1
|
Nolen JR, Overvig AC, Cotrufo M, Alù A. Local control of polarization and geometric phase in thermal metasurfaces. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01763-6. [PMID: 39179797 DOI: 10.1038/s41565-024-01763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/17/2024] [Indexed: 08/26/2024]
Abstract
Thermal emission from a hot body is inherently challenging to control due to its incoherent nature. Recent advances have shown that patterned surfaces can transform thermal emission into partially coherent beams with tailored directionality and frequency selectivity. Here we experimentally demonstrate polarization-selective, unidirectional and narrowband thermal emission using single-layer metasurfaces. By implementing polarization gradients across the surface, we unveil a generalization of the photonic Rashba effect from circular polarizations to any pair of orthogonal polarizations and apply it to thermal emission. Leveraging pointwise specification of arbitrary elliptical polarization, we implement a thermal geometric phase and leverage it to prove previous theoretical predictions that asymmetric chiral emission is possible without violating reciprocity. This general platform can be extended to other frequency regimes in efforts to compactify metasurface optics technologies without the need for external coherent sources.
Collapse
Affiliation(s)
- J Ryan Nolen
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
| | - Adam C Overvig
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
| | - Michele Cotrufo
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA.
- Physics Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
2
|
Niemann R, Mueller NS, Wasserroth S, Lu G, Wolf M, Caldwell JD, Paarmann A. Spectroscopic and Interferometric Sum-Frequency Imaging of Strongly Coupled Phonon Polaritons in SiC Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312507. [PMID: 38895889 DOI: 10.1002/adma.202312507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Phonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near-field optical microscopy and far-field reflection spectroscopy. Here, infrared-visible sum-frequency spectro-microscopy is introduced as a tool for spectroscopic imaging of phonon polaritons. The technique simultaneously provides sub-wavelength spatial resolution and highly-resolved spectral resonance information. This is implemented by resonantly exciting polaritons using a tunable infrared laser and wide-field microscopic detection of the upconverted light. The technique is employed to image hybridization and strong coupling of localized and propagating surface phonon polaritons in a metasurface of SiC micropillars. Spectro-microscopy allows to measure the polariton dispersion simultaneously in momentum space by angle-dependent resonance imaging, and in real space by polariton interferometry. Notably, it is possible to directly image how strong coupling affects the spatial localization of polaritons, inaccessible with conventional spectroscopic techniques. The formation of edge states is observed at excitation frequencies where strong coupling prevents polariton propagation into the metasurface. The technique is applicable to the wide range of polaritonic materials with broken inversion symmetry and can be used as a fast and non-perturbative tool to image polariton hybridization and propagation.
Collapse
Affiliation(s)
- Richarda Niemann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Niclas S Mueller
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Sören Wasserroth
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Guanyu Lu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Present address: Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Martin Wolf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Interdisciplinary Materials Science Graduate Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander Paarmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| |
Collapse
|
3
|
Fan Z, Hwang T, Lin S, Chen Y, Wong ZJ. Directional thermal emission and display using pixelated non-imaging micro-optics. Nat Commun 2024; 15:4544. [PMID: 38806506 PMCID: PMC11133454 DOI: 10.1038/s41467-024-48826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Thermal radiation is intrinsically broadband, incoherent and non-directional. The ability to beam thermal energy preferentially in one direction is not only of fundamental importance, but it will enable high radiative efficiency critical for many thermal sensing, imaging, and energy devices. Over the years, different photonic materials and structures have been designed utilizing resonant and propagating modes to generate directional thermal emission. However, such thermal emission is narrowband and polarised, leading to limited thermal transfer efficiency. Here we experimentally demonstrate ultrabroadband polarisation-independent directional control of thermal radiation with a pixelated directional micro-emitter. Our compact pixelated directional micro-emitter facilitates tunable angular control of thermal radiation through non-imaging optical principles, producing a large emissivity contrast at different view angles. Using this platform, we further create a pixelated infrared display, where information is only observable at certain directions. Our pixelated non-imaging micro-optics approach can enable efficient radiative cooling, infrared spectroscopy, thermophotovoltaics, and thermal camouflaging.
