1
|
Bemidinezhad A, Radmehr S, Moosaei N, Efati Z, Kesharwani P, Sahebkar A. Enhancing radiotherapy for melanoma: the promise of high-Z metal nanoparticles in radiosensitization. Nanomedicine (Lond) 2024; 19:2391-2411. [PMID: 39382020 PMCID: PMC11492696 DOI: 10.1080/17435889.2024.2403325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Melanoma is a type of skin cancer that can be challenging to treat, especially in advanced stages. Radiotherapy is one of the main treatment modalities for melanoma, but its efficacy can be limited due to the radioresistance of melanoma cells. Recently, there has been growing interest in using high-Z metal nanoparticles (NPs) to enhance the effectiveness of radiotherapy for melanoma. This review provides an overview of the current state of radiotherapy for melanoma and discusses the physical and biological mechanisms of radiosensitization through high-Z metal NPs. Additionally, it summarizes the latest research on using high-Z metal NPs to sensitize melanoma cells to radiation, both in vitro and in vivo. By examining the available evidence, this review aims to shed light on the potential of high-Z metal NPs in improving radiotherapy outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Negin Moosaei
- Materials Science & Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Zohreh Efati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Song E, Lawrence J, Greene E, Christie A, Goldschmidt S. Risk stratification scheme based on the TNM staging system for dogs with oral malignant melanoma centered on clinicopathologic presentation. Front Vet Sci 2024; 11:1472748. [PMID: 39386252 PMCID: PMC11463030 DOI: 10.3389/fvets.2024.1472748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Oral malignant melanoma (OMM) is the most common malignant oral neoplasm in dogs. Tumor recurrence, progression, and regional and distant metastasis remain major obstacles despite advanced therapy. Tumor size has been a consistent, key independent prognostic factor; however, other clinical and histopathologic features impact prognosis and likely influence optimal treatment strategies. Adoption of a risk stratification scheme for canine OMM that stratifies groups of dogs on defined clinicopathologic features may improve reproducible and comparable studies by improving homogeneity within groups of dogs. Moreover, it would aid in the generation of multidisciplinary prospective studies that seek to define optimal treatment paradigms based on defined clinicopathologic features. Methods To build a platform upon which to develop a risk stratification scheme, we performed a systematic review of clinicopathologic features of OMM, with particular attention to levels of evidence of published research and the quantitative prognostic effect of clinicopathologic features. Results Tumor size and presence of bone lysis were repeatable features with the highest level of evidence for prognostic effects on survival. Overall, with strict inclusion criteria for paper review, the levels of evidence in support of other, previously proposed risk factors were low. Factors contributing to the challenge of defining clear prognostic features including inconsistencies in staging and reporting of prognostic variables, incomplete clinical outcome data, inhomogeneous treatment, and absence of randomized controlled studies. Discussion To overcome this in the future, we propose a risk stratification scheme that expands the TNM system to incorporate specific designations that highlight possible prognostic variables. The ability to capture key data simply from an expanded TNM description will aid in future efforts to form strong conclusions regarding prognostic variables and their influence (or lack thereof) on therapeutic decision-making and outcomes.
Collapse
Affiliation(s)
- Eric Song
- Apex Veterinary Specialists, Denver, CO, United States
| | - Jessica Lawrence
- Department of Surgical and Radiologic Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erica Greene
- RedBank Veterinary Hospital, Tinton Falls, NJ, United States
| | - Anneka Christie
- RedBank Veterinary Hospital, Tinton Falls, NJ, United States
| | - Stephanie Goldschmidt
- Department of Surgical and Radiologic Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Cronise KE, Coy J, Dow S, Hauck ML, Regan DP. Immunohistochemical and transcriptomic characterization of T and myeloid cell infiltrates in canine malignant melanoma. Vet Comp Oncol 2024; 22:377-387. [PMID: 38752589 PMCID: PMC11323233 DOI: 10.1111/vco.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 08/16/2024]
Abstract
Immune checkpoint inhibitor therapy can provide significant clinical benefit in patients with certain cancer types including melanoma; however, objective responses are only observed for a subset of patients. Mucosal melanoma is a rare melanoma subtype associated with a poor prognosis and, compared with cutaneous melanoma, is significantly less responsive to immune checkpoint inhibitors. Spontaneous canine tumours have emerged as valuable models to inform human cancer studies. In contrast to human melanoma, most canine melanomas are mucosal-an incidence that may be leveraged to better understand the subtype in humans. However, a more comprehensive understanding of the immune landscape of the canine disease is required. Here, we quantify tumour infiltrative T and myeloid cells in canine mucosal (n = 13) and cutaneous (n = 5) melanomas using immunohistochemical analysis of CD3 and MAC387 expression, respectively. Gene expression analysis using the Canine IO NanoString panel was also performed to identify genes and pathways associated with immune cell infiltration. T and myeloid cell densities were variable with geometric means of 158.7 cells/mm2 and 166.7 cells/mm2, respectively. Elevated T cell infiltration was associated with increased expression of cytolytic genes as well as genes encoding the coinhibitory checkpoint molecules PD-1, CTLA-4, TIM-3 and TIGIT; whereas increased myeloid cell infiltration was associated with elevated expression of protumourigenic cytokines. These data provide a basic characterization of the tumour microenvironment of canine malignant melanoma and suggest that, like human melanoma, inherent variability in anti-tumour T cell responses exists and that a subset of canine melanomas may respond better to immunomodulation.
Collapse
Affiliation(s)
- Kathryn E Cronise
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jonathan Coy
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Steven Dow
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Marlene L Hauck
- Global Innovation, Oncology, Boehringer Ingelheim Animal Health, Athens, Georgia, USA
| | - Daniel P Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Mucignat G, Montanucci L, Elgendy R, Giantin M, Laganga P, Pauletto M, Mutinelli F, Vascellari M, Leone VF, Dacasto M, Granato A. A Whole-Transcriptomic Analysis of Canine Oral Melanoma: A Chance to Disclose the Radiotherapy Effect and Outcome-Associated Gene Signature. Genes (Basel) 2024; 15:1065. [PMID: 39202425 PMCID: PMC11353338 DOI: 10.3390/genes15081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Oral melanoma (OM) is the most common malignant oral tumour among dogs and shares similarities with human mucosal melanoma (HMM), validating the role of canine species as an immunocompetent model for cancer research. In both humans and dogs, the prognosis is poor and radiotherapy (RT) represents a cornerstone in the management of this tumour, either as an adjuvant or a palliative treatment. In this study, by means of RNA-seq, the effect of RT weekly fractionated in 9 Gray (Gy), up to a total dose of 36 Gy (4 weeks), was evaluated in eight dogs affected by OM. Furthermore, possible transcriptomic differences in blood and biopsies that might be associated with a longer overall survival (OS) were investigated. The immune response, glycosylation, cell adhesion, and cell cycle were the most affected pathways by RT, while tumour microenvironment (TME) composition and canonical and non-canonical WNT pathways appeared to be modulated in association with OS. Taking these results as a whole, this study improved our understanding of the local and systemic effect of RT, reinforcing the pivotal role of anti-tumour immunity in the control of canine oral melanoma (COM).
Collapse
Affiliation(s)
- Greta Mucignat
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Ludovica Montanucci
- McGovern Medical School and Center for Neurogenomics, UTHealth, University of Texas Houston, Houston, TX 77030, USA;
| | - Ramy Elgendy
- Discovery Sciences, Centre for Genomics Research, AstraZeneca, 411 10 Gothenburg, Sweden;
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Paola Laganga
- Anicura—Centro Oncologico Veterinario, Sasso Marconi, 40037 Bologna, Italy; (P.L.); (V.F.L.)
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Franco Mutinelli
- Veterinary and Public Health Institute, Legnaro, 35020 Padua, Italy; (F.M.); (M.V.)
| | - Marta Vascellari
- Veterinary and Public Health Institute, Legnaro, 35020 Padua, Italy; (F.M.); (M.V.)
| | - Vito Ferdinando Leone
- Anicura—Centro Oncologico Veterinario, Sasso Marconi, 40037 Bologna, Italy; (P.L.); (V.F.L.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Anna Granato
- Veterinary and Public Health Institute, Legnaro, 35020 Padua, Italy; (F.M.); (M.V.)
| |
Collapse
|
5
|
Li S, Liu Z, Lv J, Lv D, Xu H, Shi H, Liu G, Lin D, Jin Y. Establishment of Canine Oral Mucosal Melanoma Cell Lines and Their Xenogeneic Animal Models. Cells 2024; 13:992. [PMID: 38891124 PMCID: PMC11171988 DOI: 10.3390/cells13110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Canine oral melanoma is the most prevalent malignant tumor in dogs and has a poor prognosis due to its high aggressiveness and high metastasis and recurrence rates. More research is needed into its treatment and to understand its pathogenic factors. In this study, we isolated a canine oral mucosal melanoma (COMM) cell line designated as COMM6605, which has now been stably passaged for more than 100 generations, with a successful monoclonal assay and a cell multiplication time of 22.2 h. G-banded karyotype analysis of the COMM6605 cell line revealed an abnormal chromosome count ranging from 45 to 74, with the identification of a double-armed chromosome as the characteristic marker chromosome of this cell line. The oral intralingual and dorsal subcutaneous implantation models of BALB/c-nu mice were successfully established; Melan-A (MLANA), S100 beta protein (S100β), PNL2, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2) were stably expressed positively in the canine oral tumor sections, tumor cell lines, and tumor sections of tumor-bearing mice. Sublines COMM6605-Luc-EGFP and COMM6605-Cherry were established through lentiviral transfection, with COMM6605-Luc-EGFP co-expressing firefly luciferase (Luc) and enhanced green fluorescent protein (EGFP) and COMM6605-Cherry expressing the Cherry fluorescent protein gene. The COMM6605-Luc-EGFP fluorescent cell subline was injected via the tail vein and caused lung and lymph node metastasis, as detected by mouse live imaging, which can be used as an animal model to simulate the latter steps of hematogenous spread during tumor metastasis. The canine oral melanoma cell line COMM6605 and two sublines isolated and characterized in this study can offer a valuable model for studying mucosal melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yipeng Jin
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing 100193, China; (S.L.); (Z.L.); (J.L.); (D.L.); (H.X.); (H.S.); (G.L.); (D.L.)
| |
Collapse
|
6
|
Bergman PJ. Cancer Immunotherapy. Vet Clin North Am Small Anim Pract 2024; 54:441-468. [PMID: 38158304 DOI: 10.1016/j.cvsm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The enhanced understanding of immunology experienced over the last 5 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies, which will hopefully expand our veterinary oncology treatment toolkit over time.
