1
|
Silva MI, Khadra I, Pyper K, Halbert GW. Structured solubility behaviour in fed simulated intestinal fluids. Eur J Pharm Biopharm 2023; 193:58-73. [PMID: 37890541 DOI: 10.1016/j.ejpb.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Intestinal drug solubility is a key parameter controlling absorption after the administration of a solid oral dosage form. The ability to measure fed state solubility in vitro is limited and multiple simulated intestinal fluid recipes have been developed but with no consensus which is optimal. This study has utilised nine bioequivalent simulated fed intestinal media recipes that cover over 90% of the compositional variability of sampled fed human intestinal fluid. The solubility of 24 drugs (Acidic; furosemide, ibuprofen, indomethacin, mefenamic acid, naproxen, phenytoin, piroxicam, valsartan, zafirlukast: Basic; aprepitant, atazanavir, bromocriptine, carvedilol, dipyridamole, posaconazole, tadalafil: Neutral; acyclovir, carbamazepine, felodipine, fenofibrate, griseofulvin, itraconazole, paracetamol, probucol) has been assessed to determine if structured solubility behaviour is present. The measured solubility behaviour can be split into four categories and is consistent with drug physicochemical properties and previous solubility studies. For acidic drugs (category 1) solubility is controlled by media pH and the lowest and highest pH media identify the lowest and highest solubility in 90% of cases. For weakly acidic, basic and neutral drugs (category 2) solubility is controlled by media pH and total amphiphile concentration (TAC), a consistent solubility pattern is evident with variation related to individual drug media component interactions. The lowest and highest pH × TAC media identify the lowest and highest solubility in 70% and 90% of cases respectively. Four drugs, which are non-ionised in the media systems (category 3), have been identified with a very narrow solubility range, indicating minimal impact of the simulated media on solubility. Three drugs exhibit solubility behaviour that is not consistent with the remainder (category 4). The results indicate that the use of two bioequivalent fed intestinal media from the original nine will identify in vitro the maximum and minimum solubility values for the majority of drugs and due to the media derivation this is probably applicable in vivo. When combined with a previous fasted study, this introduces interesting possibilities to measure a solubility range in vitro that can provide Quality by Design based decisions to rationalise drug and formulation development. Overall this indicates that the multi-dimensional media system is worthy of further investigation as in vitro tool to assess fed intestinal solubility.
Collapse
Affiliation(s)
- Maria Inês Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
2
|
Ainousah BE, Khadra I, Halbert GW. Excipient Impact on Fenofibrate Equilibrium Solubility in Fasted and Fed Simulated Intestinal Fluids Assessed Using a Design of Experiment Protocol. Pharmaceutics 2023; 15:2484. [PMID: 37896244 PMCID: PMC10610309 DOI: 10.3390/pharmaceutics15102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Solubility is a critical parameter controlling drug absorption after oral administration. For poorly soluble drugs, solubility is influenced by the complex composition of intestinal media and the influence of dosage form excipients, which can cause bioavailability and bioequivalence issues. This study has applied a small scale design of experiment (DoE) equilibrium solubility approach in order to investigate the impact of excipients on fenofibrate solubility in simulated fasted and fed intestinal media. Seven media parameters (bile salt (BS), phospholipid (PL), fatty acid, monoglyceride, cholesterol, pH and BS/PL ratio) were assessed in the DoE and in excipient-free media, and only pH and sodium oleate in the fasted state had a significant impact on fenofibrate solubility. The impact of excipients were studied at two concentrations, and for polyvinylpyrrolidone (PVP, K12 and K29/32) and hydroxypropylmethylcellulose (HPMC, E3 and E50), two grades were studied. Mannitol had no solubility impact in any of the DoE media. PVP significantly increased solubility in a media-, grade- and concentration-dependent manner, with the biggest change in fasted media. HPMC and chitosan significantly reduced solubility in both fasted and fed states in a media-, grade- and concentration-dependent manner. The results indicate that the impact of excipients on fenofibrate solubility is a complex interplay of media composition in combination with their physicochemical properties and concentration. The results indicate that in vitro solubility studies combining the drug of interest, proposed excipients along with suitable simulated intestinal media recipes will provide interesting information with the potential to guide formulation development.
