1
|
Iaconisi GN, Ahmed A, Lauria G, Gallo N, Fiermonte G, Cowman MK, Capobianco L, Dolce V. Targeting mitochondria in Cancer therapy: Machine learning analysis of hyaluronic acid-based drug delivery systems. Int J Biol Macromol 2024; 283:137840. [PMID: 39566768 DOI: 10.1016/j.ijbiomac.2024.137840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Mitochondrial alterations play a crucial role in the development and progression of cancer. Dysfunctional mitochondria contribute to the acquisition of key hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, and resistance to cell death. Consequently, targeting mitochondrial dysfunction has emerged as a promising therapeutic strategy. Hyaluronic acid (HA), a naturally occurring glycosaminoglycan, has garnered significant attention due to its multifaceted roles in cancer biology. METHODS We employed a Systematic Literature Review (SLR) approach to examine a collection of 90 scientific publications using a text mining technique leveraging the Latent Dirichlet Allocation (LDA) algorithm. RESULTS The result of this activity, performed through the MySLR digital platform, allowed us to identify a set of two distinct topics representing the research domain. Specifically, Topic 1 comprised 41 papers, while Topic 2 comprised 49 papers. CONCLUSIONS The computational analysis highlighted that the integration of HA into drug delivery systems represents a promising approach to enhance the effectiveness and safety of cancer therapies. The discussed clinical trials provided compelling evidence of the potential of HA-based treatments in targeting cancer cells while minimizing adverse effects on healthy tissues.
Collapse
Affiliation(s)
- Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy.
| | - Graziantonio Lauria
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy.
| | - Mary K Cowman
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, NY, New York, USA; Department of Orthopedic Surgery, Grossman School of Medicine, New York University, NY, New York, USA.
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| |
Collapse
|
2
|
Zhang Q, Li L, Yang Q, Chen W, Wang Z, Zhang M. Quantitative Intracellular Delivery of Anticancer Nanodrugs Via an Immunoassay Employing Pt-SiO 2 Janus-Peroxidase Nanozyme. Mol Pharm 2024; 21:5598-5606. [PMID: 39446703 DOI: 10.1021/acs.molpharmaceut.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The accurate and efficient quantification of nanodrug dosage is crucial for early anticancer therapy. The enzyme-linked immunosorbent assay (ELISA) has emerged as a robust tool for detecting anticancer nanodrug dosage; however, the development of sensing elements to quantify anticancer nanodrugs still poses a challenge. To overcome this problem, we utilize polysuccinimide-loaded curcumin (CUR @PSIOAm) as a model to employ an ELISA based on peroxidase nanozyme Pt-SiO2 Janus nanoparticles (Pt-SiO2 JNPs) for the indirect quantitative analysis of intracellular anticancer nanodrug dosage. This novel approach employs an immunoassay to indirectly quantify the dosage of anticancer nanodrugs while preserving its structural integrity. The silica components of Pt-SiO2 JNPs adsorb intermediates, while the Pt NP components exhibit high catalytic activity. Pt-SiO2 JNPs are functionalized with anti-PSIOAm antibody (Pt-SiO2 JNPs-Ab) to serve as an immunosensor capable of specific recognition of CUR @PSIOAm. Additionally, we employed cytotoxicity assays and confocal imaging techniques to demonstrate the excellent biocompatibility of CUR @PSIOAm, as well as its specific uptake by cancer cells. According to the experimental results, the limit of detection (LOD) for the immunoassay of Pt-SiO2 JNPs as a marker for detecting CUR @PSIOAm is approximately 4.5-fold lower than that of horseradish peroxidase. Therefore, by optimizing the conditions, we established a direct competitive ELISA using Pt-SiO2 JNPs as colorimetric indicators for the quantitative detection of intracellular CUR @PSIOAm. The LOD for this ELISA was determined to be 0.01 ng/mL, while the loaded CUR amount calculated from the drug loading capacity was found to be 0.22 pg/mL. Furthermore, the recoveries obtained from this established ELISA ranged between 94.0 and 108%, demonstrating excellent accuracy. Consequently, the peroxidase mimic Pt-SiO2 JNPs-based ELISA exhibits significant potential for precise quantification of intracellular anticancer nanodrug dosages.
Collapse
Affiliation(s)
- Qiuning Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Lei Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Qianqian Yang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Wei Chen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Ziyuan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Mingcui Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
3
|
Wang G, Zhang M, Lai W, Gao Y, Liao S, Ning Q, Tang S. Tumor Microenvironment Responsive RNA Drug Delivery Systems: Intelligent Platforms for Sophisticated Release. Mol Pharm 2024; 21:4217-4237. [PMID: 39056442 DOI: 10.1021/acs.molpharmaceut.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Cancer is a significant health concern, increasingly showing insensitivity to traditional treatments, highlighting the urgent need for safer and more practical treatment options. Ribonucleic acid (RNA) gene therapy drugs have demonstrated promising potential in preclinical and clinical trials for antitumor therapy by regulating tumor-related gene expression. However, RNA's poor membrane permeability and stability restrict its effectiveness in entering and being utilized in cells. An appropriate delivery system is crucial for achieving targeted tumor effects. The tumor microenvironment (TME), characterized by acidity, hypoxia, enzyme overexpression, elevated glutathione (GSH) concentration, and excessive reactive oxygen species (ROS), is essential for tumor survival. Furthermore, these distinctive features can also be harnessed to develop intelligent drug delivery systems. Various nanocarriers that respond to the TME have been designed for RNA drug delivery, showing the advantages of tumor targeting and low toxicity. This Review discusses the abnormal changes of components in TME, therapeutic RNAs' roles, underlying mechanisms, and the latest developments in utilizing vectors that respond to microenvironments for treating tumors. We hope it provides insight into creating and optimizing RNA delivery vectors to improve their effectiveness.
Collapse
Affiliation(s)
- Guihua Wang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Mengxia Zhang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- Department of Histology and Embryology, Hunan University of Chinese Medicine, Changsha 410128, China
| | - Weiwei Lai
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yuan Gao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shuxian Liao
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shengsong Tang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Sokolov S, Zyrina A, Akimov S, Knorre D, Severin F. Toxic Effects of Penetrating Cations. MEMBRANES 2023; 13:841. [PMID: 37888013 PMCID: PMC10608470 DOI: 10.3390/membranes13100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
As mitochondria are negatively charged organelles, penetrating cations are used as parts of chimeric molecules to deliver specific compounds into mitochondria. In other words, they are used as electrophilic carriers for such chemical moieties as antioxidants, dyes, etc., to transfer them inside mitochondria. However, unmodified penetrating cations affect different aspects of cellular physiology as well. In this review, we have attempted to summarise the data about the side effects of commonly used natural (e.g., berberine) and artificial (e.g., tetraphenylphosphonium, rhodamine, methylene blue) penetrating cations on cellular physiology. For instance, it was shown that such types of molecules can (1) facilitate proton transport across membranes; (2) react with redox groups of the respiratory chain; (3) induce DNA damage; (4) interfere with pleiotropic drug resistance; (5) disturb membrane integrity; and (6) inhibit enzymes. Also, the products of the biodegradation of penetrating cations can be toxic. As penetrating cations accumulate in mitochondria, their toxicity is mostly due to mitochondrial damage. Mitochondria from certain types of cancer cells appear to be especially sensitive to penetrating cations. Here, we discuss the molecular mechanisms of the toxic effects and the anti-cancer activity of penetrating cations.
Collapse
Affiliation(s)
- Svyatoslav Sokolov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Anna Zyrina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Premises 8, Bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia;
| | - Sergey Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 LeninskiyProspekt, 119071 Moscow, Russia;
| | - Dmitry Knorre
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Fedor Severin
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| |
Collapse
|
5
|
Yadav PK, Saklani R, Tiwari AK, Verma S, Chauhan D, Yadav P, Rana R, Kalleti N, Gayen JR, Wahajuddin, Rath SK, Mugale MN, Mitra K, Chourasia MK. Ratiometric codelivery of Paclitaxel and Baicalein loaded nanoemulsion for enhancement of breast cancer treatment. Int J Pharm 2023; 643:123209. [PMID: 37422142 DOI: 10.1016/j.ijpharm.2023.123209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
The most prevalent clinical option for treating cancer is combination chemotherapy. In combination therapy, assessment and optimization for obtaining a synergistic ratio could be obtained by various preclinical setups. Currently, in vitro optimization is used to get synergistic cytotoxicity while constructing combinations. Herein, we co-encapsulated Paclitaxel (PTX) and Baicalein (BCLN) with TPP-TPGS1000 containing nanoemulsion (TPP-TPGS1000-PTX-BCLN-NE) for breast cancer treatment. The assessment of cytotoxicity of PTX and BCLN at different molar weight ratios provided an optimized synergistic ratio (1:5). Quality by Design (QbD) approach was later applied for the optimization as well as characterization of nanoformulation for its droplet size, zeta potential and drug content. TPP-TPGS1000-PTX-BCLN-NE significantly enhanced cellular ROS, cell cycle arrest, and depolarization of mitochondrial membrane potential in the 4T1 breast cancer cell line compared to other treatments. In the syngeneic 4T1 BALB/c tumor model, TPP-TPGS1000-PTX-BCLN-NE outperformed other nanoformulation treatments. The pharmacokinetic, biodistribution and live imaging studies pivoted TPP-TPGS1000-PTX-BCLN-NE enhanced bioavailability and PTX accumulation at tumor site. Later, histology studies confirmed nanoemulsion non-toxicity, expressing new opportunities and potential to treat breast cancer. These results suggested that current nanoformulation can be a potential therapeutic approach to effectively address breast cancer therapy.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Ravi Saklani
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Saurabh Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Navodayam Kalleti
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Wahajuddin
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Srikanta K Rath
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Madhav N Mugale
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Kalyan Mitra
- Electron Microscopy Division, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
6
|
Luo S, Lv Z, Yang Q, Chang R, Wu J. Research Progress on Stimulus-Responsive Polymer Nanocarriers for Cancer Treatment. Pharmaceutics 2023; 15:1928. [PMID: 37514114 PMCID: PMC10386740 DOI: 10.3390/pharmaceutics15071928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
As drug carriers for cancer treatment, stimulus-responsive polymer nanomaterials are a major research focus. These nanocarriers respond to specific stimulus signals (e.g., pH, redox, hypoxia, enzymes, temperature, and light) to precisely control drug release, thereby improving drug uptake rates in cancer cells and reducing drug damage to normal cells. Therefore, we reviewed the research progress in the past 6 years and the mechanisms underpinning single and multiple stimulus-responsive polymer nanocarriers in tumour therapy. The advantages and disadvantages of various stimulus-responsive polymeric nanomaterials are summarised, and the future outlook is provided to provide a scientific and theoretical rationale for further research, development, and utilisation of stimulus-responsive nanocarriers.