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA; Katonah Bedford Veterinary Center, Bedford Hills, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Chung YH, Zhao Z, Jung E, Omole AO, Wang H, Sutorus L, Steinmetz NF. Systemic Administration of Cowpea Mosaic Virus Demonstrates Broad Protection Against Metastatic Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308237. [PMID: 38430536 PMCID: PMC11095214 DOI: 10.1002/advs.202308237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Indexed: 03/04/2024]
Abstract
The key challenge in cancer treatment is prevention of metastatic disease which is therapeutically resistant and carries poor prognoses necessitating efficacious prophylactic approaches that prevent metastasis and recurrence. It is previously demonstrated that cowpea mosaic virus (CPMV) induces durable antitumor responses when used in situ, i.e., intratumoral injection. As a new direction, it is showed that CPMV demonstrates widespread effectiveness as an immunoprophylactic agent - potent efficacy is demonstrated in four metastatic models of colon, ovarian, melanoma, and breast cancer. Systemic administration of CPMV stimulates the innate immune system, enabling attack of cancer cells; processing of the cancer cells and associated antigens leads to systemic, durable, and adaptive antitumor immunity. Overall, CPMV demonstrated broad efficacy as an immunoprophylactic agent in the rejection of metastatic cancer.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
| | - Zhongchao Zhao
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Eunkyeong Jung
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Anthony O. Omole
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Hanyang Wang
- Department of BiologyUniversity of California, San DiegoLa JollaCA92093USA
| | - Lucas Sutorus
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Nicole F. Steinmetz
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Department of RadiologyUniversity of California, San DiegoLa JollaCA92093USA
- Institute for Materials Discovery and DesignUniversity of California, San DiegoLa JollaCA92093USA
- Center for Engineering in CancerUniversity of California, San DiegoLa JollaCA92093USA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
8
|
Zhao Z, Xiang Y, Koellhoffer EC, Shukla S, Fiering S, Chen S, Steinmetz NF. 3D bioprinting cowpea mosaic virus as an immunotherapy depot for ovarian cancer prevention in a preclinical mouse model. MATERIALS ADVANCES 2024; 5:1480-1486. [PMID: 38380337 PMCID: PMC10876074 DOI: 10.1039/d3ma00899a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Implantable polymeric hydrogels loaded with immunostimulatory cowpea mosaic virus (CPMV) were fabricated using digital light processing (DLP) printing technology. The CPMV-laden hydrogels were surgically implanted into the peritoneal cavity to serve as depots for cancer slow-release immunotherapy. Sustained release of CPMV within the intraperitoneal space alleviates the need for repeated dosing and we demonstrated efficacy against ovarian cancer in a metastatic mouse model.
Collapse
Affiliation(s)
- Zhongchao Zhao
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA, 92093 USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Yi Xiang
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA, 92093 USA
| | - Edward C Koellhoffer
- Department of Radiology, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA, 92093 USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth Lebanon NH 03756 USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth Lebanon NH 03756 USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA, 92093 USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA, 92093 USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Center for Engineering in Cancer, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
| |
Collapse
|
9
|
Zhao Z, Chung YH, Steinmetz NF. Melanoma immunotherapy enabled by M2 macrophage targeted immunomodulatory cowpea mosaic virus. MATERIALS ADVANCES 2024; 5:1473-1479. [PMID: 38380336 PMCID: PMC10876082 DOI: 10.1039/d3ma00820g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
We have developed nanoparticle formulations targeting M2 macrophages for cancer immunotherapy by conjugating high-affinity binding peptides to cowpea mosaic virus as an immunostimulatory adjuvant. We confirmed the targeting of and uptake by M2 macrophages in vitro and the therapeutic efficacy of the nanoparticles against murine melanoma in vivo.
Collapse
Affiliation(s)
- Zhongchao Zhao
- Department of NanoEngineering, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Center for Nano-ImmunoEngineering, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Moores Cancer Center, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
| | - Young Hun Chung
- Moores Cancer Center, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Department of Bioengineering, University of California, San Diego 9500 Gilman Dr, La Jolla CA 92093 USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Center for Nano-ImmunoEngineering, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Moores Cancer Center, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Department of Bioengineering, University of California, San Diego 9500 Gilman Dr, La Jolla CA 92093 USA
- Department of Radiology, University of California, San Diego 9500 Gilman Dr, La Jolla CA 92093 USA
- Institute for Materials Discovery and Design, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Center for Engineering in Cancer, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California 9500 Gilman Dr, La Jolla San Diego CA 92093 USA
| |
Collapse
|
10
|
Karan S, Jung E, Boone C, Steinmetz NF. Synergistic combination therapy using cowpea mosaic virus intratumoral immunotherapy and Lag-3 checkpoint blockade. Cancer Immunol Immunother 2024; 73:51. [PMID: 38349406 PMCID: PMC10864561 DOI: 10.1007/s00262-024-03636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024]
Abstract
Immune checkpoint therapy (ICT) for cancer can yield dramatic clinical responses; however, these may only be observed in a minority of patients. These responses can be further limited by subsequent disease recurrence and resistance. Combination immunotherapy strategies are being developed to overcome these limitations. We have previously reported enhanced efficacy of combined intratumoral cowpea mosaic virus immunotherapy (CPMV IIT) and ICT approaches. Lymphocyte-activation gene-3 (LAG-3) is a next-generation inhibitory immune checkpoint with broad expression across multiple immune cell subsets. Its expression increases on activated T cells and contributes to T cell exhaustion. We observed heightened efficacy of a combined CPMV IIT and anti-LAG-3 treatment in a mouse model of melanoma. Further, LAG-3 expression was found to be increased within the TME following intratumoral CPMV administration. The integration of CPMV IIT with LAG-3 inhibition holds significant potential to improve treatment outcomes by concurrently inducing a comprehensive anti-tumor immune response, enhancing local immune activation, and mitigating T cell exhaustion.
Collapse
Affiliation(s)
- Sweta Karan
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
| | - Eunkyeong Jung
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
| | - Christine Boone
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
| | - Nicole F Steinmetz
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Shin MD, Jung E, Moreno‐Gonzalez MA, Ortega‐Rivera OA, Steinmetz NF. Pluronic F127 "nanoarmor" for stabilization of Cowpea mosaic virus immunotherapy. Bioeng Transl Med 2024; 9:e10574. [PMID: 38193118 PMCID: PMC10771553 DOI: 10.1002/btm2.10574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 01/10/2024] Open
Abstract
Our lab demonstrated that intratumoral Cowpea mosaic virus (CPMV) is a potent antitumor immunotherapy when used as in situ vaccine. As we pave the way for human clinical translation, formulation chemistry needs to be optimized for long-term storage of the drug candidate. In this work, CPMV was nanoengineered with Pluronic F127 to realize liquid and gel formulations which mitigate structural changes and RNA release during long-term storage. We evaluated the CPMV-F127 formulations for their stability and biological activity through a combination of in vitro assays and efficacy in vivo using a B16F10 murine melanoma model. Results demonstrate that both F127 liquid and gel formulations preserve CPMV structure and function following extended periods of thermal incubation at 4°C, 25°C, and 37°C. Heat-incubated CPMV without formulation resulted in structural changes and inferior in vivo efficacy. In stark contrast, in vivo efficacy was preserved when CPMV was formulated and protected with the F127 "nanoarmor."
Collapse
Affiliation(s)
- Matthew D. Shin
- Department of NanoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Eunkyeong Jung
- Department of NanoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Miguel A. Moreno‐Gonzalez
- Department of NanoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Oscar A. Ortega‐Rivera
- Department of NanoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Nicole F. Steinmetz
- Department of NanoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of CaliforniaLa JollaCaliforniaUSA
- Department of RadiologyUniversity of CaliforniaLa JollaCaliforniaUSA
- Moores Cancer CenterUniversity of CaliforniaLa JollaCaliforniaUSA
- Institute for Materials Discovery and Design, Department of NanoEngineeringUniversity of CaliforniaLa JollaCaliforniaUSA
| |
Collapse
|
12
|
Jung E, Chung YH, Steinmetz NF. TLR Agonists Delivered by Plant Virus and Bacteriophage Nanoparticles for Cancer Immunotherapy. Bioconjug Chem 2023; 34:1596-1605. [PMID: 37611278 PMCID: PMC10538388 DOI: 10.1021/acs.bioconjchem.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Toll-like receptors (TLRs) are promising targets in cancer immunotherapy due to their role in activating the immune system; therefore, various small-molecule TLR agonists have been tested in clinical applications. However, the clinical use of TLR agonists is hindered by their non-specific side effects and poor pharmacokinetics. To overcome these limitations, we used plant virus nanoparticles (VNPs) and bacteriophage virus-like particles (VLPs) as drug delivery systems. We conjugated TLR3 or TLR7 agonists to cowpea mosaic virus (CPMV) VNPs, cowpea chlorotic mottle virus (CCMV) VNPs, and bacteriophage Qβ VLPs. The conjugation of TLR7 agonist, 2-methoxyethoxy-8-oxo-9-(4-carboxybenzyl)adenine (1V209), resulted in the potent activation of immune cells and promoted the production of pro-inflammatory cytokine interleukin 6. We found that 1V209 conjugated to CPMV, CCMV, and Qβ reduced tumor growth in vivo and prolonged the survival of mice compared to those treated with free 1V209 or a simple admixture of 1V209 and viral particles. Nucleic acid-based TLR3 agonist, polyinosinic acid with polycytidylic acid (poly(I:C)), was also delivered by CPMV VNPs, resulting in enhanced mice survival. All our data suggest that coupling and co-delivery are required to enhance the anti-tumor efficacy of TLR agonists and simple mixing of the VLPs with the agonists does not confer a survival benefit. The delivery of 1V209 or poly(I:C) conjugated to VNPs/VLPs probably enhances their efficacy due to the multivalent presentation, prolongation of tumor residence time, and targeting of the innate immune cells mediated by the VNP/VLP carrier.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| |
Collapse
|
13
|
Valdivia G, Alonso-Miguel D, Perez-Alenza MD, Zimmermann ABE, Schaafsma E, Kolling FW, Barreno L, Alonso-Diez A, Beiss V, Affonso de Oliveira JF, Suárez-Redondo M, Fiering S, Steinmetz NF, vom Berg J, Peña L, Arias-Pulido H. Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Induces Local and Systemic Antitumor Efficacy in Canine Mammary Cancer Patients. Cells 2023; 12:2241. [PMID: 37759464 PMCID: PMC10527658 DOI: 10.3390/cells12182241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The lack of optimal models to evaluate novel agents is delaying the development of effective immunotherapies against human breast cancer (BC). In this prospective open label study, we applied neoadjuvant intratumoral immunotherapy with empty cowpea mosaic virus-like particles (eCPMV) to 11 companion dogs diagnosed with canine mammary cancer (CMC), a spontaneous tumor resembling human BC. We found that two neoadjuvant intratumoral eCPMV injections resulted in tumor reduction in injected tumors in all patients and in noninjected tumors located in the ipsilateral and contralateral mammary chains of injected dogs. Tumor reduction was independent of clinical stage, tumor size, histopathologic grade, and tumor molecular subtype. RNA-seq-based analysis of injected tumors indicated a decrease in DNA replication activity and an increase in activated dendritic cell infiltration in the tumor microenvironment. Immunohistochemistry analysis demonstrated significant intratumoral increases in neutrophils, T and B lymphocytes, and plasma cells. eCPMV intratumoral immunotherapy demonstrated antitumor efficacy without any adverse effects. This novel immunotherapy has the potential for improving outcomes for human BC patients.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Daniel Alonso-Miguel
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Maria Dolores Perez-Alenza
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | | | | | - Fred W. Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (S.F.)
| | - Lucia Barreno
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Angela Alonso-Diez
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Veronique Beiss
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (V.B.); (J.F.A.d.O.); (N.F.S.)
| | | | - María Suárez-Redondo
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Steven Fiering
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (S.F.)
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (V.B.); (J.F.A.d.O.); (N.F.S.)
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92039, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92039, USA
- Center for Nano Immuno-Engineering, University of California San Diego, La Jolla, CA 92039, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA 92039, USA
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Johannes vom Berg
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland; (A.B.E.Z.); (J.v.B.)
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
14
|
Nikitin N, Vasiliev Y, Kovalenko A, Ryabchevskaya E, Kondakova O, Evtushenko E, Karpova O. Plant Viruses as Adjuvants for Next-Generation Vaccines and Immunotherapy. Vaccines (Basel) 2023; 11:1372. [PMID: 37631940 PMCID: PMC10458565 DOI: 10.3390/vaccines11081372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Vaccines are the cornerstone of infectious disease control and prevention. The outbreak of SARS-CoV-2 has confirmed the urgent need for a new approach to the design of novel vaccines. Plant viruses and their derivatives are being used increasingly for the development of new medical and biotechnological applications, and this is reflected in a number of preclinical and clinical studies. Plant viruses have a unique combination of features (biosafety, low reactogenicity, inexpensiveness and ease of production, etc.), which determine their potential. This review presents the latest data on the use of plant viruses with different types of symmetry as vaccine components and adjuvants in cancer immunotherapy. The discussion concludes that the most promising approaches might be those that use structurally modified plant viruses (spherical particles) obtained from the Tobacco mosaic virus. These particles combine high adsorption properties (as a carrier) with strong immunogenicity, as has been confirmed using various antigens in animal models. According to current research, it is evident that plant viruses have great potential for application in the development of vaccines and in cancer immunotherapy.
