1
|
Elnaggar MG, He Y, Yeo Y. Recent trends in the delivery of RNA drugs: Beyond the liver, more than vaccine. Eur J Pharm Biopharm 2024; 197:114203. [PMID: 38302049 PMCID: PMC10947810 DOI: 10.1016/j.ejpb.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
RNAs are known for versatile functions and therapeutic utility. They have gained significant interest since the approval of several RNA drugs, including COVID-19 mRNA vaccines and therapeutic agents targeting liver diseases. There are increasing expectations for a new class of RNA drugs for broader applications. Successful development of RNA drugs for new applications hinges on understanding their diverse functions and structures. In this review, we explore the last five years of literature to understand current approaches to formulate a spectrum of RNA drugs, focusing on new efforts to expand their applications beyond vaccines and liver diseases.
Collapse
Affiliation(s)
- Marwa G Elnaggar
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Yanying He
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, 201 South University Street, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Luan X, Fan X, Li G, Li M, Li N, Yan Y, Zhao X, Liu H, Wan K. Exploring the immunogenicity of Rv2201-519: A T-cell epitope-based antigen derived from Mycobacterium tuberculosis AsnB with implications for tuberculosis infection detection and vaccine development. Int Immunopharmacol 2024; 129:111542. [PMID: 38342063 DOI: 10.1016/j.intimp.2024.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
Research dedicated to diagnostic reagents and vaccine development for tuberculosis (TB) is challenging due to the paucity of immunodominant antigens that can predict disease risk and exhibit protective potential. Therefore, it is crucial to identify T-cell epitope-based Mycobacterium tuberculosis (MTB) antigens characterized by specific and prominent recognition by the immune system. In this study, we constructed a T-cell epitope-rich tripeptide-splicing fragment (nucleotide positions 131-194, 334-377, and 579-643) of Rv2201 (also known as the 72 kDa AsnB)from the MTB genome, ultimately yielding the recombinant protein Rv2201-519 in Escherichia coli BL21 (DE3). Subsequently, we gauged the recombinant protein's ability to detect tuberculosis infection through ELISpot and assessed its immunostimulatory effect on mouse models using flow cytometry and ELISA. Our results indicated that Rv2201-519 possessed promising sensitivity; however, the sensitivity was lower than that of a commercial diagnostic kit containing ESAT-6, CFP-10, and Rv3615c (80.56 % vs. 94.44 %). The Rv2201-519 group exhibited a propensity for a CD4+ Th1 cell immune response in inoculated BALB/c mice that manifested as higher levels of antigen-specific IgG production (IgG2a/IgG1 > 1). In comparison to Ag85B, Rv2201-519 induced a more robust Th1-type cellular immune response as evidenced by a notable rise in the ratio of IFN-γ/IL-4 and IL-12 cytokine production and increased CD4+ T cell activation with a higher percentage of CD4+IFN-γ+ T cells. Rv2201-519 also induced a higher level of IL-6 compared with Ag85B, a higher percentage of CD8+ T cells specific for Rv2201-519, and a lower percentage of CD8+IL-4+ T cells. Collectively, the current evidence suggests that Rv2201-519 could potentially serve as an immunodominant protein for tuberculosis infection screening, laying the groundwork for further evaluation in recombinant Bacillus Calmette-Guérin (BCG) and subunit vaccines against MTB challenges in future studies.
Collapse
Affiliation(s)
- Xiuli Luan
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101100, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xueting Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mchao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Na Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuhan Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiuqin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
3
|
Schorey JS, Vecchio J, McManus WR, Ongalo J, Webber K. Activation of host nucleic acid sensors by Mycobacterium: good for us or good for them? Crit Rev Microbiol 2024; 50:224-240. [PMID: 38153209 PMCID: PMC10985831 DOI: 10.1080/1040841x.2023.2294904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Although the importance of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) sensors in controlling viral infection is well established, their role in promoting an effective immune response to pathogens other than viruses is less clear. This is particularly true for infections with mycobacteria, as studies point to both protective and detrimental roles for activation of nucleic acid sensors in controlling a mycobacterial infection. Some of the contradiction likely stems from the use of different model systems and different mycobacterial species/strains as well as from which nucleic acid sensors were studied and what downstream effectors were evaluated. In this review, we will describe the different nucleic acid sensors that have been studied in the context of mycobacterial infections, and how the different studies compare. We conclude with a section on how nucleic acid sensor agonists have been used therapeutically and what further information is needed to enhance their potential as therapeutic agents.
Collapse
Affiliation(s)
- Jeffery S. Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Joseph Vecchio
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - William R. McManus
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Joshua Ongalo
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Kylie Webber
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
4
|
Piva-Amaral R, Augusto Pires de Souza G, Carlos Vilela Vieira Júnior J, Fróes Goulart de Castro R, Permagnani Gozzi W, Pereira Lima Neto S, Cauvilla Dos Santos AL, Pavani Cassiano H, Christine Ferreira da Silva L, Dias Novaes R, Santos Abrahão J, Ervolino de Oliveira C, de Mello Silva B, de Paula Costa G, Cosme Cotta Malaquias L, Felipe Leomil Coelho L. Bovine serum albumin nanoparticles containing Poly (I:C) can enhance the neutralizing antibody response induced by envelope protein of Orthoflavivirus zikaense. Int Immunopharmacol 2024; 128:111523. [PMID: 38219440 DOI: 10.1016/j.intimp.2024.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Since the Orthoflavivirus zikaense (ZIKV) has been considered a risk for Zika congenital syndrome development, developing a safe and effective vaccine has become a high priority. Numerous research groups have developed strategies to prevent ZIKV infection and have identified the domain III of the ZIKV envelope protein (zEDIII) as a promising target. Subunit antigens are often poorly immunogenic, necessitating the use of adjuvants and/or delivery systems to induce optimal immune responses. The subject of nanotechnology has substantial expansion in recent years in terms of research and applications. Nanoparticles could be used as drug delivery systems and to increase the immunogenicity and stability of a given antigen. This work aims to characterize and validate the potential of a vaccine formulation composed of domain zEDIII and bovine serum albumin nanoparticles containing polyinosinic-polycytidylic acid (NPPI). NPPI were uptake in vitro by immature bone marrow dendritic cells and histological analysis of the skin of mice treated with NPPI showed an increase in cellularity. Immunization assay showed that mice immunized with zEDIII in the presence of NPPI produced neutralizing antibodies. Through the passive transfer of sera from immunized mice to ZIKV-infected neonatal mice, it was demonstrated that these antibodies provide protection, mitigating weight loss, clinical or neurological signs induced by infection, and significantly increased survival rates. Protection was further substantiated by the reduction in the number of viable infectious ZIKV, as well as a decrease in inflammatory cytokines and tissue alterations in the brains of infected mice. Taken together, data presented in this study shows that NPPI + zEDIII is a promising vaccine candidate for ZIKV.
