1
|
Patrawalla NY, Liebendorfer K, Kishore V. An innovative 4D printing approach for fabrication of anisotropic collagen scaffolds. Biofabrication 2024; 17:015002. [PMID: 39321844 PMCID: PMC11499585 DOI: 10.1088/1758-5090/ad7f8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Collagen anisotropy is known to provide the essential topographical cues to guide tissue-specific cell function. Recent work has shown that extrusion-based printing using collagenous inks yield 3D scaffolds with high geometric precision and print fidelity. However, these scaffolds lack collagen anisotropy. In this study, extrusion-based 3D printing was combined with a magnetic alignment approach in an innovative 4D printing scheme to generate 3D collagen scaffolds with high degree of collagen anisotropy. Specifically, the 4D printing process parameters-collagen (Col):xanthan gum (XG) ratio (Col:XG; 1:1, 4:1, 9:1 v/v), streptavidin-coated magnetic particle concentration (SMP; 0, 0.2, 0.4 mg ml-1), and print flow speed (2, 3 mm s-1)-were modulated and the effects of these parameters on rheological properties, print fidelity, and collagen alignment were assessed. Further, the effects of collagen anisotropy on human mesenchymal stem cell (hMSC) morphology, orientation, metabolic activity, and ligamentous differentiation were investigated. Results showed that increasing the XG composition (Col:XG 1:1) enhanced ink viscosity and yielded scaffolds with good print fidelity but poor collagen alignment. On the other hand, use of inks with lower XG composition (Col:XG 4:1 and 9:1) together with 0.4 mg ml-1SMP concentration yielded scaffolds with high degree of collagen alignment albeit with suboptimal print fidelity. Modulating the print flow speed conditions (2 mm s-1) with 4:1 Col:XG inks and 0.4 mg ml-1SMP resulted in improved print fidelity of the collagen scaffolds while retaining high level of collagen anisotropy. Cell studies revealed hMSCs orient uniformly on aligned collagen scaffolds. More importantly, collagen anisotropy was found to trigger tendon or ligament-like differentiation of hMSCs. Together, these results suggest that 4D printing is a viable strategy to generate anisotropic collagen scaffolds with significant potential for use in tendon and ligament tissue engineering applications.
Collapse
Affiliation(s)
- Nashaita Y Patrawalla
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, United States of America
| | - Karly Liebendorfer
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, United States of America
| | - Vipuil Kishore
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, United States of America
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, United States of America
| |
Collapse
|
2
|
Lu HH, Ege D, Salehi S, Boccaccini AR. Ionic medicine: Exploiting metallic ions to stimulate skeletal muscle tissue regeneration. Acta Biomater 2024:S1742-7061(24)00625-1. [PMID: 39454933 DOI: 10.1016/j.actbio.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The regeneration of healthy and functional skeletal muscle at sites of injuries and defects remains a challenge. Mimicking the natural environment surrounding skeletal muscle cells and the application of electrical and mechanical stimuli are approaches being investigated to promote muscle tissue regeneration. Likewise, chemical stimulation with therapeutic (biologically active) ions is an emerging attractive alternative in the tissue engineering and regenerative medicine fields, specifically to trigger myoblast proliferation, myogenic differentiation, myofiber formation, and ultimately to promote new muscle tissue growth. The present review covers the specialized literature focusing on the biochemical stimulation of muscle tissue repair by applying inorganic ions (bioinorganics). Extracting information from the literature, different ions and their potential influence as chemical cues on skeletal muscle regeneration are discussed. It is revealed that different ions and their varied doses have an individual effect at different stages of muscle cellular development. The dose-dependent effects of ions, as well as applications of ions alone and in combination with biomaterials, are also summarized. Some ions, such as boron, silicon, magnesium, selenium and zinc, are reported to exhibit a beneficial effect on skeletal muscle cells in carefully controlled doses, while the effects of other ions such as iron and copper appear to be contradictory. In addition, calcium is an essential regulatory ion for the differentiation of myoblasts. On the other hand, some ions such as phosphate have been shown to inhibit muscle cell behavior. This review thus provides a complete overview of the application of ionic stimulation for skeletal muscle tissue engineering applications, highlighting the importance of inorganic ions as an attractive alternative to the application of small molecules and growth factors to stimulate muscle tissue repair. STATEMENT OF SIGNIFICANCE: Ionic medicine (IM) is emerging as a promising and attractive approach in the field of tissue engineering, including muscle tissue regeneration. IM is based on the delivery of biologically active ions to injury sites, acting as stimulants for the repair process. This method offers a potentially simpler and more affordable alternative to conventional biomolecule-based regulators such as growth factors. Different biologically active ions, depending on their specific doping concentrations, can have varying effects on cellular development, which could be either beneficial or inhibitory. This literature review covers the field of IM in muscle regeneration with focus on the impact of various ions on skeletal muscle regeneration. The paper is thus a critical summary for guiding future research in ionic-related regenerative medicine, highlighting the potential and challenges of this approach for muscle regeneration.
Collapse
Affiliation(s)
- Hsuan-Heng Lu
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Duygu Ege
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; Institute of Biomedical Engineering, Bogazici University, Rasathane St., Kandilli 34684, Istanbul, Turkey
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, 95447 Bayreuth, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
3
|
Wang P, Li J, Li S, Liu Y, Gong J, He S, Wu W, Tan G, Liu S. Palladium-reduced graphene oxide nanocomposites enhance neurite outgrowth and protect neurons from Ishemic stroke. Mater Today Bio 2024; 28:101184. [PMID: 39221214 PMCID: PMC11364903 DOI: 10.1016/j.mtbio.2024.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/09/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
Currently, the construction of novel biomimetic reduced graphene oxide (RGO)-based nanocomposites to induce neurite sprouting and repair the injured neurons represents a promising strategy in promoting neuronal development or treatment of cerebral anoxia or ischemia. Here, we present an effective method for constructing palladium-reduced graphene oxide (Pd-RGO) nanocomposites by covalently bonding Pd onto RGO surfaces to enhance neurite sprouting of cultured neurons. As described, the Pd-RGO nanocomposites exhibit the required physicochemical features for better biocompatibility without impacting cell viability. Primary neurons cultured on Pd-RGO nanocomposites had significantly increased number and length of neuronal processes, including both axons and dendrites, compared with the control. Western blotting showed that Pd-RGO nanocomposites improved the expression levels of growth associate protein-43 (GAP-43), as well as β-III tubulin, Tau-1, microtubule-associated protein-2 (MAP2), four proteins that are involved in regulating neurite sprouting and outgrowth. Importantly, Pd-RGO significantly promoted neurite length and complexity under oxygen-glucose deprivation/re-oxygenation (OGD/R) conditions, an in vitro cellular model of ischemic brain damage, that closely relates to neuronal GAP-43 expression. Furthermore, using the middle cerebral artery occlusion (MCAO) model in rats, we found Pd-RGO effectively reduced the infarct area, decreased neuronal apoptosis in the brain, and improved the rats' behavioral outcomes after MCAO. Together, these results indicate the great potential of Pd-RGO nanocomposites as a novel excellent biomimetic material for neural interfacing that shed light on its applications in brain injuries.
Collapse
Affiliation(s)
- Ping Wang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration &Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Brain Science & Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration &Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Brain Science & Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Shuntang Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration &Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Brain Science & Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanyuan Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration &Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Brain Science & Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiangu Gong
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration &Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Brain Science & Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration &Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Brain Science & Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Weifeng Wu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration &Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guohe Tan
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration &Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Brain Science & Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration &Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Brain Science & Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Ding H, Hao L, Mao H. Magneto-responsive biocomposites in wound healing: from characteristics to functions. J Mater Chem B 2024; 12:7463-7479. [PMID: 38990160 DOI: 10.1039/d4tb00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The number of patients with non-healing wounds continuously increases, and has become a prominent societal issue that imposes a heavy burden on both patients and the entire healthcare system. Although traditional dressings play an important role in wound healing, the complexity and diversity of the healing process pose serious challenges in this field. Magneto-responsive biocomposites, with their excellent biocompatibility, remote spatiotemporal controllability, and unique convenience, demonstrate enticing advantages in the field of wound dressings. However, current research on magneto-responsive biocomposites as wound dressings lacks comprehensive and in-depth reviews, which to some extent, restricts the deeper understanding and further development of this field. Based on this, this paper reviews the latest advances in magnetic responsive wound dressings for wound healing. First, we review the process of skin wound healing and parameters for assessing repair progress. Then, we systematically discuss the preparation strategies and unique characteristics of magneto-responsive biocomposites, focusing on magneto-induced orientation, magneto-induced mechanical stimulation, and magnetocaloric effect. Subsequently, this review elaborates the multiple mechanisms of magneto-responsive biocomposites in promoting wound healing, including regulating cell behavior, enhancing electrical signal, controlling drug release, and accelerating tissue reconstruction. Finally, we further propose the development direction and future challenges of magnetic responsive biomaterials as wound dressings in clinical application.