Collapse
Affiliation(s)
- Nikolai Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | | | - Angelina Kovalenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ekaterina Ryabchevskaya
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Olga Kondakova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ekaterina Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Olga Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
15
|
Jung E, Chung YH, Mao C, Fiering SN, Steinmetz NF. The Potency of Cowpea Mosaic Virus Particles for Cancer In Situ Vaccination Is Unaffected by the Specific Encapsidated Viral RNA. Mol Pharm 2023; 20:3589-3597. [PMID: 37294891 PMCID: PMC10530639 DOI: 10.1021/acs.molpharmaceut.3c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant virus nanoparticles can be used as drug carriers, imaging reagents, vaccine carriers, and immune adjuvants in the formulation of intratumoral in situ cancer vaccines. One example is the cowpea mosaic virus (CPMV), a nonenveloped virus with a bipartite positive-strand RNA genome with each RNA packaged separately into identical protein capsids. Based on differences in their densities, the components carrying RNA-1 (6 kb) denoted as the bottom (B) component or carrying RNA-2 (3.5 kb) denoted as the middle (M) component can be separated from each other and from a top (T) component, which is devoid of any RNA. Previous preclinical mouse studies and canine cancer trials used mixed populations of CPMV (containing B, M, and T components), so it is unclear whether the particle types differ in their efficacies. It is known that the CPMV RNA genome contributes to immunostimulation by activation of TLR7. To determine whether the two RNA genomes that have different sizes and unrelated sequences cause different immune stimulation, we compared the therapeutic efficacies of B and M components and unfractionated CPMV in vitro and in mouse cancer models. We found that separated B and M particles behaved similarly to the mixed CPMV, activating innate immune cells to induce the secretion of pro-inflammatory cytokines such as IFNα, IFNγ, IL-6, and IL-12, while inhibiting immunosuppressive cytokines such as TGF-β and IL-10. In murine models of melanoma and colon cancer, the mixed and separated CPMV particles all significantly reduced tumor growth and prolonged survival with no significant difference. This shows that the specific RNA genomes similarly stimulate the immune system even though B particles have 40% more RNA than M particles; each CPMV particle type can be used as an effective adjuvant against cancer with the same efficacy as native mixed CPMV. From a translational point of view, the use of either B or M component vs the mixed CPMV formulation offers the advantage that separated B or M alone is noninfectious toward plants and thus provides agronomic safety.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Chenkai Mao
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Steven N Fiering
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, United States
- Dartmouth Cancer Center, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Nicole F Steinmetz
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Institute for Materials Design and Discovery, University of California San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Ghani MA, Bangar A, Yang Y, Jung E, Sauceda C, Mandt T, Shukla S, Webster NJG, Steinmetz NF, Newton IG. Treatment of Hepatocellular Carcinoma by Multimodal In Situ Vaccination Using Cryoablation and a Plant Virus Immunostimulant. J Vasc Interv Radiol 2023; 34:1247-1257.e8. [PMID: 36997021 PMCID: PMC10829876 DOI: 10.1016/j.jvir.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE To test the hypothesis that cryoablation combined with intratumoral immunomodulating nanoparticles from cowpea mosaic virus (CPMV) as an in situ vaccination approach induces systemic antitumoral immunity in a murine model of hepatocellular carcinoma (HCC). MATERIALS AND METHODS Mice with bilateral, subcutaneous RIL-175 cell-derived HCCs were randomized to 4 groups: (a) phosphate-buffered saline (control), (b) cryoablation only (Cryo), (c) CPMV-treated only (CPMV), and (d) cryoablation plus CPMV-treated (Cryo + CPMV) (N = 11-14 per group). Intratumoral CPMV was administered every 3 days for 4 doses, with cryoablation performed on the third day. Contralateral tumors were monitored. Tumor growth and systemic chemokine/cytokine levels were measured. A subset of tumors and spleens were harvested for immunohistochemistry (IHC) and flow cytometry. One- or 2-way analysis of variance was performed for statistical comparisons. A P value of <.05 was used as the threshold for statistical significance. RESULTS At 2 weeks after treatment, the Cryo and CPMV groups, alone or combined, outperformed the control group in the treated tumor; however, the Cryo + CPMV group showed the strongest reduction and lowest variance (1.6-fold ± 0.9 vs 6.3-fold ± 0.5, P < .0001). For the untreated tumor, only Cryo + CPMV significantly reduced tumor growth compared with control (9.2-fold ± 0.9 vs 17.8-fold ± 2.1, P = .01). The Cryo + CPMV group exhibited a transient increase in interleukin-10 and persistently decreased CXCL1. Flow cytometry revealed natural killer cell enrichment in the untreated tumor and increased PD-1 expression in the spleen. Tumor-infiltrating lymphocytes increased in Cryo + CPMV-treated tumors by IHC. CONCLUSIONS Cryoablation and intratumoral CPMV, alone or combined, demonstrated potent efficacy against treated HCC tumors; however, only cryoablation combined with CPMV slowed the growth of untreated tumors, consistent with an abscopal effect.
Collapse
Affiliation(s)
- Mansur A Ghani
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Amandip Bangar
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Yunpeng Yang
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Eunkyeong Jung
- Department of NanoEngineering, University of California San Diego, La Jolla, California
| | - Consuelo Sauceda
- Department of Pharmacology, University of California San Diego, La Jolla, California; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Tyler Mandt
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, La Jolla, California
| | - Nicholas J G Webster
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California; Moores Cancer Center, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California
| | - Nicole F Steinmetz
- Department of Radiology, University of California San Diego, La Jolla, California; Department of NanoEngineering, University of California San Diego, La Jolla, California; Moores Cancer Center, University of California San Diego, La Jolla, California; Department of Bioengineering, University of California San Diego, La Jolla, California; Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California; Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California
| | - Isabel G Newton
- Department of Radiology, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
17
|
Shah S, Famta P, Tiwari V, Kotha AK, Kashikar R, Chougule MB, Chung YH, Steinmetz NF, Uddin M, Singh SB, Srivastava S. Instigation of the epoch of nanovaccines in cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1870. [PMID: 36410742 PMCID: PMC10182210 DOI: 10.1002/wnan.1870] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Cancer is an unprecedented proliferation of cells leading to abnormalities in differentiation and maturation. Treatment of primary and metastatic cancer is challenging. In addition to surgery, chemotherapy and radiation therapies have been conventionally used; however, they suffer from severe toxicity and non-specificity. Immunotherapy, the science of programming the body's own defense system against cancer has gained tremendous attention in the last few decades. However, partial immunogenic stimulation, premature degradation and inability to activate dendritic and helper T cells has resulted in limited clinical success. The era of nanomedicine has brought about several breakthroughs in various pharmaceutical and biomedical fields. Hereby, we review and discuss the interplay of tumor microenvironment (TME) and the immunological cascade and how they can be employed to develop nanoparticle-based cancer vaccines and immunotherapies. Nanoparticles composed of lipids, polymers and inorganic materials contain useful properties suitable for vaccine development. Proteinaceous vaccines derived from mammalian viruses, bacteriophages and plant viruses also have unique advantages due to their immunomodulation capabilities. This review accounts for all such considerations. Additionally, we explore how attributes of nanotechnology can be utilized to develop successful nanomedicine-based vaccines for cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering, & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, INDIA
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Young Hun Chung
- Departments of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Departments of Bioengineering, NanoEngineering, Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohammad Uddin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| |
Collapse
|
18
|
Peng L, Xu Q, Yin S, Zhang Y, Wu H, Liu Y, Chen L, Hu Y, Yuan J, Peng K, Lin Q. The emerging nanomedicine-based technology for non-small cell lung cancer immunotherapy: how far are we from an effective treatment. Front Oncol 2023; 13:1153319. [PMID: 37182180 PMCID: PMC10172578 DOI: 10.3389/fonc.2023.1153319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prominent etiology of cancer-related mortality. The heterogeneous nature of this disease impedes its accurate diagnosis and efficacious treatment. Consequently, constant advancements in research are imperative in order to comprehend its intricate nature. In addition to currently available therapies, the utilization of nanotechnology presents an opportunity to enhance the clinical outcomes of NSCLC patients. Notably, the burgeoning knowledge of the interaction between the immune system and cancer itself paves the way for developing novel, emerging immunotherapies for treating NSCLC in the early stages of the disease. It is believed that with the novel engineering avenues of nanomedicine, there is a possibility to overcome the inherent limitations derived from conventional and emerging treatments, such as off-site drug cytotoxicity, drug resistance, and administration methods. Combining nanotechnology with the convergence points of current therapies could open up new avenues for meeting the unmet needs of NSCLC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qin Lin
- Department of Thoracic Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
19
|
Su C, Himes JE, Kirsch DG. Relationship between the tumor microenvironment and the efficacy of the combination of radiotherapy and immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:201-232. [PMID: 37438018 DOI: 10.1016/bs.ircmb.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Activating and recruiting the immune system is critical for successful cancer treatment. Since the discovery of immune checkpoint inhibitors, immunotherapy has become the standard of care for many types of cancers. However, many patients fail to respond to immunotherapy. Further research is needed to understand the mechanisms of resistance and adjuvant therapies that can help sensitize patients to immunotherapies. Here, we will discuss how radiotherapy can change the tumor microenvironment and work synergistically with immunotherapy. We will examine different pre-clinical models focusing on their limitations and their unique advantages in studying the efficacy of treatments and the tumor microenvironment. We will also describe emerging findings from clinical trials testing the combination of immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- Chang Su
- Molecular Cancer Biology Program and Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, United States
| | - Jonathon E Himes
- Molecular Cancer Biology Program and Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, United States
| | - David G Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, United States; Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
20
|
Yuan B, Liu Y, Lv M, Sui Y, Hou S, Yang T, Belhadj Z, Zhou Y, Chang N, Ren Y, Sun C. Virus-like particle-based nanocarriers as an emerging platform for drug delivery. J Drug Target 2023; 31:433-455. [PMID: 36940208 DOI: 10.1080/1061186x.2023.2193358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
New nanocarrier technologies are emerging, and they have great potential for improving drug delivery, targeting efficiency, and bioavailability. Virus-like particles (VLPs) are natural nanoparticles from animal and plant viruses and bacteriophages. Hence, VLPs present several great advantages, such as morphological uniformity, biocompatibility, reduced toxicity, and easy functionalisation. VLPs can deliver many active ingredients to the target tissue and have great potential as a nanocarrier to overcome the limitations associated with other nanoparticles. This review will focus primarily on the construction and applications of VLPs, particularly as a novel nanocarrier to deliver active ingredients. Herein, the main methods for the construction, purification, and characterisation of VLPs, as well as various VLP-based materials used in delivery systems are summarised. The biological distribution of VLPs in drug delivery, phagocyte-mediated clearance, and toxicity are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, No.100, Kexue Avenue, Zhengzhou 450001, China
| | - Meilin Lv
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yilei Sui
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Shenghua Hou
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Tinghui Yang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yulong Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Naidan Chang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yachao Ren
- Harbin Medical University-Daqing, Daqing 163319, China.,School of Chemistry and Chemical Engineering, Tianjin University of Technology, tianjin, 300000, China
| | | |
Collapse
|
21
|
Paclitaxel-Loaded Lipid-Coated Magnetic Nanoparticles for Dual Chemo-Magnetic Hyperthermia Therapy of Melanoma. Pharmaceutics 2023; 15:pharmaceutics15030818. [PMID: 36986678 PMCID: PMC10055620 DOI: 10.3390/pharmaceutics15030818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Melanoma is the most aggressive and metastasis-prone form of skin cancer. Conventional therapies include chemotherapeutic agents, either as small molecules or carried by FDA-approved nanostructures. However, systemic toxicity and side effects still remain as major drawbacks. With the advancement of nanomedicine, new delivery strategies emerge at a regular pace, aiming to overcome these challenges. Stimulus-responsive drug delivery systems might considerably reduce systemic toxicity and side-effects by limiting drug release to the affected area. Herein, we report the development of paclitaxel-loaded lipid-coated manganese ferrite magnetic nanoparticles (PTX-LMNP) as magnetosomes synthetic analogs, envisaging the combined chemo-magnetic hyperthermia treatment of melanoma. PTX-LMNP physicochemical properties were verified, including their shape, size, crystallinity, FTIR spectrum, magnetization profile, and temperature profile under magnetic hyperthermia (MHT). Their diffusion in porcine ear skin (a model for human skin) was investigated after intradermal administration via fluorescence microscopy. Cumulative PTX release kinetics under different temperatures, either preceded or not by MHT, were assessed. Intrinsic cytotoxicity against B16F10 cells was determined via neutral red uptake assay after 48 h of incubation (long-term assay), as well as B16F10 cells viability after 1 h of incubation (short-term assay), followed by MHT. PTX-LMNP-mediated MHT triggers PTX release, allowing its thermal-modulated local delivery to diseased sites, within short timeframes. Moreover, half-maximal PTX inhibitory concentration (IC50) could be significantly reduced relatively to free PTX (142,500×) and Taxol® (340×). Therefore, the dual chemo-MHT therapy mediated by intratumorally injected PTX-LMNP stands out as a promising alternative to efficiently deliver PTX to melanoma cells, consequently reducing systemic side effects commonly associated with conventional chemotherapies.