Collapse
Affiliation(s)
- Raíne Piva-Amaral
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| | - Gabriel Augusto Pires de Souza
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil; Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - João Carlos Vilela Vieira Júnior
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Renato Fróes Goulart de Castro
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - William Permagnani Gozzi
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Sergio Pereira Lima Neto
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Ana Luisa Cauvilla Dos Santos
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Helena Pavani Cassiano
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | | | - Romulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - Carine Ervolino de Oliveira
- Instituto de Ciências Biomédicas, Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Breno de Mello Silva
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Guilherme de Paula Costa
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Luiz Cosme Cotta Malaquias
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| |
Collapse
|
5
|
Cioetto-Mazzabò L, Boldrin F, Beauvineau C, Speth M, Marina A, Namouchi A, Segafreddo G, Cimino M, Favre-Rochex S, Balasingham S, Trastoy B, Munier-Lehmann H, Griffiths G, Gicquel B, Guerin M, Manganelli R, Alonso-Rodríguez N. SigH stress response mediates killing of Mycobacterium tuberculosis by activating nitronaphthofuran prodrugs via induction of Mrx2 expression. Nucleic Acids Res 2022; 51:144-165. [PMID: 36546765 PMCID: PMC9841431 DOI: 10.1093/nar/gkac1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence of drug-resistant Mycobacterium tuberculosis strains highlights the need to discover anti-tuberculosis drugs with novel mechanisms of action. Here we discovered a mycobactericidal strategy based on the prodrug activation of selected chemical derivatives classified as nitronaphthofurans (nNFs) mediated by the coordinated action of the sigH and mrx2 genes. The transcription factor SigH is a key regulator of an extensive transcriptional network that responds to oxidative, nitrosative, and heat stresses in M. tuberculosis. The nNF action induced the SigH stress response which in turn induced the mrx2 overexpression. The nitroreductase Mrx2 was found to activate nNF prodrugs, killing replicating, non-replicating and intracellular forms of M. tuberculosis. Analysis of SigH DNA sequences obtained from spontaneous nNF-resistant M. tuberculosis mutants suggests disruption of SigH binding to the mrx2 promoter site and/or RNA polymerase core, likely promoting the observed loss of transcriptional control over Mrx2. Mutations found in mrx2 lead to structural defects in the thioredoxin fold of the Mrx2 protein, significantly impairing the activity of the Mrx2 enzyme against nNFs. Altogether, our work brings out the SigH/Mrx2 stress response pathway as a promising target for future drug discovery programs.
Collapse
Affiliation(s)
| | | | - Claire Beauvineau
- Chemical Library Institut Curie/CNRS, CNRS UMR9187, INSERM U1196 and CNRS UMR3666, INSERM U1193, Université Paris-Saclay, Orsay 91405, France
| | - Martin Speth
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0371, Norway
| | - Alberto Marina
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio 48160 Spain
| | - Amine Namouchi
- Génétique Mycobactérienne, Institute Pasteur, Paris 75015, France,Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo 0371, Norway
| | - Greta Segafreddo
- Department of Molecular Medicine, University of Padova, Padova 35122, Italy
| | - Mena Cimino
- Génétique Mycobactérienne, Institute Pasteur, Paris 75015, France
| | | | | | - Beatriz Trastoy
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio 48160 Spain,Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Bizkaia 48903, Spain
| | - Hélène Munier-Lehmann
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR3523, Université de Paris, Paris 75015, France
| | - Gareth Griffiths
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0371, Norway
| | - Brigitte Gicquel
- Génétique Mycobactérienne, Institute Pasteur, Paris 75015, France,Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen 518054, China
| | - Marcelo E Guerin
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio 48160 Spain,Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Bizkaia 48903, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
| | - Riccardo Manganelli
- Correspondence may also be addressed to Riccardo Manganelli. Tel: +39 049 827 2366; Fax: +39 049 827 2355;
| | | |
Collapse
|
6
|
Semple SL, Alkie TN, Jenik K, Warner BM, Tailor N, Kobasa D, DeWitte-Orr SJ. More tools for our toolkit: The application of HEL-299 cells and dsRNA-nanoparticles to study human coronaviruses in vitro. Virus Res 2022; 321:198925. [PMID: 36115551 PMCID: PMC9474404 DOI: 10.1016/j.virusres.2022.198925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Human coronaviruses (HCoVs) are important human pathogens, as exemplified by the current SARS-CoV-2 pandemic. While the ability of type I interferons (IFNs) to limit coronavirus replication has been established, the ability of double-stranded (ds)RNA, a potent IFN inducer, to inhibit coronavirus replication when conjugated to a nanoparticle is largely unexplored. Additionally, the number of IFN competent cell lines that can be used to study coronaviruses in vitro are limited. In the present study, we show that poly inosinic: poly cytidylic acid (pIC), when conjugated to a phytoglycogen nanoparticle (pIC+NDX) is able to protect IFN-competent human lung fibroblasts (HEL-299 cells) from infection with different HCoV species. HEL-299 was found to be permissive to HCoV-229E, -OC43 and MERS-CoV-GFP but not to HCoV-NL63 or SARS-CoV-2. Further investigation revealed that HEL-299 does not contain the required ACE2 receptor to enable propagation of both HCoV-NL63 and SARS-CoV-2. Following 24h exposure, pIC+NDX was observed to stimulate a significant, prolonged increase in antiviral gene expression (IFNβ, CXCL10 and ISG15) when compared to both NDX alone and pIC alone. This antiviral response translated into complete protection against virus production, for 4 days or 7 days post treatment with HCoV-229E or -OC43 when either pre-treated for 6h or 24h respectively. Moreover, the pIC+NDX combination also provided complete protection for 2d post infection when HEL-299 cells were infected with MERS-CoV-GFP following a 24h pretreatment with pIC+NDX. The significance of this study is two-fold. Firstly, it was revealed that HEL-299 cells can effectively be used as an IFN-competent model system for in vitro analysis of MERS-CoV. Secondly, pIC+NDX acts as a powerful inducer of type I IFNs in HEL-299, to levels that provide complete protection against coronavirus replication. This suggests an exciting and novel area of investigation for antiviral therapies that utilize innate immune stimulants. The results of this study will help to expand the range of available tools scientists have to investigate, and thus further understand, human coronaviruses.
