012, India
| | - Surajit Sinha
- Department of Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Ricardo Lagoa
- Associate Laboratory in Chemical Engineering, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
7
|
Zhan R, Gerk PM. Analysis of A Major Metabolite of Ursolic Acid— Ursolic Acid Sulfate, and Its Quantitative Determination on LC/MS in Human Liver Homogenate. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123695. [PMID: 37019037 DOI: 10.1016/j.jchromb.2023.123695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Ursolic acid (UA) is a naturally occurring pentacyclic triterpenoid that exhibits extensive pre-systemic metabolism from in vitro studies. However, there are no available authentic metabolite standards or validated analytical methods to quantitate UA metabolites. We have identified ursolic acid sulfate (UAS) as one of the major metabolites. We were able to identify and characterize its structure via comparison to the chemically synthesized UAS. A cyano (CN, 150 × 4.6 mm, 5 µm) column along with a gradient elution of acetonitrile and 0.08% (v/v) acetic acid, pH 3.0 were employed for chromatographic separation. Negative single ion recording mode (SIR) with electron-spray ionization (ESI) source at mass-to-charge ratios of 455.3 and 535.3 were monitored for UA and UAS, respectively. UAS linearity range was 0.010-2.500 µM. The absolute values of intra-day and inter-day precision (CV, %) and accuracy (DFN, %) were all below 15%. Thus, the analytical method has been validated in the human subcellular fractions to facilitate in vitro/ in vivo DMPK and future clinical disposition studies on UA.
Collapse
|
8
|
Shen H, Wang J, Ao J, Ye L, Shi Y, Liu Y, Li M, Luo A. The inhibitory mechanism of pentacyclic triterpenoid acids on pancreatic lipase and cholesterol esterase. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
CHENG X, ZHAO C, JIN Z, HU J, ZHANG Z, ZHANG C. Natural products: potential therapeutic agents for atherosclerosis. Chin J Nat Med 2022; 20:830-845. [DOI: 10.1016/s1875-5364(22)60219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/24/2022]
|
10
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
11
|
Qu PR, Jiang ZL, Song PP, Liu LC, Xiang M, Wang J. Saponins and their derivatives: Potential candidates to alleviate anthracycline-induced cardiotoxicity and multidrug resistance. Pharmacol Res 2022; 182:106352. [PMID: 35835369 DOI: 10.1016/j.phrs.2022.106352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Anthracyclines (ANTs) continue to play an irreplaceable role in oncology treatment. However, the clinical application of ANTs has been limited. In the first place, ANTs can cause dose-dependent cardiotoxicity such as arrhythmia, cardiomyopathy, and congestive heart failure. In the second place, the development of multidrug resistance (MDR) leads to their chemotherapeutic failure. Oncology cardiologists are urgently searching for agents that can both protect the heart and reverse MDR without compromising the antitumor effects of ANTs. Based on in vivo and in vitro data, we found that natural compounds, including saponins, may be active agents for other both natural and chemical compounds in the inhibition of anthracycline-induced cardiotoxicity (AIC) and the reversal of MDR. In this review, we summarize the work of previous researchers, describe the mechanisms of AIC and MDR, and focus on revealing the pharmacological effects and potential molecular targets of saponins and their derivatives in the inhibition of AIC and the reversal of MDR, aiming to encourage future research and clinical trials.
Collapse
Affiliation(s)
- Pei-Rong Qu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhi-Lin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Ping-Ping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medicine Sciences, Beijing 100013, China
| | - Lan-Chun Liu
- Beijing University of traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
12
|
Natural Bioactive Compounds Targeting Histone Deacetylases in Human Cancers: Recent Updates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082568. [PMID: 35458763 PMCID: PMC9027183 DOI: 10.3390/molecules27082568] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Cancer is a complex pathology that causes a large number of deaths worldwide. Several risk factors are involved in tumor transformation, including epigenetic factors. These factors are a set of changes that do not affect the DNA sequence, while modifying the gene’s expression. Histone modification is an essential mark in maintaining cellular memory and, therefore, loss of this mark can lead to tumor transformation. As these epigenetic changes are reversible, the use of molecules that can restore the functions of the enzymes responsible for the changes is therapeutically necessary. Natural molecules, mainly those isolated from medicinal plants, have demonstrated significant inhibitory properties against enzymes related to histone modifications, particularly histone deacetylases (HDACs). Flavonoids, terpenoids, phenolic acids, and alkaloids exert significant inhibitory effects against HDAC and exhibit promising epi-drug properties. This suggests that epi-drugs against HDAC could prevent and treat various human cancers. Accordingly, the present study aimed to evaluate the pharmacodynamic action of different natural compounds extracted from medicinal plants against the enzymatic activity of HDAC.
Collapse
|
13
|
Wu R, Li S, Hudlikar R, Wang L, Shannar A, Peter R, Chou PJ, Kuo HCD, Liu Z, Kong AN. Redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals. Free Radic Biol Med 2022; 179:328-336. [PMID: 33359432 PMCID: PMC8222414 DOI: 10.1016/j.freeradbiomed.2020.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023]
Abstract
Biological redox signaling plays an important role in many diseases. Redox signaling involves reductive and oxidative mechanisms. Oxidative stress occurs when reductive mechanism underwhelms oxidative challenges. Cellular oxidative stress occurs when reactive oxygen/nitrogen species (RO/NS) exceed the cellular reductive/antioxidant capacity. Endogenously produced RO/NS from mitochondrial metabolic citric-acid-cycle coupled with electron-transport-chain or exogenous stimuli trigger cellular signaling events leading to homeostatic response or pathological damage. Recent evidence suggests that RO/NS also modulate epigenetic machinery driving gene expression. RO/NS affect DNA methylation/demethylation, histone acetylation/deacetylation or histone methylation/demethylation. Many health beneficial phytochemicals possess redox capability that counteract RO/NS either by directly scavenging the radicals or via inductive mechanism of cellular defense antioxidant/reductive enzymes. Amazingly, these phytochemicals also possess epigenetic modifying ability. This review summarizes the latest advances on the interactions between redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals and the future challenges of integrating these events in human health.