Collapse
Affiliation(s)
- Bayan E. Ainousah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| | - Gavin W. Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| |
Collapse
|
3
|
Porat D, Dukhno O, Partook-Maccabi M, Vainer E, Cvijić S, Dahan A. Selective COX-2 inhibitors after bariatric surgery: Celecoxib, etoricoxib and etodolac post-bariatric solubility/dissolution and pharmacokinetics. Int J Pharm 2023; 645:123347. [PMID: 37633536 DOI: 10.1016/j.ijpharm.2023.123347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Anatomical/physiological gastrointestinal changes after bariatric surgery may influence the fate of orally administered drugs.Since non-selective NSAIDs are not well-tolerated post-surgery, selective cyclooxygenase-2 (COX-2) inhibitors may be important for these patients. In this work we investigated celecoxib, etoricoxib and etodolac, for impaired post-bariatric solubility/dissolution and absorption. Solubility was studied in-vitro, and ex-vivoin aspirated gastric contents from patients pre- vs. post-surgery. Dissolution was studied in conditions simulating pre- vs. post-surgery stomach. Finally, the experimental solubility data were used in physiologically-based biopharmaceutics model (PBBM) (GastroPlus®) to simulate pre- vs. post-surgery celecoxib/etoricoxib/etodolac pharmacokinetic (PK) profiles.For etoricoxib and etodolac (but not celecoxib), pH-dependent solubility was demonstrated: etoricoxib solubility decreased ∼1000-fold, and etodolac solubility increased 120-fold, as pH increased from 1 to 7, which was also confirmed ex-vivo. Hampered etoricoxib dissolution and improved etodolac dissolution post-surgery was revealed. Tablet crushing, clinically recommended after surgery, failed to improve post-bariatric dissolution. PBBM simulations revealed significantly impaired etoricoxib absorption post-surgery across all conditions; for instance, 79% lower Cmax and 53% decreased AUC was simulated post-gastric bypass procedure, after single 120 mg dose. Celecoxib and etodolac maintained unaffected absorption after bariatric surgery.This mechanistically-based analysis suggests to prefer the acidic drug etodolac or the neutral celecoxib as selective COX-2 inhibitors, over the basic drug etoricoxib, after bariatric surgery.
Collapse
Affiliation(s)
- Daniel Porat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Oleg Dukhno
- Department of Surgery B, Soroka University Medical Center, Beer-Sheva 8410101, Israel
| | - Mazal Partook-Maccabi
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ella Vainer
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sandra Cvijić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
4
|
Inês Silva M, Khadra I, Pyper K, Halbert GW. Fed Intestinal Solubility Limits and Distributions Applied to the Developability Classification System. Eur J Pharm Biopharm 2023; 186:74-84. [PMID: 36934829 DOI: 10.1016/j.ejpb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023]
Abstract
For solid oral dosage forms drug solubility in intestinal fluid is an important parameter influencing product performance and bioavailability. Solubility along with permeability are the two parameters applied in the Biopharmaceutics and Developability Classification Systems (DCS) to assess a drug's potential for oral administration. Intestinal solubility varies with the intestinal contents and the differences between the fasted and fed states are recognised to influence solubility and bioavailability. In this study a novel fed state simulated media system comprising of nine media has been utilised to measure the solubility of seven drugs (ibuprofen, mefenamic acid, furosemide, dipyridamole, griseofulvin, paracetamol and acyclovir) previously studied in the fasted state DCS. The results demonstrate that the fed nine media system provides a range of solubility values for each drug and solubility behaviour is consistent with published design of experiment studies conducted in either the fed or fasted state. Three drugs (griseofulvin, paracetamol and acyclovir) exhibit very narrow solubility distributions, a result that matches published behaviour in the fasted state, indicating that this property is not influenced by the concentration of simulated media components. The nine solubility values for each drug can be utilised to calculate a dose/solubility volume ratio to visualise the drug's position on the DCS grid. Due to the derivation of the nine media compositions the range and catergorisation could be considered as bioequivalent and can be combined with the data from the original fed intestinal fluid analysis to provide a population based solubility distribution. This provides further information on the drugs solubility behaviour and could be applied to quality by design formulation approaches. Comparison of the fed results in this study with similar published fasted results highlight that some differences detected match in vivo behaviour in food effect studies. This indicates that a combination of the fed and fasted systems may be a useful in vitro biopharmaceutical performance tool. However, it should be noted that the fed media recipes in this study are based on a liquid meal (Ensure Plus) and this may not be representative of alternative fed states achieved through ingestion of a solid meal. Nevertheless, this novel approach provides greater in vitro detail with respect to possible in vivo biopharmaceutical performance, an improved ability to apply risk-based approaches and the potential to investigate solubility based food effects. The system is therefore worthy of further investigation but studies will be required to expand the number of drugs measured and link the in vitro measurements to in vivo results.