Collapse
|
22
|
Zhao Z, Ortega-Rivera OA, Chung YH, Simms A, Steinmetz NF. A co-formulated vaccine of irradiated cancer cells and cowpea mosaic virus improves ovarian cancer rejection. J Mater Chem B 2023. [PMID: 36861401 DOI: 10.1039/d2tb02355e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Ovarian cancer ranks fifth in cancer deaths amongst women, and most patients are diagnosed with late-stage and disseminated diseases. Surgical debulking and chemotherapy remove most of the tumor burden and provide a short period of remission; however, most patients experience cancer relapse and eventually succumb to the disease. Therefore, there is an urgent need for the development of vaccines to prime anti-tumor immunity and prevent its recurrence. Here we developed vaccine formulations composed of a mixture of irradiated cancer cells (ICCs, providing the antigen) and cowpea mosaic virus (CPMV) adjuvants. More specifically we compared the efficacy of co-formulated vs. mixtures of ICCs and CPMV. Specifically, we compared co-formulations where the ICCs and CPMV are bonded through natural CPMV-cell interactions or chemical coupling vs. mixtures of PEGylated CPMV and ICCs, where PEGylation of CPMV prevents ICC interactions. Flow cytometry and confocal imaging provided insights into the composition of the vaccines and their efficacy was tested using a mouse model of disseminated ovarian cancer. 67% of the mice receiving the co-formulated CPMV-ICCs survived the initial tumor challenge, and 60% of the surviving mice rejected tumors in a re-challenge experiment. In stark contrast, simple mixtures of the ICCs and (PEGylated) CPMV adjuvants were ineffective. Overall, this study highlights the importance of the co-delivery of cancer antigens and adjuvants in ovarian cancer vaccine development.
Collapse
Affiliation(s)
- Zhongchao Zhao
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA. .,Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Oscar A Ortega-Rivera
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Young Hun Chung
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Andrea Simms
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA. .,Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Institute for Materials Discovery and Design, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Center for Engineering in Cancer, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
23
|
Jung E, Mao C, Bhatia M, Koellhoffer EC, Fiering SN, Steinmetz NF. Inactivated Cowpea Mosaic Virus for In Situ Vaccination: Differential Efficacy of Formalin vs UV-Inactivated Formulations. Mol Pharm 2023; 20:500-507. [PMID: 36399598 PMCID: PMC9812890 DOI: 10.1021/acs.molpharmaceut.2c00744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cowpea mosaic virus (CPMV) has been developed as a promising nanoplatform technology for cancer immunotherapy; when applied as in situ vaccine, CPMV exhibits potent, systemic, and durable efficacy. While CPMV is not infectious to mammals, it is infectious to legumes; therefore, agronomic safety needs to be addressed to broaden the translational application of CPMV. RNA-containing formulations are preferred over RNA-free virus-like particles because the RNA and protein, each, contribute to CPMV's potent antitumor efficacy. We have previously optimized inactivation methods to develop CPMV that contains RNA but is not infectious to plants. We established that inactivated CPMV has reduced efficacy compared to untreated, native CPMV. However, a systematic comparison between native CPMV and different inactivated forms of CPMV was not done. Therefore, in this study, we directly compared the therapeutic efficacies and mechanisms of immune activation of CPMV, ultraviolet- (UV-), and formalin (Form)-inactivated CPMV to explain the differential efficacies. In a B16F10 melanoma mouse tumor model, Form-CPMV suppressed the tumor growth with prolonged survival (there were no statistical differences comparing CPMV and Form-CPMV). In comparison, UV-CPMV inhibited tumor growth significantly but not as well as Form-CPMV or CPMV. The reduced therapeutic efficacy of UV-CPMV is explained by the degree of cross-linking and aggregated state of the RNA, which renders it inaccessible for sensing by Toll-like receptor (TLR) 7/8 to activate immune responses. The mechanistic studies showed that the highly aggregated state of UV-CPMV inhibited TLR7 signaling more so than for the Form-CPMV formulation, reducing the secretion of interleukin-6 (IL-6) and interferon-α (IFN-α), cytokines associated with TLR7 signaling. These findings support the translational development of Form-CPMV as a noninfectious immunotherapeutic agent.
Collapse
Affiliation(s)
| | | | - Misha Bhatia
- Department of Nanoengineering, University of, California San Diego, La Jolla, California 92093, United, States
| | - Edward C. Koellhoffer
- Radiology, University of California San Diego, La Jolla, California 92093, United States
| | - Steven N. Fiering
- Department of Microbiology and, Immunology and Dartmouth Cancer Center, Dartmouth, Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Nicole F. Steinmetz
- Department of Nanoengineering, Radiology, Bioengineering, Moores Cancer Center, Center for Nano-Immuno Engineering, and Institute for Materials, Design and Discovery, University of California San Diego, La, Jolla, California 92093, United States
| |
Collapse
|
24
|
Ortega-Rivera OA, Beiss V, Osota EO, Chan SK, Karan S, Steinmetz NF. Production of cytoplasmic type citrus leprosis virus-like particles by plant molecular farming. Virology 2023; 578:7-12. [PMID: 36434906 PMCID: PMC9812895 DOI: 10.1016/j.virol.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Many plant virus-like particles (VLPs) utilized in nanotechnology are 30-nm icosahedrons. To expand the VLP platforms, we produced VLPs of Cytoplasmic type citrus leprosis virus (CiLV-C) in Nicotiana benthamiana. We were interested in CiLV-C because of its unique bacilliform shape (60-70 nm × 110-120 nm). The CiLV-C capsid protein (p29) gene was transferred to the pTRBO expression vector transiently expressed in leaves. Stable VLPs were formed, as confirmed by agarose gel electrophoresis, transmission electron microscopy and size exclusion chromatography. Interestingly, the morphology of the VLPs (15.8 ± 1.3 nm icosahedral particles) differed from that of the native bacilliform particles indicating that the assembly of native virions is influenced by other viral proteins and/or the packaged viral genome. The smaller CiLV-C VLPs will also be useful for structure-function studies to compare with the 30-nm icosahedrons of other VLPs.
Collapse
Affiliation(s)
- Oscar A Ortega-Rivera
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, USA; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA, 92039, USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, USA; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA, 92039, USA
| | - Elizabeth O Osota
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, USA; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA, 92039, USA
| | - Soo Khim Chan
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, USA; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA, 92039, USA
| | - Sweta Karan
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, USA; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA, 92039, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, USA; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA, 92039, USA; Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, USA; Department of Bioengineering, University of California-San Diego, La Jolla, CA, 92039, USA; Department of Radiology, University of California-San Diego, La Jolla, CA, 92039, USA; Moores Cancer Center, University of California-San Diego, La Jolla, CA, 92039, USA.
| |
Collapse
|
25
|
Chung YH, Volckaert BA, Steinmetz NF. Metastatic Colon Cancer Treatment Using S100A9-Targeted Cowpea Mosaic Virus Nanoparticles. Biomacromolecules 2022; 23:5127-5136. [PMID: 36375170 PMCID: PMC9772157 DOI: 10.1021/acs.biomac.2c00873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peritoneal metastases (PMs) occur due to the metastasis of gynecological and gastrointestinal cancers such as ovarian, colon, pancreatic, or gastric tumors. PM outgrowth is often fatal, and patients with PMs have a median survival of 6 months. Cowpea mosaic virus (CPMV) has been shown, when injected intratumorally, to act as an immunomodulator reversing the immunosuppressive tumor microenvironment, therefore turning cold tumors hot and priming systemic antitumor immunity. However, not all tumors are injectable, and PMs especially will require targeted treatments to direct CPMV toward the disseminated tumor nodules. Toward this goal, we designed and tested a CPMV nanoparticle targeted to S100A9, a key immune mediator for many cancer types indicated in cancer growth, invasiveness, and metastasis. Here, we chose to use an intraperitoneal (IP) colon cancer model, and analysis of IP gavage fluid demonstrates that S100A9 is upregulated following IP challenge. S100A9-targeted CPMV particles displaying peptide ligands specific for S100A9 homed to IP-disseminated tumors, and treatment led to improved survival and decreased tumor burden. Targeting CPMV to S100A9 improves preclinical outcomes and harbors the potential of utilizing CPMV for the treatment of IP-disseminated diseases.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Britney A. Volckaert
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Nicole F. Steinmetz
- Corresponding Author: Nicole F. Steinmetz – Department of Bioengineering, Moores Cancer Center, Department of NanoEngineering, Department of Radiology, Institute for Materials Discovery and Design, Center for Nano-Immuno Engineering, and Center for Engineering in Cancer, University of California, San Diego, La Jolla, California 92093-0021, United States;
| |
Collapse
|
26
|
Affonso de Oliveira JF, Chan SK, Omole AO, Agrawal V, Steinmetz NF. In Vivo Fate of Cowpea Mosaic Virus In Situ Vaccine: Biodistribution and Clearance. ACS NANO 2022; 16:18315-18328. [PMID: 36264973 PMCID: PMC9840517 DOI: 10.1021/acsnano.2c06143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cowpea mosaic virus (CPMV) is a nucleoprotein nanoparticle that functions as a highly potent immunomodulator when administered intratumorally and is used as an in situ vaccine. CPMV in situ vaccination remodels the tumor microenvironment and primes a highly potent, systemic, and durable antitumor immune response against the treated and untreated, distant metastatic sites (abscopal effect). Potent efficacy was demonstrated in multiple tumor mouse models and, most importantly, in canine cancer patients with spontaneous tumors. Data indicate that presence of anti-CPMV antibodies are not neutralizing and that in fact opsonization leads to enhanced efficacy. Plant viruses are part of the food chain, but to date, there is no information on human exposure to CPMV. Therefore, patient sera were tested for the presence of immunoglobulins against CPMV, and indeed, >50% of deidentified patient samples tested positive for CPMV antibodies. To get a broader sense of plant virus exposure and immunogenicity in humans, we also tested sera for antibodies against tobacco mosaic virus (>90% patients tested positive), potato virus X (<20% patients tested positive), and cowpea chlorotic mottle virus (no antibodies were detected). Further, patient sera were analyzed for the presence of antibodies against the coliphage Qβ, a platform technology currently undergoing clinical trials for in situ vaccination; we found that 60% of patients present with anti-Qβ antibodies. Thus, data indicate human exposure to CPMV and other plant viruses and phages. Next, we thought to address agronomical safety; i.e., we examined the fate of CPMV after intratumoral treatment and oral gavage (to mimic consumption by food). Because live CPMV is used, an important question is whether there is any evidence of shedding of infectious particles from mice or patients. CPMV is noninfectious toward mammals; however, it is infectious toward plants including black-eyed peas and other legumes. Biodistribution data in tumor-bearing and healthy mice indicate little leaching from tumors and clearance via the reticuloendothelial system followed by biliary excretion. While there was evidence of shedding of RNA in stool, there was no evidence of infectious particles when plants were challenged with stool extracts, thus indicating agronomical safety. Together these data aid the translational development of CPMV as a drug candidate for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Soo Khim Chan
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Anthony O Omole
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Vanshika Agrawal
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| |
Collapse
|
27
|
Alonso-Miguel D, Fiering S, Arias-Pulido H. Proactive Immunotherapeutic Approaches against Inflammatory Breast Cancer May Improve Patient Outcomes. Cells 2022; 11:2850. [PMID: 36139425 PMCID: PMC9497132 DOI: 10.3390/cells11182850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory breast cancer (IBC) is highly metastatic at the onset of the disease with no IBC-specific treatments, resulting in dismal patient survival. IBC treatment is a clear unmet clinical need. This commentary highlights findings from a recent seminal approach in which pembrolizumab, a checkpoint inhibitor against programmed cell death protein 1 (PD-1), was provided to a triple-negative IBC patient as a neoadjuvant immune therapy combined with anthracycline-taxane-based chemotherapy. We highlight the findings of the case report and offer a perspective on taking a proactive approach to deploy approved immune checkpoint inhibitors. On the basis of our recently published research study, we propose in situ vaccination with direct injection of immunostimulatory agents into the tumor as an option to improve outcomes safely, effectively, and economically for IBC patients.
