1
|
Chen D, Miao B, Zhu G, Liang Y, Wang C. Controllable synthesis and biomedical applications of bismuth-based nanospheres: enhanced photothermal therapy and CT imaging efficiency. NANOSCALE 2024. [PMID: 39665843 DOI: 10.1039/d4nr04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The advancement and utilization of nano-scale biomaterials in the diagnosis and treatment of tumors have been notable over the last few decades, primarily owing to their appealing characteristics such as small particle size, adjustable properties, and remarkable biocompatibility. The creation of nanomaterials possessing versatility and a customizable nature, consequently, holds great promise for advancing healthcare and improving patient outcomes. Here, we report the controllable synthesis of monodisperse bismuth-based (Bi2S3, Bi, and Bi2O3) nanoparticles with uniform spherical morphology and size distribution, and evaluate their potential for CT imaging and photothermal therapy applications. Monodisperse Bi2S3 nanospheres were initially synthesized in aqueous solution using a low-temperature precipitation method. Subsequently, Bi and Bi2O3 nanospheres were prepared through the NaBH4 reduction and the H2O2 oxidation of the as-synthesized Bi2S3 templates, respectively. Photothermal conversion and CT imaging characterizations confirm the superiority of Bi nanospheres over Bi2S3 and Bi2O3 nanospheres in terms of their excellent photothermal conversion efficiency (∼40.10%) and CT contrast efficiency (∼34.32 HU mL mg-1). Furthermore, it is demonstrated that Bi nanospheres exhibit significant advantages in CT imaging and photothermal effects by using the glioma mouse model, notably achieving a tumor area temperature increase to 53.6 °C after near-infrared laser irradiation. This work furnishes theoretical and experimental evidence for bismuth-based nanomaterials as valuable tools in various biomedical applications.
Collapse
Affiliation(s)
- Dongxun Chen
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.
| | - Baowang Miao
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan 250033, China.
- Department of Neurosurgery, Yiyuan County People's Hospital, Zibo 256100, China
| | - Guidong Zhu
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Yanjie Liang
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan 250033, China.
| |
Collapse
|
2
|
Shu G, Zhang C, Wen Y, Pan J, Zhang X, Sun SK. Bismuth drug-inspired ultra-small dextran coated bismuth oxide nanoparticles for targeted computed tomography imaging of inflammatory bowel disease. Biomaterials 2024; 311:122658. [PMID: 38901130 DOI: 10.1016/j.biomaterials.2024.122658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Bismuth (Bi)-based computed tomography (CT) imaging contrast agents (CAs) hold significant promise for diagnosing gastrointestinal diseases due to their cost-effectiveness, heightened sensitivity, and commendable biocompatibility. Nevertheless, substantial challenges persist in achieving an easy synthesis process, remarkable water solubility, and effective targeting ability for the potential clinical transformation of Bi-based CAs. Herein, we show Bi drug-inspired ultra-small dextran coated bismuth oxide nanoparticles (Bi2O3-Dex NPs) for targeted CT imaging of inflammatory bowel disease (IBD). Bi2O3-Dex NPs are synthesized through a simple alkaline precipitation reaction using bismuth salts and dextran as the template. The Bi2O3-Dex NPs exhibit ultra-small size (3.4 nm), exceptional water solubility (over 200 mg mL-1), high Bi content (19.75 %), excellent biocompatibility and demonstrate higher X-ray attenuation capacity compared to clinical iohexol. Bi2O3-Dex NPs not only enable clear visualization of the GI tract outline and intestinal loop structures in CT imaging but also specifically target and accumulate at the inflammatory site in colitis mice after oral administration, facilitating a precise diagnosis and enabling targeted CT imaging of IBD. Our study introduces a novel and clinically promising strategy for synthesizing high-performance Bi2O3-Dex NPs for diagnosing gastrointestinal diseases.