Collapse
Affiliation(s)
- Shawna L Semple
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Tamiru N Alkie
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Kristof Jenik
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Bryce M Warner
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nikesh Tailor
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Darwyn Kobasa
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
7
|
Luan X, Fan X, Wang R, Deng Y, Chen Z, Li N, Yan Y, Li X, Liu H, Li G, Wan K. High Immunogenicity of a T-Cell Epitope-Rich Recombinant Protein Rv1566c-444 From Mycobacterium tuberculosis in Immunized BALB/c Mice, Despite Its Low Diagnostic Sensitivity. Front Immunol 2022; 13:824415. [PMID: 35265079 PMCID: PMC8899609 DOI: 10.3389/fimmu.2022.824415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The discovery of immunodominant antigens is of great significance for the development of new especially sensitive diagnostic reagents and effective vaccines in controlling tuberculosis (TB). In the present study, we targeted the T-Cell epitope-rich fragment (nucleotide position 109-552) of Rv1566c from Mycobacterium tuberculosis (MTB) and got a recombinant protein Rv1566c-444 and the full-length protein Rv1566c with Escherichia coli expression system, then compared their performances for TB diagnosis and immunogenicity in a mouse model. The results showed that Rv1566c-444 had similar sensitivity with Rv1566c (44.44% Vs 30.56%) but lower sensitivity than ESAT-6&CFP-10&Rv3615c (44.4% Vs. 94.4%) contained in a commercial kit for distinguishing TB patients from healthy donors. In immunized BALB/c mice, Rv1566c-444 elicited stronger T-helper 1 (Th1) cellular immune response over Rv1566c with higher levels of Th1 cytokine IFN-γ and IFN-γ/IL-4 expression ratio by ELISA; more importantly, with a higher proliferation of CD4+ T cells and a higher proportion of CD4+ TNF-α+ T cells with flow cytometry. Rv1566c-444 also induced a higher level of IL-6 by ELISA and a higher proportion of Rv1566c-444-specific CD8+ T cells and a lower proportion of CD8+ IL-4+ T cells by flow cytometry compared with the Rv1566c group. Moreover, the Rv1566c-444 group showed a high IgG secretion level and the same type of CD4+ Th cell immune response (both IgG1/IgG2a >1) as its parental protein group. Our results showed the potential of the recombinant protein Rv1566c-444 enriched with T-Cell epitopes from Rv1566c as a host T cell response measuring biomarker for TB diagnosis and support further evaluation of Rv1566c-444 as vaccine antigen against MTB challenge in animal models in the form of protein mixture or fusion protein.
Collapse
Affiliation(s)
- Xiuli Luan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueting Fan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruihuan Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yunli Deng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Community Health Management Service Center, Longgang District Peoples Hospital of Shenzhen, Shenzhen, China
| | - Zixin Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Department of Infection Control, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Na Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhan Yan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoyan Li
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Benedicto-Matambo P, Bines JE, Malamba-Banda C, Shawa IT, Barnes K, Kamng’ona AW, Hungerford D, Jambo KC, Iturriza-Gomara M, Cunliffe NA, Flanagan KL, Jere KC. Leveraging Beneficial Off-Target Effects of Live-Attenuated Rotavirus Vaccines. Vaccines (Basel) 2022; 10:418. [PMID: 35335050 PMCID: PMC8948921 DOI: 10.3390/vaccines10030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Following the introduction of live-attenuated rotavirus vaccines in many countries, a notable reduction in deaths and hospitalisations associated with diarrhoea in children <5 years of age has been reported. There is growing evidence to suggest that live-attenuated vaccines also provide protection against other infections beyond the vaccine-targeted pathogens. These so called off-target effects of vaccination have been associated with the tuberculosis vaccine Bacille Calmette Guérin (BCG), measles, oral polio and recently salmonella vaccines, and are thought to be mediated by modified innate and possibly adaptive immunity. Indeed, rotavirus vaccines have been reported to provide greater than expected reductions in acute gastroenteritis caused by other enteropathogens, that have mostly been attributed to herd protection and prior underestimation of rotavirus disease. Whether rotavirus vaccines also alter the immune system to reduce non targeted gastrointestinal infections has not been studied directly. Here we review the current understanding of the mechanisms underlying off-target effects of vaccines and propose a mechanism by which the live-attenuated neonatal rotavirus vaccine, RV3-BB, could promote protection beyond the targeted pathogen. Finally, we consider how vaccine developers may leverage these properties to improve health outcomes in children, particularly those in low-income countries where disease burden and mortality is disproportionately high relative to developed countries.