Collapse
Affiliation(s)
- Shicui Luo
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zhuo Lv
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qiuqiong Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Renjie Chang
- Center of Digestive Endoscopy, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
7
|
Leng Q, Imtiyaz Z, Woodle MC, Mixson AJ. Delivery of Chemotherapy Agents and Nucleic Acids with pH-Dependent Nanoparticles. Pharmaceutics 2023; 15:1482. [PMID: 37242725 PMCID: PMC10222096 DOI: 10.3390/pharmaceutics15051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
With less than one percent of systemically injected nanoparticles accumulating in tumors, several novel approaches have been spurred to direct and release the therapy in or near tumors. One such approach depends on the acidic pH of the extracellular matrix and endosomes of the tumor. With an average pH of 6.8, the extracellular tumor matrix provides a gradient for pH-responsive particles to accumulate, enabling greater specificity. Upon uptake by tumor cells, nanoparticles are further exposed to lower pHs, reaching a pH of 5 in late endosomes. Based on these two acidic environments in the tumor, various pH-dependent targeting strategies have been employed to release chemotherapy or the combination of chemotherapy and nucleic acids from macromolecules such as the keratin protein or polymeric nanoparticles. We will review these release strategies, including pH-sensitive linkages between the carrier and hydrophobic chemotherapy agent, the protonation and disruption of polymeric nanoparticles, an amalgam of these first two approaches, and the release of polymers shielding drug-loaded nanoparticles. While several pH-sensitive strategies have demonstrated marked antitumor efficacy in preclinical trials, many studies are early in their development with several obstacles that may limit their clinical use.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | - Zuha Imtiyaz
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | | | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| |
Collapse
|
8
|
Yadav PK, Saklani R, Tiwari AK, Verma S, Rana R, Chauhan D, Yadav P, Mishra K, Kedar AS, Kalleti N, Gayen JR, Wahajuddin M, Rath SK, Mugale MN, Mitra K, Sharma D, Chourasia MK. Enhanced apoptosis and mitochondrial cell death by paclitaxel-loaded TPP-TPGS 1000-functionalized nanoemulsion. Nanomedicine (Lond) 2023; 18:343-366. [PMID: 37140535 DOI: 10.2217/nnm-2022-0268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Background: The present research was designed to develop a nanoemulsion (NE) of triphenylphosphine-D-α-tocopheryl-polyethylene glycol succinate (TPP-TPGS1000) and paclitaxel (PTX) to effectively deliver PTX to improve breast cancer therapy. Materials & methods: A quality-by-design approach was applied for optimization and in vitro and in vivo characterization were performed. Results: The TPP-TPGS1000-PTX-NE enhanced cellular uptake, mitochondrial membrane depolarization and G2M cell cycle arrest compared with free-PTX treatment. In addition, pharmacokinetics, biodistribution and in vivo live imaging studies in tumor-bearing mice showed that TPP-TPGS1000-PTX-NE had superior performance compared with free-PTX treatment. Histological and survival investigations ascertained the nontoxicity of the nanoformulation, suggesting new opportunities and potential to treat breast cancer. Conclusion: TPP-TPGS1000-PTX-NE improved the efficacy of breast cancer treatment by enhancing its effectiveness and decreasing drug toxicity.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Saklani
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rafquat Rana
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Divya Chauhan
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Mishra
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Ashwini S Kedar
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Navodayam Kalleti
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Muhammad Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Srikanta K Rath
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Madhav N Mugale
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Kalyan Mitra
- Electron Microscopy Division, Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Deepak Sharma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Manish K Chourasia
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Abbasi YF, Bera H, Cun D, Yang M. Recent advances in pH/enzyme-responsive polysaccharide-small-molecule drug conjugates as nanotherapeutics. Carbohydr Polym 2023; 312:120797. [PMID: 37059536 DOI: 10.1016/j.carbpol.2023.120797] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Now-a-days, the polysaccharides are extensively employed for the delivery of small-molecule drugs ascribed to their excellent biocompatibility, biodegradability and modifiability. An array of drug molecules is often chemically conjugated with different polysaccharides to augment their bio-performances. As compared to their therapeutic precursors, these conjugates could typically demonstrate an improved intrinsic solubility, stability, bioavailability and pharmacokinetic profiles of the drugs. In current years, various stimuli-responsive particularly pH and enzyme-sensitive linkers or pendants are also exploited to integrate the drug molecules into the polysaccharide backbone. The resulting conjugates could experience a rapid molecular conformational change upon exposure to the microenvironmental pH and enzyme changes of the diseased states, triggering the release of the bioactive cargos at the targeted sites and eventually minimize the systemic side effects. Herein, the recent advances in pH and enzyme -responsive polysaccharide-drug conjugates and their therapeutic benefits are systematically reviewed, following a brief description on the conjugation chemistry of the polysaccharides and drug molecules. The challenges and future perspectives of these conjugates are also precisely discussed.
Collapse
|
10
|
Development and Evaluation of Sodium Alginate/Carbopol 934P-Co-Poly (Methacrylate) Hydrogels for Localized Drug Delivery. Polymers (Basel) 2023; 15:polym15020311. [PMID: 36679191 PMCID: PMC9864554 DOI: 10.3390/polym15020311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
This research was carried out to create a pH-responsive polymeric system for the targeted drug delivery of Diloxanide furoate. It relied on sodium alginate (Na-Alg) and Carbopol 934P as building blocks. Using an aqueous free radical polymerization method, SCH1-SCH12 was created with varying polymer, MAA, and MBA input ratios. Positive outcomes were seen in the swelling and release profiles at higher pH levels. Hydrogel formation, as well as component compatibility, thermal stability, and Diloxanide furoate loading, were all validated by instrumental characterization. A drug loading percentage of 83.56% was determined, with the swelling reaching 743.19%. For the formulation with MBA, the gel fraction was 94.58%. The release of diloxanide furoate increased to 91.77% at neutral pH. The formulation containing Carbopol 934P provided the highest mucoadhesion force (3993.42 dynes/cm2). The created hydrogel has been shown to be biocompatible by toxicological testing of the network. Based on the findings, the created polymeric nexus proved promising for pH-dependent localized and regulated delivery of Diloxanide furoate.
Collapse
|
11
|
Behl A, Solanki S, Paswan SK, Datta TK, Saini AK, Saini RV, Parmar VS, Thakur VK, Malhotra S, Chhillar AK. Biodegradable PEG-PCL Nanoparticles for Co-delivery of MUC1 Inhibitor and Doxorubicin for the Confinement of Triple-Negative Breast Cancer. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:999-1018. [PMID: 36405816 PMCID: PMC9651876 DOI: 10.1007/s10924-022-02654-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 05/23/2023]
Abstract
UNLABELLED Combating triple-negative breast cancer (TNBC) is still a problem, despite the development of numerous drug delivery approaches. Mucin1 (MUC1), a glycoprotein linked to chemo-resistance and progressive malignancy, is unregulated in TNBC. GO-201, a MUC1 peptide inhibitor that impairs MUC1 activity, promotes necrotic cell death by binding to the MUC1-C unit. The current study deals with the synthesis and development of a novel nano-formulation (DM-PEG-PCL NPs) comprising of polyethylene glycol-polycaprolactone (PEG-PCL) polymer loaded with MUC1 inhibitor and an effective anticancer drug, doxorubicin (DOX). The DOX and MUC1 loaded nanoparticles were fully characterized, and their different physicochemical properties, viz. size, shape, surface charge, entrapment efficiencies, release behavior, etc., were determined. With IC50 values of 5.8 and 2.4 nm on breast cancer cell lines, accordingly, and a combination index (CI) of < 1.0, DM-PEG-PCL NPs displayed enhanced toxicity towards breast cancer cells (MCF-7 and MDA-MB-231) than DOX-PEG-PCL and MUC1i-PEG-PCL nanoparticles. Fluorescence microscopy analysis revealed DOX localization in the nucleus and MUC1 inhibitor in the mitochondria. Further, DM-PEG-PCL NPs treated breast cancer cells showed increased mitochondrial damage with enhancement in caspase-3 expression and reduction in Bcl-2 expression.In vivo evaluation using Ehrlich Ascites Carcinoma bearing mice explicitly stated that DM-PEG-PCL NPs therapy minimized tumor growth relative to control treatment. Further, acute toxicity studies did not reveal any adverse effects on organs and their functions, as no mortalities were observed. The current research reports for the first time the synergistic approach of combination entrapment of a clinical chemotherapeutic (DOX) and an anticancer peptide (MUC1 inhibitor) encased in a diblock PEG-PCL copolymer. Incorporating both DOX and MUC1 inhibitors in PEG-PCL NPs in the designed nanoformulation has provided chances and insights for treating triple-negative breast tumors. Our controlled delivery technology is biodegradable, non-toxic, and anti-multidrug-resistant. In addition, this tailored smart nanoformulation has been particularly effective in the therapy of triple-negative breast cancer. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10924-022-02654-4.
Collapse
Affiliation(s)
- Akanksha Behl
- Centre for Biotechnology, M.D. University, Rohtak, Haryana 124 001 India
| | - Subhash Solanki
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India
| | - Shravan K. Paswan
- Pharmacology Division, National Botanical Research Institute (CSIR-NBRI), Lucknow, Uttar Pradesh 226 001 India
| | - Tirtha K. Datta
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India
| | - Adesh K. Saini
- Central Research Cell and Department of Biotechnology, MMEC, Maharishi Markandeshwar Deemed University, Mullana, Ambala, Haryana 133 207 India
| | - Reena V. Saini
- Central Research Cell and Department of Biotechnology, MMEC, Maharishi Markandeshwar Deemed University, Mullana, Ambala, Haryana 133 207 India
| | - Virinder S. Parmar
- Nanoscience Department, CUNY Graduate Center and Department of Chemistry & Biochemistry, City College, The City University of New York, 160 Convent Avenue, New York, NY 10031 USA
- Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201 303 India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG UK
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007 India
- Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413 India
| | | | - Anil K. Chhillar
- Centre for Biotechnology, M.D. University, Rohtak, Haryana 124 001 India
| |
Collapse
|
12
|
Papadimitriou L, Theodorou A, Papageorgiou M, Voutyritsa E, Papagiannaki A, Velonia K, Ranella A. pH responsive biohybrid BSA-poly(DPA) nanoparticles for interlysosomal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Kubik J, Humeniuk E, Adamczuk G, Madej-Czerwonka B, Korga-Plewko A. Targeting Energy Metabolism in Cancer Treatment. Int J Mol Sci 2022; 23:ijms23105572. [PMID: 35628385 PMCID: PMC9146201 DOI: 10.3390/ijms23105572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second most common cause of death worldwide after cardiovascular diseases. The development of molecular and biochemical techniques has expanded the knowledge of changes occurring in specific metabolic pathways of cancer cells. Increased aerobic glycolysis, the promotion of anaplerotic responses, and especially the dependence of cells on glutamine and fatty acid metabolism have become subjects of study. Despite many cancer treatment strategies, many patients with neoplastic diseases cannot be completely cured due to the development of resistance in cancer cells to currently used therapeutic approaches. It is now becoming a priority to develop new treatment strategies that are highly effective and have few side effects. In this review, we present the current knowledge of the enzymes involved in the different steps of glycolysis, the Krebs cycle, and the pentose phosphate pathway, and possible targeted therapies. The review also focuses on presenting the differences between cancer cells and normal cells in terms of metabolic phenotype. Knowledge of cancer cell metabolism is constantly evolving, and further research is needed to develop new strategies for anti-cancer therapies.