Collapse
Affiliation(s)
- Gang Shu
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China; Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Cai Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ya Wen
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
3
|
Lv D, Xu Z, Yang H, Rong Y, Zhao Z, Hu Z, Yin R, Guo R, Cao X, Tang B. Hollow Bismuth Nanoparticle-Loaded Gelatin Hydrogel Regulates M2 Polarization of Macrophages to Promote Infected Wound Healing. Biomater Res 2024; 28:0105. [PMID: 39529659 PMCID: PMC11551490 DOI: 10.34133/bmr.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Open wounds face severe bacterial infection, which affects the quality of healing. Photothermal antimicrobial therapy has received increasing attention as a broad-spectrum antimicrobial treatment that can avoid drug resistance. A variety of metallic materials have been used in the development of photothermal agents. However, there are few studies on bismuth as a photothermal agent and its use in tissue repair, so there is still a lack of clear understanding of its biomedical function. Here, a hollow bismuth nanosphere prepared from bismuth metal was developed for drug loading and photothermal antibacterial effect. The photothermal conversion efficiency of the hollow bismuth spheres reached 16.1%, and the bismuth-loaded gelatin-oxidized dextran (ODex)-based hydrogel achieves good antibacterial effects both in vivo and in vitro. The bismuth-loaded hydrogel can also promote the angiogenesis of human umbilical vein endothelial cells (HUVECs) and improve the proliferation of human keratinocytes cells (HaCaT) and the quality of wound healing. This discovery provides a new idea for the application of metal bismuth in the field of tissue repair and regeneration.
Collapse
Affiliation(s)
- Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhongye Xu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hao Yang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yanchao Rong
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zirui Zhao
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Rong Yin
- Department of Dermatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering,
Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaoling Cao
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Bing Tang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
4
|
Meng RY, Xia HY, Zhao Y, Ye YT, Wang SB, Chen AZ, Kankala RK. Nanoarchitectonics of copper sulfide nanoplating for improvement of computed tomography efficacy of bismuth oxide constructs toward drugless theranostics. Regen Biomater 2024; 11:rbae128. [PMID: 39600909 PMCID: PMC11593496 DOI: 10.1093/rb/rbae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has emerged as one of the dreadful metastatic tumors in women due to complexity, specificity and high recurrence, resulting in poor therapeutic outcomes and requiring real-time monitoring for improved theranostics. Despite the success as efficient radiosensitizers and computed tomography (CT)-based contrast agents, bismuth (Bi)-based composites suffer from poor colloidal stability, dose-dependent toxicity and pharmacokinetic shortcomings, leading to poor therapeutic monitoring. In addition, several small molecule-based therapeutics, including nanoparticle-based delivery systems, suffer from several limitations of poor therapeutic delivery and acquired multidrug resistance by cancer cells, depriving the therapeutic needs. To overcome this aspect, this study demonstrates the fabrication of drug-like/drugless nanoarchitectures based on copper sulfide-nanoplated bismuth oxide (Bi2O3@CuS, shortly BC) composites for improved theranostic efficacy against TNBC. These systematically characterized BC nanocomposites exhibited pH-/near-infrared (NIR, 808 nm) light-responsive degradability toward dual modal therapies. Due to the band transition of Cu species, the designed BC composites displayed exceptional photothermal (PTT) conversion efficiency toward localized PTT effects. In addition to pH-/NIR-responsiveness, the internally overexpressed glutathione (GSH)-responsiveness facilitated the release of Cu2+ species for chemodynamic therapy (CDT)-based effects. To this end, the Bi3+ species in the core could be fully hydrated in the acidic tumor microenvironment, resulting in GSH depletion and reducing CDT-induced reactive oxygen species clearance, thereby ablating tumors. The acid-responsive degradability of CuS resulted in the intratumoral enrichment of BC, demonstrating remarkable CT imaging efficacy in vivo. Together, these pH-/NIR-/GSH-responsive biodegradable BC composites could realize the integrated PTT/CDT/CT theranostics against breast carcinoma.
