1
|
Lu Y, Wang M, Li M, Yu L, Li Y. Conduction Pathways of Quinoxalinyl Molecules in the STM-BJ-Fabricated Nanogap. J Phys Chem A 2025; 129:1665-1672. [PMID: 39907275 DOI: 10.1021/acs.jpca.4c07707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Quinoxaline (Qx) terminated with two mercaptomethyl (-SMe) anchoring ligands demonstrated two conductance values when studied using the scanning tunneling microscope-based break-junction (STM-BJ) technique. Further research showed that the observed low and high conductances (termed GL and GH) resulted from two electron transfer pathways of different lengths with distinct molecular binding configurations. GL arises from the two terminal -SMe groups attached to the Au electrodes, and GH appears when one of the two Au-S linkages is replaced by an Au-N linkage where N of Qx is anchored to the electrode. This is one of the few instances where a single molecule can independently exhibit two different conductance states without an external stimulus, thereby offering a desired molecular prototype for developing conductance-dependent molecular electronics, such as molecular switches and other functional molecular devices.
Collapse
Affiliation(s)
- Yuhua Lu
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mingzhen Wang
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mengxiao Li
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lei Yu
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yunchuan Li
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
2
|
Sil A, Spano CE, Chelli Y, Higgins SJ, Sangtarash S, Piccinini G, Graziano M, Nichols RJ, Sadeghi H, Vezzoli A. Single-Molecule Mechanoresistivity by Intermetallic Bonding. Angew Chem Int Ed Engl 2025; 64:e202418062. [PMID: 39324416 PMCID: PMC11795739 DOI: 10.1002/anie.202418062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
The metal-electrode interface is key to unlocking emergent behaviour in all organic electrified systems, from battery technology to molecular electronics. In the latter, interfacial engineering has enabled efficient transport, higher device stability, and novel functionality. Mechanoresistivity - the change in electrical behaviour in response to a mechanical stimulus and a pathway to extremely sensitive force sensors - is amongst the most studied phenomena in molecular electronics, and the molecule-electrode interface plays a pivotal role in its emergence, reproducibility, and magnitude. In this contribution, we show that organometallic molecular wires incorporating a Pt(II) cation show mechanoresistive behaviour of exceptional magnitude, with conductance modulations of more than three orders of magnitude upon compression by as little as 1 nm. We synthesised series of cyclometalated Pt(II) molecular wires, and used scanning tunnelling microscopy - break junction techniques to characterise their electromechanical behaviour. Mechanoresistivity arises from an interaction between the Pt(II) cation and the Au electrode triggered by mechanical compression of the single-molecule device, and theoretical modelling confirms this hypothesis. Our study provides a new tool for the design of functional molecular wires by exploiting previously unreported ion-metal interactions in single-molecule devices, and develops a new framework for the development of mechanoresistive molecular junctions.
Collapse
Affiliation(s)
- Amit Sil
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Chiara E. Spano
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
- Department of Electronics and TelecommunicationsPolitecnico di TorinoCorso Duca degli Abruzzi10129TorinoItaly
- Istituto Nazionale di Ricerca Metrologica (INRiM)Strada Delle Cacce 9110135TorinoItaly
| | - Yahia Chelli
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - Simon J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Sara Sangtarash
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - Gianluca Piccinini
- Department of Electronics and TelecommunicationsPolitecnico di TorinoCorso Duca degli Abruzzi10129TorinoItaly
| | - Mariagrazia Graziano
- Department of Electronics and TelecommunicationsPolitecnico di TorinoCorso Duca degli Abruzzi10129TorinoItaly
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi10129TorinoItaly
| | - Richard J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Hatef Sadeghi
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - Andrea Vezzoli
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
3
|
Nau M, Bro-Jørgensen W, Linseis M, Bodensteiner M, Winter RF, Solomon GC. A Molecular Engineering Approach to Conformationally Regulated Conductance Dualism in a Molecular Junction. Angew Chem Int Ed Engl 2025; 64:e202417796. [PMID: 39628403 DOI: 10.1002/anie.202417796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 02/06/2025]
Abstract
One key aspect for the development of functional molecular electronic devices is the ability to precisely tune and reversibly switch the conductance of individual molecules in electrode-molecule-electrode junctions in response to external stimuli. In this work, we present a new approach to access molecular switches by deliberately controlling the flexibility in the molecular backbone. We here describe two new conductance switches based on bis(triarylamines) that rely on the reversible toggling between two conformers, each associated with vastly different conductances. By molecular design, we were able to realize an on/off ratio Ghigh/Glow of ~103, which is one of the largest values reported to date. Flicker noise analysis and molecular transport calculations indicate that on/off switching relies on a change of the conduction pathway and vast differences in molecule-electrode coupling. We thereby provide a new scaffold for further development of molecular conductance switches that are both efficient and easily refined.
Collapse
Affiliation(s)
- Moritz Nau
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - William Bro-Jørgensen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Michael Linseis
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Michael Bodensteiner
- Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Rainer F Winter
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Gemma C Solomon
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- NNF Quantum Computing Programme, Niels Bohr Institute, University of Copenhagen, 2100, København Ø, Denmark
| |
Collapse
|
4
|
Zhu Y, Xu Y, Liu Y, Liu H, Hong W. Electromechanics of the Molecule-Electrode Interface and Interface-Mediated Effects in Single-Molecule Junctions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5627-5647. [PMID: 39818711 DOI: 10.1021/acsami.4c18286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The molecule-electrode interface can regulate both the efficiency and pathways of electron transport through single-molecule junctions (SMJs). The electromechanics of the interface has proven crucial in exposing the underlying mechanisms of electron transmission through SMJs, providing a theoretical base and practical guidance for designing and constructing functional molecular devices. Here we encompass several currently developed methodologies for investigating the electromechanics of molecule-electrode interface and provide an account of their application in elucidating the effects of the molecule-electrode interface on electron transport properties of SMJs. This review will offer a comprehensive picture and new insights into developing single-molecule electromechanical devices and the progression of devices' mechanical stability toward large-scale integration.