Collapse
Affiliation(s)
- Ziwei Fan
- Department of Aerospace Engineering, Texas A&M University, College Station, USA
- School of Electronic Science and Technology, Eastern Institute of Technology, Ningbo, China
| | - Taeseung Hwang
- Department of Materials Science and Engineering, Texas A&M University, College Station, USA
| | - Sam Lin
- Department of Materials Science and Engineering, Texas A&M University, College Station, USA
| | - Yixin Chen
- Department of Materials Science and Engineering, Texas A&M University, College Station, USA
| | - Zi Jing Wong
- Department of Aerospace Engineering, Texas A&M University, College Station, USA.
- School of Electronic Science and Technology, Eastern Institute of Technology, Ningbo, China.
- Department of Materials Science and Engineering, Texas A&M University, College Station, USA.
| |
Collapse
|
4
|
Esfidani SM, Tadjer MJ, Folland TG. Lifetime and Molecular Coupling in Surface Phonon Polariton Resonators. ACS OMEGA 2024; 9:21136-21143. [PMID: 38764696 PMCID: PMC11097381 DOI: 10.1021/acsomega.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Surface phonon polariton (SPhP) modes in polar semiconductors offer a low-loss platform for infrared nanophotonics and sensing. However, the efficient design of polariton-enhanced sensors requires a quantitative understanding of how to engineer the frequency and lifetime of SPhPs in nanophotonic structures. Here, we study organ-pipe resonances in 4H-SiC trenches as a prototype system for infrared sensing. We use a transmission line framework that accounts for the field distribution within the trench, accurately predicting mode frequency and lifetime when compared against finite element method (FEM) electromagnetic calculations. Accounting for the electric field profile across the gap is critical in our model to accurately predict mode frequencies, quality factor (Q factor), and reflectance, outperforming previous circuit models developed in the literature. Beyond structural simulation, our model can provide insights into the frequency ranges in the Reststrahlen band where enhanced sensor activity should be present. The radiative lifetime is significantly enlarged close to the longitudinal optic phonon, restricting sensor efficiency at this wavelength range. This pushes the optimal frequency for sensing closer to the center of the Reststrahlen band than might be naively expected. This model ultimately demonstrates the primary challenge of designing SPhP-based sensors: only a relatively narrow region of the Reststrahlen band offers efficient sensing, guiding future designs for infrared spectroscopy.
Collapse
Affiliation(s)
| | - Marko J. Tadjer
- U.S.
Naval Research Laboratory,4555 Overlook Ave SW, Washington, District of Columbia20375,United States
| | - Thomas G. Folland
- Department
of Physics and Astronomy, The University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
5
|
Sun K, Levy U, Han Z. Exploiting Zone-Folding Induced Quasi-Bound Modes to Achieve Highly Coherent Thermal Emissions. NANO LETTERS 2024; 24:764-769. [PMID: 38166141 DOI: 10.1021/acs.nanolett.3c04587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Thermal emissions with high coherence, although not as high as those of lasers, still play a crucial role in many practical applications. In this work, by exploiting the geometric perturbation-induced optical lattice tripling and the associated Brillion zone folding effect, we propose and investigate thermal emissions in the mid-infrared with simultaneous high temporal and spatial coherence. In contrast with the case of period-doubling perturbation in our previous work, the steeper part of the guided mode dispersion band will be folded to the high-symmetry Γ point in the ternary grating. In this case, a specific emission wavelength corresponds to only a very small range of wavevectors. Consequently, apart from the high temporal coherence characterized by an experimental bandwidth around 30 nm, the achieved thermal emissions also feature ultrahigh spatial coherence. Calculations show that at the thermal emission wavelengths in the mid-infrared, the spatial coherence length can easily reach up to mm scale.
Collapse
Affiliation(s)
- Kaili Sun
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Uriel Levy
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhanghua Han
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
6
|
Chu QQ, Zhang FY, Zhang Y, Zhu SN, Liu H. Indirect measurement of infrared absorption spectrum through thermal emission of meta-cavity array. OPTICS EXPRESS 2023; 31:39832-39840. [PMID: 38041297 DOI: 10.1364/oe.504375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
Controlling thermal emission is essential for various infrared spectroscopy applications. Metasurfaces can be utilized to control multiple degrees of freedom of thermal emission, enabling the compact thermal emission materials and devices. Infrared spectroscopy such as FTIR (Fourier transform infrared spectroscopy), usually requires external infrared radiation source and complex spectroscopic devices for absorption spectrum measurement, which hinders the implementation of integrated compact and portable measurement equipment. Measuring absorption spectrum through the thermal emission of pixelated thermal emitter array can facilitate the integration and miniaturization of measurement setup, which is highly demanded for on-chip spectroscopy applications. Here, we experimentally demonstrate an integrated technology that allows for indirect measurement of the absorption spectrum through the thermal emission of meta-cavity array. This indirect measurement method opens a new avenue for compact infrared spectroscopy analysis.