Collapse
Affiliation(s)
- Ruo-Yin Meng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Ying Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Ying-Tong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| |
Collapse
|
5
|
Ma L, Pan J, Shu G, Pan H, Li J, Li D, Sun S. Non-invasive fast assessment of hepatic injury through computed tomography imaging with renal-clearable Bi-DTPA dimeglumine. Regen Biomater 2024; 11:rbae118. [PMID: 39398283 PMCID: PMC11467190 DOI: 10.1093/rb/rbae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Enhanced computed tomography (CT) imaging with iodinated imaging probes is widely utilized for the diagnosis and evaluation of various liver diseases. However, these iodine-based imaging probes face intractable limitations including allergic reactions and contraindications. Herein, we propose the utilization of renal-clearable iodine-free bismuth chelate (Bi-DTPA dimeglumine) for the non-invasive fast assessment of hepatic ischemia-reperfusion injury (HIRI) via CT imaging for the first time. Bi-DTPA dimeglumine offers several advantages such as simple synthesis, no purification requirement, a yield approaching 100%, large-scale production capability (laboratory synthesis > 100 g), excellent biocompatibility and superior CT imaging performance. In a normal rat model, the administration of Bi-DTPA dimeglumine resulted in a significant 63.79% increase in liver CT value within a very short time period (30 s). Furthermore, in a HIRI rat model, Bi-DTPA dimeglumine enabled the rapid differentiation between healthy and injured areas based on the notable disparity in liver CT values as early as 15 min post-reperfusion, which showed a strong correlation with the histopathological analysis results. Additionally, Bi-DTPA dimeglumine can be almost eliminated from the body via the kidneys within 24 h. As an inherently advantageous alternative to iodinated imaging probes, Bi-DTPA dimeglumine exhibits promising prospects for application in liver disease diagnosis.
Collapse
Affiliation(s)
- Li Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Gang Shu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Haiyan Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jingang Li
- Department of medical technology, Taishan Vocational College of Nursing, Shandong 271000, China
| | - Dong Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shaokai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
6
|
Tang L, Wang S, Hu J, Meng L, Zhang J, Chang Y, Ma X, Guo Y. Rational design of Au-Bi bimetallic nanozyme for NIR-II laser mediated multifunctional combined tumor therapy. Colloids Surf B Biointerfaces 2024; 245:114188. [PMID: 39226744 DOI: 10.1016/j.colsurfb.2024.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
To maximize the therapeutic effects and minimize the adverse effects of synergistic tumor therapies, a multifunctional nanozyme Au-Bi/ZIF-8@DOX@HA (ABZ@DOX@HA) was designed and synthesized through the Au and Bi bimetallic doping of ZIF-8, loading of the DOX, and modifying with hyaluronic acid (HA). The ABZ@DOX@HA nanoparticles (NPs) could simulate the enzymatic activities of glucose oxidase (GOx) and peroxidase (POD). Upon irradiated by near-infrared region (NIR-II) laser, the strong synergism of the photothermal abilities of the loaded Au and Bi nanodots accelerated the collapse of the ABZ structure at the tumor site considerably and released Au, Bi nanodots and DOX. The results in vitro and in vivo proved that ABZ@DOX@HA nanozyme could effectively exert the combined tumor therapy of starvation treatment, photothermal therapy (PTT), chemodynamic therapy (CDT) and chemotherapy. The current research provides a new strategy to address the inherent challenges of easy clearance and short blood circulation of small-sized NPs during the treatment of tumors with nanomedicine, as well as the aggregation and oxidation of inorganic nanodots.