Collapse
Affiliation(s)
- Yixuan Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yanhong Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yuyan Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Haojie Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Kumar R, Kaliginedi V, Venkatramani R. A Strategy To Access Embedded Circuits in a Single-Molecule Bis-Terpyridine Breadboard Junction. NANO LETTERS 2025; 25:1715-1721. [PMID: 39818829 DOI: 10.1021/acs.nanolett.4c06173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Predictive approaches and rules to connect and combine molecular circuit components are required to realize the potential of molecular electronics and develop miniaturized integrated circuits. To this end, we have recently demonstrated a bis(terpyridine)-based molecular breadboard with four conductance states formed by the superposition of five 2-5 ring circuits. Here, we develop a generic analytical/statistical model to describe break-junction data and use it to extract the conductance of the five embedded circuits in the bis-terpyridine-based molecular breadboard junction. The model can be used to experimentally verify and tune the electronic properties of constituent molecular circuits within breadboard junctions, a key step toward developing functional circuitry. Further, our study provides a general framework to simulate and analyze break-junction conductance histograms of complex molecular junctions with more than two electrode anchoring groups.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Veerabhadrarao Kaliginedi
- Department of Inorganic and Physical Chemistry (IPC), Indian Institute of Science, Bangalore-560012, India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| |
Collapse
|
6
|
Jiao S, Shen P, Li J, Dong X, Tang BZ, Zhao Z. Towards Stable Helical Structures with Enhanced Molecular Conductance by Strengthening Through-Space Conjugation. Angew Chem Int Ed Engl 2025; 64:e202414801. [PMID: 39226113 DOI: 10.1002/anie.202414801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Developing long-chain molecules with stable helical structures is of significant importance for understanding and modulating the properties and functions of helical biological macromolecules, but challenging. In this work, an effective and facile approach to stabilize folded helical structures by strengthening through-space conjugation is proposed, using new ortho-hexaphenylene (o-HP) derivatives as models. The structure-activity relationship between the through-space conjugation and charge-transport behavior of the prepared folded helical o-HP derivatives is experimentally and theoretically investigated. It is demonstrated that the through-space conjugation within o-HP derivatives can be strengthened by introducing electron-withdrawing pyridine and pyrazine rings, which can effectively stabilize the helical structures of o-HP derivatives. Moreover, scanning tunneling microscopy-break junction measurements reveal that the stable regular helical structures of o-HP derivatives open-up dominant through-space charge-transport pathways, and the single-molecule conductance is enhanced by more than 70 % by strengthening through-space conjugation with pyridine and pyrazine. However, the through-bond charge transport pathways contribute much less to the conductance of o-HP derivatives. These results not only provide a new method for exploring stable helical molecules, but also provide a stepping stone for deciphering and modulating the charge-transport behavior of helical systems at the single-molecule level.
Collapse
Affiliation(s)
- Shaoshao Jiao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jinshi Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Xiaobin Dong
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
7
|
Hao H, Li H, Jia T, Zheng X. A multi-state supramolecular switch realized via a [π⋯π] dimer. Phys Chem Chem Phys 2024; 27:331-339. [PMID: 39641179 DOI: 10.1039/d4cp03131h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Supramolecular assemblies have attracted great attention in the latest studies of molecular electronic devices for their superiorities. Here, we design a non-covalent [π⋯π] dimer made of DCV4Ts (two-terminally dicyanovinyl-substituted quaterthiophenes), and five typical conformations of this dimer are specifically focused on. Based on density-functional theory calculations and the non-equilibrium Green's function technique, electron transport properties through the dimer are mainly investigated in molecular junctions. It is revealed that four distinct states of conductance can be observed through these five conformations, with the maximal ON/OFF ratio over 400 and the minimal one around 10. The multiple states of conductance basically stem from the destructive quantum interference and the spatial overlap of the two DCV4T monomers. To implement the above-indicated molecular switch in experiments, it is essential to mechanically stretch or compress the designed dimer, probably using the piezo-modulated scanning tunneling microscope based break-junction technique.
Collapse
Affiliation(s)
- Hua Hao
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China.
| | - Honghao Li
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ting Jia
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xiaohong Zheng
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Zhang H, Chen L, Liu X, Sun F, Zhang M, Quintero SM, Zhan Q, Jiang S, Li J, Wang D, Casado J, Hong W, Zheng Y. Gated off-site radical injection: Bidirectional conductance modulation in single-molecule junctions. SCIENCE ADVANCES 2024; 10:eadp7307. [PMID: 39485854 PMCID: PMC11529717 DOI: 10.1126/sciadv.adp7307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Uncovering the effects of radical injection into responsive organic molecules is a long-sought goal, and the single-molecule junctions provide a unique way to investigate molecular conductance evolution during the radical injection. We can modulate the main channel conductance by using electronic injection from off-site neutral radicals acting as gating terminals. Two families of cyclopentadienone derivatives were synthesized, featuring the inter-pyridyl main conductance channel and the inter-radical paths that are linear (FCF) or cross conjugated (PCP). Using a scanning tunneling microscope break junction technique, we find that the injection of mono- and diradicals in the PCP system unexpectedly decreases the conductance regarding the closed-shell analog, while that of FCF systems increases. Through-bond and through-space conductance mechanisms are found in the FCF and PCP series, respectively, and jointly modulate the overall charge transmission. This off-site injection concept offers a promising approach for developing molecular devices by manipulating electrical conductance in single-molecule junctions.