Collapse
Affiliation(s)
- Maria Inês Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26, Richmond Street, Glasgow, G1 1XH, United Kingdom
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| |
Collapse
|
5
|
Porat D, Dukhno O, Vainer E, Cvijić S, Dahan A. Antiallergic Treatment of Bariatric Patients: Potentially Hampered Solubility/Dissolution and Bioavailability of Loratadine, but Not Desloratadine, Post-Bariatric Surgery. Mol Pharm 2022; 19:2922-2936. [PMID: 35759355 DOI: 10.1021/acs.molpharmaceut.2c00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gastrointestinal anatomical/physiological changes after bariatric surgery influence variables affecting the fate of drugs after ingestion, and medication management of these patients requires a thorough and complex mechanistic analysis. The aim of this research was to study whether loratadine/desloratadine antiallergic treatment of bariatric patients is at risk of being ineffective due to impaired solubility/dissolution. The pH-dependent solubility of loratadine/desloratadine was studied in vitro, as well as ex vivo, in gastric content aspirated from patients before versus after bariatric surgery. Then, a biorelevant dissolution method was developed to simulate the gastric conditions after sleeve gastrectomy (SG) or one-anastomosis gastric bypass (OAGB), accounting for key variables (intragastric volume, pH, and contractility), and the dissolution of loratadine/desloratadine was studied pre- versus post-surgery. Dissolution was also studied after tablet crushing or syrup ingestion, as these actions are recommended after bariatric surgery. Finally, these experimental data were implemented in a newly developed physiologically based pharmacokinetic (PBPK) model to simulate loratadine/desloratadine PK profiles pre- versus post-surgery. For both drugs, pH-dependent solubility was demonstrated, with decreased solubility at higher pH; over the pH range 1-7, loratadine solubility decreased ∼2000-fold, and desloratadine decreased ∼120-fold. Ex vivo solubility in aspirated human gastric fluid pre- versus post-surgery was in good agreement with these in vitro results and revealed that while desloratadine solubility still allows complete dissolution post-surgery, loratadine solubility post-surgery is much lower than the threshold required for the complete dissolution of the drug dose. Indeed, severely hampered loratadine dissolution was revealed, dropping from 100% pre-surgery to only 3 and 1% post-SG and post-OAGB, respectively. Tablet crushing did not increase loratadine dissolution in any post-bariatric condition, nor did loratadine syrup in post-OAGB (pH 7) media, while in post-laparoscopic SG conditions (pH 5), the syrup provided partial improvement of up to 40% dissolution. Desloratadine exhibited quick and complete dissolution across all pre-/post-surgery conditions. PBPK simulations revealed pronounced impaired absorption of loratadine post-surgery, with 84-88% decreased Cmax, 28-36% decreased Fa, and 24-31% decreased overall bioavailability, depending on the type of bariatric procedure. Desloratadine absorption remained unchanged post-surgery. We propose that desloratadine should be preferred over loratadine in bariatric patients, and as loratadine is an over-the-counter medication, antiallergic therapy after bariatric surgery requires special attention by patients and clinicians alike. This mechanistic approach that reveals potential post-surgery complexity, and at the same time provides adequate substitutions, may contribute to better pharmacotherapy and overall patient care after bariatric surgery.