Collapse
|
7
|
Li S, Simpson RE, Shin S. Enhanced far-field coherent thermal emission using mid-infrared bilayer metasurfaces. NANOSCALE 2023; 15:15965-15974. [PMID: 37553963 DOI: 10.1039/d3nr02079g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A classical thermal source, such as an incandescent filament, radiates according to Planck's law. The feasibility of super-Planckian radiation has been investigated with sub-wavelength-sized sources in the last decade. In such sources, a crystal-dependent coupling of photons and optical phonons is possible at thermal energies corresponding to that at room temperature. This interaction can be used to tailor the far-field thermal emission in a coherent manner; however, understanding heat transfer during this process is still nascent. Here, we used a novel measurement platform to quantify thermal signals in a Ge2Sb2Te5/SiO2 nanoribbon structure. We were able to separate and quantify the radiated and conducted heat transfer mechanisms. The thermal emission from the Ge2Sb2Te5/SiO2 nanoribbons was enhanced by 3.5× compared to that of a bare SiO2 nanoribbon. Our model revealed that this enhancement was directly due to polaritonic heat transfer, which was possible due to the large and lossless dielectric permittivity of Ge2Sb2Te5 at mid-IR frequencies. This study directly probes the far-field emission with a thermal gradient stimulated by Joule heating in temperature ranges from 100 to 400 K, which bridges the gap between mid-IR optics and thermal engineering.
Collapse
Affiliation(s)
- Sichao Li
- Department of Mechanical Engineering, Collage of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore.
| | - Robert E Simpson
- School of Engineering, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sunmi Shin
- Department of Mechanical Engineering, Collage of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore.
| |
Collapse
|
8
|
Navajas D, Pérez-Escudero JM, Martínez-Hernández ME, Goicoechea J, Liberal I. Addressing the Impact of Surface Roughness on Epsilon-Near-Zero Silicon Carbide Substrates. ACS PHOTONICS 2023; 10:3105-3114. [PMID: 37743935 PMCID: PMC10515697 DOI: 10.1021/acsphotonics.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 09/26/2023]
Abstract
Epsilon-near-zero (ENZ) media have been very actively investigated due to their unconventional wave phenomena and strengthened nonlinear response. However, the technological impact of ENZ media will be determined by the quality of realistic ENZ materials, including material loss and surface roughness. Here, we provide a comprehensive experimental study of the impact of surface roughness on ENZ substrates. Using silicon carbide (SiC) substrates with artificially induced roughness, we analyze samples whose roughness ranges from a few to hundreds of nanometer size scales. It is concluded that ENZ substrates with roughness in the few nanometer scale are negatively affected by coupling to longitudinal phonons and strong ENZ fields normal to the surface. On the other hand, when the roughness is in the hundreds of nanometers scale, the ENZ band is found to be more robust than dielectric and surface phonon polariton (SPhP) bands.