Collapse
Affiliation(s)
- Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
- Correspondence: ; Tel.: +48-81-448-65-20
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Barbara Madej-Czerwonka
- Human Anatomy Department, Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| |
Collapse
|
14
|
Yoshinaga N, Numata K. Rational Designs at the Forefront of Mitochondria-Targeted Gene Delivery: Recent Progress and Future Perspectives. ACS Biomater Sci Eng 2022; 8:348-359. [PMID: 34979085 DOI: 10.1021/acsbiomaterials.1c01114] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria play an essential role in cellular metabolism and generate energy in cells. To support these functions, several proteins are encoded in the mitochondrial DNA (mtDNA). The mutation of mtDNA causes mitochondrial dysfunction and ultimately results in a variety of inherited diseases. To date, gene delivery systems targeting mitochondria have been developed to ameliorate mtDNA mutations. However, applications of these strategies in mitochondrial gene therapy are still being explored and optimized. Thus, from this perspective, we herein highlight recent mitochondria-targeting strategies for gene therapy and discuss future directions for effective mitochondria-targeted gene delivery.
Collapse
Affiliation(s)
- Naoto Yoshinaga
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan.,Department of Material Chemistry, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Kim S, Yoon NG, Jana B, Kang BH, Ryu J. Quaternary ammonium‐based mitochondria targeting anticancer agents with high water solubility. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sangpil Kim
- Chemistry Ulsan National Institute of Science and Technology Ulsan South Korea
| | - Nam Gu Yoon
- Life Science Ulsan National Institute of Science and Technology Ulsan South Korea
| | - Batakrishna Jana
- Chemistry Ulsan National Institute of Science and Technology Ulsan South Korea
| | - Byoung Heon Kang
- Life Science Ulsan National Institute of Science and Technology Ulsan South Korea
| | - Ja‐Hyoung Ryu
- Chemistry Ulsan National Institute of Science and Technology Ulsan South Korea
| |
Collapse
|
16
|
Liu K, Huang X. Synthesis of self-assembled hyaluronan based nanoparticles and their applications in targeted imaging and therapy. Carbohydr Res 2022; 511:108500. [PMID: 35026559 PMCID: PMC8792315 DOI: 10.1016/j.carres.2022.108500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Hyaluronan (HA) is a polysaccharide consisting of repeating disaccharides of N-acetyl-d-glucosamine and d-glucuronic acid. There are increasing interests in utilizing self-assembled HA nanoparticles (HA-NPs) for targeted imaging and therapy. The principal endogenous receptor of HA, cluster of differentiation 44 (CD44), is overexpressed on many types of tumor cells as well as inflammatory cells in human bodies. Active targeting from HA-CD44 mediated interaction and passive targeting due to the enhanced permeability retention (EPR) effect could lead to selective accumulation of HA-NPs at targeted disease sites. This review focuses on the synthesis strategies of self-assembled HA-NPs, as well as their applications in therapy and biomedical imaging.
Collapse
Affiliation(s)
- Kunli Liu
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
17
|
Singh N, Gupta A, Prasad P, Sah RK, Singh A, Kumar S, Singh S, Gupta S, Sasmal PK. Mitochondria-Targeted Photoactivatable Real-Time Monitoring of a Controlled Drug Delivery Platform. J Med Chem 2021; 64:17813-17823. [PMID: 34886661 DOI: 10.1021/acs.jmedchem.1c00956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The current anticancer therapies are limited by their lack of controlled spatiotemporal release at the target site of action. We report a novel drug delivery platform that provides on-demand, real-time, organelle-specific drug release and monitoring upon photoactivation. The system is comprised of a model anticancer drug doxorubicin, an alkyltriphenylphosphonium moiety to target mitochondria in cancer cells, and a hydroxycinnamate photoactivatable linker that is covalently attached to the drug and mitochondria-targeting moieties such that it can be phototriggered by either UV (one-photon) or NIR (two-photon) light to form a fluorescent coumarin product and facilitate the release of drug payload. The extent of drug release is quantified by the fluorescence intensity of the coumarin formed. Further, the photoactivatable prodrug accumulates in the mitochondria and shows light-triggered temporally controlled cell death. In the future, our platform can be tuned for any biological application of interest, offering immense value in biomedicine.
Collapse
Affiliation(s)
- Neelu Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Puja Prasad
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arvind Singh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil Kumar
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shalini Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
18
|
Mironov VF, Nemtarev AV, Tsepaeva OV, Dimukhametov MN, Litvinov IA, Voloshina AD, Pashirova TN, Titov EA, Lyubina AP, Amerhanova SK, Gubaidullin AT, Islamov DR. Rational Design 2-Hydroxypropylphosphonium Salts as Cancer Cell Mitochondria-Targeted Vectors: Synthesis, Structure, and Biological Properties. Molecules 2021; 26:6350. [PMID: 34770759 PMCID: PMC8588467 DOI: 10.3390/molecules26216350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
It has been shown for a wide range of epoxy compounds that their interaction with triphenylphosphonium triflate occurs with a high chemoselectivity and leads to the formation of (2-hydroxypropyl)triphenylphosphonium triflates 3 substituted in the 3-position with an alkoxy, alkylcarboxyl group, or halogen, which were isolated in a high yield. Using the methodology for the disclosure of epichlorohydrin with alcohols in the presence of boron trifluoride etherate, followed by the substitution of iodine for chlorine and treatment with triphenylphosphine, 2-hydroxypropyltriphenylphosphonium iodides 4 were also obtained. The molecular and supramolecular structure of the obtained phosphonium salts was established, and their high antitumor activity was revealed in relation to duodenal adenocarcinoma. The formation of liposomal systems based on phosphonium salt 3 and L-α-phosphatidylcholine (PC) was employed for improving the bioavailability and reducing the toxicity. They were produced by the thin film rehydration method and exhibited cytotoxic properties. This rational design of phosphonium salts 3 and 4 has promising potential of new vectors for targeted delivery into mitochondria of tumor cells.
Collapse
Affiliation(s)
- Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Olga V. Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Igor A. Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Eugenii A. Titov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia;
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Syumbelya K. Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Daut R. Islamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| |
Collapse
|
19
|
Khan I, Sarkar B, Joshi G, Nakhate KT, Ajazuddin, Mantha AK, Kumar R, Kaul A, Chaturvedi S, Mishra AK, Gupta U. Biodegradable nanoparticulate co-delivery of flavonoid and doxorubicin: Mechanistic exploration and evaluation of anticancer effect in vitro and in vivo. BIOMATERIALS AND BIOSYSTEMS 2021; 3:100022. [PMID: 36824308 PMCID: PMC9934469 DOI: 10.1016/j.bbiosy.2021.100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
The proposed study involves delivering drug/bioactive using a single nanoplatform based on poly lactic-co-glycolic acid (PLGA) for better efficacy, synergistic effect, and reduced toxicity. PLGA was conjugated to doxorubicin (D1), and this conjugate was used for encapsulation of naringenin (D2) to develop naringenin loaded PLGA-doxorubicin nanoparticles (PDNG). The PDNG NPs were 165.4 ± 4.27 nm in size, having 0.112 ± 0.035 PDI, with -10.1 ± 2.74 zeta potential. The surface morphology was confirmed through transmission electron microscopy (TEM) and atomic force microscopy (AFM). The in vitro studies revealed that PDNG NPs exhibited selective anticancer potential in breast cancer cells, and induced apoptosis with S-phase inhibition via an increase in intrinsic reactive oxygen species (ROS) and altering the mitochondrial potential. The results also signified the efficient uptake of nanoparticles encapsulated drugs by cells besides elevating the caspase level suggesting programmed cell death induction upon treatment. In vivo studies results revealed better half-life (27.35 ± 1.58 and 11.98 ± 1.21 h for doxorubicin and naringenin) with higher plasma drug concentration. In vivo biodistribution study was also in accordance with the in vitro studies and in line with the in vivo pharmacokinetic. In vivo tumor regression assay portrayed that the formulation PDNG halts the tumor growth and lessen the tumor volume with the stable bodyweight of the mice. Conclusively, the dual delivery approach was beneficial and highly effective against tumor-induced mice.
Collapse
Affiliation(s)
- Iliyas Khan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan-305817, India
| | - Bibekananda Sarkar
- Department of Zoology, Central University of Punjab, Bathinda-151401, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda-151401, India
| | - Kartik T. Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Chhattisgarh-490024, India,Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra-424001, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Chhattisgarh-490024, India,Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be-University, Shirpur, Dist., Savalade, Maharashtra-425405, India
| | - Anil K. Mantha
- Department of Zoology, Central University of Punjab, Bathinda-151401, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda-151401, India,Corresponding authors.