Collapse
Affiliation(s)
- Daniel Porat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Oleg Dukhno
- Department of Surgery B, Soroka University Medical Center, Beer-Sheva 8410101, Israel
| | - Ella Vainer
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sandra Cvijić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
6
|
Inês Silva M, Khadra I, Pyper K, Halbert GW. Small scale in vitro method to determine a potential bioequivalent equilibrium solubility range for fed human intestinal fluid. Eur J Pharm Biopharm 2022; 177:126-134. [PMID: 35718078 DOI: 10.1016/j.ejpb.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/04/2022]
Abstract
Intestinal drug solubility is a key parameter controlling oral absorption but varies both intra and inter individuals and between the fasted and fed states, with food intake known to alter the bioavailability of many compounds. Intestinal solubility can be measured in vitro either using sampled fed human intestinal fluid (FeHIF) or simulated fed intestinal fluid (SIF) but neither approach is optimal. FeHIF is difficult to obtain and variable, whilst for fed SIF multiple recipes are available with no consensus on the ideal version. A recent study characterised FeHIF aspirates using a multidimensional approach and calculated nine simulated media recipes that covered over ninety percent of FeHIF compositional variability. In this study the equilibrium solubility of thirteen drugs have been measured using the nine simulated media recipes and compared to multiple previous design of experiment (DoE) studies, which have examined the impact of fed SIF media components on solubility. The measured nine media solubility data set is only statistically equivalent to the large scale 92 media DoE in 4 out of 13 drug comparisons, but has improved equivalence against small scale DoEs (9 or 10 media) with 6 out of 9 or 10 out of 12 (9 and 10 media respectively) equivalent. Selective removal of non-biorelevant compositions from the 92 media DoE improves statistical equivalence to 9 out of 13 comparisons. The results indicate that solubility equivalence is linked to media component concentrations and compositions, the nine media system is measuring a similar solubility space to previous systems, with a narrower solubility range than the 92 point DoE but equivalent to smaller DoE systems. Phenytoin and tadalafil display a narrow solubility range, a behaviour consistent with previous studies in fed and fasted states and only revealed through the multiple media approach. Custom DoE analysis of the nine media results to determine the most statistically significant component influencing solubility does not detect significant components. Indicating that the approach has a low statistical resolution and is not appropriate if determination of media component significance is required. This study demonstrates that it is possible to assess the fed intestinal equilibrium solubility envelope using the nine media recipes obtained from a multi-dimensional analysis of fed HIF. The derivation of the nine media compositions coupled with the results in this study indicate that the solubility results are more likely to reflect the fed intestinal solubility envelope than previous DoE studies and highlight that the system is worthy of further investigation.
Collapse
Affiliation(s)
- Maria Inês Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH, United Kingdom
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| |
Collapse
|
7
|
Abuhassan Q, Khadra I, Pyper K, Augustijns P, Brouwers J, Halbert GW. Structured solubility behaviour in bioequivalent fasted simulated intestinal fluids. Eur J Pharm Biopharm 2022; 176:108-121. [PMID: 35605926 DOI: 10.1016/j.ejpb.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
Abstract
Drug solubility in intestinal fluid is a key parameter controlling absorption after the administration of a solid oral dosage form. To measure solubility in vitro simulated intestinal fluids have been developed, but there are multiple recipes and the optimum is unknown. This situation creates difficulties during drug discovery and development research. A recent study characterised sampled fasted intestinal fluids using a multidimensional approach to derive nine bioequivalent fasted intestinal media that covered over 90% of the compositional variability. These media have been applied in this study to examine the equilibrium solubility of twenty one exemplar drugs (naproxen, indomethacin, phenytoin, zafirlukast, piroxicam, ibuprofen, mefenamic acid, furosemide, aprepitant, carvedilol, tadalafil, dipyridamole, posaconazole, atazanavir, fenofibrate, felodipine, griseofulvin, probucol, paracetamol, acyclovir and carbamazepine) to determine if consistent solubility behaviour was present. The bioequivalent media provide in the majority of cases structured solubility behaviour that is consistent with physicochemical properties and previous solubility studies. For the acidic drugs (pKa < 6.3) solubility is controlled by media pH, the profile is identical and consistent and the lowest and highest pH media identify the lowest and highest solubility in over 70% of cases. For weakly acidic (pKa > 8), basic and neutral drugs solubility is controlled by a combination of media pH and total amphiphile concentration (TAC), a consistent solubility behaviour is evident but with variation related to individual drug interactions within the media. The lowest and highest pH x TAC media identify the lowest and highest solubility in over 78% of cases. A subset of the latter category consisting of neutral and drugs non-ionised in the media pH range have been identified with a very narrow solubility range, indicating that the impact of the simulated intestinal media on their solubility is minimal. Two drugs probucol and atazanavir exhibit unusual behaviour. The study indicates that the use of two appropriate bioequivalent fasted intestinal media from the nine will identify in vitro the maximum and minimum solubility boundaries for drugs and due to the media derivation this is probably applicable in vivo. These media could be applied during discovery and development activities to provide a solubility range, which would assist placement of the drug within the BCS/DCS and rationalise drug and formulation decisions.