Collapse
Affiliation(s)
- David Navajas
- Department of Electrical,
Electronic and Communications Engineering, Institute of Smart Cities
(ISC), Public University of Navarre (UPNA), 31006 Pamplona, Spain
| | - José M. Pérez-Escudero
- Department of Electrical,
Electronic and Communications Engineering, Institute of Smart Cities
(ISC), Public University of Navarre (UPNA), 31006 Pamplona, Spain
| | - María Elena Martínez-Hernández
- Department of Electrical,
Electronic and Communications Engineering, Institute of Smart Cities
(ISC), Public University of Navarre (UPNA), 31006 Pamplona, Spain
| | - Javier Goicoechea
- Department of Electrical,
Electronic and Communications Engineering, Institute of Smart Cities
(ISC), Public University of Navarre (UPNA), 31006 Pamplona, Spain
| | - Iñigo Liberal
- Department of Electrical,
Electronic and Communications Engineering, Institute of Smart Cities
(ISC), Public University of Navarre (UPNA), 31006 Pamplona, Spain
| |
Collapse
|
9
|
Giri A, Walton SG, Tomko J, Bhatt N, Johnson MJ, Boris DR, Lu G, Caldwell JD, Prezhdo OV, Hopkins PE. Ultrafast and Nanoscale Energy Transduction Mechanisms and Coupled Thermal Transport across Interfaces. ACS NANO 2023; 17:14253-14282. [PMID: 37459320 PMCID: PMC10416573 DOI: 10.1021/acsnano.3c02417] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 08/09/2023]
Abstract
The coupled interactions among the fundamental carriers of charge, heat, and electromagnetic fields at interfaces and boundaries give rise to energetic processes that enable a wide array of technologies. The energy transduction among these coupled carriers results in thermal dissipation at these surfaces, often quantified by the thermal boundary resistance, thus driving the functionalities of the modern nanotechnologies that are continuing to provide transformational benefits in computing, communication, health care, clean energy, power recycling, sensing, and manufacturing, to name a few. It is the purpose of this Review to summarize recent works that have been reported on ultrafast and nanoscale energy transduction and heat transfer mechanisms across interfaces when different thermal carriers couple near or across interfaces. We review coupled heat transfer mechanisms at interfaces of solids, liquids, gasses, and plasmas that drive the resulting interfacial heat transfer and temperature gradients due to energy and momentum coupling among various combinations of electrons, vibrons, photons, polaritons (plasmon polaritons and phonon polaritons), and molecules. These interfacial thermal transport processes with coupled energy carriers involve relatively recent research, and thus, several opportunities exist to further develop these nascent fields, which we comment on throughout the course of this Review.
Collapse
Affiliation(s)
- Ashutosh Giri
- Department
of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Scott G. Walton
- Plasma
Physics Division, Naval Research Laboratory, Washington, DC 22032, United States
| | - John Tomko
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Niraj Bhatt
- Department
of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Michael J. Johnson
- Plasma
Physics Division, Naval Research Laboratory, Washington, DC 22032, United States
| | - David R. Boris
- Plasma
Physics Division, Naval Research Laboratory, Washington, DC 22032, United States
| | - Guanyu Lu
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joshua D. Caldwell
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Interdisciplinary
Materials Science, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Patrick E. Hopkins
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Materials Science and Engineering, University
of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
10
|
John-Herpin A, Tittl A, Kühner L, Richter F, Huang SH, Shvets G, Oh SH, Altug H. Metasurface-Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2110163. [PMID: 35638248 DOI: 10.1002/adma.202110163] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Infrared spectroscopy provides unique information on the composition and dynamics of biochemical systems by resolving the characteristic absorption fingerprints of their constituent molecules. Based on this inherent chemical specificity and the capability for label-free, noninvasive, and real-time detection, infrared spectroscopy approaches have unlocked a plethora of breakthrough applications for fields ranging from environmental monitoring and defense to chemical analysis and medical diagnostics. Nanophotonics has played a crucial role for pushing the sensitivity limits of traditional far-field spectroscopy by using resonant nanostructures to focus the incident light into nanoscale hot-spots of the electromagnetic field, greatly enhancing light-matter interaction. Metasurfaces composed of regular arrangements of such resonators further increase the design space for tailoring this nanoscale light control both spectrally and spatially, which has established them as an invaluable toolkit for surface-enhanced spectroscopy. Starting from the fundamental concepts of metasurface-enhanced infrared spectroscopy, a broad palette of resonator geometries, materials, and arrangements for realizing highly sensitive metadevices is showcased, with a special focus on emerging systems such as phononic and 2D van der Waals materials, and integration with waveguides for lab-on-a-chip devices. Furthermore, advanced sensor functionalities of metasurface-based infrared spectroscopy, including multiresonance, tunability, dielectrophoresis, live cell sensing, and machine-learning-aided analysis are highlighted.
Collapse
Affiliation(s)
- Aurelian John-Herpin
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Lucca Kühner
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Felix Richter
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
11
|
Qiu W, Zhou L, Wang Y, Jiang X, Huang C, Zhou L, Zhan Q, Hu J. Strong coupling of multiple optical interface modes with ultra-narrow linewidth in one-dimensional topological photonic heterostructures. OPTICS EXPRESS 2023; 31:20457-20470. [PMID: 37381440 DOI: 10.1364/oe.492299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023]
Abstract
Coherent coupling of optical modes with a high Q-factor underpins realization of efficient light-matter interaction with multi-channels in resonant nanostructures. Here we theoretically studied the strong longitudinal coupling of three topological photonic states (TPSs) in a one-dimensional topological photonic crystal heterostructure embedded with a graphene monolayer in the visible frequencies. It is found that the three TPSs can strongly interplay with one another in the longitudinal direction, enabling a large Rabi splitting (∼ 48 meV) in spectral response. The triple-band perfect absorption and selective longitudinal field confinement have been demonstrated, where the linewidth of hybrid modes can reach 0.2 nm with Q-factor up to 2.6 × 103. Mode hybridization of dual- and triple-TPSs were investigated by calculation of the field profiles and Hopfield coefficients of the hybrid modes. Moreover, simulation results further show that resonant frequencies of the three hybrid TPSs can be actively controlled by simply changing the incident angle or structural parameters, which are nearly polarization independent in this strong coupling system. With the multichannel, narrow-band light trapping and selectively strong field localization in this simple multilayer regime, one can envision new possibilities for developing the practical topological photonic devices for on-chip optical detection, sensing, filtering, and light-emitting.