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, New Delhi-110054, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, New Delhi-110054, India
| | - Anil K. Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, New Delhi-110054, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan-305817, India,Corresponding authors.
| |
Collapse
|
20
|
Mitotropic triphenylphosphonium doxorubicin-loaded core-shell nanoparticles for cellular and mitochondrial sequential targeting of breast cancer. Int J Pharm 2021; 606:120936. [PMID: 34310958 DOI: 10.1016/j.ijpharm.2021.120936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022]
Abstract
HYPOTHESES Targeted therapy exploits cancerous niches' properties including acidic extracellular environment, hypoxic tumor core, and over expression of tumor-specific surface antigens. The present study aims to develop and evaluate a sequential targeted core-shell nanoparticulate (NPs) system for treatment of breast cancer. Sequential (double-stage) targeting was achieved at the cellular-level through employing the selective CD44- receptor binding hyaluronic acid (HA), followed by subcellular mitochondrial drug-delivery using the mitotropic triphenylphosphonium-conjugated doxorubicin (DOX-TPP+). EXPERIMENTS NPs were prepared through incorporation of the electrostatic-complexes of DOX.HCl/DOX-TPP+ with tripolyphosphate (STPP-) into chitosan (CS) forming the core that was further coated with HA shell. Physicochemical characterization techniques namely; FTIR, DSC, DLS, morphological evaluation and spectroscopic assessments were implemented. Moreover, the drug entrapment efficiency (EE%), loading capacity (LC%), drug release profile and kinetics were investigated. Lastly, to validate the biological efficiency of the developed NPs, cytotoxic activity was evaluated as well as flow cytometric analyses to assess apoptosis induction and cell-cycle arrest were studied. FINDINGS Results showed that, the obtained core-shell NPs possessed a spherical shape with a mean size of 220-280 nm and attained high EE% and LC%. In-vitro cytotoxicity evaluations demonstrated successful apoptosis induction and cell-cycle abrogation. Moreover, in-vivo studies on Solid Ehrlich carcinoma (SEC)-bearing mice confirmed the efficient anticancer activity of the mitotropic DOX-TPP+-loaded NPs. Conclusively, the developed core-shell NPs proved efficient in sequential targeting of DOX to breast cancer.
Collapse
|
21
|
Chen Y, Tie S, Zhang X, Zhang L, Tan M. Preparation and characterization of glycosylated protein nanoparticles for astaxanthin mitochondria targeting delivery. Food Funct 2021; 12:7718-7727. [PMID: 34286807 DOI: 10.1039/d1fo01751a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Novel mitochondria targeting nanocarriers were prepared using triphenylphosphonium bromide (TPP)-modified whey protein isolate (WPI)-dextran (DX) conjugates by self-assembly method for astaxanthin mitochondria targeting delivery. The nanocarriers of astaxanthin-loaded WPI-DX and astaxanthin-loaded TPP-WPI-DX were 135.26 and 193.64 nm, respectively, which exhibited a spherical structure and good dispersibility. The mitochondria targeting nanocarriers had good stability in the stimulated blood fluid. In vitro experiments indicated that the TPP-modified nanocarriers could effectively realize lysosomes escape, and specifically accumulate in the cell mitochondria. Simultaneously, the astaxanthin-loaded nanocarriers could significantly reduce reactive oxygen species generation produced from hydrogen peroxide, protect the normal levels of the mitochondrial membrane potential, and dramatically promote the vitality of leukemia cells in mouse macrophage (RAW 264.7) cells. The present study highlights the promising application of mitochondria targeting nanocarriers for enhanced delivery of astaxanthin.
Collapse
Affiliation(s)
- Yannan Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, P. R. China.
| | | | | | | | | |
Collapse
|
22
|
Zou Y, Nishikawa M, Kang HG, Cheng G, Wang W, Wang Y, Komatsu N. Effect of Protein Corona on Mitochondrial Targeting Ability and Cytotoxicity of Triphenylphosphonium Conjugated with Polyglycerol-Functionalized Nanodiamond. Mol Pharm 2021; 18:2823-2832. [PMID: 34165304 DOI: 10.1021/acs.molpharmaceut.1c00188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Functionalization of nanoparticles (NPs) with targeting moieties has a high potential to advance precision nanomedicine. However, the targeting moieties on a NP surface are known to be masked by a protein corona in biofluids, lowering the targeting efficiency. Although it has been demonstrated at the cellular level, little is known about the influence of the protein corona on the subcellular targeting. Herein, we adopted triphenylphosphonium (TPP) as a mitochondrial targeting moiety and investigated the effects of protein coronas from fetal bovine serum and human plasma on its targeting ability and cytotoxicity. Specifically, we introduced TPP in low (l) and high (h) densities on the surface of nanodiamond (ND) functionalized with polyglycerol (PG). Despite the "corona-free" PG interface, we found that the TPP moiety attracted proteins to form a corona layer with clear linearity between the TPP density and the protein amount. By performing investigations on human cervix epithelium (HeLa) and human lung epithelial carcinoma (A549) cells, we further demonstrated that (1) the protein corona alleviated the cytotoxicity of both ND-PG-TPP-l and -h, (2) a smaller amount of proteins on the surface of ND-PG-TPP-l did not affect its mitochondrial targeting ability, and (3) a larger amount of proteins on the surface of ND-PG-TPP-h diminished its targeting specificity by restricting the NDs inside the endosome and lysosome compartments. Our findings will provide in-depth insights into the design of NPs with active targeting moiety for more precise and safer delivery at the subcellular level.
Collapse
Affiliation(s)
- Yajuan Zou
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Nishikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Heon Gyu Kang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Guoqing Cheng
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wei Wang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.,Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuquan Wang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
23
|
S Allemailem K, Almatroudi A, Alsahli MA, Aljaghwani A, M El-Kady A, Rahmani AH, Khan AA. Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug-Loaded Nanoformulations. Int J Nanomedicine 2021; 16:3907-3936. [PMID: 34135584 PMCID: PMC8200140 DOI: 10.2147/ijn.s303832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022] Open
Abstract
Any variation in normal cellular function results in mitochondrial dysregulation that occurs in several diseases, including cancer. Such processes as oxidative stress, metabolism, signaling, and biogenesis play significant roles in cancer initiation and progression. Due to their central role in cellular metabolism, mitochondria are favorable therapeutic targets for the prevention and treatment of conditions like neurodegenerative diseases, diabetes, and cancer. Subcellular mitochondria-specific theranostic nanoformulations for simultaneous targeting, drug delivery, and imaging of these organelles are of immense interest in cancer therapy. It is a challenging task to cross multiple barriers to target mitochondria in diseased cells. To overcome these multiple barriers, several mitochondriotropic nanoformulations have been engineered for the transportation of mitochondria-specific drugs. These nanoformulations include liposomes, dendrimers, carbon nanotubes, polymeric nanoparticles (NPs), and inorganic NPs. These nanoformulations are made mitochondriotropic by conjugating them with moieties like dequalinium, Mito-Porter, triphenylphosphonium, and Mitochondria-penetrating peptides. Most of these nanoformulations are meticulously tailored to control their size, charge, shape, mitochondriotropic drug loading, and specific cell-membrane interactions. Recently, some novel mitochondria-selective antitumor compounds known as mitocans have shown high toxicity against cancer cells. These selective compounds form vicious oxidative stress and reactive oxygen species cycles within cancer cells and ultimately push them to cell death. Nanoformulations approved by the FDA and EMA for clinical applications in cancer patients include Doxil, NK105, and Abraxane. The novel use of these NPs still faces tremendous challenges and an immense amount of research is needed to understand the proper mechanisms of cancer progression and control by these NPs. Here in this review, we summarize current advancements and novel strategies of delivering different anticancer therapeutic agents to mitochondria with the help of various nanoformulations.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Aseel Aljaghwani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Asmaa M El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
24
|
Abstract
Hyaluronic acid (HA) is a natural polyelectrolyte abundant in mammalian connective tissues, such as cartilage and skin. Both endogenous and exogenous HA produced by fermentation have similar physicochemical, rheological, and biological properties, leading to medical and dermo-cosmetic products. Chemical modifications such as cross-linking or conjugation in target groups of the HA molecule improve its properties and in vivo stability, expanding its applications. Currently, HA-based scaffolds and matrices are of great interest in tissue engineering and regenerative medicine. However, the partial oxidation of the proximal hydroxyl groups in HA to electrophilic aldehydes mediated by periodate is still rarely investigated. The introduced aldehyde groups in the HA backbone allow spontaneous cross-linking with adipic dihydrazide (ADH), thermosensitivity, and noncytotoxicity to the hydrogels, which are advantageous for medical applications. This review provides an overview of the physicochemical properties of HA and its usual chemical modifications to better understand oxi-HA/ADH hydrogels, their functional properties modulated by the oxidation degree and ADH concentration, and the current clinical research. Finally, it discusses the development of biomaterials based on oxi-HA/ADH as a novel approach in tissue engineering and regenerative medicine.
Collapse
|
25
|
Szabo I, Zoratti M, Biasutto L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol 2021; 42:101846. [PMID: 33419703 PMCID: PMC8113036 DOI: 10.1016/j.redox.2020.101846] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pharmacological targeting of mitochondrial ion channels is emerging as a promising approach to eliminate cancer cells; as most of these channels are differentially expressed and/or regulated in cancer cells in comparison to healthy ones, this strategy may selectively eliminate the former. Perturbation of ion fluxes across the outer and inner membranes is linked to alterations of redox state, membrane potential and bioenergetic efficiency. This leads to indirect modulation of oxidative phosphorylation, which is/may be fundamental for both cancer and cancer stem cell survival. Furthermore, given the crucial contribution of mitochondria to intrinsic apoptosis, modulation of their ion channels leading to cytochrome c release may be of great advantage in case of resistance to drugs triggering apoptotic events upstream of the mitochondrial phase. In the present review, we give an overview of the known mitochondrial ion channels and of their modulators capable of killing cancer cells. In addition, we discuss state-of-the-art strategies using mitochondriotropic drugs or peptide-based approaches allowing a more efficient and selective targeting of mitochondrial ion channel-linked events.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Padova, Italy.
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Padova, Italy; Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
26
|
Pavlova JA, Khairullina ZZ, Tereshchenkov AG, Nazarov PA, Lukianov DA, Volynkina IA, Skvortsov DA, Makarov GI, Abad E, Murayama SY, Kajiwara S, Paleskava A, Konevega AL, Antonenko YN, Lyakhovich A, Osterman IA, Bogdanov AA, Sumbatyan NV. Triphenilphosphonium Analogs of Chloramphenicol as Dual-Acting Antimicrobial and Antiproliferating Agents. Antibiotics (Basel) 2021; 10:antibiotics10050489. [PMID: 33922611 PMCID: PMC8145938 DOI: 10.3390/antibiotics10050489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
In the current work, in continuation of our recent research, we synthesized and studied new chimeric compounds, including the ribosome-targeting antibiotic chloramphenicol (CHL) and the membrane-penetrating cation triphenylphosphonium (TPP), which are linked by alkyl groups of different lengths. Using various biochemical assays, we showed that these CAM-Cn-TPP compounds bind to the bacterial ribosome, inhibit protein synthesis in vitro and in vivo in a way similar to that of the parent CHL, and significantly reduce membrane potential. Similar to CAM-C4-TPP, the mode of action of CAM-C10-TPP and CAM-C14-TPP in bacterial ribosomes differs from that of CHL. By simulating the dynamics of CAM-Cn-TPP complexes with bacterial ribosomes, we proposed a possible explanation for the specificity of the action of these analogs in the translation process. CAM-C10-TPP and CAM-C14-TPP more strongly inhibit the growth of the Gram-positive bacteria, as compared to CHL, and suppress some CHL-resistant bacterial strains. Thus, we have shown that TPP derivatives of CHL are dual-acting compounds targeting both the ribosomes and cellular membranes of bacteria. The TPP fragment of CAM-Cn-TPP compounds has an inhibitory effect on bacteria. Moreover, since the mitochondria of eukaryotic cells possess qualities similar to those of their prokaryotic ancestors, we demonstrate the possibility of targeting chemoresistant cancer cells with these compounds.