Collapse
Affiliation(s)
- Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Zhigang Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
14
|
3 β,23-Dihydroxy-12-ene-28-ursolic Acid Isolated from Cyclocarya paliurus Alleviates NLRP3 Inflammasome-Mediated Gout via PI3K-AKT-mTOR-Dependent Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5541232. [PMID: 35047046 PMCID: PMC8763513 DOI: 10.1155/2022/5541232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Gout is regarded as a painful inflammatory arthritis induced by the deposition of monosodium urate crystals in joints and soft tissues. Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-mediated IL-1β production plays a crucial role in the pathological process of gout. Cyclocarya paliurus (CP) tea was found to have an effect on reducing the blood uric acid level of people with hyperuricemia and gout. However, its medicinal ingredients and mechanism for the treatment of gout are still unclear. Thus, this study was designed to investigate the effects of the active triterpenoids isolated from C. paliurus on gout and explore the underlying mechanism. The results showed that compound 2 (3β,23-dihydroxy-12-ene-28-ursolic acid) from C. paliurus significantly decreased the protein expression of IL-1β, caspase-1, pro-IL-1β, pro-caspase-1, and NLRP3. Furthermore, the production of ROS in the intracellular was reduced after compound 2 treatment. However, ROS agonist rotenone remarkably reversed the inhibitory effect of compound 2 on the protein expression of NLRP3 inflammasome. Additionally, the expression level of LC3 and the ratio of LC3II/LC3I were increased, but the expression level of p62 was suppressed by compound 2 whereas an autophagy inhibitor 3-methyladenine (3-MA) significantly abolished the inhibitory effects of compound 2 on the generation of ROS and the protein expression of NLRP3 inflammasome. Moreover, compound 2 could ameliorate the expression ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR. Interestingly, mTOR activator MHY-1485 could block the promotion effect of compound 2 on autophagy regulation and inhibitory effect of compound 2 on induction of ROS and IL-1β. In conclusion, these findings suggested that compound 2 may effectively improve NLRP3 inflammasome-mediated gout via PI3K-AKT-mTOR-dependent autophagy and could be further investigated as a potential agent against gout.
Collapse
|
15
|
Luan M, Wang H, Wang J, Zhang X, Zhao F, Liu Z, Meng Q. Advances in Anti-inflammatory Activity, Mechanism and Therapeutic Application of Ursolic Acid. Mini Rev Med Chem 2022; 22:422-436. [PMID: 34517797 DOI: 10.2174/1389557521666210913113522] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
In vivo and in vitro studies reveal that Ursolic Acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli and has favorable anti-inflammatory effects. The antiinflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of the signal pathway, downregulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases, such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.
Collapse
Affiliation(s)
- Mingzhu Luan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Shandong Province, 276826, P.R. China
| | - Jiazhen Wang
- The Second Hospital of Anhui Medical University, Anhui Province, 230601, P.R. China
| | - Xiaofan Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Fenglan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Zongliang Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Qingguo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| |
Collapse
|
16
|
Li S, Wu R, Wang L, Dina Kuo HC, Sargsyan D, Zheng X, Wang Y, Su X, Kong AN. Triterpenoid ursolic acid drives metabolic rewiring and epigenetic reprogramming in treatment/prevention of human prostate cancer. Mol Carcinog 2022; 61:111-121. [PMID: 34727410 PMCID: PMC8665082 DOI: 10.1002/mc.23365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Ursolic acid (UA) is a triterpenoid phytochemical with a strong anticancer effect. The metabolic rewiring, epigenetic reprogramming, and chemopreventive effect of UA in prostate cancer (PCa) remain unknown. Herein, we investigated the efficacy of UA in PCa xenograft, and its biological effects on cellular metabolism, DNA methylation, and transcriptomic using multi-omics approaches. The metabolomics was quantified by liquid-chromatography-mass spectrometry (LC-MS) while epigenomic CpG methylation in parallel with transcriptomic gene expression was studied by next-generation sequencing technologies. UA administration attenuated the growth of transplanted human VCaP-Luc cells in immunodeficient mice. UA regulated several cellular metabolites and metabolism-related signaling pathways including S-adenosylmethionine (SAM), methionine, glucose 6-phosphate, CDP-choline, phosphatidylcholine biosynthesis, glycolysis, and nucleotide sugars metabolism. RNA-seq analyses revealed UA regulated several signaling pathways, including CXCR4 signaling, cancer metastasis signaling, and NRF2-mediated oxidative stress response. Epigenetic reprogramming study with DNA Methyl-seq uncovered a list of differentially methylated regions (DMRs) associated with UA treatment. Transcriptome-DNA methylome correlative analysis uncovered a list of genes, of which changes in gene expression correlated with the promoter CpG methylation status. Altogether, our results suggest that UA regulates metabolic rewiring of metabolism including SAM potentially driving epigenetic CpG methylation reprogramming, and transcriptomic signaling resulting in the overall anticancer chemopreventive effect.
Collapse
Affiliation(s)
- Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- International Center for Aging and Cancer, Hainan Medical University, Haikou, Hainan, China
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
17
|
Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
|
18
|
Verification of the Potential Targets of the Herbal Prescription Sochehwan for Drug Repurposing Processes as Deduced by Network Pharmacology. Processes (Basel) 2021. [DOI: 10.3390/pr9112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Network pharmacology (NP) is a useful, emerging means of understanding the complex pharmacological mechanisms of traditional herbal medicines. Sochehwan (SCH) is a candidate herbal prescription for drug repurposing as it has been suggested to have beneficial effects on metabolic syndrome. In this study, NP was adopted to complement the shortcomings of literature-based drug repurposing strategies in traditional herbal medicine. We conducted in vitro studies to confirm the effects of SCH on potential pharmacological targets identified by NP analysis. Herbal compounds and molecular targets of SCH were explored and screened from a traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and an oriental medicine advanced searching integrated system (OASIS). Forty-seven key targets selected from a protein-protein interaction (PPI) network were analyzed with gene ontology (GO) term enrichment and KEGG pathway enrichment analysis to identify relevant categories. The tumor necrosis factor (TNF) and mitogen-activated protein kinase (MAPK) signaling pathways were presented as significant signaling pathways with lowest p-values by NP analysis, which were downregulated by SCH treatment. The signal transducer and activator of transcription 3 (STAT3) was identified as a core key target by NP analysis, and its phosphorylation ratio was confirmed to be significantly suppressed by SCH. In conclusion, the NP-based approach used for target prediction and experimental data obtained from Raw 264.7 cells strongly suggested that SCH can attenuate inflammatory status by modulating the phosphorylation status of STAT3.
Collapse
|
19
|
Natural Bioactive Compounds Targeting Epigenetic Pathways in Cancer: A Review on Alkaloids, Terpenoids, Quinones, and Isothiocyanates. Nutrients 2021; 13:nu13113714. [PMID: 34835969 PMCID: PMC8621755 DOI: 10.3390/nu13113714] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most complex and systemic diseases affecting the health of mankind, causing major deaths with a significant increase. This pathology is caused by several risk factors, of which genetic disturbances constitute the major elements, which not only initiate tumor transformation but also epigenetic disturbances which are linked to it and which can induce transcriptional instability. Indeed, the involvement of epigenetic disturbances in cancer has been the subject of correlations today, in addition to the use of drugs that operate specifically on different epigenetic pathways. Natural molecules, especially those isolated from medicinal plants, have shown anticancer effects linked to mechanisms of action. The objective of this review is to explore the anticancer effects of alkaloids, terpenoids, quinones, and isothiocyanates.