Collapse
|
12
|
Lu G, Pan Z, Gubbin CR, Kowalski RA, De Liberato S, Li D, Caldwell JD. Launching and Manipulation of Higher-Order In-Plane Hyperbolic Phonon Polaritons in Low-Dimensional Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300301. [PMID: 36892954 DOI: 10.1002/adma.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Indexed: 06/02/2023]
Abstract
Hyperbolic phonon polaritons (HPhPs) are stimulated by coupling infrared (IR) photons with the polar lattice vibrations. Such HPhPs offer low-loss, highly confined light propagation at subwavelength scales with out-of-plane or in-plane hyperbolic wavefronts. For HPhPs, while a hyperbolic dispersion implies multiple propagating modes with a distribution of wavevectors at a given frequency, so far it has been challenging to experimentally launch and probe the higher-order modes that offer stronger wavelength compression, especially for in-plane HPhPs. In this work, the experimental observation of higher-order in-plane HPhP modes stimulated on a 3C-SiC nanowire (NW)/α-MoO3 heterostructure is reported where leveraging both the low-dimensionality and low-loss nature of the polar NWs, higher-order HPhPs modes within 2D α-MoO3 crystal are launched by the 1D 3C-SiC NW. The launching mechanism is further studied and the requirements for efficiently launching of such higher-order modes are determined. In addition, by altering the geometric orientation between the 3C-SiC NW and α-MoO3 crystal, the manipulation of higher-order HPhP dispersions as a method of tuning is demonstrated. This work illustrates an extremely anisotropic low dimensional heterostructure platform to confine and configure electromagnetic waves at the deep-subwavelength scales for a range of IR applications including sensing, nano-imaging, and on-chip photonics.
Collapse
Affiliation(s)
- Guanyu Lu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Zhiliang Pan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Christopher R Gubbin
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ryan A Kowalski
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, 37212, USA
| | - Simone De Liberato
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
13
|
He M, Nolen JR, Nordlander J, Cleri A, Lu G, Arnaud T, McIlwaine NS, Diaz-Granados K, Janzen E, Folland TG, Edgar JH, Maria JP, Caldwell JD. Coupled Tamm Phonon and Plasmon Polaritons for Designer Planar Multiresonance Absorbers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209909. [PMID: 36843308 DOI: 10.1002/adma.202209909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Indexed: 05/19/2023]
Abstract
Wavelength-selective absorbers (WS-absorbers) are of interest for various applications, including chemical sensing and light sources. Lithography-free fabrication of WS-absorbers can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors (DBRs) on plasmonic materials. While multifrequency and nearly arbitrary spectra can be realized with TPPs via inverse design algorithms, demanding and thick DBRs are required for high quality-factors (Q-factors) and/or multiband TPP-absorbers, increasing the cost and reducing fabrication error tolerance. Here, high Q-factor multiband absorption with limited DBR layers (3 layers) is experimentally demonstrated by Tamm hybrid polaritons (THPs) formed by coupling TPPs and Tamm phonon polaritons when modal frequencies are overlapped. Compared to the TPP component, the Q-factors of THPs are improved twofold, and the angular broadening is also reduced twofold, facilitating applications where narrow-band and nondispersive WS-absorbers are needed. Moreover, an open-source algorithm is developed to inversely design THP-absorbers consisting of anisotropic media and exemplify that the modal frequencies can be assigned to desirable positions. Furthermore, it is demonstrated that inversely designed THP-absorbers can realize same spectral resonances with fewer DBR layers than a TPP-absorber, thus reducing the fabrication complexity and enabling more cost-effective, lithography-free, wafer-scale WS-absorberss for applications such as free-space communications and gas sensing.