Collapse
Affiliation(s)
- Daniel Alonso-Miguel
- Department of Animal Medicine and Surgery, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Steven Fiering
- Department of Microbiology and Immunology, and Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, NH 03756, USA
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology, and Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, NH 03756, USA
| |
Collapse
|
28
|
Ambrosio N, Voci S, Gagliardi A, Palma E, Fresta M, Cosco D. Application of Biocompatible Drug Delivery Nanosystems for the Treatment of Naturally Occurring Cancer in Dogs. J Funct Biomater 2022; 13:jfb13030116. [PMID: 35997454 PMCID: PMC9397006 DOI: 10.3390/jfb13030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Cancer is a common disease in dogs, with a growing incidence related to the age of the animal. Nanotechnology is being employed in the veterinary field in the same manner as in human therapy. Aim: This review focuses on the application of biocompatible nanocarriers for the treatment of canine cancer, paying attention to the experimental studies performed on dogs with spontaneously occurring cancer. Methods: The most important experimental investigations based on the use of lipid and non-lipid nanosystems proposed for the treatment of canine cancer, such as liposomes and polymeric nanoparticles containing doxorubicin, paclitaxel and cisplatin, are described and their in vivo fate and antitumor features discussed. Conclusions: Dogs affected by spontaneous cancers are useful models for evaluating the efficacy of drug delivery systems containing antitumor compounds.
Collapse
|
29
|
Duan Y, Wu X, Gong Z, Guo Q, Kong Y. Pathological impact and medical applications of electromagnetic field on melanoma: A focused review. Front Oncol 2022; 12:857068. [PMID: 35936711 PMCID: PMC9355252 DOI: 10.3389/fonc.2022.857068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Electromagnetic Field (EMF) influences melanoma in various ways. EMF can be classified into extremely low-frequency electromagnetic field, low-frequency magnetic field, static moderate magnetic field, strong electromagnetic field, alternating magnetic field, and magnetic nanoparticles. Each type of EMF influences melanoma development differently, and the detailed influence of each specific type of EMF on melanoma is reviewed. Furthermore, EMF influences melanoma cell polarity and hence affects drug uptake. In this review, the impacts of EMF on the effectiveness of drugs used to treat melanoma are listed according to drug types, with detailed effects according to the types of EMF and specific melanoma cell lines. EMF also impacts clinical therapies of melanoma, including localized magnetic hyperthermia, focalized thermotherapy, proton radiation treatment, nanostructure heating magnetic hyperthermia, radiation therapy, Polycaprolactone-Fe3O4 fiber mat-based bandage, and optune therapy. Above all, EMF has huge potential in melanoma treatment.
Collapse
Affiliation(s)
- Yunxiao Duan
- Astronomy Department, Wellesley College, Wellesley, MA, United States
| | - Xiaowen Wu
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
| | - Ziqi Gong
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
| | - Qian Guo
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
| | - Yan Kong
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
- *Correspondence: Yan Kong,
| |
Collapse
|
30
|
Koellhoffer EC, Steinmetz NF. Cowpea Mosaic Virus and Natural Killer Cell Agonism for In Situ Cancer Vaccination. NANO LETTERS 2022; 22:5348-5356. [PMID: 35713326 PMCID: PMC9665426 DOI: 10.1021/acs.nanolett.2c01328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have previously shown the plant virus Cowpea mosaic virus (CPMV) to be an efficacious in situ cancer vaccine, providing elimination of tumors and tumor-specific immune memory. Additionally, we have shown that CPMV recruits Natural Killer (NK) cells within the tumor microenvironment. Here we aimed to determine whether a combination of CPMV and anti-4-1BB monoclonal antibody agonist to stimulate tumor-resident and CPMV-recruited NK cells is an effective dual therapy approach to improve NK cell function and in situ cancer vaccination efficacy. Using murine models of metastatic colon carcinomatosis and intradermal melanoma, intratumorally administered CPMV + anti-4-1BB dual therapy provided a robust antitumor response, improved elimination of primary tumors, and reduced mortality compared to CPMV and anti-4-1BB monotherapies. Additionally, on tumor rechallenge there was significant delay/prevention of tumor development and improved survival, highlighting that the CPMV + anti-4-1BB dual therapy enables potent and durable antitumor efficacy.
Collapse
Affiliation(s)
- Edward C Koellhoffer
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Design and Discovery, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
31
|
Castelló CM, de Carvalho MT, Bakuzis AF, Fonseca SG, Miguel MP. Local tumour nanoparticle thermal therapy: A promising immunomodulatory treatment for canine cancer. Vet Comp Oncol 2022; 20:752-766. [PMID: 35698822 DOI: 10.1111/vco.12842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Distinct thermal therapies have been used for cancer therapy. For hyperthermia (HT) treatment the tumour tissue is heated to temperatures between 39 and 45°C, while during ablation (AB) temperatures above 50°C are achieved. HT is commonly used in combination with different treatment modalities, such as radiotherapy and chemotherapy, for better clinical outcomes. In contrast, AB is usually used as a single modality for direct tumour cell killing. Both thermal therapies have been shown to result in cytotoxicity as well as immune response stimulation. Immunogenic responses encompass the innate and adaptive immune systems and involve the activation of macrophages, dendritic cells, natural killer cells and T cells. Several heat technologies are used, but great interest arises from nanotechnology-based thermal therapies. Spontaneous tumours in dogs can be a model for cancer immunotherapies with several advantages. In addition, veterinary oncology represents a growing market with an important demand for new therapies. In this review, we will focus on nanoparticle-mediated thermal-induced immunogenic effects, the beneficial potential of integrating thermal nanomedicine with immunotherapies and the results of published works with thermotherapies for cancer using dogs with spontaneous tumours, highlighting the works that evaluated the effect on the immune system in order to show dogs with spontaneous cancer as a good model for evaluated the immunomodulatory effect of nanoparticle-mediated thermal therapies.
Collapse
Affiliation(s)
- Carla Martí Castelló
- Programa de pós-graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mara Taís de Carvalho
- Programa de pós-graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Simone Gonçalves Fonseca
- Setor de Imunologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Marina Pacheco Miguel
- Programa de pós-graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil.,Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
32
|
Nkanga CI, Steinmetz NF. Injectable Hydrogel Containing Cowpea Mosaic Virus Nanoparticles Prevents Colon Cancer Growth. ACS Biomater Sci Eng 2022; 8:2518-2525. [PMID: 35522951 PMCID: PMC9840516 DOI: 10.1021/acsbiomaterials.2c00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Despite advances in laparoscopic surgery combined with neoadjuvant and adjuvant therapy, colon cancer management remains challenging in oncology. Recurrence of cancerous tissue locally or in distant organs (metastasis) is the major problem in colon cancer management. Vaccines and immunotherapies hold promise in preventing cancer recurrence through stimulation of the immune system. We and others have shown that nanoparticles from plant viruses, such as cowpea mosaic virus (CPMV) nanoparticles, are potent immune adjuvants for cancer vaccines and serve as immunostimulatory agents in the treatment or prevention of tumors. While being noninfectious toward mammals, CPMV activates the innate immune system through recognition by pattern recognition receptors (PRRs). While the particulate structure of CPMV is essential for prominent immune activation, the proteinaceous architecture makes CPMV subject to degradation in vivo; thus, CPMV immunotherapy requires repeated injections for optimal outcome. Frequent intraperitoneal (IP) injections however are not optimal from a clinical point of view and can worsen the patient's quality of life due to the hospitalization required for IP administration. To overcome the need for repeated IP injections, we loaded CPMV nanoparticles in injectable chitosan/glycerophosphate (GP) hydrogel formulations, characterized their slow-release potential, and assessed the antitumor preventative efficacy of CPMV-in-hydrogel single dose versus soluble CPMV (single and prime-boost administration). Using fluorescently labeled CPMV-in-hydrogel formulations, in vivo release data indicated that single IP injection of the hydrogel formulation yielded a gel depot that supplied intact CPMV over the study period of 3 weeks, while soluble CPMV lasted only for one week. IP administration of the CPMV-in-hydrogel formulation boosted with soluble CPMV for combined immediate and sustained immune activation significantly inhibited colon cancer growth after CT26 IP challenge in BALB/c mice. The observed antitumor efficacy suggests that CPMV can be formulated in a chitosan/GP hydrogel to achieve prolonged immunostimulatory effects as single-dose immunotherapy against colon cancer recurrence. The present findings illustrate the potential of injectable hydrogel technology to accommodate plant virus nanoparticles to boost the translational development of effective antitumor immunotherapies.
Collapse
Affiliation(s)
- Christian Isalomboto Nkanga
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92039, United States; Present Address: Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa, XI, Democratic Republic of the Congo (C.I.N.)
| | - Nicole F. Steinmetz
- Department of NanoEngineering, Department of Bioengineering, Department of Radiology, Center for Nano-ImmunoEngineering, Moores Cancer Center, and Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California 92039, United States
| |
Collapse
|
33
|
Park Y, Demessie AA, Luo A, Taratula OR, Moses AS, Do P, Campos L, Jahangiri Y, Wyatt CR, Albarqi HA, Farsad K, Slayden OD, Taratula O. Targeted Nanoparticles with High Heating Efficiency for the Treatment of Endometriosis with Systemically Delivered Magnetic Hyperthermia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107808. [PMID: 35434932 PMCID: PMC9232988 DOI: 10.1002/smll.202107808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Endometriosis is a devastating disease in which endometrial-like tissue forms lesions outside the uterus. It causes infertility and severe pelvic pain in ≈176 million women worldwide, and there is currently no cure for this disease. Magnetic hyperthermia could potentially eliminate widespread endometriotic lesions but has not previously been considered for treatment because conventional magnetic nanoparticles have relatively low heating efficiency and can only provide ablation temperatures (>46 °C) following direct intralesional injection. This study is the first to describe nanoparticles that enable systemically delivered magnetic hyperthermia for endometriosis treatment. When subjected to an alternating magnetic field (AMF), these hexagonal iron-oxide nanoparticles exhibit extraordinary heating efficiency that is 6.4× greater than their spherical counterparts. Modifying nanoparticles with a peptide targeted to vascular endothelial growth factor receptor 2 (VEGFR-2) enhances their endometriosis specificity. Studies in mice bearing transplants of macaque endometriotic tissue reveal that, following intravenous injection at a low dose (3 mg per kg), these nanoparticles efficiently accumulate in endometriotic lesions, selectively elevate intralesional temperature above 50 °C upon exposure to external AMF, and completely eradicate them with a single treatment. These nanoparticles also demonstrate promising potential as magnetic resonance imaging (MRI) contrast agents for precise detection of endometriotic tissue before AMF application.