Collapse
Affiliation(s)
- Julia A. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (D.A.S.); (A.A.B.)
| | - Zimfira Z. Khairullina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (D.A.S.); (A.A.B.)
| | - Andrey G. Tereshchenkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia; (A.G.T.); (P.A.N.); (Y.N.A.)
| | - Pavel A. Nazarov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia; (A.G.T.); (P.A.N.); (Y.N.A.)
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Dmitrii A. Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143028 Skolkovo, Russia;
| | - Inna A. Volynkina
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Dmitry A. Skvortsov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (D.A.S.); (A.A.B.)
| | - Gennady I. Makarov
- Laboratory of the Multiscale Modeling of Multicomponent Materials, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - Somay Y. Murayama
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8340, Japan;
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan;
| | - Alena Paleskava
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (A.L.K.)
- Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Andrey L. Konevega
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (A.L.K.)
- Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- NRC “Kurchatov Institute”, 123182 Moscow, Russia
| | - Yuri N. Antonenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia; (A.G.T.); (P.A.N.); (Y.N.A.)
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia;
- Vall D’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Ilya A. Osterman
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (D.A.S.); (A.A.B.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143028 Skolkovo, Russia;
- Genetics and Life Sciences Research Center, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (I.A.O.); (N.V.S.)
| | - Alexey A. Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (D.A.S.); (A.A.B.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia; (A.G.T.); (P.A.N.); (Y.N.A.)
| | - Natalia V. Sumbatyan
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (D.A.S.); (A.A.B.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia; (A.G.T.); (P.A.N.); (Y.N.A.)
- Correspondence: (I.A.O.); (N.V.S.)
| |
Collapse
|
27
|
Pasban S, Raissi H. Nanotechnology-based approaches for targeting and delivery of drugs via Hexakis (m-PE) macrocycles. Sci Rep 2021; 11:8256. [PMID: 33859230 PMCID: PMC8050045 DOI: 10.1038/s41598-021-87011-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 12/04/2022] Open
Abstract
Hexakis (m-phenylene ethynylene) (m-PE) macrocycles, with aromatic backbones and multiple hydrogen-bonding side chains, had a very high propensity to self-assemble via H-bond and π-π stacking interactions to form nanotubular structures with defined inner pores. Such stacking of rigid macrocycles is leading to novel applications that enable the researchers to explored mass transport in the sub-nanometer scale. Herein, we performed density functional theory (DFT) calculations to examine the drug delivery performance of the hexakis dimer as a novel carrier for doxorubicin (DOX) agent in the chloroform and water solvents. Based on the DFT results, it is found that the adsorption of DOX on the carrier surface is typically physisorption with the adsorption strength values of - 115.14 and - 83.37 kJ/mol in outside and inside complexes, respectively, and so that the essence of the drug remains intact. The negative values of the binding energies for all complexes indicate the stability of the drug molecule inside and outside the carrier's cavities. The energy decomposition analysis (EDA) has also been performed and shown that the dispersion interaction has an essential role in stabilizing the drug-hexakis dimer complexes. To further explore the electronic properties of dox, the partial density of states (PDOS and TDOS) are calculated. The atom in molecules (AIM) and Becke surface (BS) methods are also analyzed to provide an inside view of the nature and strength of the H-bonding interactions in complexes. The obtained results indicate that in all studied complexes, H-bond formation is the driving force in the stabilization of these structures, and also chloroform solvent is more favorable than the water solution. Overall, our findings offer insightful information on the efficient utilization of hexakis dimer as drug delivery systems to deliver anti-cancer drugs.
Collapse
Affiliation(s)
- Samaneh Pasban
- Department of Chemistry, University of Birjand, Birjand, Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| |
Collapse
|
28
|
Huang M, Myers CR, Wang Y, You M. Mitochondria as a Novel Target for Cancer Chemoprevention: Emergence of Mitochondrial-targeting Agents. Cancer Prev Res (Phila) 2020; 14:285-306. [PMID: 33303695 DOI: 10.1158/1940-6207.capr-20-0425] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Cancer chemoprevention is the most effective approach to control cancer in the population. Despite significant progress, chemoprevention has not been widely adopted because agents that are safe tend to be less effective and those that are highly effective tend to be toxic. Thus, there is an urgent need to develop novel and effective chemopreventive agents, such as mitochondria-targeted agents, that can prevent cancer and prolong survival. Mitochondria, the central site for cellular energy production, have important functions in cell survival and death. Several studies have revealed a significant role for mitochondrial metabolism in promoting cancer development and progression, making mitochondria a promising new target for cancer prevention. Conjugating delocalized lipophilic cations, such as triphenylphosphonium cation (TPP+), to compounds of interest is an effective approach for mitochondrial targeting. The hyperpolarized tumor cell membrane and mitochondrial membrane potential allow for selective accumulation of TPP+ conjugates in tumor cell mitochondria versus those in normal cells. This could enhance direct killing of precancerous, dysplastic, and tumor cells while minimizing potential toxicities to normal cells.
Collapse
Affiliation(s)
- Mofei Huang
- Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Charles R Myers
- Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yian Wang
- Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ming You
- Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, Wisconsin. .,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
29
|
Khan I, Joshi G, Sarkar B, Nakhate KT, Ajazuddin, Mantha AK, Kumar R, Kaul A, Chaturvedi S, Mishra AK, Gupta U. Doxorubicin and Crocin Co-delivery by Polymeric Nanoparticles for Enhanced Anticancer Potential In Vitro and In Vivo. ACS APPLIED BIO MATERIALS 2020; 3:7789-7799. [PMID: 35019519 DOI: 10.1021/acsabm.0c00974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of a biodegradable nanoplatform poly(lactic-co-glycolic acid) (PLGA) for co-delivery of two drugs is hugely imperative and beneficial in anticancer therapeutics. In this study, co-delivery of a natural phytoconstituent, crocin (carotenoid), and a commonly prescribed drug, doxorubicin, was attempted using a nanoparticulate platform in the form of PLGA nanoparticles. Doxorubicin was chemically conjugated, while crocin was encapsulated physically in prepared PLGA nanoparticles (PDCR NPs). Prepared NPs were well-characterized for size, ζ, and surface morphology. PDCR NPs were of 174.2 ± 1.57 nm in size. The transmission electron microscopy (TEM) and atomic force microscopy (AFM) images revealed the spherical shape and smooth surface morphology of the nanoparticles, respectively. The entrapment efficiency and drug loading were found to be 58.95 ± 2.58 and 13.89 ± 1.09%, respectively. The drug release pattern of PDCR NPs showed a sustained and controlled release pattern throughout 48 h in PBS buffer pH 7.4 and acetate buffer pH 6.5. PDCR NPs were significantly less hemolytic than doxorubicin (p < 0.0001). Investigational formulation selectively produced cytotoxic effects on breast cancer cells via decreasing reactive oxygen species (ROS) and altering the mitochondrial potential that led to apoptosis with cell-cycle arrest at the G2/M phase. Prepared NPs were able to upregulate the caspase levels as well as efficient uptake by cells in a time-dependent manner. In vivo plasma drug profile studies in healthy rats revealed prolonged persistence of crocin and doxorubicin in systemic circulation. Additionally, the PDCR NPs portrayed reduced tumor volume as compared to control groups in the tumor-induced animal studies, which were favorable. Conclusively, the co-delivery of natural anticancer bioactive crocin along with doxorubicin in PDCR NPs provides a possible controlled-release nanoplatform for efficient drug delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Iliyas Khan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Bibekananda Sarkar
- Department of Zoology, Central University of Punjab, Bathinda 151001, India
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Chhattisgarh 490024, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Chhattisgarh 490024, India
| | - Anil K Mantha
- Department of Zoology, Central University of Punjab, Bathinda 151001, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences Institute of Nuclear Medicine and Allied Sciences, New Delhi 110054, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences Institute of Nuclear Medicine and Allied Sciences, New Delhi 110054, India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences Institute of Nuclear Medicine and Allied Sciences, New Delhi 110054, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| |
Collapse
|
30
|
Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy. Int J Mol Sci 2020; 21:ijms21217941. [PMID: 33114695 PMCID: PMC7663685 DOI: 10.3390/ijms21217941] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are essential cellular organelles, controlling multiple signalling pathways critical for cell survival and cell death. Increasing evidence suggests that mitochondrial metabolism and functions are indispensable in tumorigenesis and cancer progression, rendering mitochondria and mitochondrial functions as plausible targets for anti-cancer therapeutics. In this review, we summarised the major strategies of selective targeting of mitochondria and their functions to combat cancer, including targeting mitochondrial metabolism, the electron transport chain and tricarboxylic acid cycle, mitochondrial redox signalling pathways, and ROS homeostasis. We highlight that delivering anti-cancer drugs into mitochondria exhibits enormous potential for future cancer therapeutic strategies, with a great advantage of potentially overcoming drug resistance. Mitocans, exemplified by mitochondrially targeted vitamin E succinate and tamoxifen (MitoTam), selectively target cancer cell mitochondria and efficiently kill multiple types of cancer cells by disrupting mitochondrial function, with MitoTam currently undergoing a clinical trial.
Collapse
|
31
|
Zhong XC, Shi MH, Liu HN, Chen JJ, Wang TT, Lin MT, Zhang ZT, Zhou Y, Lu YY, Xu WH, Gao JQ, Xu DH, Han M, Chen YD. Mitochondrial targeted doxorubicin derivatives delivered by ROS-responsive nanocarriers to breast tumor for overcoming of multidrug resistance. Pharm Dev Technol 2020; 26:21-29. [PMID: 33070673 DOI: 10.1080/10837450.2020.1832116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is a serious challenge in chemotherapy and also a major threat to breast cancer treatment. As an intracellular energy factory, mitochondria provide energy for drug efflux and are deeply involved in multidrug resistance. Mitochondrial targeted delivery of doxorubicin can overcome multidrug resistance by disrupting mitochondrial function. By incorporating a reactive oxygen species (ROS)-responsive hydrophobic group into the backbone structure of hyaluronic acid - a natural ligand for the highly expressed CD44 receptor on tumor surfaces, a novel ROS-responsive and CD44-targeting nano-carriers was constructed. In this study, mitochondria-targeted triphenylphosphine modified-doxorubicin (TPP-DOX) and amphipathic ROS-responsive hyaluronic acid derivatives (HA-PBPE) were synthesized and confirmed by 1H NMR. The nanocarriers TPP-DOX @ HA-PBPE was prepared in a regular shape and particle size of approximately 200 nm. Compared to free DOX, its antitumor activity in vitro and tumor passive targeting in vivo has been enhanced. The ROS-responsive TPP-DOX@HA-PBPE nanocarriers system provide a promising strategy for the reverse of MDR and efficient delivery of doxorubicin derivatives into drug-resistant cancer cells.