Collapse
Affiliation(s)
- Lingxue Tang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuo Wang
- Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Hu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lili Meng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yi Chang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
7
|
Ma S, Kong J, Luo X, Xie J, Zhou Z, Bai X. Recent progress on bismuth-based light-triggered antibacterial nanocomposites: Synthesis, characterization, optical properties and bactericidal applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170125. [PMID: 38242469 DOI: 10.1016/j.scitotenv.2024.170125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Bacterial infections pose a seriously threat to the safety of the environment and human health. In particular, the emergence of drug-resistant pathogens as a result of antibiotic abuse and high trauma risk has rendered conventional therapeutic techniques insufficient for treating infections by these so-called "superbugs". Therefore, there is an urgent need to develop highly efficient and environmentally-friendly antimicrobial agents. Bismuth-based nanomaterials with unique structures and physicochemical characteristics have attracted considerable attention as promising antimicrobial candidates, with many demonstratingoutstanding antibacterial effects upon being triggered by broad-spectrum light. These nanomaterials have also exhibited satisfactory energy band gaps and electronic density distribution with improved photonic properties for extensive and comprehensive applications after being modified through various engineering methods. This review summarizes the latest research progress made on bismuth-based nanomaterials with different morphologies, structures and compositions as well as the different methods used for their synthesis to meet their rapidly increasing demand, especially for antibacterial applications. Moreover, the future prospects and challenges regarding the application of these nanomaterials are discussed. The aim of this review is to stimulate interest in the development and experimental transformation of novel bismuth-based nanomaterials to expand the arsenal of effective antimicrobials.
Collapse
Affiliation(s)
- Sihan Ma
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China.
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xian Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361002, China
| | - Jun Xie
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zonglang Zhou
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Su R, Li X, Xiao J, Xu J, Tian J, Liu T, Hu Y. UiO-66 nanoparticles combat influenza A virus in mice by activating the RIG-I-like receptor signaling pathway. J Nanobiotechnology 2024; 22:99. [PMID: 38461229 PMCID: PMC10925002 DOI: 10.1186/s12951-024-02358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/20/2024] [Indexed: 03/11/2024] Open
Abstract
The Influenza A virus (IAV) is a zoonotic pathogen that infects humans and various animal species. Infection with IAV can cause fever, anorexia, and dyspnea and is often accompanied by pneumonia characterized by an excessive release of cytokines (i.e., cytokine storm). Nanodrug delivery systems and nanoparticles are a novel approach to address IAV infections. Herein, UiO-66 nanoparticles (NPs) are synthesized using a high-temperature melting reaction. The in vitro and in vivo optimal concentrations of UiO-66 NPs for antiviral activity are 200 μg mL-1 and 60 mg kg-1, respectively. Transcriptome analysis revealed that UiO-66 NPs can activate the RIG-I-like receptor signaling pathway, thereby enhancing the downstream type I interferon antiviral effect. These NPs suppress inflammation-related pathways, including the FOXO, HIF, and AMPK signaling pathways. The inhibitory effect of UiO-66 NPs on the adsorption and entry of IAV into A549 cells is significant. This study presents novel findings that demonstrate the effective inhibition of IAV adsorption and entry into cells via UiO-66 NPs and highlights their ability to activate the cellular RIG-I-like receptor signaling pathway, thereby exerting an anti-IAV effect in vitro or in mice. These results provide valuable insights into the mechanism of action of UiO-66 NPs against IAV and substantial data for advancing innovative antiviral nanomedicine.