Collapse
Affiliation(s)
- Mingze He
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37240, USA
| | - Joshua Ryan Nolen
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37240, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Josh Nordlander
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Angela Cleri
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Guanyu Lu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37240, USA
| | - Thiago Arnaud
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA
- Research Experience for Undergraduates (REU) program, Vanderbilt Institute for Nanoscale Science and Engineering (VINSE), Nashville, TN, 37240, USA
| | - Nathaniel S McIlwaine
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Katja Diaz-Granados
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37240, USA
| | - Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Thomas G Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Physics and Astronomy, The University of Iowa, Iowa City, IA, 52242, USA
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Jon-Paul Maria
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37240, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37240, USA
- Sensorium Technological Laboratories, Nashville, TN, 37205, USA
| |
Collapse
|
14
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
15
|
Larciprete MC, Dereshgi SA, Centini M, Aydin K. Tuning and hybridization of surface phonon polaritons in α-MoO 3 based metamaterials. OPTICS EXPRESS 2022; 30:12788-12796. [PMID: 35472908 DOI: 10.1364/oe.453726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
We propose an effective medium approach to tune and control surface phonon polariton dispersion relations along the three main crystallographic directions of α-phase molybdenum trioxide. We show that a metamaterial consisting of subwavelength air inclusions into the α-MoO3 matrix displays new absorption modes producing a split of the Reststrahlen bands of the crystal and creating new branches of phonon polaritons. In particular, we report hybridization of bulk and surface polariton modes by tailoring metamaterials' structural parameters. Theoretical predictions obtained with the effective medium approach are validated by full-field electromagnetic simulations using finite difference time domain method. Our study sheds light on the use of effective medium theory for modeling and predicting wavefront polaritons. Our simple yet effective approach could potentially enable different functionalities for hyperbolic infrared metasurface devices and circuits on a single compact platform for on-chip infrared photonics.
Collapse
|
16
|
He Z, Xu C, He W, He J, Zhou Y, Li F. Principle and Applications of Multimode Strong Coupling Based on Surface Plasmons. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1242. [PMID: 35457950 PMCID: PMC9024653 DOI: 10.3390/nano12081242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/27/2022] [Accepted: 04/03/2022] [Indexed: 11/16/2022]
Abstract
In the past decade, strong coupling between light and matter has transitioned from a theoretical idea to an experimental reality. This represents a new field of quantum light-matter interaction, which makes the coupling strength comparable to the transition frequencies in the system. In addition, the achievement of multimode strong coupling has led to such applications as quantum information processing, lasers, and quantum sensors. This paper introduces the theoretical principle of multimode strong coupling based on surface plasmons and reviews the research related to the multimode interactions between light and matter. Perspectives on the future development of plasmonic multimode coupling are also discussed.
Collapse
Affiliation(s)
- Zhicong He
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China; (Z.H.); (C.X.); (W.H.); (J.H.); (Y.Z.)
- School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Intelligent Transportation Technology and Device, Hubei Polytechnic University, Huangshi 435003, China
| | - Cheng Xu
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China; (Z.H.); (C.X.); (W.H.); (J.H.); (Y.Z.)
| | - Wenhao He
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China; (Z.H.); (C.X.); (W.H.); (J.H.); (Y.Z.)
| | - Jinhu He
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China; (Z.H.); (C.X.); (W.H.); (J.H.); (Y.Z.)
| | - Yunpeng Zhou
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China; (Z.H.); (C.X.); (W.H.); (J.H.); (Y.Z.)
| | - Fang Li
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China; (Z.H.); (C.X.); (W.H.); (J.H.); (Y.Z.)