Collapse
Affiliation(s)
- Xin-Cheng Zhong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ming-Han Shi
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hui-Na Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jie-Jian Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Tian-Tian Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Meng-Ting Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhen-Tao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi-Ying Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Wen-Hong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong-Hang Xu
- Department of Pharmacy, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi-Ding Chen
- Department of Breast Surgery, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic China
| |
Collapse
|
32
|
Yamada Y, Hibino M, Sasaki D, Abe J, Harashima H. Power of mitochondrial drug delivery systems to produce innovative nanomedicines. Adv Drug Deliv Rev 2020; 154-155:187-209. [PMID: 32987095 DOI: 10.1016/j.addr.2020.09.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Mitochondria carry out various essential functions including ATP production, the regulation of apoptosis and possess their own genome (mtDNA). Delivering target molecules to this organelle, it would make it possible to control the functions of cells and living organisms and would allow us to develop a better understanding of life. Given the fact that mitochondrial dysfunction has been implicated in a variety of human disorders, delivering therapeutic molecules to mitochondria for the treatment of these diseases is an important issue. To date, several mitochondrial drug delivery system (DDS) developments have been reported, but a generalized DDS leading to therapy that exclusively targets mitochondria has not been established. This review focuses on mitochondria-targeted therapeutic strategies including antioxidant therapy, cancer therapy, mitochondrial gene therapy and cell transplantation therapy based on mitochondrial DDS. A particular focus is on nanocarriers for mitochondrial delivery with the goal of achieving mitochondria-targeting therapy. We hope that this review will stimulate the accelerated development of mitochondrial DDS.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Biological Drug Development Based on DDS Technology, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Mitsue Hibino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Daisuke Sasaki
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Jiro Abe
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Biological Drug Development Based on DDS Technology, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
33
|
Liew SS, Qin X, Zhou J, Li L, Huang W, Yao SQ. Smart Design of Nanomaterials for Mitochondria-Targeted Nanotherapeutics. Angew Chem Int Ed Engl 2020; 60:2232-2256. [PMID: 32128948 DOI: 10.1002/anie.201915826] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 12/14/2022]
Abstract
Mitochondria are the powerhouse of cells. They are vital organelles that maintain cellular function and metabolism. Dysfunction of mitochondria results in various diseases with a great diversity of clinical appearances. In the past, strategies have been developed for fabricating subcellular-targeting drug-delivery nanocarriers, enabling cellular internalization and subsequent organelle localization. Of late, innovative strategies have emerged for the smart design of multifunctional nanocarriers. Hierarchical targeting enables nanocarriers to evade and overcome various barriers encountered upon in vivo administration to reach the organelle with good bioavailability. Stimuli-responsive nanocarriers allow controlled release of therapeutics to occur at the desired target site. Synergistic therapy can be achieved using a combination of approaches such as chemotherapy, gene and phototherapy. In this Review, we survey the field for recent developments and strategies used in the smart design of nanocarriers for mitochondria-targeted therapeutics. Existing challenges and unexplored therapeutic opportunities are also highlighted and discussed to inspire the next generation of mitochondrial-targeting nanotherapeutics.
Collapse
Affiliation(s)
- Si Si Liew
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jia Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, P. R. China.,Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
34
|
Liew SS, Qin X, Zhou J, Li L, Huang W, Yao SQ. Intelligentes Design von Nanomaterialien für Mitochondrien‐gerichtete Nanotherapeutika. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Si Si Liew
- Department of Chemistry National University of Singapore Singapore 117543 Singapur
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 211816 P. R. China
| | - Jia Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 211816 P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 211816 P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 211816 P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE) Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore Singapore 117543 Singapur
| |
Collapse
|
35
|
Palanikumar L, Al-Hosani S, Kalmouni M, Nguyen VP, Ali L, Pasricha R, Barrera FN, Magzoub M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun Biol 2020; 3:95. [PMID: 32127636 PMCID: PMC7054360 DOI: 10.1038/s42003-020-0817-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/10/2020] [Indexed: 01/22/2023] Open
Abstract
The practical application of nanoparticles (NPs) as chemotherapeutic drug delivery systems is often hampered by issues such as poor circulation stability and targeting inefficiency. Here, we have utilized a simple approach to prepare biocompatible and biodegradable pH-responsive hybrid NPs that overcome these issues. The NPs consist of a drug-loaded polylactic-co-glycolic acid (PLGA) core covalently 'wrapped' with a crosslinked bovine serum albumin (BSA) shell designed to minimize interactions with serum proteins and macrophages that inhibit target recognition. The shell is functionalized with the acidity-triggered rational membrane (ATRAM) peptide to facilitate internalization specifically into cancer cells within the acidic tumor microenvironment. Following uptake, the unique intracellular conditions of cancer cells degrade the NPs, thereby releasing the chemotherapeutic cargo. The drug-loaded NPs showed potent anticancer activity in vitro and in vivo while exhibiting no toxicity to healthy tissue. Our results demonstrate that the ATRAM-BSA-PLGA NPs are a promising targeted cancer drug delivery platform.
Collapse
Affiliation(s)
- L Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sumaya Al-Hosani
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Vanessa P Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
36
|
Alqaraghuli HGJ, Kashanian S, Rafipour R. A Review on Targeting Nanoparticles for Breast Cancer. Curr Pharm Biotechnol 2020; 20:1087-1107. [PMID: 31364513 DOI: 10.2174/1389201020666190731130001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic agents have been used extensively in breast cancer remedy. However, most anticancer drugs cannot differentiate between cancer cells and normal cells, leading to toxic side effects. Also, the resulted drug resistance during chemotherapy reduces treatment efficacy. The development of targeted drug delivery offers great promise in breast cancer treatment both in clinical applications and in pharmaceutical research. Conjugation of nanocarriers with targeting ligands is an effective therapeutic strategy to treat cancer diseases. In this review, we focus on active targeting methods for breast cancer cells through the use of chemical ligands such as antibodies, peptides, aptamers, vitamins, hormones, and carbohydrates. Also, this review covers all information related to these targeting ligands, such as their subtypes, advantages, disadvantages, chemical modification methods with nanoparticles and recent published studies (from 2015 to present). We have discussed 28 different targeting methods utilized for targeted drug delivery to breast cancer cells with different nanocarriers delivering anticancer drugs to the tumors. These different targeting methods give researchers in the field of drug delivery all the information and techniques they need to develop modern drug delivery systems.
Collapse
Affiliation(s)
- Hasanain Gomhor J Alqaraghuli
- Faculty of Chemistry, Razi University, Kermanshah, Iran.,Department of Sciences, College of Basic Education, Al- Muthanna University, Al-Muthanna, Iraq
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran.,Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ronak Rafipour
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| |
Collapse
|
37
|
Zhong XC, Xu WH, Wang ZT, Guo WW, Chen JJ, Guo NN, Wang TT, Lin MT, Zhang ZT, Lu YY, Yang QY, Han M, Xu DH, Gao JQ. Doxorubicin derivative loaded acetal-PEG-PCCL micelles for overcoming multidrug resistance in MCF-7/ADR cells. Drug Dev Ind Pharm 2019; 45:1556-1564. [PMID: 31271317 DOI: 10.1080/03639045.2019.1640721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective: This study was aimed to develop DOX-TPP loaded acetal-PEG-PCCL micelles to improve the clinical efficacy of drug resistance tumor. Significance: Chemotherapy is one of the main treatments for breast cancer but is plagued by multidrug resistance (MDR). DOX-TPP-loaded micelles can enhance the specific concentration of drugs in the tumor and improve the efficacy and overcome MDR. Methods: In this study, DOX-TPP-loaded micelles based on acetal-PEG-PCCL were prepared and their physicochemical properties were characterized. The cellular uptake and ability to induce apoptosis of the micelles was confirmed by flow cytometry in MCF-7/ADR cells. In addition, cytotoxicity of the micelles was studied in MCF-7 cells and MCF-7/ADR cells. Confocal is used to study the subcellular distribution of DOX. Free DOX-TPP or DOX-TPP-loaded acetal-PEG-PCCL micelles were administered via intravenous injection in the tail vain for the biodistribution study in vivo. Results: The diameter of micelles was about 102.4 nm and their drug-loading efficiency is 61.8%. The structural characterization was confirmed by 1H NMR. The micelles exhibited better antitumor efficacy compared to free doxorubicin in MCF-7/ADR cells by MTT assay. The apoptotic rate and the cellular uptake of micelles were significantly higher than free DOX and DOX-TPP. Micelles can efficiently deliver mitochondria-targeting DOX-TPP to tumor cells. The result of bio-distribution showed that the micelles had stronger tumor infiltration ability than free drugs. Conclusions: In this study, mitochondriotropic DOX-TPP was conjugated to the nanocarrier acetal-PEG-PCCL via ionic interaction to form a polymer, which spontaneously formed spherical micelles. The cytotoxicity and cellular uptake of the micelles are superior to free DOX and exhibit mitochondrial targeting and passive tumor targeting, indicating that they have potential prospects.