Collapse
Affiliation(s)
- Ruijing Su
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xinsen Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People's Republic of China
| | - Jiawei Xu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jijing Tian
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Yanxin Hu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
9
|
Shu G, Zhao L, Li F, Jiang Y, Zhang X, Yu C, Pan J, Sun SK. Metallic artifacts-free spectral computed tomography angiography based on renal clearable bismuth chelate. Biomaterials 2024; 305:122422. [PMID: 38128318 DOI: 10.1016/j.biomaterials.2023.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Computed tomography angiography (CTA) is one of the most important diagnosis techniques for various vascular diseases in clinic. However, metallic artifacts caused by metal implants and calcified plaques in more and more patients severely hinder its wide applications. Herein, we propose an improved metallic artifacts-free spectral CTA technique based on renal clearable bismuth chelate (Bi-DTPA dimeglumine) for the first time. Bi-DTPA dimeglumine owns the merits of ultra-simple synthetic process, approximately 100% of yield, large-scale production capability, good biocompatibility, and favorable renal clearable ability. More importantly, Bi-DTPA dimeglumine shows superior contrast-enhanced effect in CTA compared with clinical iohexol at a wide range of X-ray energies especially in higher X-ray energy. In rabbits' model with metallic transplants, Bi-DTPA dimeglumine assisted-spectral CTA can not only effectively mitigate metallic artifacts by reducing beam hardening effect under high X-ray energy, but also enables accurate delineation of vascular structure. Our proposed strategy opens a revolutionary way to solve the bottleneck problem of metallic artifacts in CTA examinations.
Collapse
Affiliation(s)
- Gang Shu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China; Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lu Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fengtan Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingjian Jiang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
10
|
Malekzadeh R, Mortezazadeh T, Abdulsahib WK, Babaye Abdollahi B, Hamblin MR, Mansoori B, Alsaikhan F, Zeng B. Nanoarchitecture-based photothermal ablation of cancer: A systematic review. ENVIRONMENTAL RESEARCH 2023; 236:116526. [PMID: 37487920 DOI: 10.1016/j.envres.2023.116526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023]
Abstract
Photothermal therapy (PTT) is an emerging non-invasive method used in cancer treatment. In PTT, near-infrared laser light is absorbed by a chromophore and converted into heat within the tumor tissue. PTT for cancer usually combines a variety of interactive plasmonic nanomaterials with laser irradiation. PTT enjoys PT agents with high conversion efficiency to convert light into heat to destroy malignant tissue. In this review, published studies concerned with the use of nanoparticles (NPs) in PTT were collected by a systematic and comprehensive search of PubMed, Cochrane, Embase, and Scopus databases. Gold, silver and iron NPs were the most frequent choice in PTT. The use of surface modified NPs allowed selective delivery and led to a precise controlled increase in the local temperature. The presence of NPs during PTT can increase the reactive generation of oxygen species, damage the DNA and mitochondria, leading to cancer cell death mainly via apoptosis. Many studies recently used core-shell metal NPs, and the effects of the polymer coating or ligands targeted to specific cellular receptors in order to increase PTT efficiency were often reported. The effective parameters (NP type, size, concentration, coated polymers or attached ligands, exposure conditions, cell line or type, and cell death mechanisms) were investigated individually. With the advances in chemical synthesis technology, NPs with different shapes, sizes, and coatings can be prepared with desirable properties, to achieve multimodal cancer treatment with precision and specificity.
Collapse
Affiliation(s)
- Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Medical Radiation Science Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Behnaz Babaye Abdollahi
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Behzad Mansoori
- The Wistar Institute, Cellular and Molecular Oncogenesis Program, Philadelphia, PA, USA.
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Bo Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China.
| |
Collapse
|
11
|
Duan W, Hang L, Ma Y, Wang Q, Tang X, Jiang W, Wu Y, Lv W, Wang Y. Compartmentalized Nano-MOFs as Co-delivery Systems for Enhanced Antitumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39039-39052. [PMID: 37552806 DOI: 10.1021/acsami.3c04296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Therapeutic bioactive macromolecules hold great promise in cancer therapy, but challenges such as low encapsulation efficiency and susceptibility to inactivation during the targeted co-delivery hinder their widespread applications. Compartmentalized nano-metal-organic frameworks (nMOFs) can easily load macromolecules in the innermost layer, protect them from the outside environment, and selectively release them in the target location after stimulation, showing great potential in the co-delivery of biomacromolecules. Herein, the rationally designed (GOx + CAT)/ZIF-8@BSATPZ/ZIF-8 (named GCZ@BTZ) nMOFs with compartmentalized structures are employed to deliver cascaded enzymes and the chemotherapeutic drug tirapazamine (TPZ)-conjugated bovine serum albumin (BSATPZ). Benefiting from the compartmentalized structure and protective shell, the GCZ@BTZ system is stable during blood circulation and preferentially accumulates in the tumor. Furthermore, in response to the acidic tumor environment, GCZ@BTZ effectively released the loading enzymes and BSATPZ. Along with the tumor starvation caused by depletion of glucose, cascaded reactions could also contribute to the enhancement of tumor hypoxia, which further activated BSATPZ-based chemotherapy. Notably, in the mouse tumor models, GCZ@BTZ treatment significantly inhibits tumor survival and metastasis. Such a compartmentalized nMOF delivery system presents a promising avenue for the efficient delivery of bioactive macromolecules.