Collapse
|
20
|
Qian XP, Zhang XH, Sun LN, Xing WF, Wang Y, Sun SY, Ma MY, Cheng ZP, Wu ZD, Xing C, Chen BN, Wang YQ. Corosolic acid and its structural analogs: A systematic review of their biological activities and underlying mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153696. [PMID: 34456116 DOI: 10.1016/j.phymed.2021.153696] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The corosolic acid (CA), also known as plant insulin, is a pentacyclic triterpenoid extracted from plants such as Lagerstroemia speciosa. It has been shown to have anti-diabetic, anti-inflammatory and anti-tumor effects. Its structural analogs ursolic acid (UA), oleanolic acid (OA), maslinic acid (MA), asiatic acid (AA) and betulinic acid (BA) display similar individual pharmacological activities to those of CA. However, there is no systematic review documenting pharmacological activities of CA and its structural analogues. This study aims to fill this gap in literature. PURPOSE This systematic review aims to summarize the medical applications of CA and its analogues. METHODS A systematic review summarizes and compares the extraction techniques, pharmacokinetic parameters, and pharmacological effects of CA and its structural analogs. Hypoglycemic effect is one of the key inclusion criteria for searching Web of Science, PubMed, Embase and Cochrane databases up to October 2020 without language restrictions. 'corosolic acid', 'ursolic acid', 'oleanolic acid', 'maslinic acid', 'asiatic acid', 'betulinic acid', 'extraction', 'pharmacokinetic', 'pharmacological' were used to extract relevant literature. The PRISMA guidelines were followed. RESULTS At the end of the searching process, 140 articles were selected for the systematic review. Information of CA and five of its structural analogs including UA, OA, MA, AA and BA were included in this review. CA and its structural analogs are pentacyclic triterpenes extracted from plants and they have low solubilities in water due to their rigid scaffold and hydrophobic properties. The introduction of water-soluble groups such as sugar or amino groups could increase the solubility of CA and its structural analogs. Their biological activities and underlying mechanism of action are reviewed and compared. CONCLUSION CA and its structural analogs UA, OA, MA, AA and BA are demonstrated to show activities in lowering blood sugar, anti-inflammation and anti-tumor. Their oral absorption and bioavailability can be improved through structural modification and formulation design. CA and its structural analogs are promising natural product-based lead compounds for further development and mechanistic studies.
Collapse
Affiliation(s)
- Xu-Ping Qian
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Xue-Hui Zhang
- Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Wei-Fan Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Yu Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Shi-Yu Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Meng-Yuan Ma
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Zi-Ping Cheng
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Zu-Dong Wu
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Chen Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Bei-Ning Chen
- Department of Chemistry, University of Sheffield, Brookhill, Sheffield S3 7HF, United Kingdom.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
21
|
Butkeviciute A, Petrikaite V, Jurgaityte V, Liaudanskas M, Janulis V. Antioxidant, Anti-Inflammatory, and Cytotoxic Activity of Extracts from Some Commercial Apple Cultivars in Two Colorectal and Glioblastoma Human Cell Lines. Antioxidants (Basel) 2021; 10:antiox10071098. [PMID: 34356331 PMCID: PMC8301036 DOI: 10.3390/antiox10071098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer initiation and development are closely related to oxidative stress and chronic inflammation. The aim of this study was to evaluate apple extracts and individual tritepenes antioxidant, anti-inflammatory, and cytotoxic activities. Dry extracts of apple were analyzed by HPLC-PDA. A hyaluronidase inhibition assay was selected to determine the anti-inflammatory effect. Cytotoxic activities against human colon adenocarcinoma cell line (HT-29) and human glioblastoma cell line (U-87) were determined using MTT, cell colony formation, and spheroid growth assays. Radical scavenging and reducing activities were evaluated using DPPH, ABTS, FRAP, and CUPRAC assays, respectively. The apple extracts inhibited hyaluronidase from 26.38 ± 4.4% to 35.05 ± 3.8%. The AAW extract possessed the strongest cytotoxic activity (EC50 varied from 113.3 ± 11.11 µg/mL to 119.7 ± 4.0 µg/mL). The AEW extract had four and five times stronger antiradical activity when determined by ABTS and DPPH, and two and eight times stronger reducing activity when evaluated by CUPRAC and FRAP, respectively. Understanding the mechanisms of apple extracts and individual triterpenes as hyaluronidase inhibitors and antioxidants related in cancer development may be a benefit to future study in vivo, as well as cancer prognosis or the development of new, innovative food supplements, which could be used for chronic disease prevention.
Collapse
Affiliation(s)
- Aurita Butkeviciute
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (V.J.)
- Correspondence: ; Tel.: +37-037-621-56190
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (V.P.); (V.J.)
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, A. Mickeviciaus 9, LT-44307 Kaunas, Lithuania
| | - Vidmante Jurgaityte
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (V.P.); (V.J.)
| | - Mindaugas Liaudanskas
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (V.J.)
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (V.J.)
| |
Collapse
|
22
|
Carletto B, Koga AY, Novatski A, Mainardes RM, Lipinski LC, Farago PV. Ursolic acid-loaded lipid-core nanocapsules reduce damage caused by estrogen deficiency in wound healing. Colloids Surf B Biointerfaces 2021; 203:111720. [PMID: 33819820 DOI: 10.1016/j.colsurfb.2021.111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The skin aging process in women is accelerated due to decreases in serum estrogen levels triggered by the menopause process. Hence, poly(L-lactic acid) lipid-core nanocapsules containing ursolic acid (NPLA-UA) were developed using the interfacial deposition of the preformed polymer methodology as a strategy to reduce damages to the healing process caused by hormonal deficiency in ovariectomized rats. The colloidal suspensions of nanocapsules presented adequate size and morphology (254 and 375 nm), negative zeta potential (-31 and -37 mV), high encapsulation efficiency (99.89 %), and amorphous character. The analyses performed in an in vivo healing trial showed that the treatment with NPLA-UA resulted in faster wound retraction with less inflammatory response. In addition, the angiogenic process was stimulated increased synthesis of dermal collagen occurred. Ursolic acid-loaded, lipid-core nanocapsules are suitable for treating skin changes triggered by decreased estrogen in menopause.