Collapse
Affiliation(s)
- Qamar Abuhassan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH, United Kingdom
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, ON2, Herestraat 49 box 921, 3000 Leuven, Belgium
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, ON2, Herestraat 49 box 921, 3000 Leuven, Belgium
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| |
Collapse
|
8
|
Fasted Intestinal Solubility Limits and Distributions Applied to the Biopharmaceutics and Developability Classification Systems. Eur J Pharm Biopharm 2021; 170:160-169. [PMID: 34923138 PMCID: PMC8769049 DOI: 10.1016/j.ejpb.2021.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
After oral administration, a drug’s solubility in intestinal fluid is an important parameter influencing bioavailability and if the value is known it can be applied to estimate multiple biopharmaceutical parameters including the solubility limited absorbable dose. Current in vitro measurements may utilise fasted human intestinal fluid (HIF) or simulated intestinal fluid (SIF) to provide an intestinal solubility value. This single point value is limited since its position in relation to the fasted intestinal solubility envelope is unknown. In this study we have applied a nine point fasted equilibrium solubility determination in SIF, based on a multi-dimensional analysis of fasted human intestinal fluid composition, to seven drugs that were previously utilised to investigate the developability classification system (ibuprofen, mefenamic acid, furosemide, dipyridamole, griseofulvin, paracetamol and acyclovir). The resulting fasted equilibrium solubility envelope encompasses literature solubility values in both HIF and SIF indicating that it measures the same solubility space as current approaches with solubility behaviour consistent with previous SIF design of experiment studies. In addition, it identifies that three drugs (griseofulvin, paracetamol and acyclovir) have a very narrow solubility range, a feature that single point solubility approaches would miss. The measured mid-point solubility value is statistically equivalent to the value determined with the original fasted simulated intestinal fluid recipe, further indicating similarity and that existing literature results could be utilised as a direct comparison. Since the multi-dimensional approach covered greater than ninety percent of the variability in fasted intestinal fluid composition, the measured maximum and minimum equilibrium solubility values should represent the extremes of fasted intestinal solubility and provide a range. The seven drugs all display different solubility ranges and behaviours, a result also consistent with previous studies. The dose/solubility ratio for each measurement point can be plotted using the developability classification system to highlight individual drug behaviours. The lowest solubility represents a worst-case scenario which may be useful in risk-based quality by design biopharmaceutical calculations than the mid-point value. The method also permits a dose/solubility ratio frequency distribution determination for the solubility envelope which permits further risk-based refinement, especially where the drug crosses a classification boundary. This novel approach therefore provides greater in vitro detail with respect to possible biopharmaceutical performance in vivo and an improved ability to apply risk-based analysis to biopharmaceutical performance. Further studies will be required to expand the number of drugs measured and link the in vitro measurements to in vivo results.
Collapse
|
9
|
Abuhassan Q, Khadra I, Pyper K, Halbert GW. Small scale in vitro method to determine a bioequivalent equilibrium solubility range for fasted human intestinal fluid. Eur J Pharm Biopharm 2021; 168:90-96. [PMID: 34419602 PMCID: PMC8491656 DOI: 10.1016/j.ejpb.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 08/14/2021] [Indexed: 01/29/2023]
Abstract
Drug solubility is a key parameter controlling oral absorption, but intestinal solubility is difficult to assess in vitro. Human intestinal fluid (HIF) aspirates can be applied but they are variable, difficult to obtain and expensive. Simulated intestinal fluids (SIF) are a useful surrogate but multiple recipes are available and the optimum is unknown. A recent study characterised fasted HIF aspirates using a multi-dimensional approach and determined nine bioequivalent SIF media recipes that represented over ninety percent of HIF compositional variability. In this study these recipes have been applied to determine the equilibrium solubility of twelve drugs (naproxen, indomethacin, phenytoin, piroxicam, aprepitant, carvedilol, zafirlukast, tadalafil, fenofibrate, griseofulvin, felodipine, probucol) previously investigated using a statistical design of experiment (DoE) approach. The bioequivalent solubility measurements are statistically equivalent to the previous DoE, enclose literature solubility values in both fasted HIF and SIF, and the solubility range is less than the previous DoE. These results indicate that the system is measuring the same solubility space as literature systems with the lower overall range suggesting improved equivalence to in vivo solubility, when compared to DoEs. Three drugs (phenytoin, tadalafil and griseofulvin) display a comparatively narrow solubility range, a behaviour that is consistent with previous studies and related to the drugs' molecular structure and properties. This solubility behaviour would not be evident with single point solubility measurements. The solubility results can be analysed using a custom DoE to determine the most statistically significant factor within the media influencing solubility. This approach has a lower statistical resolution than a formal DoE and is not appropriate if determination of media factor significance for solubilisation is required. This study demonstrates that it is possible to assess the fasted intestinal equilibrium solubility envelope using a small number of bioequivalent media recipes obtained from a multi-dimensional analysis of fasted HIF. The derivation of the nine bioequivalent SIF media coupled with the lower measured solubility range indicate that the solubility results are more likely to reflect the fasted intestinal solubility envelope than previous DoE studies and highlight that intestinal solubility is a range and not a single value.