Collapse
Affiliation(s)
- Xin-Cheng Zhong
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Wen-Hong Xu
- b Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , People's Republic of China
| | - Zi-Ting Wang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Wang-Wei Guo
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Jie-Jian Chen
- b Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , People's Republic of China
| | - Ning-Ning Guo
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Tian-Tian Wang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Meng-Ting Lin
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Zhen-Tao Zhang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Yi-Ying Lu
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Qi-Yao Yang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Min Han
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,c Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Dong-Hang Xu
- d Department of Pharmacy, The 2nd Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Jian-Qing Gao
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,c Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| |
Collapse
|
38
|
Zhang J, Zhang D, Li Q, Jiang Y, Song A, Li Z, Luan Y. Task-Specific Design of Immune-Augmented Nanoplatform to Enable High-Efficiency Tumor Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42904-42916. [PMID: 31657540 DOI: 10.1021/acsami.9b13556] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Potentiating systemic immunity against breast cancer is in the most urgent demand as breast cancer is less sensitive to immune checkpoint blockade. Although phototherapy and some chemotherapy can trigger immunogenic cell death (ICD) for T cell-mediated antitumor immune response, their immunotherapy efficacy is severely restricted by insufficient phototherapeutic capability and severe multidrug resistance (MDR). Inspired by both the hypersensitivity to phototherapy and the key role of MDR for mitochondria, a rationally engineered immunity amplifier via mitochondria-targeted photochemotherapeutic nanoparticles was, for the first time, achieved to fight against low-immunogenic breast cancer without additional immune agents. The newly synthesized task-specific mitochondria-targeted IR780 derivative (T780) was integrated with chemotherapeutic doxorubicin (DOX) to form multifunctional nanoparticles via an assembling strategy along with bovine serum albumin (BSA) as a biomimetic corona (BSA@T780/DOX NPs). The in situ enhancement in both phototherapy and MDR reversal by targeting mitochondria with BSA@T780/DOX NPs boosted highly efficient ICD toward excellent antitumor immune response. The newly developed strategy not only eradicated the primary tumor but also eliminated the bilateral tumors efficiently, as well as preventing metastasis and postsurgical recurrence, demonstrating great interest for fighting against low-immunogenic breast cancer.
Collapse
MESH Headings
- Animals
- Biomimetic Materials/chemistry
- Biomimetic Materials/pharmacology
- Cattle
- Cell Line
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/immunology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/immunology
- Female
- Immunotherapy
- Indoles/chemistry
- Indoles/pharmacology
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Protein Corona/chemistry
- Serum Albumin, Bovine/chemistry
- Serum Albumin, Bovine/pharmacology
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhuaxi Road , Jinan , Shandong Province 250012 , China
| | - Di Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhuaxi Road , Jinan , Shandong Province 250012 , China
| | - Qian Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhuaxi Road , Jinan , Shandong Province 250012 , China
| | - Yue Jiang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhuaxi Road , Jinan , Shandong Province 250012 , China
| | - Aixin Song
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education) , Shandong University , Jinan , Shandong Province 250100 , China
| | - Zhonghao Li
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education) , Shandong University , Jinan , Shandong Province 250100 , China
| | - Yuxia Luan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 Wenhuaxi Road , Jinan , Shandong Province 250012 , China
| |
Collapse
|
39
|
Singh R. Nanotechnology based therapeutic application in cancer diagnosis and therapy. 3 Biotech 2019; 9:415. [PMID: 31696020 PMCID: PMC6811486 DOI: 10.1007/s13205-019-1940-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the lack of early diagnosis, cancer remains as one of the leading cause of human mortality. Inability to translate research into clinical trials and also inability of chemotherapeutics delivery to targeted tumor sites are major drawbacks in cancer therapeutics. With the emergence of nanomedicine, several nanoprobes (conjugated with targeting ligands and chemotherapeutic drugs) are developed. It can interact with biological system and thus sense and monitor the biological events with high efficiency and accuracy along with therapy application. Nanoparticles like gold and iron oxide are frequently used in the computed tomography and magnetic resonance imaging applications, respectively. Moreover, enzymatic activity of gold and iron oxide nanoparticles enables the visible colorimetric diagnostic of cancer cells, whereas, fluorescence property of quantum dots and upconversion nanoparticles helps in in vivo imaging application. Other than this, drug conjugation with nanoparticles also reduces the systemic toxic effect of chemotherapeutic drugs. Due to their several unique intrinsic properties, nanoparticles itself can also be employed as therapeutics in cancer treatment by photothermal therapy (PTT) and photodynamic therapy (PDT). Thus, the main focus of this review is to emphasize on current progress in diagnostic and therapeutic application of nanoprobes in cancer.
Collapse
Affiliation(s)
- Ragini Singh
- School of Agriculture Science, Liaocheng University, No. 1 Hunan Road, Liaocheng, Shandong China
| |
Collapse
|
40
|
Chen J, Yang Q, Liu M, Lin M, Wang T, Zhang Z, Zhong X, Guo N, Lu Y, Xu J, Wang C, Han M, Wei Q. Remarkable Boron Delivery Of iRGD-Modified Polymeric Nanoparticles For Boron Neutron Capture Therapy. Int J Nanomedicine 2019; 14:8161-8177. [PMID: 31632025 PMCID: PMC6790217 DOI: 10.2147/ijn.s214224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose Boron neutron capture therapy (BNCT) is an emerging binary radiotherapy, which is limited for application due to the challenge of targeted delivery into tumor nowadays. Here, we propose the use of iRGD-modified polymeric nanoparticles for active targeted delivery of boron and doxorubicin (DOX) in BNCT. Methods 10B-enriched BSH was covalently grafted to PEG-PCCL to prepare 10B-polymer, then surface-modified with iRGD. And, DOX was physically incorporated into polymers afterwards. Characterization of prepared polymers and in vitro release profile of DOX from polymers were determined by several methods. Cellular uptake of DOX was observed by confocal microscope. Accumulation of boron in cells and tissues was analyzed by ICP-MS. Biodistribution of DOX was studied by ex vivo fluorescence imaging and quantitative measurement. Tumor vascular normalization of Endostar for promoting delivery efficiency of boron on refractory B16F10 tumor was also studied. Results The polymers were monodisperse and spheroidal in water with an average diameter of 24.97 nm, which were relatively stable at physiological pH and showed a sustained release of DOX, especially at endolysosomal pH. Enhanced cellular delivery of DOX was found in iRGD-modified polymer group. Cellular boron uptake of iRGD-modified polymers in A549 cells was remarkably raised fivefold (209.83 ng 10B/106 cells) compared with BSH. The polymers represented prolonged blood circulation, enhanced tumor accumulation of 10B against BSH, and favorable tumor:normal tissue boron concentration ratios (tumor:blood = 14.11, tumor:muscle = 19.49) in A549 tumor-bearing mice 24 hrs after injection. Both fluorescence imaging and quantitative measurement showed the highest tumor accumulation of DOX at 24 hrs after injecting of iRGD-modified polymers. Improvement of vascular integrity and reduction of vascular mimicries were found after Endostar injection, and raised tumor accumulation of boron as well. Conclusion The developed nanoparticle is an inspiring candidate for the safe clinical application for BNCT.
Collapse
Affiliation(s)
- Jiejian Chen
- Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qiyao Yang
- Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Mengting Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Tiantian Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhentao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xincheng Zhong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ningning Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yiying Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jing Xu
- Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Changsheng Wang
- Department of Spinal Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qichun Wei
- Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| |
Collapse
|
41
|
Geng Y, Zhong Y, Zhou Q, Chen S, Piao Y, Yin W, Lu H, Shen Y. A neutral water-soluble mitochondria-targeting polymer. Chem Commun (Camb) 2019; 55:10015-10018. [PMID: 31378791 DOI: 10.1039/c9cc04291a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the first neutral and water-soluble polymer capable of strong mitochondrial targeting in vitro and in vivo, zwitterionic poly[2-(N-oxide-N,N-diethylamino)ethyl methacrylate] (OPDEA). OPDEA is quickly internalized via macropinocytosis by various cancer cells and transferred into the mitochondria, which slightly lowers the mitochondrial membrane potential as determined by the JC-1 assay.
Collapse
Affiliation(s)
- Yu Geng
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chang S, Wang Y, Zhang T, Pu X, Zong L, Zhu H, Zhao L, Feng B. Redox-Responsive Disulfide Bond-Bridged mPEG-PBLA Prodrug Micelles for Enhanced Paclitaxel Biosafety and Antitumor Efficacy. Front Oncol 2019; 9:823. [PMID: 31508374 PMCID: PMC6719549 DOI: 10.3389/fonc.2019.00823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/12/2019] [Indexed: 01/11/2023] Open
Abstract
The toxicity and side effects of traditional chemotherapeutic drugs are the main causes of chemotherapy failure. To improve the specificity and selectivity of chemotherapeutic drugs for tumor cells, a novel redox-sensitive polymer prodrug, polyethylene glycol-poly (β-benzyl-L-aspartate) (PEG-PBLA)-SS-paclitaxel (PPSP), was designed and synthesized in this study. The PPSP micelle was manufactured via high-speed dispersion stirring and dialysis. The particle size and zeta potential of this prodrug micelle were 63.77 ± 0.91 nm and −25.8 ± 3.24 mV, respectively. The micelles were uniformly distributed and presented a spherical morphology under a transmission electron microscope. In the tumor physiological environment, the particle size of the PPSP micelles and the release rate of paclitaxel (PTX) were significantly increased compared with those of mPEG-PBLA-CC-PTX (PPCP) micelles, reflecting the excellent redox-sensitive activity of the PPSP micelles. The inhibitory effect of PPSP on HepG2, MCF-7 and HL-7702 cell proliferation was investigated with MTT assays, and the results demonstrated that PPSP is superior to PTX with respect to the inhibition of two tumor cell types at different experimental concentration. Simultaneously PPSP has lower toxicity against HL-7702 cells then PTX and PPCP. Moreover, the blank micelle from mPEG-PBLA showed no obvious toxicity to the two tumor cells at different experimental concentrations. In summary, the redox-sensitive PPSP micelle significantly improved the biosafety and the anti-tumor activity of PTX.
Collapse
Affiliation(s)
- Sheng Chang
- College of Pharmacy, Jilin Medical University, Jilin, China
| | - Yanfei Wang
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Tianyi Zhang
- College of Pharmacy, Jilin Medical University, Jilin, China
| | - Xiaohui Pu
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Lanlan Zong
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Heyun Zhu
- College of Pharmacy, Jilin Medical University, Jilin, China
| | - Luling Zhao
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Bo Feng
- College of Pharmacy, Jilin Medical University, Jilin, China
| |
Collapse
|
43
|
Wang Y, Zhang T, Hou C, Zu M, Lu Y, Ma X, Jia D, Xue P, Kang Y, Xu Z. Mitochondria-Specific Anticancer Drug Delivery Based on Reduction-Activated Polyprodrug for Enhancing the Therapeutic Effect of Breast Cancer Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29330-29340. [PMID: 31329411 DOI: 10.1021/acsami.9b10211] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mitochondria-targeting cancer therapies have achieved unprecedented advances attributed to their superior ability for improving drug delivery efficiency and producing an enhanced therapeutic effect. Herein, we report a mitochondria-targeting camptothecin (CPT) polyprodrug system (MCPS) covalently decorated with a high-proportioned CPT content, which can realize drug release specifically responsive to a tumor microenvironment. The nonlinear structure of MCPS can form water-soluble unimolecular micelles with high micellar stability and improved drug accumulation in tumoral cells/tissues. Furthermore, a classical mitochondria-targeting agent, triphenylphosphonium bromide, was tethered in this prodrug system, which causes mitochondrial membrane potential depolarization and mediates the transport of CPT into mitochondria. The disulfide bond in MCPS can be cleaved by an intracellular reductant such as glutathione, leading to enhanced destruction of mitochondria DNA and cell apoptosis induced by a high level of reactive oxygen species. The systematic analyses both in vitro and in vivo indicated the excellent tumor inhibition effect and biosafety of MCPS, which is believed to be an advantageous nanoplatform for subcellular organelle-specific chemotherapy of cancer.