| |
Collapse
|
17
|
Lu G, Gubbin CR, Nolen JR, Folland TG, Diaz-Granados K, Kravchenko II, Spencer JA, Tadjer MJ, Glembocki OJ, De Liberato S, Caldwell JD. Collective Phonon-Polaritonic Modes in Silicon Carbide Subarrays. ACS NANO 2022; 16:963-973. [PMID: 34957830 DOI: 10.1021/acsnano.1c08557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Localized surface phonon polaritons (LSPhPs) can be implemented to engineer light-matter interactions through nanoscale patterning for a range of midinfrared application spaces. However, the polar material systems studied to date have mainly focused on simple designs featuring a single element in the periodic unit cell. Increasing the complexity of the unit cell can serve to modify the resonant near-fields and intra- and inter-unit-cell coupling as well as to dictate spectral tuning in the far-field. In this work, we exploit more complicated unit-cell structures to realize LSPhP modes with additional degrees of design freedom, which are largely unexplored. Collectively excited LSPhP modes with distinctly symmetric and antisymmetric near-fields are supported in these subarray designs, which are based on nanopillars that are scaled by the number of subarray elements to ensure a constant unit-cell size. Moreover, we observe an anomalous mode-matching of the collective symmetric mode in our fabricated subarrays that is robust to changing numbers of pillars within the subarrays as well as to defects intentionally introduced in the form of missing pillars. This work therefore illustrates the hierarchical design of tailored LSPhP resonances and modal near-field profiles simultaneously for a variety of IR applications such as surface-enhanced spectroscopies and biochemical sensing.
Collapse
Affiliation(s)
- Guanyu Lu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Christopher R Gubbin
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - J Ryan Nolen
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Thomas G Folland
- School of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Katja Diaz-Granados
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Ivan I Kravchenko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Joseph A Spencer
- US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Marko J Tadjer
- US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Orest J Glembocki
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Simone De Liberato
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
18
|
Gubbin CR, De Liberato S. Polaritonic quantization in nonlocal polar materials. J Chem Phys 2022; 156:024111. [PMID: 35032993 DOI: 10.1063/5.0076234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the Reststrahlen region, between the transverse and longitudinal phonon frequencies, polar dielectric materials respond metallically to light, and the resulting strong light-matter interactions can lead to the formation of hybrid quasiparticles termed surface phonon polaritons. Recent works have demonstrated that when an optical system contains nanoscale polar elements, these excitations can acquire a longitudinal field component as a result of the material dispersion of the lattice, leading to the formation of secondary quasiparticles termed longitudinal-transverse polaritons. In this work, we build on previous macroscopic electromagnetic theories, developing a full second-quantized theory of longitudinal-transverse polaritons. Beginning from the Hamiltonian of the light-matter system, we treat distortion to the lattice, introducing an elastic free energy. We then diagonalize the Hamiltonian, demonstrating that the equations of motion for the polariton are equivalent to those of macroscopic electromagnetism and quantize the nonlocal operators. Finally, we demonstrate how to reconstruct the electromagnetic fields in terms of the polariton states and explore polariton induced enhancements of the Purcell factor. These results demonstrate how nonlocality can narrow, enhance, and spectrally tune near-field emission with applications in mid-infrared sensing.
Collapse
Affiliation(s)
- Christopher R Gubbin
- Department of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
| | - Simone De Liberato
- Department of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
19
|
Yadav A, Kumari R, Varshney SK, Lahiri B. Tunable phonon-plasmon hybridization in α-MoO 3-graphene based van der Waals heterostructures. OPTICS EXPRESS 2021; 29:33171-33183. [PMID: 34809134 DOI: 10.1364/oe.434993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The plasmon-phonon hybridization behavior between anisotropic phonon polaritons (APhP) of orthorhombic phase Molybdenum Trioxide (α - MoO3) and the plasmon-polaritons of Graphene layer - forming a van der Waals (vdW) heterostructure is investigated theoretically in this paper. It is found that in-plane APhP shows strong interaction with graphene plasmons lying in their close vicinity, leading to large Rabi splitting. Anisotropic behavior of biaxial MoO3 shows the polarization-dependent response with strong anti-crossing behavior at 0.55 eV and 0.3 eV of graphene's Fermi potential for [100] and [001] crystalline directions, respectively. Numerical results reveal unusual electric field confinement for the two arms of enhanced hybrid modes: the first being confined in the graphene layer representing plasmonic-like behavior. The second shows volume confined zigzag pattern in hyperbolic MoO3. It is also found that the various plasmon-phonon hybridized modes could be wavelength tuned, simply by varying the Fermi potential of the graphene layer. The coupling response of the hybrid structure is studied analytically using the coupled oscillator model. Furthermore, we also infer upon the coupling strength and frequency splitting between the two layers with respect to their structural parameters and interlayer spacing. Our work will provide an insight into the active tunable property of hybrid van der Waals (vdW) structure for their potential application in sensors, detectors, directional spontaneous emission, as well as for the tunable control of the propagating polaritons in fields of flat dispersion where strong localization of photons can be achieved, popularly known as the flatband optics.
Collapse
|