Collapse
Affiliation(s)
- Qamar Abuhassan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
10
|
Supersaturation and Solubilization upon In Vitro Digestion of Fenofibrate Type I Lipid Formulations: Effect of Droplet Size, Surfactant Concentration and Lipid Type. Pharmaceutics 2021; 13:pharmaceutics13081287. [PMID: 34452248 PMCID: PMC8399075 DOI: 10.3390/pharmaceutics13081287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
Lipid-based formulations (LBF) enhance oral drug absorption by promoting drug solubilization and supersaturation. The aim of the study was to determine the effect of the lipid carrier type, drop size and surfactant concentration on the rate of fenofibrate release in a bicarbonate-based in vitro digestion model. The effect of the lipid carrier was studied by preparing type I LBF with drop size ≈ 2 µm, based on medium-chain triglycerides (MCT), sunflower oil (SFO), coconut oil (CNO) and cocoa butter (CB). The drop size and surfactant concentration effects were assessed by studying MCT and SFO-based formulations with a drop size between 400 nm and 14 µm and surfactant concentrations of 1 or 10%. A filtration through a 200 nm filter followed by HPLC analysis was used to determine the aqueous fenofibrate, whereas lipid digestion was followed by gas chromatography. Shorter-chain triglycerides were key in promoting a faster drug release. The fenofibrate release from long-chain triglyceride formulations (SFO, CNO and CB) was governed by solubilization and was enhanced at a smaller droplet size and higher surfactant concentration. In contrast, supersaturation was observed after the digestion of MCT emulsions. In this case, a smaller drop size and higher surfactant had negative effects: lower peak fenofibrate concentrations and a faster onset of precipitation were observed. The study provides new mechanistic insights on drug solubilization and supersaturation after LBF digestion, and may support the development of new in silico prediction models.
Collapse
|
11
|
Lupo N, Steinbring C, Friedl JD, Le-Vinh B, Bernkop-Schnürch A. Impact of bile salts and a medium chain fatty acid on the physical properties of self-emulsifying drug delivery systems. Drug Dev Ind Pharm 2020; 47:22-35. [PMID: 33185140 DOI: 10.1080/03639045.2020.1851241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this study was the evaluation of the influence of bile salts and fatty acids, important components of intestinal fluids, on physical characteristics of self-emulsifying drug delivery systems (SEDDS) such as size, polydispersity (PDI), zeta potential (Zp), turbidity (T%), cloud point temperature (CPT) and drug release. At this purpose, nonionic (ni-SEDDS) and cationic (c-SEDDS) were emulsified in aqueous media containing increasing concentrations of bile salts (BS) and decanoate (Dec). Zp of ni-SEDDS and c-SEDDS became highly negative at 15 mM BS and Dec. Size of ni-SEDDS decreased of 112 nm and of 76 nm at 15 mM BS and Dec, respectively. Size of c-SEDDS decreased of 53 nm at 15 mM BS, but it was not affected by 15 mM Dec. PDI and T% of ni- and c-SEDDS were lowered as well. CPT of ni-SEDDS increased from 70 °C to 97 °C and 84 °C at 15 mM BS and Dec. CPT of c-SEDDS decreased from above 100 °C to 80 °C and to 85 °C at 1.5 mM BS and at 5 mM Dec, respectively. Generally, BS had a more pronounced effect on SEDDS Zp, size, PDI, T %, and CPT than Dec. The release of the model drug quinine was accelerated by BS and Dec. As BS and fatty acids affect the physical characteristics and drug release behavior of SEDDS, their impact should be addressed during the development process.