Collapse
Affiliation(s)
- Hanjun Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, P. R. China
| | - Xiaodong Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Fanxi Sun
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Maolin Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Sergio Moles Quintero
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Qian Zhan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Shenqing Jiang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Jiayu Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| |
Collapse
|
9
|
Ward JS, Vezzoli A, Wells C, Bailey S, Jarvis SP, Lambert CJ, Robertson C, Nichols RJ, Higgins SJ. A Systematic Study of Methyl Carbodithioate Esters as Effective Gold Contact Groups for Single-Molecule Electronics. Angew Chem Int Ed Engl 2024; 63:e202403577. [PMID: 38770763 DOI: 10.1002/anie.202403577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
There are several binding groups used within molecular electronics for anchoring molecules to metal electrodes (e.g., R-SMe, R-NH2, R-CS2 -, R-S-). However, some anchoring groups that bind strongly to electrodes have poor/unknown stability, some have weak electrode coupling, while for some their binding motifs are not well defined. Further binding groups are required to aid molecular design and to achieve a suitable balance in performance across a range of properties. We present an in-depth investigation into the use of carbodithioate esters as contact groups for single-molecule conductance measurements, using scanning tunnelling microscopy break junction measurements (STM-BJ) and detailed surface spectroscopic analysis. We demonstrate that the methyl carbodithioate ester acts as an effective contact for gold electrodes in STM-BJ measurements. Surface enhanced Raman measurements demonstrate that the C=S functionality remains intact when adsorbed on to gold nanoparticles. A gold(I) complex was also synthesised showing a stable C=S→AuI interaction from the ester. Comparison with a benzyl thiomethyl ether demonstrates that the C=S moiety significantly contributes to charge transport in single-molecule junctions. The overall performance of the CS2Me group demonstrates it should be used more extensively and has strong potential for the fabrication of larger area devices with long-term stability.
Collapse
Affiliation(s)
- Jonathan S Ward
- Department of Chemistry, University of Liverpool, Crown St., Liverpool, L69 7ZD, UK
- Chemistry Department, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Andrea Vezzoli
- Department of Chemistry, University of Liverpool, Crown St., Liverpool, L69 7ZD, UK
| | - Charlie Wells
- Physics Department, Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK
| | - Steven Bailey
- Physics Department, Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK
| | - Samuel P Jarvis
- Physics Department, Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK
| | - Colin J Lambert
- Physics Department, Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK
| | - Craig Robertson
- Department of Chemistry, University of Liverpool, Crown St., Liverpool, L69 7ZD, UK
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Crown St., Liverpool, L69 7ZD, UK
| | - Simon J Higgins
- Department of Chemistry, University of Liverpool, Crown St., Liverpool, L69 7ZD, UK
| |
Collapse
|
10
|
Al-Mohana SMS, Najeeb HN, Al-Utayjawee RM, Babaei F, Al-Owaedi OA. Theoretical investigation of thermoelectric properties of methyl blue-based molecular junctions. RSC Adv 2024; 14:23699-23709. [PMID: 39077326 PMCID: PMC11284912 DOI: 10.1039/d4ra03574g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
Thermoelectric properties of a family of methyl blue-based molecular junctions were theoretically studied using a combination of density functional theory (DFT) methods, and quantum transport theory (QTT). Employing different numbers of amino groups not only proves itself as a powerful strategy for controlling the transport behaviour and lifting the transmission coefficient T(E) from 1.91 × 10-5 to 7.45 × 10-5 with increasing the amino groups from zero to four, but also it enhances the thermoelectric properties of these molecules, since it increases the Seebeck coefficient (S) from 106.8 to 202.4 μV K-1 and the electronic figure of merit (Z el T) has been raised from 0.15 to 0.35, making these molecules promising candidates for thermoelectric applications.
Collapse
Affiliation(s)
- Sarah M S Al-Mohana
- Department of Physics, Faculty of Science, University of Qom Qom 3716146611 Iran
- Iraqi Ministry of Education, Babylon Education Directorate Hilla 51001 Babylon Iraq
| | - Hussein N Najeeb
- Department of Laser Physics, College of Science for Women, University of Babylon Hilla 51001 Iraq
| | | | - Ferydon Babaei
- Department of Physics, Faculty of Science, University of Qom Qom 3716146611 Iran
| | - Oday A Al-Owaedi
- Department of Laser Physics, College of Science for Women, University of Babylon Hilla 51001 Iraq
- Al-Zahrawi University College Najaf-Karbala Street Karbala 56001 Iraq
| |
Collapse
|
11
|
Gorenskaia E, Low PJ. Methods for the analysis, interpretation, and prediction of single-molecule junction conductance behaviour. Chem Sci 2024; 15:9510-9556. [PMID: 38939131 PMCID: PMC11206205 DOI: 10.1039/d4sc00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024] Open
Abstract
This article offers a broad overview of measurement methods in the field of molecular electronics, with a particular focus on the most common single-molecule junction fabrication techniques, the challenges in data analysis and interpretation of single-molecule junction current-distance traces, and a summary of simulations and predictive models aimed at establishing robust structure-property relationships of use in the further development of molecular electronics.
Collapse
Affiliation(s)
- Elena Gorenskaia
- School of Molecular Sciences, University of Western Australia 35 Stirling Highway Crawley Western Australia 6026 Australia
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia 35 Stirling Highway Crawley Western Australia 6026 Australia
| |
Collapse
|
12
|
Guo J, Chen PK, Chang S. Molecular-Scale Electronics: From Individual Molecule Detection to the Application of Recognition Sensing. Anal Chem 2024; 96:9303-9316. [PMID: 38809941 DOI: 10.1021/acs.analchem.3c04656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
|
13
|
Sil A, Alsaqer M, Spano CE, Larbi A, Higgins SJ, Robertson CM, Graziano M, Sangtarash S, Nichols RJ, Sadeghi H, Vezzoli A. Mechanical Manipulation of Quantum Interference in Single-Molecule Junctions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308865. [PMID: 38221684 PMCID: PMC11475491 DOI: 10.1002/smll.202308865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Mechanosensitive molecular junctions, where conductance is sensitive to an applied stress such as force or displacement, are a class of nanoelectromechanical systems unique for their ability to exploit quantum mechanical phenomena. Most studies so far relied on reconfiguration of the molecule-electrode interface to impart mechanosensitivity, but this approach is limited and, generally, poorly reproducible. Alternatively, devices that exploit conformational flexibility of molecular wires have been recently proposed. The mechanosensitive properties of molecular wires containing the 1,1'-dinaphthyl moiety are presented here. Rotation along the chemical bond between the two naphthyl units is possible, giving rise to two conformers (transoid and cisoid) that have distinctive transport properties. When assembled as single-molecule junctions, it is possible to mechanically trigger the transoid to cisoid transition, resulting in an exquisitely sensitive mechanical switch with high switching ratio (> 102). Theoretical modeling shows that charge reconfiguration upon transoid to cisoid transition is responsible for the observed behavior, with generation and subsequent lifting of quantum interference features. These findings expand the experimental toolbox of molecular electronics with a novel chemical structure with outstanding electromechanical properties, further demonstrating the importance of subtle changes in charge delocalization on the transport properties of single-molecule devices.