Collapse
Affiliation(s)
- Haoyang Ding
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lili Hao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Rossi A, Furlani F, Bassi G, Cunha C, Lunghi A, Molinari F, Teran FJ, Lista F, Bianchi M, Piperno A, Montesi M, Panseri S. Contactless magnetically responsive injectable hydrogel for aligned tissue regeneration. Mater Today Bio 2024; 27:101110. [PMID: 39211510 PMCID: PMC11360152 DOI: 10.1016/j.mtbio.2024.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular alignment plays a pivotal role in several human tissues, including skeletal muscle, spinal cord and tendon. Various techniques have been developed to control cellular alignment using 3D biomaterials. However, the majority of 3D-aligned scaffolds require invasive surgery for implantation. In contrast, injectable hydrogels provide a non-invasive delivery method, gaining considerable attention for the treatment of diverse conditions, including osteochondral lesions, volumetric muscle loss, and traumatic brain injury. We engineered a biomimetic hydrogel with magnetic responsiveness by combining gellan gum, hyaluronic acid, collagen, and magnetic nanoparticles (MNPs). Collagen type I was paired with MNPs to form magnetic collagen bundles (MCollB), allowing the orientation control of these bundles within the hydrogel matrix through the application of a remote low-intensity magnetic field. This resulted in the creation of an anisotropic architecture. The hydrogel mechanical properties were comparable to those of human soft tissues, such as skeletal muscle, and proof of the aligned hydrogel concept was demonstrated. In vitro findings confirmed the absence of toxicity and pro-inflammatory effects. Notably, an increased fibroblast cell proliferation and pro-regenerative activation of macrophages were observed. The in-vivo study further validated the hydrogel biocompatibility and demonstrated the feasibility of injection with rapid in situ gelation. Consequently, this magnetically controlled injectable hydrogel exhibits significant promise as a minimally invasive, rapid gelling and effective treatment for regenerating various aligned human tissues.
Collapse
Affiliation(s)
- Arianna Rossi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences. Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Franco Furlani
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| | - Giada Bassi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
- University of G. D'Annunzio, Department of Neurosciences, Imaging and Clinical Sciences. Via Luigi Polacchi, 11, 66100 Chieti, Italy
| | - Carla Cunha
- i3S - Instituto de Investigação e Inovação em Saúde. Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Alice Lunghi
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia 44121 Ferrara, Italy
- Section of Physiology, Università di Ferrara 44121 Ferrara, Italy
| | - Filippo Molinari
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Francisco J. Teran
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Nanotech Solutions, Ctra Madrid23, 40150 Villacastín, Spain
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Michele Bianchi
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia 44125 Modena, Italy
| | - Anna Piperno
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences. Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Monica Montesi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| | - Silvia Panseri
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| |
Collapse
|
6
|
Patrawalla NY, Raj R, Nazar V, Kishore V. Magnetic Alignment of Collagen: Principles, Methods, Applications, and Fiber Alignment Analyses. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:405-422. [PMID: 38019048 PMCID: PMC11404687 DOI: 10.1089/ten.teb.2023.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Anisotropically aligned collagen scaffolds mimic the microarchitectural properties of native tissue, possess superior mechanical properties, and provide the essential physicochemical cues to guide cell response. Biofabrication methodologies to align collagen fibers include mechanical, electrical, magnetic, and microfluidic approaches. Magnetic alignment of collagen was first published in 1983 but widespread use of this technique was hindered mainly due to the low diamagnetism of collagen molecules and the need for very strong tesla-order magnetic fields. Over the last decade, there is a renewed interest in the use of magnetic approaches that employ magnetic particles and low-level magnetic fields to align collagen fibers. In this review, the working principle, advantages, and limitations of different collagen alignment techniques with special emphasis on the magnetic alignment approach are detailed. Key findings from studies that employ high-strength magnetic fields and the magnetic particle-based approach to align collagen fibers are highlighted. In addition, the most common qualitative and quantitative image analyses methods to assess collagen alignment are discussed. Finally, current challenges and future directions are presented for further development and clinical translation of magnetically aligned collagen scaffolds.
Collapse
Affiliation(s)
- Nashaita Y Patrawalla
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Ravi Raj
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Vida Nazar
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Vipuil Kishore
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
7
|
Ballard A, Patush R, Perez J, Juarez C, Kirillova A. Bioprinting: Mechanical Stabilization and Reinforcement Strategies in Regenerative Medicine. Tissue Eng Part A 2024; 30:387-408. [PMID: 38205634 DOI: 10.1089/ten.tea.2023.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Bioprinting describes the printing of biomaterials and cell-laden or cell-free hydrogels with various combinations of embedded bioactive molecules. It encompasses the precise patterning of biomaterials and cells to create scaffolds for different biomedical needs. There are many requirements that bioprinting scaffolds face, and it is ultimately the interplay between the scaffold's structure, properties, processing, and performance that will lead to its successful translation. Among the essential properties that the scaffolds must possess-adequate and appropriate application-specific chemical, mechanical, and biological performance-the mechanical behavior of hydrogel-based bioprinted scaffolds is the key to their stable performance in vivo at the site of implantation. Hydrogels that typically constitute the main scaffold material and the medium for the cells and biomolecules are very soft, and often lack sufficient mechanical stability, which reduces their printability and, therefore, the bioprinting potential. The aim of this review article is to highlight the reinforcement strategies that are used in different bioprinting approaches to achieve enhanced mechanical stability of the bioinks and the printed scaffolds. Enabling stable and robust materials for the bioprinting processes will lead to the creation of truly complex and remarkable printed structures that could accelerate the application of smart, functional scaffolds in biomedical settings. Impact statement Bioprinting is a powerful tool for the fabrication of 3D structures and scaffolds for biomedical applications. It has gained tremendous attention in recent years, and the bioink library is expanding to include more and more material combinations. From the practical application perspective, different properties need to be considered, such as the printed structure's chemical, mechanical, and biological performances. Among these, the mechanical behavior of the printed constructs is critical for their successful translation into the clinic. The aim of this review article is to explore the different reinforcement strategies used for the mechanical stabilization of bioinks and bioprinted structures.
Collapse
Affiliation(s)
- Ashleigh Ballard
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Rebecca Patush
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Jenesis Perez
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Carmen Juarez
- Des Moines Area Community College, Ankeny, Iowa, USA
| | - Alina Kirillova
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
Hong J, Wu D, Wang H, Gong Z, Zhu X, Chen F, Wang Z, Zhang M, Wang X, Fang X, Yang S, Zhu J. Magnetic fibrin nanofiber hydrogel delivering iron oxide magnetic nanoparticles promotes peripheral nerve regeneration. Regen Biomater 2024; 11:rbae075. [PMID: 39055306 PMCID: PMC11272175 DOI: 10.1093/rb/rbae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 07/27/2024] Open
Abstract
Peripheral nerve injury is a debilitating condition that have a profound impact on the overall quality of an individual's life. The repair of peripheral nerve defects continues to present significant challenges in the field. Iron oxide magnetic nanoparticles (IONPs) have been recognized as potent nanotools for promoting the regeneration of peripheral nerves due to their capability as biological carriers and their ability to template the hydrogel structure under an external magnetic field. This research used a fibrin nanofiber hydrogel loaded with IONPs (IONPs/fibrin) to promote the regeneration of peripheral nerves in rats. In vitro examination of PC12 cells on various concentrations of IONPs/fibrin hydrogels revealed a remarkable increase in NGF and VEGF expression at 2% IONPs concentration. The biocompatibility and degradation of 2% IONPs/fibrin hydrogel were assessed using the in vivo imaging system, demonstrating subcutaneous degradation within a week without immediate inflammation. Bridging a 10-mm sciatic nerve gap in Sprague Dawley rats with 2% IONPs/fibrin hydrogel led to satisfactory morphological recovery of myelinated nerve fibers. And motor functional recovery in the 2% IONPs/fibrin group was comparable to autografts at 6, 9 and 12 weeks postoperatively. Hence, the composite fibrin hydrogel incorporating 2% IONPs exhibits potential for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Juncong Hong
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
- Department of Anesthesiology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang 311100, China
| | - Dongze Wu
- Department of Spinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315000, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
| | - Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
| | - Xinxin Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Fang Chen
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Zihang Wang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Mingchen Zhang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
| | - Shuhui Yang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
9
|
Urmi R, Banerjee P, Singh M, Singh R, Chhillar S, Sharma N, Chandra A, Singh N, Qamar I. Revolutionizing biomedicine: Aptamer-based nanomaterials and nanodevices for therapeutic applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00843. [PMID: 38881649 PMCID: PMC11179248 DOI: 10.1016/j.btre.2024.e00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/28/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
With the progress in two distinct areas of nanotechnology and aptamer identification technologies, the two fields have merged to what is known as aptamer nanotechnology. Aptamers have varying properties in the biomedical field include their small size, non-toxicity, ease of manufacturing, negligible immunogenicity, ability to identify a wide range of targets, and high immobilizing capacity. Nevertheless, aptamers can utilize the distinct characteristics offered by nanomaterials like optical, magnetic, thermal, electronic properties to become more versatile and function as a novel device in diagnostics and therapeutics. This engineered aptamer conjugated nanomaterials, in turn provides a potentially new and unique properties apart from the pre-existing characteristics of aptamer and nanomaterials, where they act to offer wide array of applications in the biomedical field ranging from drug targeting, delivery of drugs, biosensing, bioimaging. This review gives comprehensive insight of the different aptamer conjugated nanomaterials and their utilization in biomedical field. Firstly, it introduces on the aptamer selection methods and roles of nanomaterials offered. Further, different conjugation strategies are explored in addition, the class of aptamer conjugated nanodevices being discussed. Typical biomedical examples and studies specifically, related to drug delivery, biosensing, bioimaging have been presented.