Collapse
Affiliation(s)
- Wenxiu Duan
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 518037, China
| | - Yinchu Ma
- Wuxi School of Medicine, Jiangnan University, WuXi 214122, China
| | - Qin Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Xinfeng Tang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Wei Jiang
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yi Wu
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Weifu Lv
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yucai Wang
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, P. R. China
| |
Collapse
|
12
|
Yang J, Yue L, Shen B, Yang Z, Shao J, Miao Y, Ouyang R, Hu Y. Exploring the Inhibitory Effect of AgBiS 2 Nanoparticles on Influenza Viruses. Int J Mol Sci 2023; 24:10223. [PMID: 37373369 DOI: 10.3390/ijms241210223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Influenza viruses are respiratory pathogens that are major threats to human health. Due to the emergence of drug-resistant strains, the use of traditional anti-influenza drugs has been hindered. Therefore, the development of new antiviral drugs is critical. In this article, AgBiS2 nanoparticles were synthesized at room temperature, using the bimetallic properties of the material itself to explore its inhibitory effect on the influenza virus. By comparing the synthesized Bi2S3 and Ag2S nanoparticles, it is found that after adding the silver element, the synthesized AgBiS2 nanoparticles have a significantly better inhibitory effect on influenza virus infection than Bi2S3 and Ag2S nanoparticles. Recent studies have shown that the inhibitory effect of AgBiS2 nanoparticles on the influenza virus mainly occurs in the stages of influenza virus-cell internalization and intracellular replication. In addition, it is found that AgBiS2 nanoparticles also have prominent antiviral properties against α and β coronaviruses, indicating that AgBiS2 nanoparticles have significant potential in inhibiting viral activity.
Collapse
Affiliation(s)
- Junlei Yang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhu Yang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiang Shao
- Institutional Center for Shared Technologies and Facilities of Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yihong Hu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
13
|
Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, Liu Z, Jia B, Xu S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023. [PMID: 37161951 DOI: 10.1039/d3bm00271c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Zhu H, Zheng J, Oh XY, Chan CY, Low BQL, Tor JQ, Jiang W, Ye E, Loh XJ, Li Z. Nanoarchitecture-Integrated Hydrogel Systems toward Therapeutic Applications. ACS NANO 2023; 17:7953-7978. [PMID: 37071059 DOI: 10.1021/acsnano.2c12448] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hydrogels, as one of the most feasible soft biomaterials, have gained considerable attention in therapeutic applications by virtue of their tunable properties including superior patient compliance, good biocompatibility and biodegradation, and high cargo-loading efficiency. However, hydrogel application is still limited by some challenges like inefficient encapsulation, easy leakage of loaded cargoes, and the lack of controllability. Recently, nanoarchitecture-integrated hydrogel systems were found to be therapeutics with optimized properties, extending their bioapplication. In this review, we briefly presented the category of hydrogels according to their synthetic materials and further discussed the advantages in bioapplication. Additionally, various applications of nanoarchitecture hybrid hydrogels in biomedical engineering are systematically summarized, including cancer therapy, wound healing, cardiac repair, bone regeneration, diabetes therapy, and obesity therapy. Last, the current challenges, limitations, and future perspectives in the future development of nanoarchitecture-integrated flexible hydrogels are addressed.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jie Zheng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jia Qian Tor