Collapse
Affiliation(s)
- Amit Sil
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Munirah Alsaqer
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - Chiara E. Spano
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
- Department of Electronics and TelecommunicationsPolitecnico di TorinoCorso Duca degli AbruzziTorino10129Italy
| | - Adam Larbi
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Simon J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Craig M. Robertson
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Mariagrazia Graziano
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli AbruzziTorino10129Italy
| | - Sara Sangtarash
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - Richard J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Hatef Sadeghi
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - Andrea Vezzoli
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
14
|
Qiao X, Sil A, Sangtarash S, Smith SM, Wu C, Robertson CM, Nichols RJ, Higgins SJ, Sadeghi H, Vezzoli A. Nuclear Magnetic Resonance Chemical Shift as a Probe for Single-Molecule Charge Transport. Angew Chem Int Ed Engl 2024; 63:e202402413. [PMID: 38478719 PMCID: PMC11497234 DOI: 10.1002/anie.202402413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Indexed: 04/05/2024]
Abstract
Existing modelling tools, developed to aid the design of efficient molecular wires and to better understand their charge-transport behaviour and mechanism, have limitations in accuracy and computational cost. Further research is required to develop faster and more precise methods that can yield information on how charge transport properties are impacted by changes in the chemical structure of a molecular wire. In this study, we report a clear semilogarithmic correlation between charge transport efficiency and nuclear magnetic resonance chemical shifts in multiple series of molecular wires, also accounting for the presence of chemical substituents. The NMR data was used to inform a simple tight-binding model that accurately captures the experimental single-molecule conductance values, especially useful in this case as more sophisticated density functional theory calculations fail due to inherent limitations. Our study demonstrates the potential of NMR spectroscopy as a valuable tool for characterising, rationalising, and gaining additional insights on the charge transport properties of single-molecule junctions.
Collapse
Affiliation(s)
- X. Qiao
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - A. Sil
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - S. Sangtarash
- Device Modelling Group, School of EngineeringUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - S. M. Smith
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - C. Wu
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Institute of Optoelectronic Materials and Devices, Faculty of Materials Metallurgy and ChemistryJiangxi University of Science and TechnologyGanzhou341000China
| | - C. M. Robertson
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - R. J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - S. J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - H. Sadeghi
- Device Modelling Group, School of EngineeringUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - A. Vezzoli
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Stephenson Institute for Renewable EnergyUniversity of LiverpoolPeach StreetLiverpoolL69 7ZFUnited Kingdom
| |
Collapse
|
15
|
Guo Y, Li M, Zhao C, Zhang Y, Jia C, Guo X. Understanding Emergent Complexity from a Single-Molecule Perspective. JACS AU 2024; 4:1278-1294. [PMID: 38665639 PMCID: PMC11040556 DOI: 10.1021/jacsau.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024]
Abstract
Molecules, with structural, scaling, and interaction diversities, are crucial for the emergence of complex behaviors. Interactions are essential prerequisites for complex systems to exhibit emergent properties that surpass the sum of individual component characteristics. Tracing the origin of complex molecular behaviors from interactions is critical to understanding ensemble emergence, and requires insights at the single-molecule level. Electrical signals from single-molecule junctions enable the observation of individual molecular behaviors, as well as intramolecular and intermolecular interactions. This technique provides a foundation for bottom-up explorations of emergent complexity. This Perspective highlights investigations of various interactions via single-molecule junctions, including intramolecular orbital and weak intermolecular interactions and interactions in chemical reactions. It also provides potential directions for future single-molecule junctions in complex system research.
Collapse
Affiliation(s)
- Yilin Guo
- Beijing
National Laboratory for Molecular Sciences, National Biomedical Imaging
Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Mingyao Li
- School
of Materials Science and Engineering, Peking
University, No.5 Yiheyuan
Road, Haidian District, Beijing 100871, P. R. China
| | - Cong Zhao
- Center
of Single-Molecule Sciences, Institute of Modern Optics, Frontiers
Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, College of Electronic
Information and Optical Engineering, Nankai
University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Yanfeng Zhang
- School
of Materials Science and Engineering, Peking
University, No.5 Yiheyuan
Road, Haidian District, Beijing 100871, P. R. China
| | - Chuancheng Jia
- Center
of Single-Molecule Sciences, Institute of Modern Optics, Frontiers
Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, College of Electronic
Information and Optical Engineering, Nankai
University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Xuefeng Guo
- Beijing
National Laboratory for Molecular Sciences, National Biomedical Imaging
Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center
of Single-Molecule Sciences, Institute of Modern Optics, Frontiers
Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, College of Electronic
Information and Optical Engineering, Nankai
University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
16
|
Al-Owaedi OA. Carbon Nanohoops: Multiple Molecular Templates for Exploring Spectroscopic, Electronic, and Thermoelectric Properties. ACS OMEGA 2024; 9:10610-10620. [PMID: 38463279 PMCID: PMC10918671 DOI: 10.1021/acsomega.3c08944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
A combination of density functional theory (DFT) methods and quantum transport theory (QTT) has been used to investigate the spectroscopic, electronic, and thermoelectric properties of carbon nanohoop molecules with different molecular templates. The connectivity type, along with inherent strain, impacts the transport behavior and creates a destructive quantum interference (DQI), which proves itself to be a powerful strategy to enhance the thermoelectric properties of these molecules, making them promising candidates for thermoelectric applications.