Collapse
Affiliation(s)
- Rajkumari Urmi
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Pallabi Banerjee
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Manisha Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Risha Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Sonam Chhillar
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Neha Sharma
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Anshuman Chandra
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| |
Collapse
|
10
|
Sun Y, Xiao Z, Chen B, Zhao Y, Dai J. Advances in Material-Assisted Electromagnetic Neural Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400346. [PMID: 38594598 DOI: 10.1002/adma.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs. By incorporating implanted materials, electromagnetic stimulation can be targeted more accurately, thereby significantly improving the effectiveness and safety of such interventions. Currently, there have been significant advancements in the development of numerous promising electromagnetic stimulation strategies with diverse materials. This review provides a comprehensive summary of the fundamental theories, neural stimulation modulating materials, material application strategies, and pre-clinical therapeutic effects associated with electromagnetic stimulation for neural repair. It offers a thorough analysis of current techniques that employ materials to enhance electromagnetic stimulation, as well as potential therapeutic strategies for future applications.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
11
|
Guan W, Gao H, Liu Y, Sun S, Li G. Application of magnetism in tissue regeneration: recent progress and future prospects. Regen Biomater 2024; 11:rbae048. [PMID: 38939044 PMCID: PMC11208728 DOI: 10.1093/rb/rbae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024] Open
Abstract
Tissue regeneration is a hot topic in the field of biomedical research in this century. Material composition, surface topology, light, ultrasonic, electric field and magnetic fields (MFs) all have important effects on the regeneration process. Among them, MFs can provide nearly non-invasive signal transmission within biological tissues, and magnetic materials can convert MFs into a series of signals related to biological processes, such as mechanical force, magnetic heat, drug release, etc. By adjusting the MFs and magnetic materials, desired cellular or molecular-level responses can be achieved to promote better tissue regeneration. This review summarizes the definition, classification and latest progress of MFs and magnetic materials in tissue engineering. It also explores the differences and potential applications of MFs in different tissue cells, aiming to connect the applications of magnetism in various subfields of tissue engineering and provide new insights for the use of magnetism in tissue regeneration.
Collapse
Affiliation(s)
- Wenchao Guan
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hongxia Gao
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yaqiong Liu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shaolan Sun
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Kruczkowska W, Gałęziewska J, Grabowska K, Liese G, Buczek P, Kłosiński KK, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż, Kołat D. Biomedical Trends in Stimuli-Responsive Hydrogels with Emphasis on Chitosan-Based Formulations. Gels 2024; 10:295. [PMID: 38786212 PMCID: PMC11121652 DOI: 10.3390/gels10050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Biomedicine is constantly evolving to ensure a significant and positive impact on healthcare, which has resulted in innovative and distinct requisites such as hydrogels. Chitosan-based formulations stand out for their versatile utilization in drug encapsulation, transport, and controlled release, which is complemented by their biocompatibility, biodegradability, and non-immunogenic nature. Stimuli-responsive hydrogels, also known as smart hydrogels, have strictly regulated release patterns since they respond and adapt based on various external stimuli. Moreover, they can imitate the intrinsic tissues' mechanical, biological, and physicochemical properties. These characteristics allow stimuli-responsive hydrogels to provide cutting-edge, effective, and safe treatment. Constant progress in the field necessitates an up-to-date summary of current trends and breakthroughs in the biomedical application of stimuli-responsive chitosan-based hydrogels, which was the aim of this review. General data about hydrogels sensitive to ions, pH, redox potential, light, electric field, temperature, and magnetic field are recapitulated. Additionally, formulations responsive to multiple stimuli are mentioned. Focusing on chitosan-based smart hydrogels, their multifaceted utilization was thoroughly described. The vast application spectrum encompasses neurological disorders, tumors, wound healing, and dermal infections. Available data on smart chitosan hydrogels strongly support the idea that current approaches and developing novel solutions are worth improving. The present paper constitutes a valuable resource for researchers and practitioners in the currently evolving field.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Katarzyna Grabowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Gabriela Liese
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Paulina Buczek
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Karol Kamil Kłosiński
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
13
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Barough S, Alizadeh M. Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics. J Nanobiotechnology 2024; 22:194. [PMID: 38643117 PMCID: PMC11031871 DOI: 10.1186/s12951-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Martínez-Ramírez J, Toldos-Torres M, Benayas E, Villar-Gómez N, Fernández-Méndez L, Espinosa FM, García R, Veintemillas-Verdaguer S, Morales MDP, Serrano MC. Hybrid hydrogels support neural cell culture development under magnetic actuation at high frequency. Acta Biomater 2024; 176:156-172. [PMID: 38281674 DOI: 10.1016/j.actbio.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The combination of hydrogels and magnetic nanoparticles, scarcely explored to date, offers a wide range of possibilities for innovative therapies. Herein, we have designed hybrid 3D matrices integrating natural polymers, such as collagen, chitosan (CHI) and hyaluronic acid (HA), to provide soft and flexible 3D networks mimicking the extracellular matrix of natural tissues, and iron oxide nanoparticles (IONPs) that deliver localized heat when exposed to an alternating magnetic field (AMF). First, colloidally stable nanoparticles with a hydrodynamic radius of ∼20 nm were synthesized and coated with either CHI (NPCHI) or HA (NPHA). Then, collagen hydrogels were homogeneously loaded with these coated-IONPs resulting in soft (E0 ∼ 2.6 kPa), biodegradable and magnetically responsive matrices. Polymer-coated IONPs in suspension preserved primary neural cell viability and neural differentiation even at the highest dose (0.1 mg Fe/mL), regardless of the coating, even boosting neuronal interconnectivity at lower doses. Magnetic hydrogels maintained high neural cell viability and sustained the formation of highly interconnected and differentiated neuronal networks. Interestingly, those hydrogels loaded with the highest dose of NPHA (0.25 mgFe/mg polymer) significantly impaired non-neuronal differentiation with respect to those with NPCHI. When evaluated under AMF, cell viability slightly diminished in comparison with control hydrogels magnetically stimulated, but not compared to their counterparts without stimulation. Neuronal differentiation under AMF was only affected on collagen hydrogels with the highest dose of NPHA, while non-neuronal differentiation regained control values. Taken together, NPCHI-loaded hydrogels displayed a superior performance, maybe benefited from their higher nanomechanical fluidity. STATEMENT OF SIGNIFICANCE: Hydrogels and magnetic nanoparticles are undoubtedly useful biomaterials for biomedical applications. Nonetheless, the combination of both has been scarcely explored to date. In this study, we have designed hybrid 3D matrices integrating both components as promising magnetically responsive platforms for neural therapeutics. The resulting collagen scaffolds were soft (E0 ∼ 2.6 kPa) and biodegradable hydrogels with capacity to respond to external magnetic stimuli. Primary neural cells proved to grow on these substrates, preserving high viability and neuronal differentiation percentages even under the application of a high-frequency alternating magnetic field. Importantly, those hydrogels loaded with chitosan-coated iron oxide nanoparticles displayed a superior performance, likely related to their higher nanomechanical fluidity.
Collapse
Affiliation(s)
- Julia Martínez-Ramírez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Marta Toldos-Torres
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Esther Benayas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Natalia Villar-Gómez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Laura Fernández-Méndez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Francisco M Espinosa
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Ricardo García
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Sabino Veintemillas-Verdaguer
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - María Del Puerto Morales
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - María Concepción Serrano
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain.
| |
Collapse
|
15
|
Cedillo-Servin G, Dahri O, Meneses J, van Duijn J, Moon H, Sage F, Silva J, Pereira A, Magalhães FD, Malda J, Geijsen N, Pinto AM, Castilho M. 3D Printed Magneto-Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307178. [PMID: 37950402 DOI: 10.1002/smll.202307178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/11/2023] [Indexed: 11/12/2023]
Abstract
This work reports the rational design and fabrication of magneto-active microfiber meshes with controlled hexagonal microstructures via melt electrowriting (MEW) of a magnetized polycaprolactone-based composite. In situ iron oxide nanoparticle deposition on oxidized graphene yields homogeneously dispersed magnetic particles with sizes above 0.5 µm and low aspect ratio, preventing cellular internalization and toxicity. With these fillers, homogeneous magnetic composites with high magnetic content (up to 20 weight %) are obtained and processed in a solvent-free manner for the first time. MEW of magnetic composites enabled the creation of skeletal muscle-inspired design of hexagonal scaffolds with tunable fiber diameter, reconfigurable modularity, and zonal distribution of magneto-active and nonactive material, with elastic tensile deformability. External magnetic fields below 300 mT are sufficient to trigger out-of-plane reversible deformation. In vitro culture of C2C12 myoblasts on three-dimensional (3D) Matrigel/collagen/MEW scaffolds showed that microfibers guided the formation of 3D myotube architectures, and the presence of magnetic particles does not significantly affect viability or differentiation rates after 8 days. Centimeter-sized skeletal muscle constructs allowed for reversible, continued, and dynamic magneto-mechanical stimulation. Overall, these innovative microfiber scaffolds provide magnetically deformable platforms suitable for dynamic culture of skeletal muscle, offering potential for in vitro disease modeling.