Collapse
Affiliation(s)
- Youngrong Park
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Ananiya A Demessie
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Addie Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue Beaverton, Portland, Oregon, 97006, USA
| | - Olena R Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Abraham S Moses
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Peter Do
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Leonardo Campos
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Younes Jahangiri
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
- Advanced Imaging Research Center, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Hassan A Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, King Abdulaziz Road, Najran, 55461, Saudi Arabia
| | - Khashayar Farsad
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue Beaverton, Portland, Oregon, 97006, USA
| | - Oleh Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
34
|
Pazzi P, Steenkamp G, Rixon AJ. Treatment of Canine Oral Melanomas: A Critical Review of the Literature. Vet Sci 2022; 9:vetsci9050196. [PMID: 35622724 PMCID: PMC9147014 DOI: 10.3390/vetsci9050196] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
Critical appraisal of the available literature for the treatment of canine oral malignant melanoma (OMM) is lacking. This critical review aimed to evaluate the current literature and provide treatment recommendations and possible suggestions for future canine OMM research. PubMed, Web of Science and Google Scholar were searched in June 2021, for terms relevant to treatment of OMM. Inclusion and exclusion criteria were applied and information on clinical response and outcome extracted. Eighty-one studies were included. The overall level of evidence supporting the various canine OMM treatment options was low. The majority of studies included confounding treatment modalities and lacked randomization, control groups and consistency in reporting clinical response and outcomes. Within these limitations, surgery remains the mainstay of therapy. Adjunctive radiotherapy provided good local control and improved median survival times (MST), chemotherapy did not offer survival benefit beyond that of surgery, while electrochemotherapy may offer a potential alternative to radiotherapy. Immunotherapy holds the most promise in extending MST in the surgical adjunctive setting, in particular the combination of gene therapy and autologous vaccination. Prospective, randomized, double-blinded clinical trials, with a lack of confounding factors and reporting based on established guidelines would allow comparison and recommendations for the treatment of canine OMM.
Collapse
|
35
|
Nkanga C, Ortega-Rivera OA, Shin MD, Moreno-Gonzalez MA, Steinmetz NF. Injectable Slow-Release Hydrogel Formulation of a Plant Virus-Based COVID-19 Vaccine Candidate. Biomacromolecules 2022; 23:1812-1825. [PMID: 35344365 PMCID: PMC9003890 DOI: 10.1021/acs.biomac.2c00112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/09/2022] [Indexed: 01/09/2023]
Abstract
Cowpea mosaic virus (CPMV) is a potent immunogenic adjuvant and epitope display platform for the development of vaccines against cancers and infectious diseases, including coronavirus disease 2019. However, the proteinaceous CPMV nanoparticles are rapidly degraded in vivo. Multiple doses are therefore required to ensure long-lasting immunity, which is not ideal for global mass vaccination campaigns. Therefore, we formulated CPMV nanoparticles in injectable hydrogels to achieve slow particle release and prolonged immunostimulation. Liquid formulations were prepared from chitosan and glycerophosphate (GP) before homogenization with CPMV particles at room temperature. The formulations containing high-molecular-weight chitosan and 0-4.5 mg mL-1 CPMV gelled rapidly at 37 °C (5-8 min) and slowly released cyanine 5-CPMV particles in vitro and in vivo. Importantly, when a hydrogel containing CPMV displaying severe acute respiratory syndrome coronavirus 2 spike protein epitope 826 (amino acid 809-826) was administered to mice as a single subcutaneous injection, it elicited an antibody response that was sustained over 20 weeks, with an associated shift from Th1 to Th2 bias. Antibody titers were improved at later time points (weeks 16 and 20) comparing the hydrogel versus soluble vaccine candidates; furthermore, the soluble vaccine candidates retained Th1 bias. We conclude that CPMV nanoparticles can be formulated effectively in chitosan/GP hydrogels and are released as intact particles for several months with conserved immunotherapeutic efficacy. The injectable hydrogel containing epitope-labeled CPMV offers a promising single-dose vaccine platform for the prevention of future pandemics as well as a strategy to develop long-lasting plant virus-based nanomedicines.
Collapse
Affiliation(s)
- Christian
Isalomboto Nkanga
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Oscar A. Ortega-Rivera
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Matthew D. Shin
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Miguel A. Moreno-Gonzalez
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Nicole F. Steinmetz
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Department
of Bioengineering, University of California
San Diego, 9500 Gilman
Dr., La Jolla, California 92039, United States
- Department
of Radiology, University of California San
Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman
Dr., La Jolla, California 92039, United States
- Institute
for Materials Discovery and Design, University
of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| |
Collapse
|
36
|
Baja AJ, Kelsey KL, Ruslander DM, Gieger TL, Nolan MW. Canine oral melanoma: a retrospective study of 101 dogs treated with a 6 Gy x 6 radiotherapy protocol. Vet Comp Oncol 2022; 20:623-631. [PMID: 35338766 PMCID: PMC9539951 DOI: 10.1111/vco.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
One radiotherapy (RT) protocol used for canine oral melanoma (OM) gives 36 Gy total, in six weekly or biweekly fractions (6 Gy × 6). This retrospective study characterizes oncologic outcomes for a relatively large group of dogs treated with this protocol and determines whether radiation dose intensity (weekly vs. biweekly) affected either progression‐free or overall survival (PFS and OS). Dogs were included if 6 Gy × 6 was used to treat grossly evident OM, or if RT was used postoperatively in the subclinical disease setting. Kaplan–Meier statistics and Cox regression modelling were used to determine the predictive or prognostic value of mitotic count, bony lysis, World Health Organization (WHO) stage (I, II, III, or IV), using systemic anti‐cancer therapies, tumour burden at the time of RT (macroscopic vs. subclinical), radiation dose intensity (weekly vs. biweekly), and treatment planning type (manual vs. computerized). The median PFS and OS times for all dogs (n = 101) were 171 and 232 days, respectively. On univariate analysis PFS and OS were significantly longer (p = <.05) with subclinical tumour burden, WHO stages I or II, and weekly irradiation. On multivariable analysis, only tumour stage remained significant; therefore, cases were grouped by WHO stage (I/II vs. III/IV). With low WHO stage (I/II), PFS and OS were longer when irradiating subclinical disease (PFS: risk ratio = 0.449, p = .032; OS: risk ratio = 0.422, p = .022); this was not true for high WHO stage (III/IV). When accounting for other factors, radiation dose intensity had no measurable impact on survival in either staging group.
Collapse
Affiliation(s)
- Alexie J Baja
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | | | - Tracy L Gieger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Michael W Nolan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
37
|
Beiss V, Mao C, Fiering SN, Steinmetz NF. Cowpea Mosaic Virus Outperforms Other Members of the Secoviridae as In Situ Vaccine for Cancer Immunotherapy. Mol Pharm 2022; 19:1573-1585. [PMID: 35333531 DOI: 10.1021/acs.molpharmaceut.2c00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In situ vaccination for cancer immunotherapy uses intratumoral administration of small molecules, proteins, nanoparticles, or viruses that activate pathogen recognition receptors (PRRs) to reprogram the tumor microenvironment and prime systemic antitumor immunity. Cowpea mosaic virus (CPMV) is a plant virus that─while noninfectious toward mammals─activates mammalian PRRs. Application of CPMV as in situ vaccine (ISV) results in a potent and durable efficacy in tumor mouse models and canine patients; data indicate that CPMV outperforms small molecule PRR agonists and other nonrelated plant viruses and virus-like particles (VLPs). In this work, we set out to compare the potency of CPMV versus other plant viruses from the Secoviridae. We developed protocols to produce and isolate cowpea severe mosaic virus (CPSMV) and tobacco ring spot virus (TRSV) from plants. CPSMV, like CPMV, is a comovirus with genome and protein homology, while TRSV lacks homology and is from the genus nepovirus. When applied as ISV in a mouse model of dermal melanoma (using B16F10 cells and C57Bl6J mice), CPMV outperformed CPSMV and TRSV─again highlighting the unique potency of CPMV. Mechanistically, the increased potency is related to increased signaling through toll-like receptors (TLRs)─in particular, CPMV signals through TLR2, 4, and 7. Using knockout (KO) mouse models, we demonstrate here that all three plant viruses signal through the adaptor molecule MyD88─with CPSMV and TRSV predominantly activating TLR2 and 4. CPMV induced significantly more interferon β (IFNβ) compared to TRSV and CPSMV; therefore, IFNβ released upon signaling through TLR7 may be a differentiator for the observed potency of CPMV-ISV. Additionally, CPMV induced a different temporal pattern of intratumoral cytokine generation characterized by significantly increased inflammatory cytokines 4 days after the second of 2 weekly treatments, as if CPMV induced a "memory response". This higher, longer-lasting induction of cytokines may be another key differentiator that explains the unique potency of CPMV-ISV.
Collapse
Affiliation(s)
- Veronique Beiss
- Departments of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Chenkai Mao
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, New Hampshire 03756, United States
| | - Steven N Fiering
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, New Hampshire 03756, United States
| | - Nicole F Steinmetz
- Departments of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.,Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Lebanon, New Hampshire 03756, United States.,Departments of Radiology, University of California San Diego, La Jolla, California 92093, United States.,Departments of Bioengineering, University of California San Diego, La Jolla, California 92093, United States.,Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States.,Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States.,Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
38
|
Alonso-Miguel D, Valdivia G, Guerrera D, Perez-Alenza MD, Pantelyushin S, Alonso-Diez A, Beiss V, Fiering S, Steinmetz NF, Suarez-Redondo M, Vom Berg J, Peña L, Arias-Pulido H. Neoadjuvant in situ vaccination with cowpea mosaic virus as a novel therapy against canine inflammatory mammary cancer. J Immunother Cancer 2022; 10:jitc-2021-004044. [PMID: 35277459 PMCID: PMC8919457 DOI: 10.1136/jitc-2021-004044] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 12/23/2022] Open
Abstract
BackgroundInflammatory mammary cancer (IMC), the counterpart of human inflammatory breast cancer (IBC), is the deadliest form of canine mammary tumors. IMC patients lack specific therapy and have poor outcomes. This proof-of-principle preclinical study evaluated the efficacy, safety, and effect on survival of neoadjuvant intratumoral (in situ) empty cowpea mosaic virus (eCPMV) immunotherapy in companion dogs diagnosed with IMC.MethodsTen IMC-bearing dogs were enrolled in the study. Five dogs received medical therapy, and five received weekly neoadjuvant in situ eCPMV immunotherapy (0.2–0.4 mg per injection) and medical therapy after the second eCPMV injection. Efficacy was evaluated by reduction of tumor growth; safety by hematological and biochemistry changes in blood and plasma; and patient outcome by survival analysis. eCPMV-induced immune changes in blood cells were analyzed by flow cytometry; changes in the tumor microenvironment were evaluated by CD3 (T lymphocytes), CD20 (B lymphocytes), FoxP3 (Treg lymphocytes), myeloperoxidase (MPO; neutrophils), Ki-67 (proliferation index, PI; tumor cell proliferation), and Cleaved Caspase-3 (CC-3; apoptosis) immunohistochemistry.ResultsTwo neoadjuvant in situ eCPMV injections resulted in tumor shrinkage in all patients by day 14 without systemic adverse events. Although surgery for IMC is generally not an option, reduction in tumor size allowed surgery in two IMC patients. In peripheral blood, in situ eCPMV immunotherapy was associated with a significant decrease of Treg+/CD8+ ratio and changes in CD8+Granzyme B+ T cells, which behave as a lagging predictive biomarker. In the TME, higher neutrophilic infiltration and MPO expression, lower tumor Ki-67 PI, increase in CD3+ lymphocytes, decrease in FoxP3+/CD3+ ratio (p<0.04 for all comparisons), and no changes in CC-3+ immunostainings were observed in post-treatment tumor tissues when compared with pretreatment tumor samples. eCPMV-treated IMC patients had a statistically significant (p=0.033) improved overall survival than patients treated with medical therapy.ConclusionsNeoadjuvant in situ eCPMV immunotherapy demonstrated anti-tumor efficacy and improved survival in IMC patients without systemic adverse effects. eCPMV-induced changes in immune cells point to neutrophils as a driver of immune response. Neoadjuvant in situ eCPMV immunotherapy could be a groundbreaking immunotherapy for canine IMC and a potential future immunotherapy for human IBC patients.