Collapse
|
17
|
Hight MO, Wong JY, Pimentel AE, Su TA. Intramolecular London Dispersion Interactions in Single-Molecule Junctions. J Am Chem Soc 2024; 146:4716-4726. [PMID: 38325000 PMCID: PMC10885141 DOI: 10.1021/jacs.3c12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
This work shows the first example of using intramolecular London dispersion interactions to control molecular geometry and quantum transport in single-molecule junctions. Flexible σ-bonded molecular junctions typically occupy straight-chain geometries due to steric effects. Here, we synthesize a series of thiomethyl-terminated oligo(dimethylsilmethylene)s that bear [CH2-Si(CH3)2]n repeat units, where all backbone dihedral states are sterically equivalent. Scanning tunneling microscopy break-junction (STM-BJ) measurements and theoretical calculations indicate that in the absence of a strong steric bias concerted intramolecular London dispersion interactions staple the carbosilane backbone into coiled conformations that remain intact even as the junction is stretched to its breakpoint. As these kinked conformations are highly resistive to electronic transport, we observe record-high conductance decay values on an experimental junction length basis (β = 1.86 ± 0.12 Å-1). These studies reveal the potential of using intramolecular London dispersion interactions to design single-molecule electronics.
Collapse
Affiliation(s)
- Matthew O Hight
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joshua Y Wong
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ashley E Pimentel
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Timothy A Su
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Materials Science & Engineering Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
18
|
Blankevoort N, Bastante P, Davidson RJ, Salthouse RJ, Daaoub AHS, Cea P, Solans SM, Batsanov AS, Sangtarash S, Bryce MR, Agrait N, Sadeghi H. Exploring the Impact of the HOMO-LUMO Gap on Molecular Thermoelectric Properties: A Comparative Study of Conjugated Aromatic, Quinoidal, and Donor-Acceptor Core Systems. ACS OMEGA 2024; 9:8471-8477. [PMID: 38405513 PMCID: PMC10882689 DOI: 10.1021/acsomega.3c09760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Thermoelectric materials have garnered significant interest for their potential to efficiently convert waste heat into electrical energy at room temperature without moving parts or harmful emissions. This study investigated the impact of the HOMO-LUMO (H-L) gap on the thermoelectric properties of three distinct classes of organic compounds: conjugated aromatics (isoindigos (IIGs)), quinoidal molecules (benzodipyrrolidones (BDPs)), and donor-acceptor systems (bis(pyrrol-2-yl)squaraines (BPSs)). These compounds were chosen for their structural simplicity and linear π-conjugated conductance paths, which promote high electrical conductance and minimize complications from quantum interference. Single-molecule thermoelectric measurements revealed that despite their low H-L gaps, the Seebeck coefficients of these compounds remain low. The alignment of the frontier orbitals relative to the Fermi energy was found to play a crucial role in determining the Seebeck coefficients, as exemplified by the BDP compounds. Theoretical calculations support these findings and suggest that anchor group selection could further enhance the thermoelectric behavior of these types of molecules.
Collapse
Affiliation(s)
- Nickel Blankevoort
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | - Pablo Bastante
- Departamento
de Física de la Materia Condensada C-III, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ross J. Davidson
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | | | - Abdalghani H. S. Daaoub
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | - Pilar Cea
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Física, Universidad
de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio
de Microscopias Avanzadas (LMA), Universidad
de Zaragoza, 50018 Zaragoza, Spain
| | - Santiago Martin Solans
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Física, Universidad
de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio
de Microscopias Avanzadas (LMA), Universidad
de Zaragoza, 50018 Zaragoza, Spain
| | | | - Sara Sangtarash
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Nicolas Agrait
- Departamento
de Física de la Materia Condensada C-III, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia
de Materiales “Nicolás Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Hatef Sadeghi
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
19
|
Mejía L, Cossio P, Franco I. Microscopic theory, analysis, and interpretation of conductance histograms in molecular junctions. Nat Commun 2023; 14:7646. [PMID: 37996422 PMCID: PMC10667247 DOI: 10.1038/s41467-023-43169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Molecular electronics break-junction experiments are widely used to investigate fundamental physics and chemistry at the nanoscale. Reproducibility in these experiments relies on measuring conductance on thousands of freshly formed molecular junctions, yielding a broad histogram of conductance events. Experiments typically focus on the most probable conductance, while the information content of the conductance histogram has remained unclear. Here we develop a microscopic theory for the conductance histogram by merging the theory of force-spectroscopy with molecular conductance. The procedure yields analytical equations that accurately fit the conductance histogram of a wide range of molecular junctions and augments the information content that can be extracted from them. Our formulation captures contributions to the conductance dispersion due to conductance changes during the mechanical elongation inherent to the experiments. In turn, the histogram shape is determined by the non-equilibrium stochastic features of junction rupture and formation. The microscopic parameters in the theory capture the junction's electromechanical properties and can be isolated from separate conductance and rupture force (or junction-lifetime) measurements. The predicted behavior can be used to test the range of validity of the theory, understand the conductance histograms, design molecular junction experiments with enhanced resolution and molecular devices with more reproducible conductance properties.
Collapse
Affiliation(s)
- Leopoldo Mejía
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA.
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Pilar Cossio
- Center for Computational Mathematics, Flatiron Institute, New York City, NY, 10010, USA
- Center for Computational Biology, Flatiron Institute, New York City, NY, 10010, USA
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia, 050010, Medellín, Colombia
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA.
- Department of Physics, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
20
|
Reimers JR, Li T, Birvé AP, Yang L, Aragonès AC, Fallon T, Kosov DS, Darwish N. Controlling piezoresistance in single molecules through the isomerisation of bullvalenes. Nat Commun 2023; 14:6089. [PMID: 37789027 PMCID: PMC10547723 DOI: 10.1038/s41467-023-41674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Abstract
Nanoscale electro-mechanical systems (NEMS) displaying piezoresistance offer unique measurement opportunities at the sub-cellular level, in detectors and sensors, and in emerging generations of integrated electronic devices. Here, we show a single-molecule NEMS piezoresistor that operates utilising constitutional and conformational isomerisation of individual diaryl-bullvalene molecules and can be switched at 850 Hz. Observations are made using scanning tunnelling microscopy break junction (STMBJ) techniques to characterise piezoresistance, combined with blinking (current-time) experiments that follow single-molecule reactions in real time. A kinetic Monte Carlo methodology (KMC) is developed to simulate isomerisation on the experimental timescale, parameterised using density-functional theory (DFT) combined with non-equilibrium Green's function (NEGF) calculations. Results indicate that piezoresistance is controlled by both constitutional and conformational isomerisation, occurring at rates that are either fast (equilibrium) or slow (non-equilibrium) compared to the experimental timescale. Two different types of STMBJ traces are observed, one typical of traditional experiments that are interpreted in terms of intramolecular isomerisation occurring on stable tipped-shaped metal-contact junctions, and another attributed to arise from junction‒interface restructuring induced by bullvalene isomerisation.