Collapse
Affiliation(s)
- Gerardo Cedillo-Servin
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands
| | - Ouafa Dahri
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Leiden Node, The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, 2333 ZA, The Netherlands
| | - João Meneses
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Joost van Duijn
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
| | - Harrison Moon
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
| | - Fanny Sage
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Leiden Node, The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, 2333 ZA, The Netherlands
| | - Joana Silva
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - André Pereira
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Fernão D Magalhães
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Jos Malda
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3508 GA, The Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Leiden Node, The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, 2333 ZA, The Netherlands
| | - Artur M Pinto
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Miguel Castilho
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands
| |
Collapse
|
16
|
Giacomini F, Baião Barata D, Suk Rho H, Tahmasebi Birgani Z, van Blitterswijk C, Giselbrecht S, Truckenmüller R, Habibović P. Microfluidically Aligned Collagen to Maintain the Phenotype of Tenocytes In Vitro. Adv Healthc Mater 2024; 13:e2303672. [PMID: 37902084 PMCID: PMC11468977 DOI: 10.1002/adhm.202303672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Tendon is a highly organized tissue that transmits forces between muscle and bone. The architecture of the extracellular matrix of tendon, predominantly from collagen type I, is important for maintaining tenocyte phenotype and function. Therefore, in repair and regeneration of damaged and diseased tendon tissue, it is crucial to restore the aligned arrangement of the collagen type I fibers of the original matrix. To this end, a novel, user-friendly microfluidic piggyback platform is developed allowing the controlled patterned formation and alignment of collagen fibers simply on the bottom of culture dishes. Rat tenocytes cultured on the micropatterns of aligned fibrous collagen exhibit a more elongated morphology. The cells also show an increased expression of tenogenic markers at the gene and protein level compared to tenocytes cultured on tissue culture plastic or non-fibrillar collagen coatings. Moreover, using imprinted polystyrene replicas of aligned collagen fibers, this work shows that the fibrillar structure of collagen per se affects the tenocyte morphology, whereas the biochemical nature of collagen plays a prominent role in the expression of tenogenic markers. Beyond the controlled provision of aligned collagen, the microfluidic platform can aid in developing more physiologically relevant in vitro models of tendon and its regeneration.
Collapse
Affiliation(s)
- Francesca Giacomini
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - David Baião Barata
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas MonizLisbon1649‐028Portugal
| | - Hoon Suk Rho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Clemens van Blitterswijk
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| |
Collapse
|
17
|
Pires F, Silva JC, Ferreira FC, Portugal CAM. Heparinized Acellular Hydrogels for Magnetically Induced Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9908-9924. [PMID: 38381140 DOI: 10.1021/acsami.3c18877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The control of angiogenesis has the potential to be used for regulation of several pathological and physiological processes, which can be instrumental on the development of anticancer and wound healing therapeutical approaches. In this study, mesenchymal stem/stromal cells (MSCs) were seeded on magnetic-responsive gelatin, with or without heparin functionalization, and exposed to a static 0.08 T magnetic field (MF), for controlling their anti-inflammatory and angiogenic activity, with the aim of accelerating tissue healing. For the first time, it was examined how the amount of heparin and magnetic nanoparticles (MNPs) distributed on gelatin scaffolds affected the mechanical properties of the hydrogels and the morphology, proliferation, and secretome profiling of MSCs. The findings demonstrated that the addition of MNPs and heparin affects the hydrogel swelling capacity and renders distinct MSC proliferation rates. Additionally, MF acts as a topographical cue to guide MSCs alignment and increases the level of expression of specific genes and proteins that promote angiogenesis. The results also suggested that the presence of higher amounts of heparin (10 μg/cm3) interferes with the secretion and limits the capacity of angiogenic factors to diffuse through the hydrogel and into the culture medium. Ultimately, this study shows that acellular heparinized hydrogels efficiently retain the angiogenic growth factors released by magnetically stimulated MSCs thus rendering superior wound contraction (55.8% ± 0.4%) and cell migration rate (49.4% ± 0.4%), in comparison to nonheparinized hydrogels (35.2% ± 0.7% and 37.8% ± 0.7%, respectively). Therefore, these heparinized magnetic hydrogels can be used to facilitate angiogenesis in various forms of tissue damage including bone defects, skin wounds, and cardiovascular diseases, leading to enhanced tissue regeneration.
Collapse
Affiliation(s)
- Filipa Pires
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João Carlos Silva
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carla A M Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
18
|
Wang X, Wei W, Guo Z, Liu X, Liu J, Bing T, Yu Y, Yang X, Cai Q. Organic-inorganic composite hydrogels: compositions, properties, and applications in regenerative medicine. Biomater Sci 2024; 12:1079-1114. [PMID: 38240177 DOI: 10.1039/d3bm01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Hydrogels, formed from crosslinked hydrophilic macromolecules, provide a three-dimensional microenvironment that mimics the extracellular matrix. They served as scaffold materials in regenerative medicine with an ever-growing demand. However, hydrogels composed of only organic components may not fully meet the performance and functionalization requirements for various tissue defects. Composite hydrogels, containing inorganic components, have attracted tremendous attention due to their unique compositions and properties. Rigid inorganic particles, rods, fibers, etc., can form organic-inorganic composite hydrogels through physical interaction and chemical bonding with polymer chains, which can not only adjust strength and modulus, but also act as carriers of bioactive components, enhancing the properties and biological functions of the composite hydrogels. Notably, incorporating environmental or stimulus-responsive inorganic particles imparts smartness to hydrogels, hence providing a flexible diagnostic platform for in vitro cell culture and in vivo tissue regeneration. In this review, we discuss and compare a set of materials currently used for developing organic-inorganic composite hydrogels, including the modification strategies for organic and inorganic components and their unique contributions to regenerative medicine. Specific emphasis is placed on the interactions between the organic or inorganic components and the biological functions introduced by the inorganic components. The advantages of these composite hydrogels indicate their potential to offer adaptable and intelligent therapeutic solutions for diverse tissue repair demands within the realm of regenerative medicine.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wei Wei
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Guo
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinru Liu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ju Liu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tiejun Bing
- Immunology and Oncology center, ICE Bioscience, Beijing 100176, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
19
|
Abalymov A, Pinchasik BE, Akasov RA, Lomova M, Parakhonskiy BV. Strategies for Anisotropic Fibrillar Hydrogels: Design, Cell Alignment, and Applications in Tissue Engineering. Biomacromolecules 2023; 24:4532-4552. [PMID: 37812143 DOI: 10.1021/acs.biomac.3c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Efficient cellular alignment in biomaterials presents a considerable challenge, demanding the refinement of appropriate material morphologies, while ensuring effective cell-surface interactions. To address this, biomaterials are continuously researched with diverse coatings, hydrogels, and polymeric surfaces. In this context, we investigate the influence of physicochemical parameters on the architecture of fibrillar hydrogels that significantly orient the topography of flexible hydrogel substrates, thereby fostering cellular adhesion and spatial organization. Our Review comprehensively assesses various techniques for aligning polymer fibrils within hydrogels, specifically interventions applied during and after the cross-linking process. These methodologies include mechanical strains, precise temperature modulation, controlled fluidic dynamics, and chemical modulators, as well as the use of magnetic and electric fields. We highlight the intrinsic appeal of these methodologies in fabricating cell-aligning interfaces and discuss their potential implications within the fields of biomaterials and tissue engineering, particularly concerning the pursuit of optimal cellular alignment.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Roman A Akasov
- Sechenov University and Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 101000 Moscow, Russia
| | - Maria Lomova
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
20
|
Princen K, Marien N, Guedens W, Graulus GJ, Adriaensens P. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review. Chembiochem 2023; 24:e202300149. [PMID: 37220343 DOI: 10.1002/cbic.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.
Collapse
Affiliation(s)
- Ken Princen
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Neeve Marien
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
21
|
Hao L, Mao H. Magnetically anisotropic hydrogels for tissue engineering. Biomater Sci 2023; 11:6384-6402. [PMID: 37552036 DOI: 10.1039/d3bm00744h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Many soft tissues of the human body possess hierarchically anisotropic structures, exhibiting orientation-specific mechanical properties and biological functionality. Hydrogels have been proposed as promising scaffold materials for tissue engineering applications due to their water-rich composition, excellent biocompatibility, and tunable physico-chemical properties. However, conventional hydrogels with homogeneous structures often exhibit isotropic properties that differ from those of biological tissues, limiting their further application. Recently, magnetically anisotropic hydrogels containing long-range ordered magneto-structures have attracted widespread interest owing to their highly controllable assembly strategy, rapid magnetic responsiveness and remote spatiotemporal regulation. In this review, we summarize the latest progress of magnetically anisotropic hydrogels for tissue engineering. The fabrication strategy of magnetically anisotropic hydrogels from magnetic nanofillers with different dimensions is systemically introduced. Then, the effects of magnetically anisotropic cues on the physicochemical properties of hydrogels and the cellular biological behavior are discussed. And the applications of magnetically anisotropic hydrogels in the engineering of different tissues are emphasized. Finally, the current challenges and the future perspectives for magnetically anisotropic hydrogels are presented.