Collapse
Affiliation(s)
- Prisca Benedicto-Matambo
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Julie E. Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital and Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - Chikondi Malamba-Banda
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Blantyre 312225, Malawi
| | - Isaac T. Shawa
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Kayla Barnes
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Harvard School of Public Health, Boston, MA 02115, USA
| | - Arox W. Kamng’ona
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Health Profession, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Daniel Hungerford
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Kondwani C. Jambo
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Miren Iturriza-Gomara
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
- Centre for Vaccine Innovation and Access, Program for Appropriate Technology in Health (PATH), 1218 Geneva, Switzerland
| | - Nigel A. Cunliffe
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Katie L. Flanagan
- School of Medicine, University of Tasmania, Hobart, TAS 7005, Australia;
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC 3083, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Khuzwayo C. Jere
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
9
|
Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release 2022; 343:564-583. [DOI: 10.1016/j.jconrel.2022.01.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022]
|
10
|
Bastos RG, Alzan HF, Rathinasamy VA, Cooke BM, Dellagostin OA, Barletta RG, Suarez CE. Harnessing Mycobacterium bovis BCG Trained Immunity to Control Human and Bovine Babesiosis. Vaccines (Basel) 2022; 10:123. [PMID: 35062784 PMCID: PMC8781211 DOI: 10.3390/vaccines10010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/02/2023] Open
Abstract
Babesiosis is a disease caused by tickborne hemoprotozoan apicomplexan parasites of the genus Babesia that negatively impacts public health and food security worldwide. Development of effective and sustainable vaccines against babesiosis is currently hindered in part by the absence of definitive host correlates of protection. Despite that, studies in Babesia microti and Babesia bovis, major causative agents of human and bovine babesiosis, respectively, suggest that early activation of innate immune responses is crucial for vertebrates to survive acute infection. Trained immunity (TI) is defined as the development of memory in vertebrate innate immune cells, allowing more efficient responses to subsequent specific and non-specific challenges. Considering that Mycobacterium bovis bacillus Calmette-Guerin (BCG), a widely used anti-tuberculosis attenuated vaccine, induces strong TI pro-inflammatory responses, we hypothesize that BCG TI may protect vertebrates against acute babesiosis. This premise is supported by early investigations demonstrating that BCG inoculation protects mice against experimental B. microti infection and recent observations that BCG vaccination decreases the severity of malaria in children infected with Plasmodium falciparum, a Babesia-related parasite. We also discuss the potential use of TI in conjunction with recombinant BCG vaccines expressing Babesia immunogens. In conclusion, by concentrating on human and bovine babesiosis, herein we intend to raise awareness of BCG TI as a strategy to efficiently control Babesia infection.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA;
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA;
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Giza 12622, Egypt
| | - Vignesh A. Rathinasamy
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia; (V.A.R.); (B.M.C.)
| | - Brian M. Cooke
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia; (V.A.R.); (B.M.C.)
| | - Odir A. Dellagostin
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Rio Grande Do Sul, Brazil;
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA;
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture-Agricultural Research Service, Pullman, WA 99164-7040, USA
| |
Collapse
|
11
|
Jiang J, Mei J, Yi S, Feng C, Ma Y, Liu Y, Liu Y, Chen C. Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Adv Drug Deliv Rev 2022; 180:114046. [PMID: 34767863 DOI: 10.1016/j.addr.2021.114046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023]
Abstract
The occurrence and development of tumors depend on the tumor microenvironment (TME), which is made of various immune cells, activated fibroblasts, basement membrane, capillaries, and extracellular matrix. Tumor associated macrophages (TAMs) and microbes are important components in TME. Tumor cells can recruit and educate TAMs and microbes, and the hijacked TAMs and microbes can promote the progression of tumor reciprocally. Tumor vaccine delivery remodeling TME by targeting TAM and microbes can not only enhance the specificity and immunogenicity of antigens, but also contribute to the regulation of TME. Tumor vaccine design benefits from nanotechnology which is a suitable platform for antigen and adjuvant delivery to catalyze new candidate vaccines applying to clinical therapy at unparalleled speed. In view of the characteristics and mechanisms of TME development, vaccine delivery targeting and breaking the malignant interactions among tumor cells, TAMs, and microbes may serve as a novel strategy for tumor therapy.
Collapse
|
12
|
Knudsen Dal NJ, Speth M, Johann K, Barz M, Beauvineau C, Wohlmann J, Fenaroli F, Gicquel B, Griffiths G, Alonso-Rodriguez N. The zebrafish embryo as an in vivo model for screening nanoparticle-formulated lipophilic anti-tuberculosis compounds. Dis Model Mech 2022; 15:dmm049147. [PMID: 34842273 PMCID: PMC8807572 DOI: 10.1242/dmm.049147] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022] Open
Abstract
With the increasing emergence of drug-resistant Mycobacterium tuberculosis strains, new and effective antibiotics against tuberculosis (TB) are urgently needed. However, the high frequency of poorly water-soluble compounds among hits in high-throughput drug screening campaigns is a major obstacle in drug discovery. Moreover, in vivo testing using conventional animal TB models, such as mice, is time consuming and costly, and represents a major bottleneck in lead compound discovery and development. Here, we report the use of the zebrafish embryo TB model for evaluating the in vivo toxicity and efficacy of five poorly water-soluble nitronaphthofuran derivatives, which were recently identified as possessing anti-TB activity in vitro. To aid solubilization, compounds were formulated in biocompatible polymeric micelles (PMs). Three of the five PM-formulated nitronaphthofuran derivatives showed low toxicity in vivo, significantly reduced bacterial burden and improved survival in infected zebrafish embryos. We propose the zebrafish embryo TB-model as a quick and sensitive tool for evaluating the in vivo toxicity and efficacy of new anti-TB compounds during early stages of drug development. Thus, this model is well suited for pinpointing promising compounds for further development.