Collapse
Affiliation(s)
- Jeffrey R Reimers
- International Centre for Quantum and Molecular Structures and the Department of Physics, Shanghai University, Shanghai, 200444, China.
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Tiexin Li
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - André P Birvé
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Likun Yang
- International Centre for Quantum and Molecular Structures and the Department of Physics, Shanghai University, Shanghai, 200444, China
| | - Albert C Aragonès
- Department of Materials Science and Physical Chemistry, University of Barcelona, Marti i Franquès 1, 08028, Barcelona, Catalonia, Spain
- Institute of Theoretical and Computational Chemistry, University of Barcelona, Diagonal 645, 08028, Barcelona, Catalonia, Spain
| | - Thomas Fallon
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Daniel S Kosov
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
21
|
Zhou P, Fu Y, Wang M, Qiu R, Wang Y, Stoddart JF, Wang Y, Chen H. Robust Single-Supermolecule Switches Operating in Response to Two Different Noncovalent Interactions. J Am Chem Soc 2023; 145:18800-18811. [PMID: 37590178 DOI: 10.1021/jacs.3c03282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Supramolecular electronics provide an opportunity to introduce molecular assemblies into electronic devices through a combination of noncovalent interactions such as [π···π] and hydrogen-bonding interactions. The fidelity and dynamics of noncovalent interactions hold considerable promise when it comes to building devices with controllable and reproducible switching functions. Here, we demonstrate a strategy for building electronically robust switches by harnessing two different noncovalent interactions between a couple of pyridine derivatives. The single-supermolecule switch is turned ON when compressing the junction enabling [π···π] interactions to dominate the transport, while the switch is turned OFF by stretching the junction to form hydrogen-bonded dimers, leading to a dramatic decrease in conductance. The robustness and reproducibility of these single-supermolecule switches were achieved by modulating the junction with Ångström precision at frequencies of up to 190 Hz while obtaining high ON/OFF ratios of ∼600. The research presented herein opens up an avenue for designing robust bistable mechanoresponsive devices which will find applications in the building of integrated circuits for microelectromechanical systems.
Collapse
Affiliation(s)
- Ping Zhou
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yanjun Fu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Maolin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Renhui Qiu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yuwei Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuping Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Hongliang Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
22
|
Czernek J, Brus J. On the Intermolecular Interactions in Thiophene-Cored Single-Stacking Junctions. Int J Mol Sci 2023; 24:13349. [PMID: 37686156 PMCID: PMC10487960 DOI: 10.3390/ijms241713349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
There have been attempts, both experimental and based on density-functional theory (DFT) modeling, at understanding the factors that govern the electronic conductance behavior of single-stacking junctions formed by pi-conjugated materials in nanogaps. Here, a reliable description of relevant stacked configurations of some thiophene-cored systems is provided by means of high-level quantum chemical approaches. The minimal structures of these configurations, which are found using the dispersion-corrected DFT approach, are employed in calculations that apply the coupled cluster method with singles, doubles and perturbative triples [CCSD(T)] and extrapolations to the complete basis set (CBS) limit in order to reliably quantify the strength of intermolecular binding, while their physical origin is investigated using the DFT-based symmetry-adapted perturbation theory (SAPT) of intermolecular interactions. In particular, for symmetrized S-Tn dimers (where "S" and "T" denote a thiomethyl-containing anchor group and a thiophene segment comprising "n" units, respectively), the CCSD(T)/CBS interaction energies are found to increase linearly with n ≤ 6, and significant conformational differences between the flanking 2-thiophene group in S-T1 and S-T2 are described by the CCSD(T)/CBS and SAPT/CBS computations. These results are put into the context of previous work on charge transport properties of S-Tn and other types of supramolecular junctions.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 16200 Prague, Czech Republic;
| | | |
Collapse
|
23
|
Daaoub A, Morris JMF, Béland VA, Demay‐Drouhard P, Hussein A, Higgins SJ, Sadeghi H, Nichols RJ, Vezzoli A, Baumgartner T, Sangtarash S. Not So Innocent After All: Interfacial Chemistry Determines Charge-Transport Efficiency in Single-Molecule Junctions. Angew Chem Int Ed Engl 2023; 62:e202302150. [PMID: 37029093 PMCID: PMC10953449 DOI: 10.1002/anie.202302150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/09/2023]
Abstract
Most studies in molecular electronics focus on altering the molecular wire backbone to tune the electrical properties of the whole junction. However, it is often overlooked that the chemical structure of the groups anchoring the molecule to the metallic electrodes influences the electronic structure of the whole system and, therefore, its conductance. We synthesised electron-accepting dithienophosphole oxide derivatives and fabricated their single-molecule junctions. We found that the anchor group has a dramatic effect on charge-transport efficiency: in our case, electron-deficient 4-pyridyl contacts suppress conductance, while electron-rich 4-thioanisole termini promote efficient transport. Our calculations show that this is due to minute changes in charge distribution, probed at the electrode interface. Our findings provide a framework for efficient molecular junction design, especially valuable for compounds with strong electron withdrawing/donating backbones.