Collapse
Affiliation(s)
- Lili Hao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
22
|
Zhang Y, Su B, Tian Y, Yu Z, Wu X, Ding J, Wu C, Wei D, Yin H, Sun J, Fan H. Magnetic manipulation of Fe 3O 4@BaTiO 3 nanochains to regulate extracellular topographical and electrical cues. Acta Biomater 2023; 168:470-483. [PMID: 37495167 DOI: 10.1016/j.actbio.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Magnetic fields play an essential role in material science and biomedical engineering. Magnetic-responsive materials can be arranged orderly in matrix to realize the construction of an aligned scaffold under magnetic induction. However, a single topological cue is insufficient to activate neural tissue regeneration, demanding more cues to promote regeneration synergistically, such as electrical stimulation and a biomimetic matrix. Herein, we propose one-dimensional (1D) magnetoelectric Fe3O4@BaTiO3 nanochains with controllable lengths under the regulation of a magnetic field. These nanochains can be oriented in the biomimetic hydrogel under magnetic guidance and induce the hydrogel microfiber to align along the direction of the nanochains, which is beneficial for cell-oriented outgrowth. This aligned hydrogel enabled wireless electrical stimulation mediated by magnetoelectric nanochains under magnetic stimulation, thereby activating the voltage-gated ion channel. Consequently, topological and electrical cues in this multifunctional biomimetic hydrogel synergistically enhanced the expression of neural functional proteins, facilitating synapse remodeling and neural regeneration. Predictably, the construction of multifunctional hydrogels based on low-cost and facile synthesis of magnetoelectric nanochains is an emerging patient-friendly and effective therapeutic strategy for neural or other tissue regeneration. STATEMENT OF SIGNIFICANCE: A facile and controllable magnetic strategy is established to manipulate 1D nanomaterial growth, matrix topography, and wireless electrical stimulation of cells. First, the magnetic-assisted interface co-assembly was used to control the length of Fe3O4@BaTiO3 nanochains with enhanced magnetoelectric effect. Then, the motion of the magnetic-induced nanochains guided the orientation of nanofibers in a 3D biomimetic hydrogel matrix. Finally, wireless electrical signals and topological cues in the biomimetic matrix synergistically promoted orderly aligned cell outgrowth and membrane depolarization by Ca2+ influx, thus enhancing nerve cell synaptic plasticity and functional expression. Consequently, this work provides a conceptual strategy from material design to extracellular matrix signal manipulation and synergistic induction of tissue regeneration.
Collapse
Affiliation(s)
- Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Borui Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuan Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zhuoting Yu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiaoyang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jie Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China; Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Huabin Yin
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Jin Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
23
|
Shi L, Hong G, Chen C, Li X, Zhang H, Chai R, Sun D. Growth of spiral ganglion neurons induced by graphene oxide/oxidized bacterial cellulose composite hydrogel. Carbohydr Polym 2023; 311:120749. [PMID: 37028876 DOI: 10.1016/j.carbpol.2023.120749] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
The damage or degeneration of spiral ganglion neurons (SGNs) can impair the auditory signals transduction from hair cells to the central auditory system, and cause significant hearing loss. Herein, a new form of bioactive hydrogel incorporating topological graphene oxide (GO) and TEMPO-oxidized bacterial cellulose (GO/TOBC hydrogel) was developed to provide a favorable microenvironment for SGN neurite outgrowth. As the network structure of lamellar interspersed fiber cross-linked by GO/TOBC hydrogels well simulated the structure and morphology of ECM, with the controllable hydrophilic property and appropriate Young's modulus well met those requirements of SGNs microenvironment, the GO/TOBC hybrid matrix exhibited great potential to promote the growth of SGNs. The quantitative real-time PCR result confirmed that the GO/TOBC hydrogel can significantly accelerate the development of growth cones and filopodia, by increasing the mRNA expression levels of diap3, fscn2, and integrin β1. These results suggest that GO/TOBC hydrogel scaffolds have the potential to be used to construct biomimetic nerve grafts for repairing or replacing nerve defects.
Collapse
Affiliation(s)
- Lin Shi
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, Jiangsu Province, China
| | - Guodong Hong
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, Jiangsu Province, China.
| | - Xueqian Li
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, Jiangsu Province, China
| | - Heng Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, Jiangsu Province, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, Jiangsu Province, China.
| |
Collapse
|
24
|
Noroozi R, Arif ZU, Taghvaei H, Khalid MY, Sahbafar H, Hadi A, Sadeghianmaryan A, Chen X. 3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector? Ann Biomed Eng 2023:10.1007/s10439-023-03243-9. [PMID: 37261588 DOI: 10.1007/s10439-023-03243-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Bioprinting is an innovative and emerging technology of additive manufacturing (AM) and has revolutionized the biomedical sector by printing three-dimensional (3D) cell-laden constructs in a precise and controlled manner for numerous clinical applications. This approach uses biomaterials and varying types of cells to print constructs for tissue regeneration, e.g., cardiac, bone, corneal, cartilage, neural, and skin. Furthermore, bioprinting technology helps to develop drug delivery and wound healing systems, bio-actuators, bio-robotics, and bio-sensors. More recently, the development of four-dimensional (4D) bioprinting technology and stimuli-responsive materials has transformed the biomedical sector with numerous innovations and revolutions. This issue also leads to the exponential growth of the bioprinting market, with a value over billions of dollars. The present study reviews the concepts and developments of 3D and 4D bioprinting technologies, surveys the applications of these technologies in the biomedical sector, and discusses their potential research topics for future works. It is also urged that collaborative and valiant efforts from clinicians, engineers, scientists, and regulatory bodies are needed for translating this technology into the biomedical, pharmaceutical, and healthcare systems.
Collapse
Affiliation(s)
- Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology, Lahore, Sialkot Campus, Lahore, 51041, Pakistan
| | - Hadi Taghvaei
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hossein Sahbafar
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Sadeghianmaryan
- Postdoctoral Researcher Fellow at Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada.
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada
| |
Collapse
|
25
|
Wang H, Li H, Gu P, Huang C, Chen S, Hu C, Lee E, Xu J, Zhu J. Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles. NANOSCALE 2023; 15:2018-2035. [PMID: 36648016 DOI: 10.1039/d2nr05821a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ordered assemblies of inorganic nanoparticles (NPs) have shown tremendous potential for wide applications due to their unique collective properties, which differ from those of individual NPs. Various assembly methods, such as external field-directed assembly, interfacial assembly, template assembly, biomolecular recognition-mediated assembly, confined assembly, and others, have been employed to generate ordered inorganic NP assemblies with hierarchical structures. Among them, the external field-directed assembly method is particularly fascinating, as it can remotely assemble NPs into well-ordered superstructures. Moreover, external fields (e.g., electric, magnetic, and shear fields) can introduce a local and/or global field intensity gradient, resulting in an additional force on NPs to drive their rotation and/or translation. Therefore, the external field-directed assembly of NPs becomes a robust method to fabricate well-defined functional materials with the desired optical, electronic, and magnetic properties, which have various applications in catalysis, sensing, disease diagnosis, energy conversion/storage, photonics, nano-floating-gate memory, and others. In this review, the effects of an electric field, magnetic field, and shear field on the organization of inorganic NPs are highlighted. The methods for controlling the well-ordered organization of inorganic NPs at different scales and their advantages are reviewed. Finally, future challenges and perspectives in this field are discussed.
Collapse
Affiliation(s)
- Huayang Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Hao Li
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Pan Gu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Caili Huang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Chenglong Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430074, China
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
26
|
Solbu AA, Caballero D, Damigos S, Kundu SC, Reis RL, Halaas Ø, Chahal AS, Strand BL. Assessing cell migration in hydrogels: An overview of relevant materials and methods. Mater Today Bio 2023; 18:100537. [PMID: 36659998 PMCID: PMC9842866 DOI: 10.1016/j.mtbio.2022.100537] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022] Open
Abstract
Cell migration is essential in numerous living processes, including embryonic development, wound healing, immune responses, and cancer metastasis. From individual cells to collectively migrating epithelial sheets, the locomotion of cells is tightly regulated by multiple structural, chemical, and biological factors. However, the high complexity of this process limits the understanding of the influence of each factor. Recent advances in materials science, tissue engineering, and microtechnology have expanded the toolbox and allowed the development of biomimetic in vitro assays to investigate the mechanisms of cell migration. Particularly, three-dimensional (3D) hydrogels have demonstrated a superior ability to mimic the extracellular environment. They are therefore well suited to studying cell migration in a physiologically relevant and more straightforward manner than in vivo approaches. A myriad of synthetic and naturally derived hydrogels with heterogeneous characteristics and functional properties have been reported. The extensive portfolio of available hydrogels with different mechanical and biological properties can trigger distinct biological responses in cells affecting their locomotion dynamics in 3D. Herein, we describe the most relevant hydrogels and their associated physico-chemical characteristics typically employed to study cell migration, including established cell migration assays and tracking methods. We aim to give the reader insight into existing literature and practical details necessary for performing cell migration studies in 3D environments.