Collapse
Affiliation(s)
- Bruna Carletto
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil.
| | - Adriana Yuriko Koga
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil
| | - Andressa Novatski
- Department of Physics, State University of Ponta Grossa, Paraná, Brazil
| | | | | | - Paulo Vitor Farago
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil
| |
Collapse
|
23
|
Wang Y, Luo Z, Zhou D, Wang X, Chen J, Gong S, Yu Z. Nano-assembly of ursolic acid with platinum prodrug overcomes multiple deactivation pathways in platinum-resistant ovarian cancer. Biomater Sci 2021; 9:4110-4119. [PMID: 33949442 DOI: 10.1039/d1bm00087j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As the most common cause of gynecological cancer-related deaths worldwide, ovarian cancer requires novel therapy strategies. Pt(ii)-Based antitumor drugs (e.g. cisplatin) are one of the most successful and frequently used drugs in ovarian cancer chemotherapy at present. However, drug resistance and severe side effects are the major problems in cancer treatment. Herein, the design of a reduction responsive platinum(iv) (Pt(iv))/ursolic acid (UA)/polyethylene glycol (PEG) dual prodrug amphiphile (Pt(iv)-UA-PEG) to treat cisplatin-resistant ovarian cancer is reported for the first time. Pt(iv)-UA-PEG could self-assemble into nanoparticles (Pt(iv)-UA NPs) with a fixed and precise Pt/UA ratio, and a constantly high content of drugs. Pt(iv)-UA NPs could be efficiently taken up by cisplatin-resistant ovarian cancer cells and release the drug in intracellular reductive and acidic environments. In vitro studies show that the released UA and cisplatin have different anticancer mechanisms, and their synergistic effects overcome the detoxification and anti-apoptotic mechanisms of cancer cells. Furthermore, the in vivo results indicate that Pt(iv)-UA NPs have a prolonged blood circulation time, enhanced tumor accumulation, and significantly improved antitumor efficacy in A2780/DDP tumor-bearing mice, without causing any side effects. In summary, our results demonstrate that the development of the stimuli-responsive dual prodrug amphiphile nano-assembly provides a new strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, P. R. China.
| | - Zhijian Luo
- A School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Dongfang Zhou
- A School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jianjun Chen
- Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, P. R. China. and A School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shipeng Gong
- Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, P. R. China. and Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhiqiang Yu
- Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, P. R. China. and A School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
24
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhou L, Xu H. Ursolic acid: A systematic review of its pharmacology, toxicity and rethink on its pharmacokinetics based on PK-PD model. Fitoterapia 2020; 147:104735. [PMID: 33010369 DOI: 10.1016/j.fitote.2020.104735] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Ursolic acid (UA) is a natural pentacyclic triterpenoid compound existing in various traditional Chinese medicinal herbs, and it possesses diverse pharmacological actions and some undesirable adverse effects, even toxicological activities. Due to UA's low solubility and poor bioavailability, and its interaction with gut microbiota after oral administration, the pharmacokinetics of UA remain elusive, leading to obscurity in the pharmacokinetics-pharmacodynamics (PK-PD) profile and relationship for UA. Based on literatures from PubMed, Google Scholar, ResearchGate, Web of Science and Wiley Online Library, with keywords of "pharmacology", "toxicology", "pharmacokinetics", "PK-PD" and "ursolic acid", herein we systematically review the pharmacology and toxicity of UA, and rethink on its pharmacokinetics on the basis of PK-PD model, and seek to delineate the underlying mechanisms for the characteristics of pharmacology and toxicology of UA, and for the pharmacokinetic features of UA particularly from the organ tropism and the interactions between UA and gut microbiota, and lay a solid foundation for development of UA-derived therapeutic agents in clinical settings.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijuan Zhou
- Sichuan Academy of Chinese Medical Sciences, Chengdu 610041, China
| | - Haibo Xu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
25
|
Li W, Sun K, Hu F, Chen L, Zhang X, Wang F, Yan B. Protective effects of natural compounds against oxidative stress in ischemic diseases and cancers via activating the Nrf2 signaling pathway: A mini review. J Biochem Mol Toxicol 2020; 35:e22658. [PMID: 33118292 DOI: 10.1002/jbt.22658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress, an imbalance between reactive oxygen species and antioxidants, has been seen in the pathological states of many disorders such as ischemic diseases and cancers. Many natural compounds (NCs) have long been recognized to ameliorate oxidative stress due to their inherent antioxidant activities. The modulation of oxidative stress by NCs via activating the Nrf2 signaling pathway is summarized in the review. Three NCs, ursolic acid, betulinic acid, and curcumin, and the mechanisms of their cytoprotective effects are investigated in myocardial ischemia, cerebral ischemia, skin cancer, and prostate cancer. To promote the therapeutic performance of NCs with poor water solubility, the formulation approach, such as the nano drug delivery system, is elaborated as well in this review.
Collapse
Affiliation(s)
- Wenji Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kai Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Chen
- China National Intellectual Property Administration Patent Re-examination and Invalidation Department Pharmaceutical Division, Beijing, China
| | - Xing Zhang
- Departments of Urology, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, Jiangsu, China
| | - Fuxing Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingchun Yan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
26
|
Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Antioxidants (Basel) 2020; 9:antiox9090865. [PMID: 32938017 PMCID: PMC7555619 DOI: 10.3390/antiox9090865] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetics has provided a new dimension to our understanding of nuclear factor erythroid 2–related factor 2/Kelch-like ECH-associated protein 1 (human NRF2/KEAP1 and murine Nrf2/Keap1) signaling. Unlike the genetic changes affecting DNA sequence, the reversible nature of epigenetic alterations provides an attractive avenue for cancer interception. Thus, targeting epigenetic mechanisms in the corresponding signaling networks represents an enticing strategy for therapeutic intervention with dietary phytochemicals acting at transcriptional, post-transcriptional, and post-translational levels. This regulation involves the interplay of histone modifications and DNA methylation states in the human NFE2L2/KEAP1 and murine Nfe2l2/Keap1 genes, acetylation of lysine residues in NRF2 and Nrf2, interaction with bromodomain and extraterminal domain (BET) acetyl “reader” proteins, and non-coding RNAs such as microRNA (miRNA) and long non-coding RNA (lncRNA). Phytochemicals documented to modulate NRF2 signaling act by reversing hypermethylated states in the CpG islands of NFE2L2 or Nfe2l2, via the inhibition of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), through the induction of ten-eleven translocation (TET) enzymes, or by inducing miRNA to target the 3′-UTR of the corresponding mRNA transcripts. To date, fewer than twenty phytochemicals have been reported as NRF2 epigenetic modifiers, including curcumin, sulforaphane, resveratrol, reserpine, and ursolic acid. This opens avenues for exploring additional dietary phytochemicals that regulate the human epigenome, and the potential for novel strategies to target NRF2 signaling with a view to beneficial interception of cancer and other chronic diseases.