Collapse
Affiliation(s)
- Nils-Jørgen Knudsen Dal
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Martin Speth
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Kerstin Johann
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Matthias Barz
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Center for Drug Research (LACDR), Leiden University, 2333 Leiden, The Netherlands
| | - Claire Beauvineau
- Chemical Library Institut Curie/CNRS, CNRS UMR9187, INSERM U1196 and CNRS UMR3666, INSERM U1193, Université Paris-Saclay, F-91405 Orsay, France
| | - Jens Wohlmann
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Federico Fenaroli
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Dep Génomes and Génétique, Institute Pasteur, 75015 Paris, France
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, 518054 Shenzhen, China
| | - Gareth Griffiths
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Noelia Alonso-Rodriguez
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
13
|
Nagy NA, de Haas AM, Geijtenbeek TBH, van Ree R, Tas SW, van Kooyk Y, de Jong EC. Therapeutic Liposomal Vaccines for Dendritic Cell Activation or Tolerance. Front Immunol 2021; 12:674048. [PMID: 34054859 PMCID: PMC8155586 DOI: 10.3389/fimmu.2021.674048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are paramount in initiating and guiding immunity towards a state of activation or tolerance. This bidirectional capacity of DCs sets them at the center stage for treatment of cancer and autoimmune or allergic conditions. Accordingly, many clinical studies use ex vivo DC vaccination as a strategy to boost anti-tumor immunity or to suppress immunity by including vitamin D3, NF-κB inhibitors or retinoic acid to create tolerogenic DCs. As harvesting DCs from patients and differentiating these cells in vitro is a costly and cumbersome process, in vivo targeting of DCs has huge potential as nanoparticulate platforms equipped with activating or tolerogenic adjuvants can modulate DCs in their natural environment. There is a rapid expansion of the choices of nanoparticles and activation- or tolerance-promoting adjuvants for a therapeutic vaccine platform. In this review we highlight the most recent nanomedical approaches aimed at inducing immune activation or tolerance via targeting DCs, together with novel fundamental insights into the mechanisms inherent to fostering anti-tumor or tolerogenic immunity.
Collapse
Affiliation(s)
- Noémi Anna Nagy
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Aram M. de Haas
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W. Tas
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther C. de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Sohrabi Y, Dos Santos JC, Dorenkamp M, Findeisen H, Godfrey R, Netea MG, Joosten LAB. Trained immunity as a novel approach against COVID-19 with a focus on Bacillus Calmette-Guérin vaccine: mechanisms, challenges and perspectives. Clin Transl Immunology 2020; 9:e1228. [PMID: 33363733 PMCID: PMC7755499 DOI: 10.1002/cti2.1228] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a severe health problem in many countries and has altered day-to-day life in the whole world. This infection is caused by the SARS-CoV-2 virus, and depending on age, sex and health status of the patient, it can present with variety of clinical symptoms such as mild infection, a very severe form or even asymptomatic course of the disease. Similarly to other viruses, innate immune response plays a vital role in protection against COVID-19. However, dysregulation of innate immunity could have a significant influence on the severity of the disease. Despite various efforts, there is no effective vaccine against the disease so far. Recent data have demonstrated that the Bacillus Calmette-Guérin (BCG) vaccine could reduce disease severity and the burden of several infectious diseases in addition to targeting its primary focus tuberculosis. There is growing evidence for the concept of beneficial non-specific boosting of immune responses by BCG or other microbial compounds termed trained immunity, which may protect against COVID-19. In this manuscript, we review data on how the development of innate immune memory due to microbial compounds specifically BCG can result in protection against SARS-CoV-2 infection. We also discuss possible mechanisms, challenges and perspectives of using innate immunity as an approach to reduce COVID-19 severity.
Collapse
Affiliation(s)
- Yahya Sohrabi
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
| | - Marc Dorenkamp
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Hannes Findeisen
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Rinesh Godfrey
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Leo AB Joosten
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
- Núcleo de Pesquisa da Faculdade da Polícia Militar (FPM) do Estado de GoiásGoiâniaBrazil
| |
Collapse
|
15
|
Lee ALZ, Yang C, Gao S, Wang Y, Hedrick JL, Yang YY. Biodegradable Cationic Polycarbonates as Vaccine Adjuvants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52285-52297. [PMID: 33179910 DOI: 10.1021/acsami.0c09649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, biodegradable cationic polycarbonate and polylactide block copolymers were synthesized and successfully used as novel vaccine adjuvants to provide enhanced anticancer immunity. The polymers formed nanoparticles with the model vaccine, ovalbumin (OVA), and the immunostimulant toll-like receptor 3 agonist poly(I:C) (a synthetic analog of the double-stranded RNA). Higher uptake of poly(I:C) by the bone marrow-derived dendritic cells and macrophages and OVA by dendritic cells was observed when delivered using the polymer adjuvant. In vivo experiments showed that these nanoparticles remained longer in the subcutaneous injection site as compared to OVA alone and led to higher production of anti-OVA specific antibodies with prolonged immunostimulation. When OVA was combined with poly(I:C) that was either co-entrapped in the same particles or as separate particles, a comparable level of anti-OVA IgG1 antibodies and interleukin-6 (IL-6) was produced in mouse blood plasma, and a similar level of cytotoxic T lymphocyte (CTL) response in mice was stimulated as compared to OVA/Alum particles. Furthermore, tumor rejection in the mice that were vaccinated for 9 months with the formulations containing the polymer adjuvant was stronger than the other treatment groups without the polymer. Notably, the cationic polycarbonates were not associated with any adverse in vivo effects. Thus, these biodegradable polymers may be promising substitutes for aluminum-based adjuvants in vaccine formulations.
Collapse
Affiliation(s)
- Ashlynn L Z Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, 31 Biopolis Way, #09-01 The Nanos, Singapore 138669, Singapore
| | - Yanming Wang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - James L Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
16
|
Lessons from Bacillus Calmette-Guérin: Harnessing Trained Immunity for Vaccine Development. Cells 2020; 9:cells9092109. [PMID: 32948003 PMCID: PMC7564904 DOI: 10.3390/cells9092109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Vaccine design traditionally focuses on inducing adaptive immune responses against a sole target pathogen. Considering that many microbes evade innate immune mechanisms to initiate infection, and in light of the discovery of epigenetically mediated innate immune training, the paradigm of vaccine design has the potential to change. The Bacillus Calmette-Guérin (BCG) vaccine induces some level of protection against Mycobacterium tuberculosis (Mtb) while stimulating trained immunity that correlates with lower mortality and increased protection against unrelated pathogens. This review will explore BCG-induced trained immunity, including the required pathways to establish this phenotype. Additionally, potential methods to improve or expand BCG trained immunity effects through alternative vaccine delivery and formulation methods will be discussed. Finally, advances in new anti-Mtb vaccines, other antimicrobial uses for BCG, and “innate memory-based vaccines” will be examined.