Collapse
Affiliation(s)
- Anita Akbarzadeh Solbu
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - David Caballero
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Spyridon Damigos
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Subhas C. Kundu
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Øyvind Halaas
- Department of Clinical and Molecular Medicine, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Aman S. Chahal
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Berit L. Strand
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
27
|
Zhang Y, Wei D, Wang X, Wang B, Li M, Fang H, Peng Y, Fan Q, Ye F. Run-and-Tumble Dynamics and Mechanotaxis Discovered in Microglial Migration. RESEARCH (WASHINGTON, D.C.) 2023; 6:0063. [PMID: 36939442 PMCID: PMC10013966 DOI: 10.34133/research.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Microglia are resident macrophage cells in the central nervous system that search for pathogens or abnormal neural activities and migrate to resolve the issues. The effective search and targeted motion of macrophages mean dearly to maintaining a healthy brain, yet little is known about their migration dynamics. In this work, we study microglial motion with and without the presence of external mechanostimuli. We discover that the cells are promptly attracted by the applied forces (i.e., mechanotaxis), which is a tactic behavior as yet unconfirmed in microglia. Meanwhile, in both the explorative and the targeted migration, microglia display dynamics that is strikingly analogous to bacterial run-and-tumble motion. A closer examination reveals that microglial run-and-tumble is more sophisticated, e.g., they display a short-term memory when tumbling and rely on active steering during runs to achieve mechanotaxis, probably via the responses of mechanosensitive ion channels. These differences reflect the sharp contrast between microglia and bacteria cells (eukaryotes vs. prokaryotes) and their environments (compact tissue vs. fluid). Further analyses suggest that the reported migration dynamics has an optimal search efficiency and is shared among a subset of immune cells (human monocyte and macrophage). This work reveals a fruitful analogy between the locomotion of 2 remote systems and provides a framework for studying immune cells exploring complex environments.
Collapse
Affiliation(s)
- Yiyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaochen Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Boyi Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Haiping Fang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- School of Science,
East China University of Science and Technology, Shanghai 200237, China
| | - Yi Peng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Address correspondence to: (F.Y.); (Y.P.); (Q.F.)
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- Address correspondence to: (F.Y.); (Y.P.); (Q.F.)
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
- Address correspondence to: (F.Y.); (Y.P.); (Q.F.)
| |
Collapse
|
28
|
RANDHAWA AAYUSHI, DEB DUTTA SAYAN, GANGULY KEYA, V. PATIL TEJAL, LUTHFIKASARI RACHMI, LIM KITAEK. Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
29
|
Wychowaniec JK, Brougham DF. Emerging Magnetic Fabrication Technologies Provide Controllable Hierarchically-Structured Biomaterials and Stimulus Response for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202278. [PMID: 36228106 PMCID: PMC9731717 DOI: 10.1002/advs.202202278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Multifunctional nanocomposites which exhibit well-defined physical properties and encode spatiotemporally-controlled responses are emerging as components for advanced responsive systems. For biomedical applications magnetic nanocomposite materials have attracted significant attention due to their ability to respond to spatially and temporally varying magnetic fields. The current state-of-the-art in development and fabrication of magnetic hydrogels toward biomedical applications is described. There is accelerating progress in the field due to advances in manufacturing capabilities. Three categories can be identified: i) Magnetic hydrogelation, DC magnetic fields are used during solidification/gelation for aligning particles; ii) additive manufacturing of magnetic materials, 3D printing technologies are used to develop spatially-encoded magnetic properties, and more recently; iii) magnetic additive manufacturing, magnetic responses are applied during the printing process to develop increasingly complex structural arrangement that may recapitulate anisotropic tissue structure and function. The magnetic responsiveness of conventionally and additively manufactured magnetic hydrogels are described along with recent advances in soft magnetic robotics, and the categorization is related to final architecture and emergent properties. Future challenges and opportunities, including the anticipated role of combinatorial approaches in developing 4D-responsive functional materials for tackling long-standing problems in biomedicine including production of 3D-specified responsive cell scaffolds are discussed.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of ChemistryUniversity College DublinBelfieldDublin 4Ireland
- AO Research Institute DavosClavadelerstrasse 8Davos7270Switzerland
| | | |
Collapse
|
30
|
Three-dimensional printing of hyaluronate-based self-healing ferrogel with enhanced stretchability. Colloids Surf B Biointerfaces 2022; 221:113004. [DOI: 10.1016/j.colsurfb.2022.113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
31
|
Huang WC, Lin CC, Chiu TW, Chen SY. 3D Gradient and Linearly Aligned Magnetic Microcapsules in Nerve Guidance Conduits with Remotely Spatiotemporally Controlled Release to Enhance Peripheral Nerve Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46188-46200. [PMID: 36198117 DOI: 10.1021/acsami.2c11362] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although numerous strategies have been implemented to develop nerve guidance conduits (NGCs) to treat peripheral nerve injury (PNI), functionalization of an NGC to make it remotely controllable for providing spatiotemporal modulation on in situ nerve tissues remains a challenge. In this study, a gelatin/silk (GS) hydrogel was used to develop an NGC based on its self-owned reversible thermoresponsive sol-to-gel phase transformation ability that permitted rapid three-dimensional (3D) micropatterning of the incorporated nerve growth factor (NGF)-loaded magnetic poly(lactic-co-glycolic acid) (PLGA) microcapsules (called NGF@MPs) via multiple magnetic guidance. The thermally controllable viscosity of GS enabled the rapid formation of a 3D gradient and linearly aligned distribution of NGF@MPs, leading to magnetically controlled 3D gradient release of NGF to enhance topographical nerve guidance and wound healing in PNIs. Particularly, the as-formed micropatterned hydrogel, called NGF@MPs-GS, showed corrugation topography with a pattern height H of 15 μm, which resulted in the linear axon alignment of more than 90% of cells. In addition, by an external magnetic field, spatiotemporal controllability of NGF release was obtained and permitted neurite elongation that was almost 2-fold longer than that in the group with external addition of NGF. Finally, an NGC prototype was fabricated and implanted into the injured sciatic nerve. The patterned implant, assisted by magnetic stimulation, demonstrated accelerated restoration of motor function within 14 days after implantation. It further contributed to the enhancement of axon outgrowth and remyelination after 28 days. This NGC, with controllable mechanical, biochemical, and topographical cues, is a promising platform for the enhancement of nerve regeneration.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Road, Hsinchu300093, Taiwan
| | - Chun-Chang Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Road, Hsinchu300093, Taiwan
| | - Tzai-Wen Chiu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Road, Hsinchu300093, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Road, Hsinchu300093, Taiwan
- Frontier Research Centre on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Kaohsiung80708, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, No. 91, Hsueh-Shih Road, Taichung40402, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Section 2, Linong Street, Beitou District, Taipei112304, Taiwan
| |
Collapse
|
32
|
Ma Y, Ma A, Luo T, Xiao S, Zhou H. Fabrication of anisotropic nanocomposite hydrogels by magnetic field‐induced orientation for mimicking cardiac tissue. J Appl Polym Sci 2022. [DOI: 10.1002/app.53248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yanzhuo Ma
- School of Materials and Chemical Engineering Xi'an Technological University Xi'an China
| | - Aijie Ma
- School of Materials and Chemical Engineering Xi'an Technological University Xi'an China
| | - Tao Luo
- School of Materials and Chemical Engineering Xi'an Technological University Xi'an China
| | - Siyu Xiao
- School of Materials and Chemical Engineering Xi'an Technological University Xi'an China
| | - Hongwei Zhou
- School of Materials and Chemical Engineering Xi'an Technological University Xi'an China
| |
Collapse
|
33
|
Xue L, Sun J. Magnetic hydrogels with ordered structure for biomedical applications. Front Chem 2022; 10:1040492. [PMID: 36304746 PMCID: PMC9592724 DOI: 10.3389/fchem.2022.1040492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Magnetic hydrogels composed of hydrogel matrices and magnetic nanomaterials have attracted widespread interests. Thereinto, magnetic hydrogels with ordered structure possessing enhanced functionalities and unique architectures, show tremendous advantages in biomedical fields. The ordered structure brought unique anisotropic properties and excellent physical properties. Furthermore, the anisotropic properties of magnetic ordered hydrogels are more analogous to biological tissues in morphology and mechanical property, showing better biocompatibility and bioinducibility. Thus, we aim to systematically describe the latest advances of magnetic hydrogels with ordered structure. Firstly, this review introduced the synthetic methods of magnetic hydrogels focus on constructing ordered structure. Then, their functionalities and biomedical applications are also summarized. Finally, the current challenges and a compelling perspective outlook of magnetic ordered hydrogel are present.