Collapse
Affiliation(s)
- Noemi Lupo
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Christian Steinbring
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Julian David Friedl
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Bao Le-Vinh
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.,Department of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh city, Vietnam
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Pyper K, Brouwers J, Augustijns P, Khadra I, Dunn C, Wilson CG, Halbert GW. Multidimensional analysis of human intestinal fluid composition. Eur J Pharm Biopharm 2020; 153:226-240. [PMID: 32585351 DOI: 10.1016/j.ejpb.2020.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
The oral administration of solid dosage forms is the commonest method to achieve systemic therapy and relies on the drug's solubility in human intestinal fluid (HIF), a key factor that influences bioavailability and biopharmaceutical classification. However, HIF is difficult to obtain and is known to be variable, which has led to the development of a range of simulated intestinal fluid (SIF) systems to determine drug solubility in vitro. In this study we have applied a novel multidimensional approach to analyse and characterise HIF composition using a published data set in both fasted and fed states with a view to refining the existing SIF approaches. The data set provided 152 and 172 measurements of five variables (total bile salt, phospholipid, total free fatty acid, cholesterol and pH) in time-dependent HIF samples from 20 volunteers in the fasted and fed state, respectively. The variable data sets for both fasted state and fed state are complex, do not follow normal distributions but the amphiphilic variable concentrations are correlated. When plotted 2-dimensionally a generally ellipsoid shaped data cloud with a positive slope is revealed with boundaries that enclose published fasted or fed HIF compositions. The data cloud also encloses the majority of fasted state and fed state SIF recipes and illustrates that the structured nature of design of experiment (DoE) approaches does not optimally cover the variable space and may examine media compositions that are not biorelevant. A principal component analysis in either fasted or fed state in combination with fitting an ellipsoid shape to enclose the data results in 8 points that capture over 95% of the compositional variability of HIF. The variable's average rate of concentration change in both fasted state and fed state over a short time scale (10 min) is zero and a Euclidean analysis highlights differences between the fasted and fed states and among individual volunteers. The results indicate that a 9-point DoE (8 + 1 central point) could be applied to investigate drug solubility in vitro and provide statistical solubility limits. In addition, a single point could provide a worst-case solubility measurement to define the lowest biopharmaceutical classification boundary or for use during drug development. This study has provided a novel description of HIF composition. The approach could be expanded in multiple ways by incorporation of further data sets to improve the statistical coverage or to cover specific patient groups (e.g., paediatric). Further development might also be possible to analyse information on the time dependent behaviour of HIF and to guide HIF sampling and analysis protocols.
Collapse
Affiliation(s)
- Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, ON2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, ON2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - I Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - C Dunn
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - C G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - G W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
13
|
Six years of progress in the oral biopharmaceutics area – A summary from the IMI OrBiTo project. Eur J Pharm Biopharm 2020; 152:236-247. [DOI: 10.1016/j.ejpb.2020.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
|
14
|
McPherson S, Perrier J, Dunn C, Khadra I, Davidson S, Ainousah B, Wilson CG, Halbert G. Small scale design of experiment investigation of equilibrium solubility in simulated fasted and fed intestinal fluid. Eur J Pharm Biopharm 2020; 150:14-23. [PMID: 32035969 DOI: 10.1016/j.ejpb.2020.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/11/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
It is widely recognised that drug solubility within the gastrointestinal tract (GIT) differs from values determined in a simple aqueous buffer and to circumvent this problem measurement in biorelevant fluids is determined. Biorelevant fluids are complex mixtures of components (sodium taurocholate, lecithin, sodium phosphate, sodium chloride, pancreatin and sodium oleate) at various concentrations and pH levels to provide systems simulating fasted (FaSSIF) or fed (FeSSIF) intestinal media. Design of Experiment (DoE) studies have been applied to investigate FaSSIF and FeSSIF and indicate that a drug's equilibrium solubility varies over orders of magnitude, is influenced by the drug type and individual or combinations of media components, with some of these interactions being drug specific. Although providing great detail on the drug media interactions these studies are resource intensive requiring up to ninety individual experiments for FeSSIF. In this paper a low sample number or reduced DoE system has been investigated by restricting components with minimal solubility impact to a single value and only investigating variations in the concentrations of sodium taurocholate, lecithin, sodium oleate, pH and additionally in the case of fed media, monoglyceride. This reduces the experiments required to ten (FaSSIF) and nine (FeSSIF). Twelve poorly soluble drugs (Ibuprofen, Valsartan, Zafirlukast, Indomethacin, Fenofibrate, Felodipine, Probucol, Tadalafil, Carvedilol, Aprepitant, Bromocriptine and Itraconazole) were investigated and the results compared to published DoE studies and literature solubility values in human intestinal fluid (HIF), FaSSIF or FeSSIF. The solubility range determined by the reduced DoE is statistically equivalent to the larger scale published DoE results in over eighty five percent of the cases. The reduced DoE range also covers HIF, FaSSIF or FeSSIF literature solubility values. In addition the reduced DoE provides lowest measured solubility values that agree with the published DoE values in ninety percent of the cases. However, the reduced DoE only identified single and in some cases none of the major components influencing solubility in contrast to the larger published DoE studies which identified multiple individual components and component interactions. The identification of significant components within the reduced DoE was also dependent upon the drug and system under investigation. The study demonstrates that the lower experimental number reduces statistical power of the DoE to resolve the impact of media components on solubility. However, in a situation where only the solubility range is required the reduced DoE can provide the desired information, which will be of benefit during in vitro development studies. Further refinements are possible to extend the reduced DoE protocol to improve biorelevance and application into areas such as PBPK modelling.