Collapse
|
17
|
RNA Sensing of Mycobacterium tuberculosis and Its Impact on TB Vaccination Strategies. Vaccines (Basel) 2020; 8:vaccines8010067. [PMID: 32033104 PMCID: PMC7158685 DOI: 10.3390/vaccines8010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is still an important global threat and although the causing organism has been discovered long ago, effective prevention strategies are lacking. Mycobacterium tuberculosis (MTB) is a unique pathogen with a complex host interaction. Understanding the immune responses upon infection with MTB is crucial for the development of new vaccination strategies and therapeutic targets for TB. Recently, it has been proposed that sensing bacterial nucleic acid in antigen-presenting cells via intracellular pattern recognition receptors (PRRs) is a central mechanism for initiating an effective host immune response. Here, we summarize key findings of the impact of mycobacterial RNA sensing for innate and adaptive host immunity after MTB infection, with emphasis on endosomal toll-like receptors (TLRs) and cytosolic sensors such as NLRP3 and RLRs, modulating T-cell differentiation through IL-12, IL-21, and type I interferons. Ultimately, these immunological pathways may impact immune memory and TB vaccine efficacy. The novel findings described here may change our current understanding of the host response to MTB and potentially impact clinical research, as well as future vaccination design. In this review, the current state of the art is summarized, and an outlook is given on how progress can be made.
Collapse
|
18
|
Ribes S, Arcilla C, Ott M, Schütze S, Hanisch UK, Nessler S, Nau R. Pre-treatment with the viral Toll-like receptor 3 agonist poly(I:C) modulates innate immunity and protects neutropenic mice infected intracerebrally with Escherichia coli. J Neuroinflammation 2020; 17:24. [PMID: 31952519 PMCID: PMC6969464 DOI: 10.1186/s12974-020-1700-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Individuals with impaired immunity are more susceptible to infections than immunocompetent subjects. No vaccines are currently available to induce protection against E. coli meningoencephalitis. This study evaluated the potential of poly(I:C) pre-treatment to induce trained immunity. Poly(I:C) was administered as a non-specific stimulus of innate immune responses to protect immunocompetent and neutropenic wild-type mice from a subsequent challenge by the intracranial injection of E. coli K1. METHODS Three days prior to infection, mice received an intraperitoneal injection of poly(I:C) or vehicle. Kaplan-Meier survival curves were analyzed. In short-term experiments, bacterial titers and the inflammatory response were characterized in the blood, cerebellum, and spleen homogenates. NK cell subpopulations in the brain and spleen were analyzed by flow cytometry. Numbers of microglia and activation scores were evaluated by histopathology. RESULTS Pre-treatment with 200 μg poly(I:C) increased survival time, reduced mortality, and enhanced bacterial clearance in the blood, cerebellum, and spleen at early infection in neutropenic mice. Poly(I:C)-mediated protection correlated with an augmented number of NK cells (CD45+NK1.1+CD3-) and Iba-1+ microglial cells and a higher production of IFN-γ in the brain. In the spleen, levels of CCL5/RANTES and IFN-γ were increased and sustained in surviving poly(I:C)-treated animals for 14 days after infection. In immunocompetent animals, survival time was not significantly prolonged in poly(I:C)-treated animals although poly(I:C) priming reduced brain bacterial concentrations compared with vehicle-injected animals at early infection. CONCLUSIONS Pre-treatment with the viral TLR3 agonist poly(I:C) modulated innate immune responses and strengthened the resistance of neutropenic mice against E. coli K1 meningoencephalitis.
Collapse
Affiliation(s)
- Sandra Ribes
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Christa Arcilla
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Martina Ott
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Uwe-Karsten Hanisch
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, 37075, Göttingen, Germany
| |
Collapse
|
19
|
Comberlato A, Paloja K, Bastings MMC. Nucleic acids presenting polymer nanomaterials as vaccine adjuvants. J Mater Chem B 2019; 7:6321-6346. [PMID: 31460563 DOI: 10.1039/c9tb01222b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most vaccines developed today include only the antigens that best stimulate the immune system rather than the entire virus or microbe, which makes vaccine production and use safer and easier, though they lack potency to induce acceptable immunity and long-term protection. The incorporation of additional immune stimulating components, named adjuvants, is required to generate a strong protective immune response. Nucleic acids (DNA and RNA) and their synthetic analogs are promising candidates as vaccine adjuvants activating Toll-like receptors (TLRs). Additionally, in the last few years several nanocarriers have emerged as platforms for targeted co-delivery of antigens and adjuvants. In this review, we focus on the recent developments in polymer nanomaterials presenting nucleic acids as vaccine adjuvants. We aim to compare the effectiveness of the various classes of polymers in immune modulating materials (nanoparticles, dendrimers, single-chain particles, nanogels, polymersomes and DNA-based architectures). In particular, we address the critical role of parameters such as size, shape, complexation and release of TLR ligands, cellular uptake, stability, toxicity and potential importance of spatial control in ligand presentation.
Collapse
Affiliation(s)
- Alice Comberlato
- IMX/IBI, EPFL, EPFL-STI-IMX-PBL MXC 340 Station 12, Lausanne, 1015, Switzerland.
| | - Kaltrina Paloja
- IMX/IBI, EPFL, EPFL-STI-IMX-PBL MXC 340 Station 12, Lausanne, 1015, Switzerland.
| | - Maartje M C Bastings
- IMX/IBI, EPFL, EPFL-STI-IMX-PBL MXC 340 Station 12, Lausanne, 1015, Switzerland.
| |
Collapse
|
20
|
Adjuvant Strategies for More Effective Tuberculosis Vaccine Immunity. Microorganisms 2019; 7:microorganisms7080255. [PMID: 31409028 PMCID: PMC6724148 DOI: 10.3390/microorganisms7080255] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis infection is responsible for the most deaths by a single infectious agent worldwide, with 1.6 million deaths in 2017 alone. The World Health Organization, through its "End TB" strategy, aims to reduce TB deaths by 95% by 2035. In order to reach this goal, a more effective vaccine than the Bacillus Calmette-Guerin (BCG) vaccine currently in use is needed. Subunit TB vaccines are ideal candidates, because they can be used as booster vaccinations for individuals who have already received BCG and would also be safer for use in immunocompromised individuals in whom BCG is contraindicated. However, subunit TB vaccines will almost certainly require formulation with a potent adjuvant. As the correlates of vaccine protection against TB are currently unclear, there are a variety of adjuvants currently being used in TB vaccines in preclinical and clinical development. This review describes the various adjuvants in use in TB vaccines, their effectiveness, and their proposed mechanisms of action. Notably, adjuvants with less inflammatory and reactogenic profiles that can be administered safely via mucosal routes, may have the biggest impact on future directions in TB vaccine design.