Collapse
Affiliation(s)
- Daniel Alonso-Miguel
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Guillermo Valdivia
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Diego Guerrera
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Maria Dolores Perez-Alenza
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | | | - Angela Alonso-Diez
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Veronique Beiss
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of NannoEngineering, University of California San Diego, La Jolla, California, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of NannoEngineering, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California, USA
| | - Maria Suarez-Redondo
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| |
Collapse
|
39
|
Volovat SR, Ursulescu CL, Moisii LG, Volovat C, Boboc D, Scripcariu D, Amurariti F, Stefanescu C, Stolniceanu CR, Agop M, Lungulescu C, Volovat CC. The Landscape of Nanovectors for Modulation in Cancer Immunotherapy. Pharmaceutics 2022; 14:397. [PMID: 35214129 PMCID: PMC8875018 DOI: 10.3390/pharmaceutics14020397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy represents a promising strategy for the treatment of cancer, which functions via the reprogramming and activation of antitumor immunity. However, adverse events resulting from immunotherapy that are related to the low specificity of tumor cell-targeting represent a limitation of immunotherapy's efficacy. The potential of nanotechnologies is represented by the possibilities of immunotherapeutical agents being carried by nanoparticles with various material types, shapes, sizes, coated ligands, associated loading methods, hydrophilicities, elasticities, and biocompatibilities. In this review, the principal types of nanovectors (nanopharmaceutics and bioinspired nanoparticles) are summarized along with the shortcomings in nanoparticle delivery and the main factors that modulate efficacy (the EPR effect, protein coronas, and microbiota). The mechanisms by which nanovectors can target cancer cells, the tumor immune microenvironment (TIME), and the peripheral immune system are also presented. A possible mathematical model for the cellular communication mechanisms related to exosomes as nanocarriers is proposed.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Corina Lupascu Ursulescu
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| | - Liliana Gheorghe Moisii
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iaşi, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Dragos Scripcariu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania;
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.S.); (C.R.S.)
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.S.); (C.R.S.)
| | - Maricel Agop
- Physics Department, “Gheorghe Asachi” Technical University, Prof. Dr. Docent Dimitrie Mangeron Rd., No. 59A, 700050 Iaşi, Romania;
| | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Cristian Constantin Volovat
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| |
Collapse
|
40
|
Koellhoffer EC, Mao C, Beiss V, Wang L, Fiering SN, Boone CE, Steinmetz NF. Inactivated Cowpea Mosaic Virus in Combination with OX40 Agonist Primes Potent Antitumor Immunity in a Bilateral Melanoma Mouse Model. Mol Pharm 2022; 19:592-601. [PMID: 34978197 PMCID: PMC9207558 DOI: 10.1021/acs.molpharmaceut.1c00681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral immunotherapies are being recognized in cancer treatment, with several currently approved or undergoing clinical testing. While contemporary approaches have focused on oncolytic viral therapies, our efforts center on the development of plant virus-based cancer immunotherapies. In a previous work, we demonstrated the potent efficacy of the cowpea mosaic virus (CPMV), a plant virus that does not replicate in animals, applied as an in situ vaccine. CPMV is an immunostimulatory drug candidate, and intratumoral administration remodels the tumor microenvironment leading to activation of local and systemic antitumor immunity. Efficacy has been demonstrated in multiple tumor mouse models and canine cancer patients. As wild-type CPMV is infectious toward various legumes and because shedding of infectious virus from patients may be an agricultural concern, we developed UV-inactivated CPMV (termed inCPMV) which is not infectious toward plants. We report that as a monotherapy, wild-type CPMV outperforms inCPMV in mouse models of dermal melanoma or disseminated colon cancer. Efficacy of inCPMV is less than that of CPMV and similar to that of RNA-free CPMV. Immunological investigation using knockout mice shows that inCPMV does not signal through TLR7 (toll-like receptor); structure-function studies indicate that the RNA is highly cross-linked and therefore unable to activate TLR7. Wild-type CPMV signals through TLR2, -4, and -7, whereas inCPMV more closely resembles RNA-free CPMV which signals through TLR2 and -4 only. The structural features of inCPMV explain the increased potency of wild-type CPMV through the triple pronged TLR activation. Strikingly, when inCPMV is used in combination with an anti-OX40 agonist antibody (administered systemically), exceptional efficacy was demonstrated in a bilateral B16F10 dermal melanoma model. Combination therapy, with in situ vaccination applied only into the primary tumor, controlled the progression of the secondary, untreated tumors, with 10 out of 14 animals surviving for at least 100 days post tumor challenge without development of recurrence or metastatic disease. This study highlights the potential of inCPMV as an in situ vaccine candidate and demonstrates the power of combined immunotherapy approaches. Strategic immunocombination therapies are the formula for success, and the combination of in situ vaccination strategies along with therapeutic antibodies targeting the cancer immunity cycle is a particularly powerful approach.
Collapse
Affiliation(s)
- Edward C Koellhoffer
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Veronique Beiss
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Lu Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Steven N Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
- Norris Cotton Cancer Center, Geisel School of Medicine and Dartmouth Hitchcock Medical System, Lebanon, New Hampshire 03755, United States
| | - Christine E Boone
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Design and Discovery, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
41
|
Virus-Like Particles as Preventive and Therapeutic Cancer Vaccines. Vaccines (Basel) 2022; 10:vaccines10020227. [PMID: 35214685 PMCID: PMC8879290 DOI: 10.3390/vaccines10020227] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Virus-like particles (VLPs) are self-assembled viral protein complexes that mimic the native virus structure without being infectious. VLPs, similarly to wild type viruses, are able to efficiently target and activate dendritic cells (DCs) triggering the B and T cell immunities. Therefore, VLPs hold great promise for the development of effective and affordable vaccines in infectious diseases and cancers. Vaccine formulations based on VLPs, compared to other nanoparticles, have the advantage of incorporating multiple antigens derived from different proteins. Moreover, such antigens can be functionalized by chemical modifications without affecting the structural conformation or the antigenicity. This review summarizes the current status of preventive and therapeutic VLP-based vaccines developed against human oncoviruses as well as cancers.
Collapse
|
42
|
Shahgolzari M, Fiering S. Emerging Potential of Plant Virus Nanoparticles (PVNPs) in Anticancer Immunotherapies. JOURNAL OF CANCER IMMUNOLOGY 2022; 4:22-29. [PMID: 35600219 PMCID: PMC9121906 DOI: 10.33696/cancerimmunol.4.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapies using plant virus nanoparticles (PVNPs) have achieved considerable success in preclinical studies. PVNP based nanoplatforms can be endogenous immune adjuvants and act as nanocarriers that stabilize and deliver cancer antigens and exogenous immune adjuvants. Although they do not infect mammalian cells, PVNPs are viruses and they are variably recognized by pathogen pattern recognition receptors (PRR), activate innate immune cells including antigen-presenting cells (APCs), and increase the expression of costimulatory molecules. Novel immunotherapy strategies use them as in situ vaccines (ISV) that can effectively inhibit tumor growth after intratumoral administration and generate expanded systemic antitumor immunity. PVNPs combined with other tumor immunotherapeutic options and other modalities of oncotherapy can improve both local and systemic anti-tumor immune responses. While not yet in clinical trials in humans, there is accelerating interest and research of the potential of PVNPs for ISV immune therapy for cancer. Thus, antitumor efficacy of PVNPs by themselves, or loaded with soluble toll-like receptor (TLR) agonists and/or cancer antigens, will likely enter human trials over the next few years and potentially contribute to next-generation antitumor immune-based therapies.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Steven Fiering
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, United States
- Norris Cotton Cancer Center, Dartmouth Geisel School of Medicine and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| |
Collapse
|
43
|
Boone CE, Wang L, Gautam A, Newton IG, Steinmetz NF. Combining nanomedicine and immune checkpoint therapy for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1739. [PMID: 34296535 PMCID: PMC8906799 DOI: 10.1002/wnan.1739] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Cancer immunotherapy has emerged as a pillar of the cancer therapy armamentarium. Immune checkpoint therapy (ICT) is a mainstay of modern immunotherapy. Although ICT monotherapy has demonstrated remarkable clinical efficacy in some patients, the majority do not respond to treatment. In addition, many patients eventually develop resistance to ICT, disease recurrence, and toxicity from off-target effects. Combination therapy is a keystone strategy to overcome the limitations of monotherapy. With the integration of ICT and any therapy that induces tumor cell lysis and release of tumor-associated antigens (TAAs), ICT is expected to strengthen the coordinated innate and adaptive immune responses to TAA release and promote systemic, cellular antitumor immunity. Nanomedicine is well poised to facilitate combination ICT. Nanoparticles with delivery and/or immunomodulation capacities have been successfully combined with ICT in preclinical applications. Delivery nanoparticles protect and control the targeted release of their cargo. Inherently immunomodulatory nanoparticles can facilitate immunogenic cell death, modification of the tumor microenvironment, immune cell mimicry and modulation, and/or in situ vaccination. Nanoparticles are frequently multifunctional, combining multiple treatment strategies into a single platform with ICT. Nanomedicine and ICT combinations have great potential to yield novel, powerful treatments for patients with cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Lu Wang
- Department of Bioengineering, University of California, San Diego, La Jolla CA 92039, USA
| | - Aayushma Gautam
- Department of Bioengineering, University of California, San Diego, La Jolla CA 92039, USA
| | - Isabel G. Newton
- Department of Radiology, University of California, San Diego, La Jolla CA 92039, USA,Veterans Administration San Diego Healthcare System, 3350 La Jolla Village Drive San Diego, CA 92161
| | | |
Collapse
|
44
|
Shevtsov M, Kaesler S, Posch C, Multhoff G, Biedermann T. Magnetic nanoparticles in theranostics of malignant melanoma. EJNMMI Res 2021; 11:127. [PMID: 34905138 PMCID: PMC8671576 DOI: 10.1186/s13550-021-00868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant melanoma is an aggressive tumor with a tendency to metastasize early and with an increasing incidence worldwide. Although in early stage, melanoma is well treatable by excision, the chances of cure and thus the survival rate decrease dramatically after metastatic spread. Conventional treatment options for advanced disease include surgical resection of metastases, chemotherapy, radiation, targeted therapy and immunotherapy. Today, targeted kinase inhibitors and immune checkpoint blockers have for the most part replaced less effective chemotherapies. Magnetic nanoparticles as novel agents for theranostic purposes have great potential in the treatment of metastatic melanoma. In the present review, we provide a brief overview of treatment options for malignant melanoma with different magnetic nanocarriers for theranostics. We also discuss current efforts of designing magnetic particles for combined, multimodal therapies (e.g., chemotherapy, immunotherapy) for malignant melanoma.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Einstein Str. 25, 81675, Munich, Germany
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, Primorsky Krai, 690091, Vladivostok, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str, Saint Petersburg, Russian Federation, 197341
| | - Susanne Kaesler
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany
| | - Christian Posch
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Einstein Str. 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Ismaninger Str. 22, 81675, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany.