Collapse
|
27
|
Di Y, Xu T, Tian Y, Ma T, Qu D, Wang Y, Lin Y, Bao D, Yu L, Liu S, Wang A. Ursolic acid protects against cisplatin‑induced ototoxicity by inhibiting oxidative stress and TRPV1‑mediated Ca2+‑signaling. Int J Mol Med 2020; 46:806-816. [PMID: 32626955 PMCID: PMC7307815 DOI: 10.3892/ijmm.2020.4633] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin (CDDP) is widely used in clinical settings for the treatment of various cancers. However, ototoxicity is a major side effect of CDDP, and there is an associated risk of irreversible hearing loss. We previously demonstrated that CDDP could induce ototoxicity via activation of the transient receptor potential vanilloid receptor 1 (TRPV1) pathway and subsequent induction of oxidative stress. The present study investigated whether ursolic acid (UA) treatment could protect against CDDP‑induced ototoxicity. UA is a triterpenoid with strong antioxidant activity widely used in China for the treatment of liver diseases. This traditional Chinese medicine is mainly isolated from bearberry, a Chinese herb. The present results showed that CDDP increased auditory brainstem response threshold shifts in frequencies associated with observed damage to the outer hair cells. Moreover, CDDP increased the expression of TRPV1, calpain 2 and caspase‑3 in the cochlea, and the levels of Ca2+ and 4‑hydroxynonenal. UA co‑treatment significantly attenuated CDDP‑induced hearing loss and inhibited TRPV1 pathway activation. In addition, UA enhanced CDDP‑induced growth inhibition in the human ovarian cancer cell line SKOV3, suggesting that UA synergizes with CDDP in vitro. Collectively, the present data suggested that UA could effectively attenuate CDDP‑induced hearing loss by inhibiting the TRPV1/Ca²+/calpain‑oxidative stress pathway without impairing the antitumor effects of CDDP.
Collapse
Affiliation(s)
| | - Tao Xu
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The Synergism of PGN, LTA and LPS in Inducing Transcriptome Changes, Inflammatory Responses and a Decrease in Lactation as Well as the Associated Epigenetic Mechanisms in Bovine Mammary Epithelial Cells. Toxins (Basel) 2020; 12:toxins12060387. [PMID: 32545333 PMCID: PMC7354563 DOI: 10.3390/toxins12060387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Mastitis is usually caused by a variety of pathogenic bacteria that include both Gram-positive and Gram-negative bacteria. Lipopolysaccharide (LPS) is the pathogen-associated molecular pattern (PAMP) of Gram-negative bacteria, and peptidoglycan (PGN) and lipoteichoic acid (LTA) are those of Gram-positive bacteria. The effects of LPS, PGN and/or LTA on inflammatory response and lactation in bovine mammary epithelial cells (BMECs) are well studied, but the epigenetic mechanisms of their effects received less attention. Furthermore, since the three PAMPs are often simultaneously present in the udder of cows with mastitis, it has implications in practice to study their additive effects. The results show that co-stimulation of bovine mammary epithelial cells with PGN, LTA, and LPS induced a higher number of differentially expressed genes (DEGs) and greater expressions of inflammatory factors including interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α (TNF-α), chemokine (C-X-C motif) ligand (CXCL)1, and CXCL6. In addition, co-stimulation further increased DNA hypomethylation compared with sole LPS stimulation. Co-stimulation greatly decreased casein expression but did not further decrease histone acetylation levels and affect the activity of histone acetyltransferase (HAT) and histone deacetylase (HDAC), compared with sole LPS stimulation. Collectively, this study demonstrated that PGN, LTA, and LPS had an additive effect on inducing transcriptome changes and inflammatory responses in BMECs, probably through inducing a greater decrease in DNA methylation. Co-stimulation with PGN, LTA, and LPS decreased casein expression to a greater degree, but it might not be linked to histone acetylation and HAT and HDAC activity.
Collapse
|
29
|
Li S, Kuo HCD, Yin R, Wu R, Liu X, Wang L, Hudlikar R, Peter RM, Kong AN. Epigenetics/epigenomics of triterpenoids in cancer prevention and in health. Biochem Pharmacol 2020; 175:113890. [PMID: 32119837 PMCID: PMC7174132 DOI: 10.1016/j.bcp.2020.113890] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/26/2020] [Indexed: 12/24/2022]
Abstract
Triterpenoids are a powerful group of phytochemicals derived from plant foods and herbs. Many reports have shown that they possess chemopreventive and chemotherapeutic effects not only in cell lines and animal models but also in clinical trials. Because epigenetic changes could potentially occur in the early stages of carcinogenesis preceding genetic mutations, epigenetics are considered promising targets in early interventions against cancer using epigenetic bioactive substances. The biological properties of triterpenoids in cancer prevention and in health have multiple mechanisms, including antioxidant and anti-inflammatory activities, cell cycle regulation, as well as epigenetic/epigenomic regulation. In this review, we will discuss and summarize the latest advances in the study of the pharmacological effects of triterpenoids in cancer chemoprevention and in health, including the epigenetic machinery.
Collapse
Affiliation(s)
- Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Rebecca Mary Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Na YG, Byeon JJ, Kim MK, Han MG, Cho CW, Baek JS, Lee HK, Shin YG. Pharmacokinetic/Pharmacodynamic Modeling To Predict the Antiplatelet Effect of the Ticagrelor-Loaded Self-Microemulsifying Drug Delivery System in Rats. Mol Pharm 2020; 17:1079-1089. [PMID: 32053381 DOI: 10.1021/acs.molpharmaceut.9b00964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ticagrelor (TCG) has been used as an antiplatelet agent for acute coronary syndrome patients. The aim of this research was to establish a population pharmacokinetic/pharmacodynamic (PK/PD) model of TCG and to apply the model for predicting the PD response of the TCG-loaded self-microemulsifying drug delivery system (TCG-SME) in rats. Pure TCG and TCG-SME (2, 5, and 10 mg/kg of TCG) were orally administered to male Sprague-Dawley rats. Plasma samples were collected at scheduled time-points and then analyzed for TCG plasma concentrations and antiplatelet effects. The inhibition of platelet aggregation of TCG was measured as a PD response. The PK profiles of pure TCG and TCG-SME could be well-explained with a two-compartment PK model. The accuracy of the PK model was assessed with a goodness-of-fit plot and conditional weight residual error (CWRES). Also, the visual predictive check was investigated based on the predictions. A population PK/PD model for pure TCG was established as an indirect response Emax model linked to the two-compartment PK model of pure TCG. The PK/PD model proposed a suitable fitting to link the plasma concentration of TCG simultaneously with platelet aggregation. Based on the PK data of TCG-SME, as well as the established PK/PD model of pure TCG, the PD profiles of TCG-SME were simulated. TCG-SME was more effective in inducing the antiplatelet effect than pure TCG at equivalent doses of TCG. The accuracy of the simulation was verified by comparing the simulated PD profile with the profile observed in rats. The observations were close to the model simulations. In addition, the values of CWRES were almost within ±2. In conclusion, the PK/PD modeling approach can provide a way for predicting mathematically the PD responses from PK profiles of other TCG formulations and a conceptual prediction for future clinical assessment.