Collapse
|
21
|
Coya JM, De Matteis L, Giraud-Gatineau A, Biton A, Serrano-Sevilla I, Danckaert A, Dillies MA, Gicquel B, De la Fuente JM, Tailleux L. Tri-mannose grafting of chitosan nanocarriers remodels the macrophage response to bacterial infection. J Nanobiotechnology 2019; 17:15. [PMID: 30683129 PMCID: PMC6346558 DOI: 10.1186/s12951-018-0439-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/31/2018] [Indexed: 01/09/2023] Open
Abstract
Background Infectious diseases are still a leading cause of death and, with the emergence of drug resistance, pose a great threat to human health. New drugs and strategies are thus urgently needed to improve treatment efficacy and limit drug-associated side effects. Nanotechnology-based drug delivery systems are promising approaches, offering hope in the fight against drug resistant bacteria. However, how nanocarriers influence the response of innate immune cells to bacterial infection is mostly unknown. Results Here, we used Mycobacterium tuberculosis as a model of bacterial infection to examine the impact of mannose functionalization of chitosan nanocarriers (CS-NCs) on the human macrophage response. Both ungrafted and grafted CS-NCs were similarly internalized by macrophages, via an actin cytoskeleton-dependent process. Although tri-mannose ligands did not modify the capacity of CS-NCs to escape lysosomal degradation, they profoundly remodeled the response of M. tuberculosis-infected macrophages. mRNA sequencing showed nearly 900 genes to be differentially expressed due to tri-mannose grafting. Unexpectedly, the set of modulated genes was enriched for pathways involved in cell metabolism, particularly oxidative phosphorylation and sugar metabolism. Conclusions The ability to modulate cell metabolism by grafting ligands at the surface of nanoparticles may thus be a promising strategy to reprogram immune cells and improve the efficacy of encapsulated drugs. Electronic supplementary material The online version of this article (10.1186/s12951-018-0439-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Laura De Matteis
- Instituto de Nanociencia de Aragon, Universidad de Zaragoza and CIBER-BBN, Saragossa, Spain.,CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexandre Giraud-Gatineau
- Mycobacterial Genetics Unit, Institut Pasteur, Paris, France.,Unit for Integrated Mycobacterial Pathogenomics, CNRS, UMR 3525, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Rue du Dr. Roux, 75015, Paris, France
| | - Anne Biton
- Institut Pasteur - Bioinformatics and Biostatistics Hub - C3BI, USR 3756 IP CNRS, Paris, France
| | - Inés Serrano-Sevilla
- CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, and CIBER-BBN, Edificio I+D, Calle Mariano Esquillor s/n, 50018, Saragossa, Spain
| | - Anne Danckaert
- UtechS Photonic BioImaging (Imagopole)-Citech, Institut Pasteur, Paris, France
| | - Marie-Agnès Dillies
- Institut Pasteur - Bioinformatics and Biostatistics Hub - C3BI, USR 3756 IP CNRS, Paris, France
| | | | - Jesus M De la Fuente
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, and CIBER-BBN, Edificio I+D, Calle Mariano Esquillor s/n, 50018, Saragossa, Spain.
| | - Ludovic Tailleux
- Mycobacterial Genetics Unit, Institut Pasteur, Paris, France. .,Unit for Integrated Mycobacterial Pathogenomics, CNRS, UMR 3525, Institut Pasteur, Paris, France.
| |
Collapse
|
22
|
Müller E, Speth M, Christopoulos PF, Lunde A, Avdagic A, Øynebråten I, Corthay A. Both Type I and Type II Interferons Can Activate Antitumor M1 Macrophages When Combined With TLR Stimulation. Front Immunol 2018; 9:2520. [PMID: 30450098 PMCID: PMC6224375 DOI: 10.3389/fimmu.2018.02520] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022] Open
Abstract
Triggering or enhancing antitumor activity of tumor-associated macrophages is an attractive strategy for cancer treatment. We have previously shown that the cytokine interferon-γ (IFN-γ), a type II IFN, could synergize with toll-like receptor (TLR) agonists for induction of antitumor M1 macrophages. However, the toxicity of IFN-γ limits its clinical use. Here, we investigated whether the less toxic type I IFNs, IFN-α, and IFN-β, could potentially replace IFN-γ for induction of antitumor M1 macrophages. We measured in vitro the ability of type I and II IFNs to synergize with TLR agonists for transcription of inducible nitric oxide synthase (iNOS) mRNA and secretion of nitric oxide (NO) by mouse bone marrow-derived macrophages (BMDMs). An in vitro growth inhibition assay was used to measure both cytotoxic and cytostatic activity of activated macrophages against Lewis lung carcinoma (LLC) cancer cells. We found that both type I and II IFNs could synergize with TLR agonists in inducing macrophage-mediated inhibition of cancer cell growth, which was dependent on NO. The ability of high dose lipopolysaccharide (LPS) to induce tumoricidal activity in macrophages in the absence of IFN-γ was shown to depend on induction of autocrine type I IFNs. Antitumor M1 macrophages could also be generated in the absence of IFN-γ by a combination of two TLR ligands when using the TLR3 agonist poly(I:C) which induces autocrine type I IFNs. Finally, we show that encapsulation of poly(I:C) into nanoparticles improved its potency to induce M1 macrophages up to 100-fold. This study reveals the potential of type I IFNs for activation of antitumor macrophages and indicates new avenues for cancer immunotherapy based on type I IFN signaling, including combination of TLR agonists.