Collapse
|
34
|
Naghdi M, Ghovvati M, Rabiee N, Ahmadi S, Abbariki N, Sojdeh S, Ojaghi A, Bagherzadeh M, Akhavan O, Sharifi E, Rabiee M, Saeb MR, Bolouri K, Webster TJ, Zare EN, Zarrabi A. Magnetic nanocomposites for biomedical applications. Adv Colloid Interface Sci 2022; 308:102771. [PMID: 36113311 DOI: 10.1016/j.cis.2022.102771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mina Naghdi
- Department of Chemistry, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Keivan Bolouri
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| |
Collapse
|
35
|
Mariano A, Bovio CL, Criscuolo V, Santoro F. Bioinspired micro- and nano-structured neural interfaces. NANOTECHNOLOGY 2022; 33:492501. [PMID: 35947922 DOI: 10.1088/1361-6528/ac8881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The development of a functional nervous system requires neurons to interact with and promptly respond to a wealth of biochemical, mechanical and topographical cues found in the neural extracellular matrix (ECM). Among these, ECM topographical cues have been found to strongly influence neuronal function and behavior. Here, we discuss how the blueprint of the architectural organization of the brain ECM has been tremendously useful as a source of inspiration to design biomimetic substrates to enhance neural interfaces and dictate neuronal behavior at the cell-material interface. In particular, we focus on different strategies to recapitulate cell-ECM and cell-cell interactions. In order to mimic cell-ECM interactions, we introduce roughness as a first approach to provide informative topographical biomimetic cues to neurons. We then examine 3D scaffolds and hydrogels, as softer 3D platforms for neural interfaces. Moreover, we will discuss how anisotropic features such as grooves and fibers, recapitulating both ECM fibrils and axonal tracts, may provide recognizable paths and tracks that neuron can follow as they develop and establish functional connections. Finally, we show how isotropic topographical cues, recapitulating shapes, and geometries of filopodia- and mushroom-like dendritic spines, have been instrumental to better reproduce neuron-neuron interactions for applications in bioelectronics and neural repair strategies. The high complexity of the brain architecture makes the quest for the fabrication of create more biologically relevant biomimetic architectures in continuous and fast development. Here, we discuss how recent advancements in two-photon polymerization and remotely reconfigurable dynamic interfaces are paving the way towards to a new class of smart biointerfaces forin vitroapplications spanning from neural tissue engineering as well as neural repair strategies.
Collapse
Affiliation(s)
- Anna Mariano
- Tissue Electronics, Istituto Italiano di Tecnologia, I-80125 Naples, Italy
| | - Claudia Latte Bovio
- Tissue Electronics, Istituto Italiano di Tecnologia, I-80125 Naples, Italy
- Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, I-80125, Naples, Italy
| | - Valeria Criscuolo
- Faculty of Electrical Engineering and IT, RWTH Aachen, D-52074, Germany
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, I-80125 Naples, Italy
- Faculty of Electrical Engineering and IT, RWTH Aachen, D-52074, Germany
- Institute for Biological Information Processing-Bioelectronics, Forschungszentrum Juelich, D-52428, Germany
| |
Collapse
|
36
|
Zhai C, Sullivan PA, Martin CL, Shi H, Deravi LF, Yeo J. Probing the alignment-dependent mechanical behaviors and time-evolutional aligning process of collagen scaffolds. J Mater Chem B 2022; 10:7052-7061. [PMID: 36047129 DOI: 10.1039/d2tb01360f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficiently manipulating and reproducing collagen (COL) alignment in vitro remains challenging because many of the fundamental mechanisms underlying and guiding the alignment process are not known. We reconcile experiments and coarse-grained molecular dynamics simulations to investigate the mechanical behaviors of a growing COL scaffold and assay how changes in fiber alignment and various cross-linking densities impact their alignment dynamics under shear flow. We find higher cross-link densities and alignment levels significantly enhance the apparent tensile/shear moduli and strength of a bulk COL system, suggesting potential measures to facilitate the design of stronger COL based materials. Since fibril alignment plays a key factor in scaffold mechanics, we next investigate the molecular mechanism behind fibril alignment with Couette flow by computationally investigating the effects of COL's structural properties such as chain lengths, number of chains, tethering conditions, and initial COL conformations on the COL's final alignment level. Our computations suggest that longer chain lengths, more chains, greater amounts of tethering, and initial anisotropic COL conformations benefit the final alignment, but the effect of chain lengths may be more dominant over other factors. These results provide important parameters for consideration in manufacturing COL-based scaffolds where alignment and cross-linking are necessary for regulating performance.
Collapse
Affiliation(s)
- Chenxi Zhai
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Patrick A Sullivan
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Cassandra L Martin
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Haoyuan Shi
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Leila F Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
37
|
Cox L, Croxford A, Drinkwater BW. Dynamic patterning of microparticles with acoustic impulse control. Sci Rep 2022; 12:14549. [PMID: 36008430 PMCID: PMC9411184 DOI: 10.1038/s41598-022-18554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
This paper describes the use of impulse control of an acoustic field to create complex and precise particle patterns and then dynamically manipulate them. We first demonstrate that the motion of a particle in an acoustic field depends on the applied impulse and three distinct regimes can be identified. The high impulse regime is the well established mode where particles travel to the force minima of an applied continuous acoustic field. In contrast acoustic field switching in the low impulse regime results in a force field experienced by the particle equal to the time weighted average of the constituent force fields. We demonstrate via simulation and experiment that operating in the low impulse regime facilitates an intuitive and modular route to forming complex patterns of particles. The intermediate impulse regime is shown to enable more localised manipulation of particles. In addition to patterning, we demonstrate a set of impulse control tools to clear away undesired particles to further increase the contrast of the pattern against background. We combine these tools to create high contrast patterns as well as moving and re-configuring them. These techniques have applications in areas such as tissue engineering where they will enable complex, high fidelity cell patterns.
Collapse
Affiliation(s)
- Luke Cox
- Department of Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK.
| | - Anthony Croxford
- Department of Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
| | - Bruce W Drinkwater
- Department of Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
| |
Collapse
|
38
|
Dickerson DA. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites. Adv Biol (Weinh) 2022; 7:e2200067. [PMID: 35999488 DOI: 10.1002/adbi.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Indexed: 11/10/2022]
Abstract
A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.
Collapse
Affiliation(s)
- Darryl A. Dickerson
- Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler St Miami FL 33174 USA
| |
Collapse
|
39
|
Guimarães CF, Marques AP, Reis RL. Pushing the Natural Frontier: Progress on the Integration of Biomaterial Cues toward Combinatorial Biofabrication and Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105645. [PMID: 35419887 DOI: 10.1002/adma.202105645] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The engineering of fully functional, biological-like tissues requires biomaterials to direct cellular events to a near-native, 3D niche extent. Natural biomaterials are generally seen as a safe option for cell support, but their biocompatibility and biodegradability can be just as limited as their bioactive/biomimetic performance. Furthermore, integrating different biomaterial cues and their final impact on cellular behavior is a complex equation where the outcome might be very different from the sum of individual parts. This review critically analyses recent progress on biomaterial-induced cellular responses, from simple adhesion to more complex stem cell differentiation, looking at the ever-growing possibilities of natural materials modification. Starting with a discussion on native material formulation and the inclusion of cell-instructive cues, the roles of shape and mechanical stimuli, the susceptibility to cellular remodeling, and the often-overlooked impact of cellular density and cell-cell interactions within constructs, are delved into. Along the way, synergistic and antagonistic combinations reported in vitro and in vivo are singled out, identifying needs and current lessons on the development of natural biomaterial libraries to solve the cell-material puzzle efficiently. This review brings together knowledge from different fields envisioning next-generation, combinatorial biomaterial development toward complex tissue engineering.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
40
|
Yuan Z, Ding J, Zhang Y, Huang B, Song Z, Meng X, Ma X, Gong X, Huang Z, Ma S, Xiang S, Xu W. Components, mechanisms and applications of stimuli-responsive polymer gels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Chen W, Zhang Z, Kouwer PHJ. Magnetically Driven Hierarchical Alignment in Biomimetic Fibrous Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203033. [PMID: 35665598 DOI: 10.1002/smll.202203033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
In vivo, natural biomaterials are frequently anisotropic, exhibiting directional microstructures and mechanical properties. It remains challenging to develop such anisotropy in synthetic materials. Here, a facile one-step approach for in situ fabrication of hydrogels with hierarchically anisotropic architectures and direction-dependent mechanical properties is proposed. The anisotropic hydrogels, composed of a fibrous gel network (0.1 wt%), cross-linked with magnetic nanoparticles (spheres, rods, and wires, <0.1 wt%) are readily formed in the presence of very low magnetic fields (<20 mT). The anisotropy of the nanoparticles is transduced to the polymer network, leading to macroscopic anisotropy, for instance, in mechanical properties. Electrostatic repulsion by the negatively charged nanoparticles induces an additional layer of order in the material, perpendicular to the magnetic field direction. The straightforward fabrication strategy allows for stepwise deposition of layers with different degrees or directions of anisotropy, which enables the formation of complex structures that are able to mimic some of the complex hierarchical architectures found in biology. It is anticipated that this approach of hydrogel alignment may serve as a guide for designing advanced biomaterials in tissue engineering.