Collapse
Affiliation(s)
- Young-Guk Na
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jin-Ju Byeon
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Min-Ki Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Min-Gu Han
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jong-Suep Baek
- Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si, Gangwon-do 25949, Republic of Korea
| | - Hong-Ki Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Young G Shin
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
31
|
Yang Y, Yin R, Wu R, Ramirez CN, Sargsyan D, Li S, Wang L, Cheng D, Wang C, Hudlikar R, Kuo HC, Lu Y, Kong AN. DNA methylome and transcriptome alterations and cancer prevention by triterpenoid ursolic acid in UVB-induced skin tumor in mice. Mol Carcinog 2019; 58:1738-1753. [PMID: 31237383 PMCID: PMC6722003 DOI: 10.1002/mc.23046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Nonmelanoma skin cancers (NMSCs) are the most common type of skin cancers. Major risk factors for NMSCs include exposure to ultraviolet (UV) irradiation. Ursolic acid (UA) is a natural triterpenoid enriched in blueberries and herbal medicinal products, and possess anticancer activities. This study focuses on the impact of UA on epigenomic, genomic mechanisms and prevention of UVB-mediated NMSC. CpG methylome and RNA transcriptome alterations of early, promotion and late stages of UA treated on UVB-induced NMSC in SKH-1 hairless mice were conducted using CpG methyl-seq and RNA-seq. Samples were collected at weeks 2, 15, and 25, and integrated bioinformatic analyses were performed to identify key pathways and genes modified by UA against UVB-induced NMSC. Morphologically, UA significantly reduced NMSC tumor volume and tumor number. DNA methylome showed inflammatory pathways IL-8, NF-κB, and Nrf2 pathways were highly involved. Antioxidative stress master regulator Nrf2, cyclin D1, DNA damage, and anti-inflammatory pathways were induced by UA. Nrf2, cyclin D1, TNFrsf1b, and Mybl1 at early (2 weeks) and late (25 weeks) stages were identified and validated by quantitative polymerase chain reaction. In summary, integration of CpG methylome and RNA transcriptome studies show UA alters antioxidative, anti-inflammatory, and anticancer pathways in UVB-induced NMSC carcinogenesis. Particularly, UA appears to drive Nrf2 and its upstream/downstream genes, anti-inflammatory (at early stages) and cell cycle regulatory (both early and late stages) genes, of which might contribute to the overall chemopreventive effects of UVB-induced MNSC. This study may provide potential biomarkers/targets for chemoprevention of early stage of UVB-induced NMSC in human.
Collapse
Affiliation(s)
- Yuqing Yang
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Christina N. Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Cellular and Molecular Pharmacology Program, Rutgers Robert
Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Lujing Wang
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - David Cheng
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Chao Wang
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Hsiao-Chen Kuo
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Yaoping Lu
- Center for Phytochemicals Epigenome Studies, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Chemical Biology, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| |
Collapse
|
32
|
Promotion of Cell Death in Cisplatin-Resistant Ovarian Cancer Cells through KDM1B-DCLRE1B Modulation. Int J Mol Sci 2019; 20:ijms20102443. [PMID: 31108893 PMCID: PMC6566920 DOI: 10.3390/ijms20102443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the gynecological malignancy with the poorest prognosis, in part due to its high incidence of recurrence. Platinum agents are widely used as a first-line treatment against ovarian cancer. Recurrent tumors, however, frequently demonstrate acquired chemo-resistance to platinum agent toxicity. To improve chemo-sensitivity, combination chemotherapy regimens have been investigated. This study examined anti-tumor effects and molecular mechanisms of cytotoxicity of Oldenlandia diffusa (OD) extracts on ovarian cancer cells, in particular, cells resistant to cisplatin. Six ovarian cancer cells including A2780 and cisplatin-resistant A2780 (A2780cis) as representative cell models were used. OD was extracted with water (WOD) or 50% methanol (MOD). MOD significantly induced cell death in both cisplatin-sensitive cells and cisplatin-resistant cells. The combination treatment of MOD with cisplatin reduced viability in A2780cis cells more effectively than treatment with cisplatin alone. MOD in A2780cis cells resulted in downregulation of the epigenetic modulator KDM1B and the DNA repair gene DCLRE1B. Transcriptional suppression of KDM1B and DCLRE1B induced cisplatin sensitivity. Knockdown of KDM1B led to downregulation of DCLRE1B expression, suggesting that DCLRE1B was a KDM1B downstream target. Taken together, OD extract effectively promoted cell death in cisplatin-resistant ovarian cancer cells under cisplatin treatment through modulating KDM1B and DCLRE1B.
Collapse
|
33
|
Habtemariam S. Antioxidant and Anti-inflammatory Mechanisms of Neuroprotection by Ursolic Acid: Addressing Brain Injury, Cerebral Ischemia, Cognition Deficit, Anxiety, and Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8512048. [PMID: 31223427 PMCID: PMC6541953 DOI: 10.1155/2019/8512048] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene which is found in common herbs and medicinal plants that are reputed for a variety of pharmacological effects. Both as an active principle of these plants and as a nutraceutical ingredient, the pharmacology of UA in the CNS and other organs and systems has been extensively reported in recent years. In this communication, the antioxidant and anti-inflammatory axis of UA's pharmacology is appraised for its therapeutic potential in some common CNS disorders. Classic examples include the traumatic brain injury (TBI), cerebral ischemia, cognition deficit, anxiety, and depression. The pharmacological efficacy for UA is demonstrated through the therapeutic principle of one drug → multitargets → one/many disease(s). Both specific enzymes and receptor targets along with diverse pharmacological effects associated with oxidative stress and inflammatory signalling are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
34
|
Choi WH, Lee IA. The Mechanism of Action of Ursolic Acid as a Potential Anti-Toxoplasmosis Agent, and Its Immunomodulatory Effects. Pathogens 2019; 8:pathogens8020061. [PMID: 31075881 PMCID: PMC6631288 DOI: 10.3390/pathogens8020061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
This study was performed to investigate the mechanism of action of ursolic acid in terms of anti-Toxoplasma gondii effects, including immunomodulatory effects. We evaluated the anti-T. gondii effects of ursolic acid, and analyzed the production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines through co-cultured immune cells, as well as the expression of intracellular organelles of T. gondii. The subcellular organelles and granules of T. gondii, particularly rhoptry protein 18, microneme protein 8, and inner membrane complex sub-compartment protein 3, were markedly decreased when T. gondii was treated with ursolic acid, and their expressions were effectively inhibited. Furthermore, ursolic acid effectively increased the production of NO, ROS, interleukin (IL)-10, IL-12, granulocyte macrophage colony stimulating factor (GM-CSF), and interferon-β, while reducing the expression of IL-1β, IL-6, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta 1 (TGF-β1) in T. gondii-infected immune cells. These results demonstrate that ursolic acid not only causes anti-T. gondii activity/action by effectively inhibiting the survival of T. gondii and the subcellular organelles of T. gondii, but also induces specific immunomodulatory effects in T. gondii-infected immune cells. Therefore, this study indicates that ursolic acid can be effectively utilized as a potential candidate agent for developing novel anti-toxoplasmosis drugs, and has immunomodulatory activity.