Collapse
Affiliation(s)
- Stephanie McPherson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Jeremy Perrier
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Claire Dunn
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| | - Scott Davidson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Bayan Ainousah
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Gavin Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| |
Collapse
|
15
|
Dunn C, Perrier J, Khadra I, Wilson CG, Halbert GW. Topography of Simulated Intestinal Equilibrium Solubility. Mol Pharm 2019; 16:1890-1905. [PMID: 30848917 PMCID: PMC6505523 DOI: 10.1021/acs.molpharmaceut.8b01238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Oral administration of a solid dosage form requires drug dissolution in the gastrointestinal tract before absorption. Solubility is a key factor controlling dissolution, and it is recognized that, within the intestinal tract, this is influenced by the luminal fluid pH, amphiphile content, and composition. Various simulated intestinal fluid recipes have been introduced to mimic this behavior and studied using a range of different experimental techniques. In this article, we have measured equilibrium solubility utilizing a novel four component mixture design (4CMD) with biorelevant amphiphiles (bile salt, phospholipid, oleate, and monoglyceride) within a matrix of three pH values (5, 6, and 7) and total amphiphile concentrations (11.7, 30.6, and 77.5 mM) to provide a topographical and statistical overview. Three poorly soluble drugs representing acidic (indomethacin), basic (carvedilol), and neutral (fenofibrate) categories have been studied. The macroscopic solubility behavior agrees with literature and exhibits an overall increasing solubility from low pH and total amphiphile concentration to high pH and total amphiphile concentration. Within the matrix, all three drugs display different topographies, which can be related to the statistical effect levels of the individual amphiphiles or amphiphile interactions on solubility. The study also identifies previously unreported three and four way factor interactions notably between bile salt, phospholipid, pH, and total amphiphile concentration. In addition, the results also reveal that solubility variability is linked to the number of amphiphiles and the respective ratios in the measurement fluid, with the minimum variation present in systems containing all four amphiphiles. The individual 4CMD experiments within the matrix can be linked to provide a possible intestinal solubility window for each drug that could be applied in PBPK modeling systems. Overall the approach provides a novel overview of intestinal solubility topography along with greater detail on the impact of the various factors studied; however, each matrix requires 351 individual solubility measurements. Further studies will be required to refine the experimental protocol in order the maximize information garnered while minimizing the number of measurements required.
Collapse
Affiliation(s)
- Claire Dunn
- Strathclyde Institute of
Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Jeremy Perrier
- Strathclyde Institute of
Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of
Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Clive G. Wilson
- Strathclyde Institute of
Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Gavin W. Halbert
- Strathclyde Institute of
Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| |
Collapse
|
16
|
Biorelevant intrinsic dissolution profiling in early drug development: Fundamental, methodological, and industrial aspects. Eur J Pharm Biopharm 2019; 139:101-114. [PMID: 30862481 DOI: 10.1016/j.ejpb.2019.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/07/2019] [Accepted: 03/08/2019] [Indexed: 01/24/2023]
Abstract
Intrinsic dissolution rate (IDR) is the surface specific dissolution rate of a drug. In early drug development, this property (among other parameters) is measured in order to compare different polymorphs and salt forms, guide formulation decisions, and to provide a quality marker of the active pharmaceutical ingredient (API) during production. In this review, an update on different methods and small-scale techniques that have recently evolved for determination of IDR is provided. The importance of biorelevant media and the hydrodynamic conditions of dissolution are also discussed. Different preparation techniques for samples are presented with a focus on disc, particle- and crystal-based methods. A number of small-scale techniques are then described in detail, and their applicability domains are identified. Finally, an updated industrial perspective is provided about IDR's place in the early drug development process.
Collapse
|
17
|
Deshpande TM, Shi H, Pietryka J, Hoag SW, Medek A. Investigation of Polymer/Surfactant Interactions and Their Impact on Itraconazole Solubility and Precipitation Kinetics for Developing Spray-Dried Amorphous Solid Dispersions. Mol Pharm 2018; 15:962-974. [DOI: 10.1021/acs.molpharmaceut.7b00902] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tanvi M. Deshpande
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Helen Shi
- Vertex Pharmaceutical Incorporated, Boston, Massachusetts 02210, United States
| | - John Pietryka
- Vertex Pharmaceutical Incorporated, Boston, Massachusetts 02210, United States
| | - Stephen W. Hoag
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Ales Medek
- Vertex Pharmaceutical Incorporated, Boston, Massachusetts 02210, United States
| |
Collapse
|