Collapse
Affiliation(s)
| | | | - Cuilan Hou
- Department of Cardiology, Shanghai Children's Hospital , Shanghai Jiaotong University , No. 355 Luding Road , Shanghai 200062 , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16:915-936. [DOI: 10.1080/17425247.2019.1645115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | |
Collapse
|
45
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
46
|
Liu Z, Le Z, Lu L, Zhu Y, Yang C, Zhao P, Wang Z, Shen J, Liu L, Chen Y. Scalable fabrication of metal-phenolic nanoparticles by coordination-driven flash nanocomplexation for cancer theranostics. NANOSCALE 2019; 11:9410-9421. [PMID: 31038500 DOI: 10.1039/c9nr02185j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although various nanomaterials have been developed for cancer theranostics, there remains a key challenge for effective integration of therapeutic drugs and diagnostic agents into a single multicomponent nanoparticle via a simple and scalable approach. Moreover, the bottlenecks of nanoformulation in composition controllability, colloidal stability, drug loading capability and batch-to-batch repeatability currently still hinder the clinical translation of nanomedicine. Herein, we report a coordination-driven flash nanocomplexation (cFNC) process to achieve scalable fabrication of doxorubicin-based metal-phenolic nanoparticles (DITH) with a hyaluronic acid surface layer through efficient control of coordination reaction kinetics in a rapid turbulent mixing. The optimized DITH exhibited a small hydrodynamic diameter (84 nm), narrow size distribution, high drug loading capacity (26.6%), high reproducibility and pH-triggered drug release behaviors. The studies indicated that DITH significantly increased cellular endocytosis mediated by CD44+ receptor targeting and accelerated intracellular drug release owing to the sensitivity of DITH to environmental pH stimuli. Furthermore, guided by T1-weighted magnetic resonance (MR) imaging function endowed by ferric ions, DITH exhibited prolonged blood circulation, enhanced tumor accumulation, improved therapeutic performance and decreased toxic side effects after intravenous injection in a MCF-7 tumor-bearing mice model. These results confirmed that the developed DITH is a promising vehicle for cancer theranostic applications, and our work provided a new strategy to promote the development of translational nanomedicine.
Collapse
Affiliation(s)
- Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang M, Xiao Y, Li Y, Wu J, Li F, Ling D, Gao J. Reactive oxygen species and near-infrared light dual-responsive indocyanine green-loaded nanohybrids for overcoming tumour multidrug resistance. Eur J Pharm Sci 2019; 134:185-193. [PMID: 31026507 DOI: 10.1016/j.ejps.2019.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/02/2019] [Accepted: 04/20/2019] [Indexed: 12/21/2022]
Abstract
The nucleus is in charge of the metabolism and heredity of the cell, and genetic mutations are closely related with tumour multidrug resistance (MDR). Indocyanine green (ICG), the FDA-approved photosensitizer, is widely used for tumour photodynamic therapy (PDT) and photothermal therapy (PTT). Few studies have clarified the cellular distribution of ICG in MDR tumour cells. In the study, ICG distribution was detected in the whole tumour cells of MCF-7 and MCF-7/ADR, especially in the nucleus, which led us to question whether increasing cellular accumulation and nuclear distribution of ICG could be a potential method to overcome MDR. Therefore, a reactive oxygen species (ROS) and near-infrared (NIR) light dual-responsive nanohybrid was constructed with diselenide cross-linked polyamidoamine-Poloxamer 188 and graphene oxide with ICG as payloads (ICG/GPP). The nanohybrid enhanced the stability of ICG and showed an ROS-sensitive release behaviour. More ICG was delivered by ICG/GPP to the MCF-7/ADR cells. After escaping from the lysosome, nuclear accumulation of ICG was increased. Under NIR laser irradiation, ICG/GPP showed increased cytotoxicity for the combined PTT and PDT in MCF-7/ADR cells. Moreover, the expression of P-glycoprotein (P-gp) was suppressed to overcome tumour MDR. The ROS- and NIR- responsive GPP shows potential for the nuclear delivery of drugs to combat tumour MDR.
Collapse
Affiliation(s)
- Meng Wang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Institute of Biomedical Research, Shandong University of Technology, Zibo, 255000, PR China
| | - Yi Xiao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ying Li
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jiahe Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Fangyuan Li
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Daishun Ling
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Jianqing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
48
|
Li HQ, Ye WL, Huan ML, Cheng Y, Liu DZ, Cui H, Liu M, Zhang BL, Mei QB, Zhou SY. Mitochondria and nucleus delivery of active form of 10-hydroxycamptothecin with dual shell to precisely treat colorectal cancer. Nanomedicine (Lond) 2019; 14:1011-1032. [PMID: 30925116 DOI: 10.2217/nnm-2018-0227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIM The objective of this study was to deliver a ring-closed form of 10-hydroxycamptothecin (HCPT) to the mitochondria and nucleus to treat colorectal cancer. MATERIALS & METHODS HCPT-loaded nanoparticle HCPT@PLGA-PEG2k-triphenylphosphonium/PLGA-hyd-PEG4k-folic acid (PT/PHF) and HCPT@PT/PLGA-SS-PEG4k-folic acid (PSF) were prepared by using emulsion-solvent evaporation method. RESULTS In vitro experimental results indicated HCPT@PT/PHF and HCPT@PT/PSF maintained a large amount of HCPT in active form, and delivered more HCPT to the nucleus and mitochondria of the tumor cell, which resulted in the enhancement of cytotoxicity of HCPT. In vivo experimental results indicated that HCPT@PT/PHF and HCPT@PT/PSF delivered more ring-closed form of HCPT to tumor tissue, which led to strong antitumor activity. CONCLUSION HCPT@PT/PHF and HCPT@PT/PSF could enhance therapeutic efficacy of HCPT to colorectal cancer.
Collapse
Affiliation(s)
- Huai-Qiu Li
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Wei-Liang Ye
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Meng-Lei Huan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Dao-Zhou Liu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Han Cui
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Bang-le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Qi-Bing Mei
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, PR China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China.,Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, PR China
| |
Collapse
|
49
|
Emami F, Banstola A, Vatanara A, Lee S, Kim JO, Jeong JH, Yook S. Doxorubicin and Anti-PD-L1 Antibody Conjugated Gold Nanoparticles for Colorectal Cancer Photochemotherapy. Mol Pharm 2019; 16:1184-1199. [PMID: 30698975 DOI: 10.1021/acs.molpharmaceut.8b01157] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide. The prognosis and overall survival of CRC are known to be significantly correlated with the overexpression of PD-L1. Since combination therapies can significantly improve therapeutic efficacy, we constructed doxorubicin (DOX) conjugated and anti-PD-L1 targeting gold nanoparticles (PD-L1-AuNP-DOX) for the targeted chemo-photothermal therapy of CRC. DOX and anti-PD-L1 antibody were conjugated to the α-terminal end group of lipoic acid polyethylene glycol N-hydroxysuccinimide (LA-PEG-NHS) using an amide linkage, and PD-L1-AuNP-DOX was constructed by linking LA-PEG-DOX, LA-PEG-PD-L1, and a short PEG chain on the surface of AuNP using thiol-Au covalent bonds. Physicochemical characterizations and biological studies of PD-L1-AuNP-DOX were performed in the presence of near-infrared (NIR) irradiation (biologic studies were conducted using cellular uptake, apoptosis, and cell cycle assays in CT-26 cells). PD-L1-AuNP-DOX (40.0 ± 3.1 nm) was successfully constructed and facilitated the efficient intracellular uptake of DOX as evidenced by pronounced apoptotic effects (66.0%) in CT-26 cells. PD-L1-AuNP-DOX treatment plus NIR irradiation significantly and synergistically suppressed the in vitro proliferation of CT-26 cells by increasing apoptosis and cell cycle arrest. The study demonstrates that PD-L1-AuNP-DOX in combination with synergistic targeted chemo-photothermal therapy has a considerable potential for the treatment of localized CRC.
Collapse
Affiliation(s)
- Fakhrossadat Emami
- College of Pharmacy , Tehran University of Medical Science , Tehran , Iran
| | - Asmita Banstola
- College of Pharmacy , Keimyung University , Daegu 42601 , Republic of Korea
| | - Alireza Vatanara
- College of Pharmacy , Tehran University of Medical Science , Tehran , Iran
| | - Sooyeon Lee
- College of Pharmacy , Keimyung University , Daegu 42601 , Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy , Yeungnam University , Gyeongsan , Gyeongbuk 38541 , Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy , Yeungnam University , Gyeongsan , Gyeongbuk 38541 , Republic of Korea
| | - Simmyung Yook
- College of Pharmacy , Keimyung University , Daegu 42601 , Republic of Korea
| |
Collapse
|
50
|
Huang T, Li N, Gao J. Recent strategies on targeted delivery of thrombolytics. Asian J Pharm Sci 2019; 14:233-247. [PMID: 32104455 PMCID: PMC7032080 DOI: 10.1016/j.ajps.2018.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Thrombus formed in blood vessel is a progressive process, which would lead to life-threatening thrombotic diseases such as ischemic stroke. Unlike other diseases, the recognition of thrombus is usually in the late stage where blood vessels are largely blocked. So acute thrombotic diseases have a narrow therapeutic window, and remain leading causes of morbidity and mortality, whereas current thrombolysis therapy has limited therapeutic effects and bleeding complications. Thrombolytic agents in unwanted sites would cause hemorrhage due to the activation of plasminogen. Moreover, untargeted thrombolysis therapy require large amounts of thrombolytic agents, which in return would enhance hemorrhage risk. To improve the efficiency while minimizing the adverse effects of traditional thrombolysis therapy, novel drug delivery systems have been investigated. Various targeting strategies including ultrasound and magnetic field directed targeting, and specific binding, have been designed to deliver thrombolytic drugs to the thrombotic sites. These strategies demonstrate promising results in reducing bleeding risk as well as allowing less dosage of thrombolytic drugs with lowered clot lysis time. In this review, we discuss recent progress on targeted delivery of thrombolytics, and summarize treatment advantages and shortcomings, potentially helping to further promote the development of targeted thrombolysis.
Collapse
Affiliation(s)
- Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ni Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315041, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|