| |
Collapse
|
45
|
Chung YH, Church D, Koellhoffer EC, Osota E, Shukla S, Rybicki EP, Pokorski JK, Steinmetz NF. Integrating plant molecular farming and materials research for next-generation vaccines. NATURE REVIEWS. MATERIALS 2021; 7:372-388. [PMID: 34900343 DOI: 10.1038/s41578-021-00399-395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 05/28/2023]
Abstract
Biologics - medications derived from a biological source - are increasingly used as pharmaceuticals, for example, as vaccines. Biologics are usually produced in bacterial, mammalian or insect cells. Alternatively, plant molecular farming, that is, the manufacture of biologics in plant cells, transgenic plants and algae, offers a cheaper and easily adaptable strategy for the production of biologics, in particular, in low-resource settings. In this Review, we discuss current vaccination challenges, such as cold chain requirements, and highlight how plant molecular farming in combination with advanced materials can be applied to address these challenges. The production of plant viruses and virus-based nanotechnologies in plants enables low-cost and regional fabrication of thermostable vaccines. We also highlight key new vaccine delivery technologies, including microneedle patches and material platforms for intranasal and oral delivery. Finally, we provide an outlook of future possibilities for plant molecular farming of next-generation vaccines and biologics.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
| | - Derek Church
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward C Koellhoffer
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
| | - Elizabeth Osota
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Biomedical Science Program, University of California, San Diego, La Jolla, CA USA
| | - Sourabh Shukla
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward P Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Jonathan K Pokorski
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
46
|
Chung YH, Church D, Koellhoffer EC, Osota E, Shukla S, Rybicki EP, Pokorski JK, Steinmetz NF. Integrating plant molecular farming and materials research for next-generation vaccines. NATURE REVIEWS. MATERIALS 2021; 7:372-388. [PMID: 34900343 PMCID: PMC8647509 DOI: 10.1038/s41578-021-00399-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 05/04/2023]
Abstract
Biologics - medications derived from a biological source - are increasingly used as pharmaceuticals, for example, as vaccines. Biologics are usually produced in bacterial, mammalian or insect cells. Alternatively, plant molecular farming, that is, the manufacture of biologics in plant cells, transgenic plants and algae, offers a cheaper and easily adaptable strategy for the production of biologics, in particular, in low-resource settings. In this Review, we discuss current vaccination challenges, such as cold chain requirements, and highlight how plant molecular farming in combination with advanced materials can be applied to address these challenges. The production of plant viruses and virus-based nanotechnologies in plants enables low-cost and regional fabrication of thermostable vaccines. We also highlight key new vaccine delivery technologies, including microneedle patches and material platforms for intranasal and oral delivery. Finally, we provide an outlook of future possibilities for plant molecular farming of next-generation vaccines and biologics.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
| | - Derek Church
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward C. Koellhoffer
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
| | - Elizabeth Osota
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Biomedical Science Program, University of California, San Diego, La Jolla, CA USA
| | - Sourabh Shukla
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward P. Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Jonathan K. Pokorski
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
47
|
Chung YH, Park J, Cai H, Steinmetz NF. S100A9-Targeted Cowpea Mosaic Virus as a Prophylactic and Therapeutic Immunotherapy against Metastatic Breast Cancer and Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101796. [PMID: 34519180 PMCID: PMC8564454 DOI: 10.1002/advs.202101796] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Indexed: 05/05/2023]
Abstract
Prognosis and treatment of metastatic cancer continues to be one of the most difficult and challenging areas of oncology. Treatment usually consists of chemotherapeutics, which may be ineffective due to drug resistance, adverse effects, and dose-limiting toxicity. Therefore, novel approaches such as immunotherapy have been investigated to improve patient outcomes and minimize side effects. S100A9 is a calcium-binding protein implicated in tumor metastasis, progression, and aggressiveness that modulates the tumor microenvironment into an immunosuppressive state. S100A9 is expressed in and secreted by immune cells in the pre-metastatic niche, as well as, post-tumor development, therefore making it a suitable targeted for prophylaxis and therapy. In previous work, it is demonstrated that cowpea mosaic virus (CPMV) acts as an adjuvant when administered intratumorally. Here, it is demonstrated that systemically administered, S100A9-targeted CPMV homes to the lungs leading to recruitment of innate immune cells. This approach is efficacious both prophylactically and therapeutically against lung metastasis from melanoma and breast cancer. The current research will facilitate and accelerate the development of next-generation targeted immunotherapies administered as prophylaxis, that is, after surgery of a primary breast tumor to prevent outgrowth of metastasis, as well as, therapy to treat established metastatic disease.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of BioengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Jooneon Park
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Hui Cai
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Nicole F. Steinmetz
- Department of BioengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Department of RadiologyUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Institute for Materials Discovery and DesignUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Moores Cancer CenterUniversity of CaliforniaLa JollaSan DiegoCAUSA
| |
Collapse
|
48
|
Boss MK. Canine comparative oncology for translational radiation research. Int J Radiat Biol 2021; 98:496-505. [PMID: 34586958 DOI: 10.1080/09553002.2021.1987572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Laboratory and clinical research are essential for advancing radiation research; however, there is a growing awareness that conventional laboratory animal models and early-phase clinical studies in patients have not improved the low success rates and late-stage failures in new cancer therapy efforts. There are considerable costs and inefficiencies in moving preclinical research into effective cancer therapies for patients. Canine translational models of radiation research can fill an important niche between rodent and human studies, ultimately providing valuable, predictive, translational biological and clinical results for human cancer patients. Companion dogs naturally and spontaneously develop cancers over the course of their lifetime. Many canine tumor types share important similarities to human disease, molecularly and biologically, with a comparable clinical course. Dogs receive state-of-the-art medical care, which can include radiotherapy, experimental therapeutics, and novel technologies, offering an important opportunity for radiobiology and radiation oncology research. Notably, the National Cancer Institute has developed the Comparative Oncology Program to promote this area of increased research interest. CONCLUSION In this review, the benefits and limitations of performing translational radiation research in companion dogs will be presented, and current research utilizing the canine model will be highlighted, including studies across research areas focusing on common canine tumor types treated with radiotherapy, comparative normal tissue effects, radiation and immunology research, and alternative radiation therapy approaches involving canine cancer patients.
Collapse
Affiliation(s)
- Mary-Keara Boss
- Flint Animal Cancer Center, Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
49
|
Trivillin VA, Langle YV, Palmieri MA, Pozzi ECC, Thorp SI, Benitez Frydryk DN, Garabalino MA, Monti Hughes A, Curotto PM, Colombo LL, Santa Cruz IS, Ramos PS, Itoiz ME, Argüelles C, Eiján AM, Schwint AE. Evaluation of local, regional and abscopal effects of Boron Neutron Capture Therapy (BNCT) combined with immunotherapy in an ectopic colon cancer model. Br J Radiol 2021; 94:20210593. [PMID: 34520668 DOI: 10.1259/bjr.20210593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The aim of the present study was to evaluate the local and regional therapeutic efficacy and abscopal effect of BNCT mediated by boronophenyl-alanine, combined with Bacillus Calmette-Guerin (BCG) as an immunotherapy agent in this model. METHODS The local effect of treatment was evaluated in terms of tumor response in the irradiated tumor-bearing right hind flank. Metastatic spread to tumor-draining lymph nodes was analyzed as an indicator of regional effect. The abscopal effect of treatment was assessed as tumor growth inhibition in the contralateral (non-irradiated) left hind flank inoculated with tumor cells 2 weeks post-irradiation. The experimental groups BNCT, BNCT + BCG, BCG, Beam only (BO), BO +BCG, SHAM (tumor-bearing, no treatment, same manipulation) were studied. RESULTS BNCT and BNCT + BCG induced a highly significant local anti-tumor response, whereas BCG alone induced a weak local effect. BCG and BNCT + BCG induced a significant abscopal effect in the contralateral non-irradiated leg. The BNCT + BCG group showed significantly less metastatic spread to tumor-draining lymph nodes vs SHAM and vs BO. CONCLUSION This study suggests that BNCT + BCG-immunotherapy would induce local, regional and abscopal effects in tumor-bearing animals. BNCT would be the main effector of the local anti-tumor effect whereas BCG would be the main effector of the abscopal effect. ADVANCES IN KNOWLEDGE Although the local effect of BNCT has been widely evidenced, this is the first study to show the local, regional and abscopal effects of BNCT combined with immunotherapy, contributing to comprehensive cancer treatment with combined therapies.
Collapse
Affiliation(s)
- Verónica A Trivillin
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yanina V Langle
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - Mónica A Palmieri
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | | | - Silvia I Thorp
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | | | | | - Andrea Monti Hughes
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula M Curotto
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Lucas L Colombo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - Iara S Santa Cruz
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Paula S Ramos
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - María E Itoiz
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Facultad de Odontología, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Claudia Argüelles
- Instituto Nacional de Producción de Biológicos, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Ana M Eiján
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - Amanda E Schwint
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
50
|
Gautam A, Beiss V, Wang C, Wang L, Steinmetz NF. Plant Viral Nanoparticle Conjugated with Anti-PD-1 Peptide for Ovarian Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22189733. [PMID: 34575893 PMCID: PMC8467759 DOI: 10.3390/ijms22189733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy holds tremendous potential in cancer therapy, in particular, when treatment regimens are combined to achieve synergy between pathways along the cancer immunity cycle. In previous works, we demonstrated that in situ vaccination with the plant virus cowpea mosaic virus (CPMV) activates and recruits innate immune cells, therefore reprogramming the immunosuppressive tumor microenvironment toward an immune-activated state, leading to potent anti-tumor immunity in tumor mouse models and canine patients. CPMV therapy also increases the expression of checkpoint regulators on effector T cells in the tumor microenvironment, such as PD-1/PD-L1, and we demonstrated that combination with immune checkpoint therapy improves therapeutic outcomes further. In the present work, we tested the hypothesis that CPMV could be combined with anti-PD-1 peptides to replace expensive antibody therapies. Specifically, we set out to test whether a multivalent display of anti-PD-1 peptides (SNTSESF) would enhance efficacy over a combination of CPMV and soluble peptide. Efficacy of the approaches were tested using a syngeneic mouse model of intraperitoneal ovarian cancer. CPMV combination with anti-PD-1 peptides (SNTSESF) resulted in increased efficacy; however, increased potency against metastatic ovarian cancer was only observed when SNTSESF was conjugated to CPMV, and not added as a free peptide. This can be explained by the differences in the in vivo fates of the nanoparticle formulation vs. the free peptide; the larger nanoparticles are expected to exhibit prolonged tumor residence and favorable intratumoral distribution. Our study provides new design principles for plant virus-based in situ vaccination strategies.
Collapse
Affiliation(s)
- Aayushma Gautam
- Department of NanoEngineering, University of California, San Diego, CA 92093, USA; (A.G.); (V.B.); (C.W.)
| | - Veronique Beiss
- Department of NanoEngineering, University of California, San Diego, CA 92093, USA; (A.G.); (V.B.); (C.W.)
| | - Chao Wang
- Department of NanoEngineering, University of California, San Diego, CA 92093, USA; (A.G.); (V.B.); (C.W.)
| | - Lu Wang
- Department of Bioengineering, University of California, San Diego, CA 92093, USA;
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California, San Diego, CA 92093, USA; (A.G.); (V.B.); (C.W.)
- Department of Bioengineering, University of California, San Diego, CA 92093, USA;
- Department of Radiology, University of California, San Diego, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, CA 92093, USA
- Correspondence:
| |
Collapse
|