Collapse
Affiliation(s)
- Abdalghani Daaoub
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - James M. F. Morris
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Vanessa A. Béland
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Paul Demay‐Drouhard
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Amaar Hussein
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Simon J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Hatef Sadeghi
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - Richard J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Andrea Vezzoli
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Thomas Baumgartner
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Sara Sangtarash
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
24
|
Wei Y, Li L, Greenwald JE, Venkataraman L. Voltage-Modulated van der Waals Interaction in Single-Molecule Junctions. NANO LETTERS 2023; 23:567-572. [PMID: 36602221 DOI: 10.1021/acs.nanolett.2c04098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding how molecular geometry affects the electronic properties of single-molecule junctions experimentally has been challenging. Typically, metal-molecule-metal junctions are measured using a break-junction method where electrode separation is mechanically evolving during measurement. Here, to probe the impact of the junction geometry on conductance, we apply a sinusoidal modulation to the molecular junction electrode position. Simultaneously, we probe the nonlinearity of the current-voltage characteristics of each junction through a modulation in the applied bias at a different frequency. In turn, we show that junctions formed with molecules that have different molecule-electrode interfaces exhibit statistically distinguishable Fourier-transformed conductances. In particular, we find a marked bias dependence for the modulation of junctions where transmission is mediated thorough the van der Waals (vdW) interaction. We attribute our findings to voltage-modulated vdW interactions at the single-molecule level.
Collapse
Affiliation(s)
- Yujing Wei
- Department of Chemistry, Columbia University, New York, New York10027, United States
| | - Liang Li
- Department of Chemistry, Columbia University, New York, New York10027, United States
| | - Julia E Greenwald
- Department of Chemistry, Columbia University, New York, New York10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, New York, New York10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York10027, United States
| |
Collapse
|
25
|
Hsu C, Schosser WM, Zwick P, Dulić D, Mayor M, Pauly F, van der Zant HSJ. Mechanical compression in cofacial porphyrin cyclophane pincers. Chem Sci 2022; 13:8017-8024. [PMID: 35919422 PMCID: PMC9278344 DOI: 10.1039/d2sc00937d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022] Open
Abstract
Intra- and intermolecular interactions are dominating chemical processes, and their concerted interplay enables complex nonequilibrium states like life. While the responsible basic forces are typically investigated spectroscopically, a conductance measurement to probe and control these interactions in a single molecule far out of equilibrium is reported here. Specifically, by separating macroscopic metal electrodes, two π-conjugated, bridge-connected porphyrin decks are peeled off on one side, but compressed on the other side due to the covalent mechanical fixation. We observe that the conductance response shows an exceptional exponential rise by two orders of magnitude in individual breaking events during the stretching. Theoretical studies atomistically explain the measured conductance behavior by a mechanically activated increase in through-bond transport and a simultaneous strengthening of through-space coupling. Our results not only reveal the various interacting intramolecular transport channels in a molecular set of levers, but also the molecules' potential to serve as molecular electro-mechanical sensors and switches.
Collapse
Affiliation(s)
- Chunwei Hsu
- Kavli Institute of Nanoscience, Delft University of Technology Lorentzweg 1 Delft 2628 CJ The Netherlands
| | | | - Patrick Zwick
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Diana Dulić
- Department of Physics, Department of Electrical Engineering, Faculty of Physical and Mathematical Sciences, University of Chile Avenida Blanco Encalada 2008 Santiago 8330015 Chile
| | - Marcel Mayor
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
- Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) P. O. Box 3640 76021 Karlsruhe Germany
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU) 510275 Guangzhou China
| | - Fabian Pauly
- Institute of Physics, University of Augsburg 86135 Augsburg Germany
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology Lorentzweg 1 Delft 2628 CJ The Netherlands
| |
Collapse
|
26
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
27
|
Naghibi S, Sangtarash S, Kumar VJ, Wu J, Judd MM, Qiao X, Gorenskaia E, Higgins SJ, Cox N, Nichols RJ, Sadeghi H, Low PJ, Vezzoli A. Redox-Addressable Single-Molecule Junctions Incorporating a Persistent Organic Radical. Angew Chem Int Ed Engl 2022; 61:e202116985. [PMID: 35289977 PMCID: PMC9322687 DOI: 10.1002/anie.202116985] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 12/14/2022]
Abstract
Integrating radical (open-shell) species into non-cryogenic nanodevices is key to unlocking the potential of molecular electronics. While many efforts have been devoted to this issue, in the absence of a chemical/electrochemical potential the open-shell character is generally lost in contact with the metallic electrodes. Herein, single-molecule devices incorporating a 6-oxo-verdazyl persistent radical have been fabricated using break-junction techniques. The open-shell character is retained at room temperature, and electrochemical gating permits in situ reduction to a closed-shell anionic state in a single-molecule transistor configuration. Furthermore, electronically driven rectification arises from bias-dependent alignment of the open-shell resonances. The integration of radical character, transistor-like switching, and rectification in a single molecular component paves the way to further studies of the electronic, magnetic, and thermoelectric properties of open-shell species.
Collapse
Affiliation(s)
- Saman Naghibi
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | | | - Varshini J. Kumar
- School of Molecular SciencesUniversity of Western AustraliaCrawleyWestern Australia6009Australia
| | - Jian‐Zhong Wu
- School of ChemistrySouth China Normal UniversityGuangzhou510006P.R. China
| | - Martyna M. Judd
- Research School of ChemistryAustralian National UniversityCanberraATC 2601Australia
| | - Xiaohang Qiao
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Elena Gorenskaia
- School of Molecular SciencesUniversity of Western AustraliaCrawleyWestern Australia6009Australia
| | - Simon J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Nicholas Cox
- Research School of ChemistryAustralian National UniversityCanberraATC 2601Australia
| | - Richard J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Hatef Sadeghi
- School of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - Paul J. Low
- School of Molecular SciencesUniversity of Western AustraliaCrawleyWestern Australia6009Australia
| | - Andrea Vezzoli
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
- Stephenson Institute for Renewable EnergyUniversity of LiverpoolPeach StreetLiverpoolL69 7ZFUK
| |
Collapse
|
28
|
Dinpajooh M, Nitzan A. Heat conduction in polymer chains: Effect of substrate on the thermal conductance. J Chem Phys 2022; 156:144901. [DOI: 10.1063/5.0087163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In standard molecular junctions, a molecular structure is placed between and connected to metal leads. Understanding how mechanical tuning in such molecular junctions can change heat conductance has interesting applications in nanoscale energy transport. In this work, we use nonequilibrium molecular dynamics simulations to address the effect of stretching on the phononic contribution to the heat conduction of molecular junctions consisting of single long-chain alkanes and various metal leads, such as Ag, Au, Cu, Ni, and Pt. The thermal conductance of such junctions is found to be much smaller than the intrinsic thermal conductance of the polymer and significantly depends on the nature of metal leads as expressed by the metal–molecule coupling and metal vibrational density of states. This behavior is expected and reflects the mismatch of phonon spectra at the metal molecule interfaces. As a function of stretching, we find a behavior similar to what was observed earlier [M. Dinpajooh and A. Nitzan, J. Chem. Phys. 153, 164903 (2020)] for pure polymeric structures. At relatively short electrode distances, where the polyethylene chains are compressed, it is found that the thermal conductances of the molecular junctions remain almost constant as one stretches the polymer chains. At critical electrode distances, the thermal conductances start to increase, reaching the values of the fully extended molecular junctions. Similar behaviors are observed for junctions in which several long-chain alkanes are sandwiched between various metal leads. These findings indicate that this behavior under stretching is an intrinsic property of the polymer chain and not significantly associated with the interfacial structures.