Collapse
Affiliation(s)
- Won Hyung Choi
- Marine Bio Research & Education Center, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| | - In Ah Lee
- Department of Chemistry, College of Natural Science, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| |
Collapse
|
35
|
Zong L, Cheng G, Liu S, Pi Z, Liu Z, Song F. Reversal of multidrug resistance in breast cancer cells by a combination of ursolic acid with doxorubicin. J Pharm Biomed Anal 2019; 165:268-275. [PMID: 30572191 DOI: 10.1016/j.jpba.2018.11.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022]
Abstract
Multidrug resistance (MDR) has seriously affected or hindered the effect of chemotherapy. Ursolic acid (UA) as a natural compound exhibits a number of potential biological effects including antitumor. Searching for the reversal agents from the natural products has been an effective strategy recently applied in overcoming the MDR. So in this study, the reversal effect of UA on the MDR and involved mechanisms were investigated via a multidrug-resistant MCF-7/ADR cells model and ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analytical methods. The synergistic effects were yielded by the combination of UA and Dox based on the investigation of the intracellular accumulation, the P-glycoprotein (P-gp) mediated transport, the energy metabolism including glycolysis, tricarboxylic acid (TCA) cycle, and glutamine metabolism as well as related amino acid metabolism. Obtained results showed that the UA could increase amount of doxorubicin (Dox) entering the cell to accumulate in nuclei, decrease the efflux ratio of digoxin comparable to the effects of the known inhibitor verapamil by acting as a P-gp substrate, decrease the content of intracellular alanine, lactate, pyruvate, glucose, α-ketoglutarate, glutamate, glutamine, aspartate, serine, and glycine. Taken together, inhibition of P-gp function and disruption of the metabolism of energy and related amino acids could be the key mechanisms by which UA could reverse the MDR. The findings also indicated that UA could be a potential alternative adjuvant antitumour herbal medicine to resensitize cells with MDR to chemotherapeutic agents.
Collapse
Affiliation(s)
- Li Zong
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guorong Cheng
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230029, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
36
|
Lu C, Tang Z, Liu C, Ma X. Surface molecularly imprinted polymers prepared by two-step precipitation polymerization for the selective extraction of oleanolic acid from grape pomace extract. J Sep Sci 2018; 41:3496-3502. [PMID: 30027558 DOI: 10.1002/jssc.201800474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 11/09/2022]
Abstract
Surface molecularly imprinted polymers were successfully prepared by a novel two-step precipitation polymerization method. The first-step allowed the formation of 4-vinylpyridine divinylbenzene and trimethylolpropane trimethacrylate copolymeric microspheres. In the second-step precipitation polymerization, microspheres were modified with a molecularly imprinting layer of oleanolic acid as template, methacrylic acid as functional monomer, and divinylbenzene/ethylene glycol dimethacrylate as cross-linker. The obtained polymers had an average diameter of 4.43 μm and a polydispersity index of 1.011; adsorption equilibrium was achieved within 40 min, with adsorption capacity reaching 27.4 mg/g. Subsequently, the polymers were successfully applied as the adsorbents of molecularly imprinted solid-phase extraction to separate and purify the oleanolic acid from grape pomace. The content of oleanolic acid in the grape pomace extract was enhanced from 13.4 to 93.2% after using the molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective oleanolic acid separation and enrichment from complex matrices, which is especially valuable in industrial production.
Collapse
Affiliation(s)
- Chunxia Lu
- Life Science and Technology Institute, Yangtze Normal University, Chongqing, P. R. China.,Analysis and Testing Center, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, P. R. China
| | - Zonggui Tang
- Analysis and Testing Center, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, P. R. China
| | - Changbin Liu
- Xinjiang Academy of Agriculture and Reclamation Science/Key Laboratories of Sheep Breeding and Reproduce, Shihezi, P. R. China
| | - Xiaomei Ma
- Xinjiang Academy of Agriculture and Reclamation Science/Key Laboratories of Sheep Breeding and Reproduce, Shihezi, P. R. China
| |
Collapse
|
37
|
Lv T, Xu L, Wu G, Li C, Wen Y, Zhang T, Gao Y, Chen H. Construction and biological evaluation of different self-assembled nanoarchitectures of FZU-03,010. Eur J Pharm Sci 2018; 121:382-391. [PMID: 29908299 DOI: 10.1016/j.ejps.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/25/2018] [Accepted: 06/10/2018] [Indexed: 02/06/2023]
Abstract
Chemotherapy is currently one of the promising therapeutic methods for non-small-cell lung cancer (NSCLC), but the emergence of multidrug resistance (MDR) is the greatest obstacle to efficient drug delivery for successful chemotherapy. Nanotechnology-based drug delivery holds great promise to promote intracellular drug delivery to reverse MDR. In this work, we used our previously synthesized ursolic acid (UA) derivative, FZU-03,010 (F3), to prepare nanodrugs of F3 with different architectures and study the role of the structure on the physiochemical properties and the biological effects against A549 and its PTX-resistant A549/PTX lung cancer cells. Using different preparation methods, amphiphilic F3 could self-assemble into different structures such as nanoaggregates (F3-NA), vesicles (F3-VC), or nanoparticles (F3-NP) with different physiochemical properties. The self-assembled nanodrugs could be utilized for the entrapment of fluorophores and showed different cellular uptake efficiencies. The cytotoxicity results demonstrated that compared with UA, F3-NA and F3-NP could suppress A549 and A549/PTX cells viability more potently at lower concentration. In addition, F3-NA and F3-NP could induce G1 cell cycle arrest, cell apoptosis and caspase-3 activation more efficiently than that of UA. Furthermore, F3-NA and F3-NP could effectively inhibit PI3K/Akt pathway and decrease the expression of Bcl-2 and the cell cycle-dependent kinase inhibitors p-ERK1/2 and Cyclin D1 in both A549 and A549/PTX cells. In conclusion, our results suggest that the UA derivative F3 is more potent in inhibiting cancer cell proliferation, and F3-NA and F3-NP have the potential to be developed as a therapeutic agent for resistant NSCLC cells.