Collapse
Affiliation(s)
- Elisabeth Müller
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Martin Speth
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Panagiotis F Christopoulos
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Anna Lunde
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ajna Avdagic
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Hellman S, Hjertner B, Morein B, Fossum C. The adjuvant G3 promotes a Th1 polarizing innate immune response in equine PBMC. Vet Res 2018; 49:108. [PMID: 30348190 PMCID: PMC6389152 DOI: 10.1186/s13567-018-0602-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
The immunomodulatory effect of a new particulate adjuvant, G3, alone or in combination with agonists to TLR2/1 or TLR5 was evaluated in cultures of equine PBMC. Exposure to the G3 adjuvant up-regulated genes encoding IFN-γ, IL-1β, IL-6, IL-8, IL-12p40 and IL-23p19 in the majority of the horses tested, indicating that the G3 adjuvant induced a pro-inflammatory and Th1 dominated profile. In accordance, genes encoding IL-13, IL-4, IL-10 and TGF-β remained unaffected and genes encoding IFN-α, IL-17A and TNF-α were only occasionally and weakly induced. The two TLR agonists Pam3CSK4 (TLR2/1) and FliC (TLR5) induced cytokine profiles characterized by a clear induction of IL-10 as well as up-regulation of the genes encoding IL-1β, IL-6 and IL-8. The presence of G3 modified this response, in particular by reducing the FliC and Pam3CSK4 induced production of IL-10. Furthermore, G3 acted in synergy with Pam3CSK4 in enhancing the production of IFN-γ whereas G3 combined with FliC increased the gene expression of IL-8. Thus, the G3 adjuvant seems to have the capacity to promote a Th1 polarizing innate immune response in eqPBMC, both by favouring IFN-γ production and by reducing production of IL-10 induced by co-delivered molecules. These features make G3 an interesting candidate to further evaluate for its potential as an adjuvant in equine vaccines.
Collapse
Affiliation(s)
- Stina Hellman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Box 7028, 750 07, Uppsala, Sweden.
| | - Bernt Hjertner
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Box 7028, 750 07, Uppsala, Sweden
| | - Bror Morein
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Box 7028, 750 07, Uppsala, Sweden
| | - Caroline Fossum
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Box 7028, 750 07, Uppsala, Sweden
| |
Collapse
|
24
|
Pati R, Shevtsov M, Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol 2018; 9:2224. [PMID: 30337923 PMCID: PMC6180194 DOI: 10.3389/fimmu.2018.02224] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Due to emergence of new variants of pathogenic micro-organisms the treatment and immunization of infectious diseases have become a great challenge in the past few years. In the context of vaccine development remarkable efforts have been made to develop new vaccines and also to improve the efficacy of existing vaccines against specific diseases. To date, some vaccines are developed from protein subunits or killed pathogens, whilst several vaccines are based on live-attenuated organisms, which carry the risk of regaining their pathogenicity under certain immunocompromised conditions. To avoid this, the development of risk-free effective vaccines in conjunction with adequate delivery systems are considered as an imperative need to obtain desired humoral and cell-mediated immunity against infectious diseases. In the last several years, the use of nanoparticle-based vaccines has received a great attention to improve vaccine efficacy, immunization strategies, and targeted delivery to achieve desired immune responses at the cellular level. To improve vaccine efficacy, these nanocarriers should protect the antigens from premature proteolytic degradation, facilitate antigen uptake and processing by antigen presenting cells, control release, and should be safe for human use. Nanocarriers composed of lipids, proteins, metals or polymers have already been used to attain some of these attributes. In this context, several physico-chemical properties of nanoparticles play an important role in the determination of vaccine efficacy. This review article focuses on the applications of nanocarrier-based vaccine formulations and the strategies used for the functionalization of nanoparticles to accomplish efficient delivery of vaccines in order to induce desired host immunity against infectious diseases.
Collapse
Affiliation(s)
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
25
|
Luce S, Guinoiseau S, Gadault A, Letourneur F, Blondeau B, Nitschke P, Pasmant E, Vidaud M, Lemonnier F, Boitard C. Humanized Mouse Model to Study Type 1 Diabetes. Diabetes 2018; 67:1816-1829. [PMID: 29967002 DOI: 10.2337/db18-0202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Key requirements in type 1 diabetes (T1D) are in setting up new assays as diagnostic biomarkers that will apply to prediabetes, likely T-cell assays, and in designing antigen-specific therapies to prevent T1D development. New preclinical models of T1D will be required to help with advancing both aims. By crossing mouse strains that lack either murine MHC class I and class II genes and insulin genes, we developed YES mice that instead express human HLA-A*02:01, HLA-DQ8, and insulin genes as transgenes. The metabolic and immune phenotype of YES mice is basically identical to that of the parental strains. YES mice remain insulitis and diabetes free up to 1 year of follow-up, maintain normoglycemia to an intraperitoneal glucose challenge in the long-term range, have a normal β-cell mass, and show normal immune responses to conventional antigens. This new model has been designed to evaluate adaptive immune responses to human insulin on a genetic background that recapitulates a human high-susceptibility HLA-DQ8 genetic background. Although insulitis free, YES mice develop T1D when challenged with polyinosinic-polycytidylic acid. They allow the characterization of preproinsulin epitopes recognized by CD8+ and CD4+ T cells upon immunization against human preproinsulin or during diabetes development.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Aging
- Animals
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Autoimmune Diseases/physiopathology
- Biomarkers/blood
- Biomarkers/metabolism
- Crosses, Genetic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Disease Models, Animal
- Disease Progression
- Female
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/metabolism
- HLA-DQ Antigens/blood
- HLA-DQ Antigens/genetics
- HLA-DQ Antigens/metabolism
- Humans
- Insulin/blood
- Insulin/genetics
- Insulin/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Islets of Langerhans/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Poly I-C/toxicity
- Prediabetic State/immunology
- Prediabetic State/metabolism
- Prediabetic State/pathology
- Prediabetic State/physiopathology
- Protein Precursors/blood
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Sandrine Luce
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Sophie Guinoiseau
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Alexis Gadault
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | | | | | - Patrick Nitschke
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Eric Pasmant
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
- Service de Biochimie et Génétique Moléculaire, Hôpital COCHIN, Paris, France
| | - Michel Vidaud
- Service de Biochimie et Génétique Moléculaire, Hôpital COCHIN, Paris, France
| | - François Lemonnier
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Christian Boitard
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| |
Collapse
|