Collapse
Affiliation(s)
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Naghibi S, Sangtarash S, Kumar VJ, Wu J, Judd MM, Qiao X, Gorenskaia E, Higgins SJ, Cox N, Nichols RJ, Sadeghi H, Low PJ, Vezzoli A. Redox‐Addressable Single‐Molecule Junctions Incorporating a Persistent Organic Radical**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Saman Naghibi
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Sara Sangtarash
- School of Engineering University of Warwick Coventry CV4 7AL UK
| | - Varshini J. Kumar
- School of Molecular Sciences University of Western Australia Crawley Western Australia 6009 Australia
| | - Jian‐Zhong Wu
- School of Chemistry South China Normal University Guangzhou 510006 P.R. China
| | - Martyna M. Judd
- Research School of Chemistry Australian National University Canberra ATC 2601 Australia
| | - Xiaohang Qiao
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Elena Gorenskaia
- School of Molecular Sciences University of Western Australia Crawley Western Australia 6009 Australia
| | - Simon J. Higgins
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Nicholas Cox
- Research School of Chemistry Australian National University Canberra ATC 2601 Australia
| | - Richard J. Nichols
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Hatef Sadeghi
- School of Engineering University of Warwick Coventry CV4 7AL UK
| | - Paul J. Low
- School of Molecular Sciences University of Western Australia Crawley Western Australia 6009 Australia
| | - Andrea Vezzoli
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
- Stephenson Institute for Renewable Energy University of Liverpool Peach Street Liverpool L69 7ZF UK
| |
Collapse
|
30
|
Mejía L, Kleinekathöfer U, Franco I. Coherent and incoherent contributions to molecular electron transport. J Chem Phys 2022; 156:094302. [DOI: 10.1063/5.0079708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We numerically isolate the limits of validity of the Landauer approximation to describe charge transport along molecular junctions in condensed phase environments. To do so, we contrast Landauer with exact time-dependent non-equilibrium Green’s function quantum transport computations in a two-site molecular junction subject to exponentially correlated noise. Under resonant transport conditions, we find Landauer accuracy to critically depend on intramolecular interactions. By contrast, under nonresonant conditions, the emergence of incoherent transport routes that go beyond Landauer depends on charging and discharging processes at the electrode–molecule interface. In both cases, decreasing the rate of charge exchange between the electrodes and molecule and increasing the interaction strength with the thermal environment cause Landauer to become less accurate. The results are interpreted from a time-dependent perspective where the noise prevents the junction from achieving steady-state and from a fully quantum perspective where the environment introduces dephasing in the dynamics. Using these results, we analyze why the Landauer approach is so useful to understand experiments, isolate regimes where it fails, and propose schemes to chemically manipulate the degree of transport coherence.
Collapse
Affiliation(s)
- Leopoldo Mejía
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA
- Department of Physics, University of Rochester, Rochester, New York 14627-0216, USA
| |
Collapse
|
31
|
Pan Z, Chen L, Tang C, Hu Y, Yuan S, Gao T, Shi J, Shi J, Yang Y, Hong W. The Evolution of the Charge Transport Mechanism in Single-Molecule Break Junctions Revealed by Flicker Noise Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107220. [PMID: 34927352 DOI: 10.1002/smll.202107220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The electronic noise characterization of single-molecule devices provides insights into the mechanisms of charge transport. In this work, it is reported that flicker noise can serve as an indicator of the time-dependent evolution of charge transport mechanisms in the single-molecule break junction process. By introducing time-frequency analysis, the authors find that flicker noise components of the molecule junction show time evolution behavior in the dynamic break junction process. A further investigation of the power-law dependence of flicker with conductance during the dynamic break junction process reveals that the mechanism of charge transport transits from the through-space transport to the through-bond transport, and is dominated by through-space transport again when the junction is about to rupture. The authors' results provide a flicker noise-based way to characterize the time-dependent evolution of charge transport mechanisms in single-molecule break junctions.
Collapse
Affiliation(s)
- Zhichao Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yong Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
| | - Saisai Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tengyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
32
|
Abstract
Single-molecule junctions - devices fabricated by electrically connecting a single molecule to two electrodes - can respond to a variety of stimuli, that include electrostatic/electrochemical gating, light, other chemical species, and mechanical forces. When the latter is used, the device becomes mechanoresistive which means that its electrical resistance/conductance changes upon application of a mechanical stress. The mechanoresistive phenomenon can arise at the metal-molecule interface or it can be embedded in the molecular backbone, and several strategies to attain high reproducibility, high sensitivity and reversible behaviour have been developed over the years. These devices offer a unique insight on the process of charge transfer/transport at the metal/molecule interface, and have potential for applications as nanoelectromechanical systems, integrating electrical and mechanical functionality at the nanoscale. In this review, the status of the field is presented, with a focus on those systems that proved to have reversible behaviour, along with a discussion on the techniques used to fabricate and characterise mechanoresistive devices.
Collapse
Affiliation(s)
- Andrea Vezzoli
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK.
- Stephenson Institute for Renewable Energy, University of Liverpool, Peach Streat, Liverpool L69 7ZF, UK
| |
Collapse
|