Collapse
Affiliation(s)
- Wen Chen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Zhaobao Zhang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
42
|
Patel M, Ahn S, Koh WG. Topographical pattern for neuronal tissue engineering. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Zeng Z, Yang Y, Deng J, Saif Ur Rahman M, Sun C, Xu S. Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair. Bioengineering (Basel) 2022; 9:292. [PMID: 35877343 PMCID: PMC9311987 DOI: 10.3390/bioengineering9070292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury (PNI) is a clinical problem with high morbidity that can cause severe damage. Surgical suturing or implants are usually required due to the slow speed and numerous factors affecting repair after PNI. An autologous nerve graft is the gold standard for PNI repair among implants. However, there is a potential problem of the functional loss of the donor site. Therefore, tissue-engineered nerve biomaterials are often used to bridge the gap between nerve defects, but the therapeutic effect is insufficient. In order to enhance the repair effect of nerve biomaterials for PNI, researchers are seeking to combine various stimulation elements, such as the addition of biological factors such as nerve growth factors or physical factors such as internal microstructural modifications of catheters and their combined application with physical stimulation therapy. Physical stimulation therapy is safer, is more convenient, and has more practical features than other additive factors. Its feasibility and convenience, when combined with nerve biomaterials, provide broader application prospects for PNI repair, and has therefore become a research hot spot. This paper will review the combined application of physical stimulation and biomaterials in PNI repair in recent years to provide new therapeutic ideas for the future use of physical stimulation in PNI repair.
Collapse
Affiliation(s)
- Zhipeng Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yajing Yang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen 518116, China;
| | - Junyong Deng
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengmei Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
44
|
Wang L, Li T, Wang Z, Hou J, Liu S, Yang Q, Yu L, Guo W, Wang Y, Guo B, Huang W, Wu Y. Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration. Biomaterials 2022; 285:121537. [DOI: 10.1016/j.biomaterials.2022.121537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
|
45
|
Tran KA, Jin Y, Bouyer J, DeOre BJ, Suprewicz Ł, Figel A, Walens H, Fischer I, Galie PA. Magnetic alignment of injectable hydrogel scaffolds for spinal cord injury repair. Biomater Sci 2022; 10:2237-2247. [PMID: 35352727 DOI: 10.1039/d1bm01590g] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Injectable hydrogels for cell delivery and tissue regeneration have several advantages over pre-fabricated scaffolds that require more invasive transplantation procedures, but lack the ability to implement tunable topologies. Here, we describe an approach to create patternable and injectable scaffolds using magnetically-responsive (MR) self-assembling peptide hydrogels, and validate their efficacy to promote and align axon infiltration at the site of a spinal cord injury. In vitro experiments reveal the parameters needed to align the fibers using the application of an external magnetic field. These results indicate that applying a 100-Gauss (G) field to the peptide hydrogels during polymerization causes fiber alignment as measured by electron microscopy, even in the presence of cells. In order to mimic infiltrating axons, neural progenitor cells (NPCs) are seeded on the surface of peptide hydrogels to interrogate the effects of both magnetic alignment and embedding human mesenchymal stem cells (hMSCs) in the scaffold. NPCs infiltrate peptide hydrogels seeded with hMSCs, and exhibit increased alignment and elongation in aligned gels. In order to evaluate these injectable and patternable scaffolds in vivo, hMSC-seeded peptide hydrogels are injected at the site of a contusion spinal cord injury with and without the presence of a magnetic field to align the resulting fibrous network. Measurements of axon growth and orientation as well as inflammation and glial scar formation indicate that these metrics are improved in magnetically aligned hMSC-seeded hydrogels. The results verify that MR hydrogels can dictate the orientation of infiltrating axons, providing a viable means to control the topology of injectable scaffolds.
Collapse
Affiliation(s)
- Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA.
| | - Ying Jin
- Department of Neurobiology and Anatomy, Drexel College of Medicine, Philadelphia, PA, USA
| | - Julien Bouyer
- Department of Neurobiology and Anatomy, Drexel College of Medicine, Philadelphia, PA, USA
| | - Brandon J DeOre
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA.
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Ana Figel
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA.
| | - Hannah Walens
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA.
| | - Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel College of Medicine, Philadelphia, PA, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA.
| |
Collapse
|
46
|
Hu Y, Zhang H, Wei H, Cheng H, Cai J, Chen X, Xia L, Wang H, Chai R. Scaffolds with Anisotropic Structure for Neural Tissue Engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
47
|
Wright AL, Righelli L, Broomhall TJ, Lamont HC, El Haj AJ. Magnetic Nanoparticle-Mediated Orientation of Collagen Hydrogels for Engineering of Tendon-Mimetic Constructs. Front Bioeng Biotechnol 2022; 10:797437. [PMID: 35372293 PMCID: PMC8968910 DOI: 10.3389/fbioe.2022.797437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
Despite the high incidence of tendon injuries worldwide, an optimal treatment strategy has yet to be defined. A key challenge for tendon repair is the alignment of the repaired matrix into orientations which provide maximal mechanical strength. Using oriented implants for tissue growth combined with either exogenous or endogenous stem cells may provide a solution. Previous research has shown how oriented fiber-like structures within 3D scaffolds can provide a framework for organized extracellular matrix deposition. In this article, we present our data on the remote magnetic alignment of collagen hydrogels which facilitates long-term collagen orientation. Magnetic nanoparticles (MNPs) at varying concentrations can be contained within collagen hydrogels. Our data show how, in response to the magnetic field lines, MNPs align and form string-like structures orientating at 90 degrees from the applied magnetic field from our device. This can be visualized by light and fluorescence microscopy, and it persists for 21 days post-application of the magnetic field. Confocal microscopy demonstrates the anisotropic macroscale structure of MNP-laden collagen gels subjected to a magnetic field, compared to gels without MNP dosing. Matrix fibrillation was compared between non- and biofunctionalized MNP hydrogels, and different gels dosed with varying MNP concentrations. Human adipose stem cells (hASCs) seeded within the magnetically aligned gels were observed to align in parallel to MNP and collagen orientation 7 days post-application of the magnetic field. hASCs seeded in isotropic gels were randomly organized. Tenocyte-likeness of the cells 7 days post-seeding in collagen I scaffolds was confirmed by the positive expression of tenomodulin and scleraxis proteins. To summarize, we have developed a convenient, non-invasive protocol to control the collagen I hydrogel architecture. Through the presence or absence of MNP dosing and a magnetic field, collagen can be remotely aligned or randomly organized, respectively, in situ. Tendon-like cells were observed to organize in parallel to unidirectionally aligned collagen fibers and polydirectionally in non-aligned collagen constructs. In this way, we were able to engineer the constructs emulating a physiologically and pathologically relevant tendon niche. This can be considered as an innovative approach particularly useful in tissue engineering or organ-on-a-chip applications for remotely controlling collagen matrix organization to recapitulate the native tendon.
Collapse
Affiliation(s)
| | | | | | | | - Alicia J. El Haj
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
48
|
Li Z, Zhou Y, Li T, Zhang J, Tian H. Stimuli‐responsive hydrogels: Fabrication and biomedical applications. VIEW 2022. [DOI: 10.1002/viw.20200112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ziyuan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Yanzi Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Tianyue Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| |
Collapse
|
49
|
Features and Methods of Making Nanofibers by Electrospinning, Phase Separation and Self-assembly. JORJANI BIOMEDICINE JOURNAL 2022. [DOI: 10.52547/jorjanibiomedj.10.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
50
|
Wei Z, Sun T, Shimoda S, Chen Z, Chen X, Wang H, Huang Q, Fukuda T, Shi Q. Bio-inspired engineering of a perfusion culture platform for guided three-dimensional nerve cell growth and differentiation. LAB ON A CHIP 2022; 22:1006-1017. [PMID: 35147637 DOI: 10.1039/d1lc01149a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Collagen provides a promising environment for 3D nerve cell culture; however, the function of perfusion culture and cell-growth guidance is difficult to integrate into such an environment to promote cell growth. In this paper, we develop a bio-inspired design method for constructing a perfusion culture platform for guided nerve cell growth and differentiation in collagen. Based on the anatomical structure of peripheral neural tissue, a biomimetic porous structure (BPS) is fabricated by two-photon polymerization of IP-Visio. The micro-capillary effect is then utilized to facilitate the self-assembly of cell encapsulated collagen into the BPS. 3D perfusion culture can be rapidly implemented by inserting the cell-filled BPS into a pipette tip connected with syringe pumps. Furthermore, we investigate the nerve cell behavior in the BPS. 7-channel aligned cellular structures surrounded with a Schwann cell layer can be stably formed after a long-time perfusion culture. Differentiation of PC12 cells and mouse neural stem cells shows 3D neurite outgrowth alignment and elongation in collagen. The calcium activities of differentiated PC12 cells are visualized for confirming the preliminary formation of cell function. These results demonstrate that the proposed bio-inspired 3D cell culture platform with the advantages of miniaturization, structure complexity and perfusion has great potential for future application in the study of nerve regeneration and drug screening.
Collapse
Affiliation(s)
- Zihou Wei
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Tao Sun
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shingo Shimoda
- Center of Brain Science (CBS), CBS-TOYOTA Collaboration Center (BTCC), Intelligent Behaviour Control Unit, Riken, Nagoya 463-0003, Japan
| | - Zhe Chen
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xie Chen
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Toshio Fukuda
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|