Collapse
Affiliation(s)
- Tingting Lv
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liang Xu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Guolin Wu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cailong Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yibo Wen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tao Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
38
|
Choi HS, Kim SL, Kim JH, Deng HY, Yun BS, Lee DS. Triterpene Acid ( 3- O- p-Coumaroyltormentic Acid) Isolated From Aronia Extracts Inhibits Breast Cancer Stem Cell Formation through Downregulation of c-Myc Protein. Int J Mol Sci 2018; 19:ijms19092528. [PMID: 30149665 PMCID: PMC6164992 DOI: 10.3390/ijms19092528] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 01/05/2023] Open
Abstract
Cancer stem cells (CSCs) are drug-resistant and radiation-resistant cancer cells that are responsible for tumor progression and maintenance, cancer recurrence, and metastasis. Targeting breast CSCs with phytochemicals is a new paradigm for cancer prevention and treatment. In this study, activity-guided fractionation from mammosphere formation inhibition assays, repeated chromatographic preparations over silica gel, preparatory thin layer chromatography, and HPLC using aronia extracts led to the isolation of one compound. Using 1H and 13C 2-dimensional nuclear magnetic resonance (NMR) as well as electrospray ionization (ESI) mass spectrometry, the isolated compound was identified as 3-O-p-coumaroyltormentic acid. This compound inhibits breast cancer cell proliferation and mammosphere formation in a dose-dependent manner and reduces the CD44high/CD24low subpopulation and aldehyde dehydrogenase (ALDH)-expressing cell population as well as the expression of the self-renewal-related genes CD44, SOX2, and OCT4.3-O-p-Coumaroyltormentic acid preferentially reduced the protein levels of c-Myc, which is a CSC survival factor, by inducing c-Myc degradation. These findings indicate the novel utilization of 3-O-p-coumaroyltormentic acid for breast cancer therapy via disruption of c-Myc protein, which is a CSC survival factor.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
- Subtropical/tropical organism gene bank, Jeju National University, Jeju 63243, Korea.
- Aroma Biotechnology Center, Jeju National University, Jeju 63243, Korea.
| | - Su-Lim Kim
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Ji-Hyang Kim
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Hong-Yuan Deng
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Bong-Sik Yun
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Gobong-ro 79, Iksan 54596, Korea.
| | - Dong-Sun Lee
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
- Subtropical/tropical organism gene bank, Jeju National University, Jeju 63243, Korea.
- Aroma Biotechnology Center, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
39
|
Nie Y, Yao W. A Comprehensive Quality Evaluation Method Based on C 30-HPLC and an Analytic Hierarchy Process for the Chinese Herbal Formula, Erzhiwan. Molecules 2018; 23:E2045. [PMID: 30111749 PMCID: PMC6222504 DOI: 10.3390/molecules23082045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 01/12/2023] Open
Abstract
The quantitative analysis of multiple indexes remains an important quality evaluation method of traditional Chinese medicine (TCM) herbal formulas. The Chinese Pharmacopoeia 2015 only stipulates the content of a single component, specnuezhenide, in Erzhiwan composed of the Fructus Ligustri Lucidi (FLL) powder and aqueous extracts of Herba Ecliptae (HE). To generalize the intrinsic quality of Erzhiwan, a novel C30-HPLC method with good precision, accuracy, and reproducibility was developed for the simultaneous determination of six compounds, including two isomers, and then an analytic hierarchy process was further applied to integrate and discriminate the quality of four samples prepared via different methods. The results of the analysis were in agreement with the antioxidant tests in vitro. This comprehensive strategy could provide a reference and suggestions for the improvement of the quality evaluation method of TCM herbal formulas.
Collapse
Affiliation(s)
- Ying Nie
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
40
|
Li Q, Zhao W, Zeng X, Hao Z. Ursolic Acid Attenuates Atherosclerosis in ApoE -/- Mice: Role of LOX-1 Mediated by ROS/NF-κB Pathway. Molecules 2018; 23:E1101. [PMID: 29735887 PMCID: PMC6100321 DOI: 10.3390/molecules23051101] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease, is a major contributor to cardiovascular diseases. Ursolic acid (UA) is a phytonutrient with widely biological effects including anti-oxidative, anti-inflammatory, and so on. At present, the effect of UA on atherosclerosis and the mechanism of action are still obscure. This study focused on investigating the effects of UA on atherosclerosis both in vivo and in vitro. We first selected LOX-1 as our target, which was reckoned as a new promising receptor for treating atherosclerosis. The evaluation in vitro suggested that UA significantly decreased endothelial LOX-1 expression induced by LPS both in mRNA and protein levels. Pre-treatment of UA also inhibited TLR4/MyD88 signaling activated by LPS. Moreover, UA reduced ROS production and suppressed the activation of NF-κB stimulated by LPS. Particularly, the evaluation in vivo further verified the conclusion obtained in vitro. In ApoE−/− mice fed with an atherogenic diet, both UA (100 mg/kg/day) and simvastatin significantly attenuated atherosclerotic plaque formation and shrunk necrotic core areas. The enhanced expression of LOX-1 in atherosclerotic aorta was also dramatically decreased by administration of UA. Taken together, these results suggested that UA, with anti-atherosclerotic activity through inhibition of LOX-1 mediated by ROS/NF-κB signaling pathways, may become a valuable vascular protective candidate for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qiu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Wenwen Zhao
- Department of Pharmacology, College of basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266000, China.
| | - Xi Zeng
- Department of Pharmacology, College of basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266000, China.
| | - Zhihui Hao
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266000, China.
| |
Collapse
|
41
|
Oh Y, Jeong YS, Kim MS, Min JS, Ryoo G, Park JE, Jun Y, Song YK, Chun SE, Han S, Bae SK, Chung SJ, Lee W. Inhibition of Organic Anion Transporting Polypeptide 1B1 and 1B3 by Betulinic Acid: Effects of Preincubation and Albumin in the Media. J Pharm Sci 2018; 107:1713-1723. [PMID: 29462635 DOI: 10.1016/j.xphs.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Betulinic acid (BA), a plant-derived pentacyclic triterpenoid, may interact with the members of the organic anion transporting polypeptide 1B subfamily. Here, we investigated the interactions of BA and its analogs with OATP1B1/3 and rat Oatp1b2 in vitro and in vivo. BA inhibited the activity of OATP1B1/3 and rat Oatp1b2 in vitro. Systemic exposure of atorvastatin was substantially altered with the intravenous co-administration of BA (20 mg/kg). Preincubation (incubation with inhibitors, followed by washout) with BA led to a sustained inhibition of OATP1B3, which recovered rapidly in the media containing 10% fetal bovine serum. The addition of albumin to the media decreased intracellular concentrations of BA and expedited the recovery of OATP1B3 activity following preincubation. For asunaprevir and cyclosporin A (previously known to inhibit OATP1B3 upon preincubation), the addition of albumin to the media shortened recovery time with asunaprevir, but not with cyclosporin A. Overall, our results showed that BA inhibits OATP1B transporters in vitro and may incur hepatic transporter-mediated drug interactions in vivo. Our results identify BA as another OATP1B3 inhibitor with preincubation effect and suggest that the preincubation effect and its duration is impacted by altered equilibrium of inhibitors between intracellular and extracellular space (e.g., albumin in the media).
Collapse
Affiliation(s)
- Yunseok Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yoo-Seong Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Min-Soo Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Jee Sun Min
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon, Korea
| | - Gongmi Ryoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yearin Jun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yoo-Kyung Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Se-Eun Chun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Songhee Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon, Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|