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| |
Collapse
|
15
|
Ren R, Bremner DH, Chen W, Shi A, Wang T, Wang Y, Wang C, Wu J, Zhu LM. A multifunctional nanocomposite coated with a BSA membrane for cascaded nitric oxide therapy. Int J Biol Macromol 2023; 238:124087. [PMID: 36940766 DOI: 10.1016/j.ijbiomac.2023.124087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023]
Abstract
Gas therapy based on nitric oxide (NO) has emerged as a potential therapeutic approach for cancer, and in conjunction with multi-mode combination therapy, offers new possibilities for achieving significant hyperadditive effects. In this study, an integrated AI-MPDA@BSA nanocomposite for diagnosis and treatment was constructed for PDA based photoacoustic imaging (PAI) and cascade NO release. Natural NO donor L-arginine (L-Arg) and photosensitizer (PS) IR780 were loaded into mesoporous polydopamine (MPDA). Bovine serum albumin (BSA) was conjugated to the MPDA to increase the dispersibility and biocompatibility of the nanoparticles, as well as to serve as a gatekeeper controlling IR780 release from the MPDA pores. The AI-MPDA@BSA produced singlet oxygen (1O2) and converted it into NO through a chain reaction based on L-Arg, enabling a combination of photodynamic therapy and gas therapy. Moreover, due to the photothermal properties of MPDA, the AI-MPDA@BSA performed good photothermal conversion, which allowed photoacoustic imaging. As expected, both in vitro and in vivo studies have confirmed that the AI-MPDA@BSA nanoplatform has a significant inhibitory effect on cancer cells and tumors, and no apparent systemic toxicity or side effects were detected during the treatment period.
Collapse
Affiliation(s)
- Rong Ren
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - David H Bremner
- School of Science, Engineering and Technology, Abertay University, Kydd Building, Dundee DD1 1HG, Scotland, UK
| | - Wenling Chen
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Anhua Shi
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Tong Wang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Ying Wang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Chengji Wang
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.
| |
Collapse
|
16
|
Lu Y, Zhang P, Zhou Y, Zhang R, Fu X, Feng J, Zhang H. Novel nanocarrier for promoting tumor synergistic therapy by down-regulation of heat shock proteins and increased Fe3+ supply. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Hu X, Li H, Li R, Qiang S, Chen M, Shi S, Dong C. A Phase-Change Mediated Intelligent Nanoplatform for Chemo/Photothermal/Photodynamic Therapy of Cancer. Adv Healthc Mater 2023; 12:e2202245. [PMID: 36373209 DOI: 10.1002/adhm.202202245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/23/2022] [Indexed: 11/16/2022]
Abstract
Up to now, chemotherapy is still the main strategy for cancer treatment. However, the emergence of chemo-resistance and systemic side effects often seriously affects the treatment and prognosis. Herein, an intelligent nanoplatform based on dendritic mesoporous organosilica nanoparticles (DMON) is constructed. The encapsulated phase-change material, 1-tetradecanol (TD) can serve as a "doorkeeper" and enable the responsive release of drugs based on the temperature changes. Meanwhile, polyethylene glycol (PEG) is used to improve the dispersibility and biocompatibility. Cisplatin is chosen as the model of chemotherapy drug, which is co-loaded with indocyanine green (ICG) in DMON to produce DMON-PEG-cisplatin/ICG-TD (DPCIT). Exciting, the hyperthermia and reactive oxygen species induced by ICG under the NIR-laser irradiation will initiate a phase transition of TD to release cisplatin, thus leading a combined therapy (chemo/photothermal/photodynamic therapy). The results indicated that under laser irradiation, DPCIT can kill cancer cells and inhibit tumor growth efficiently. In addition, the designed nanoplatform reveals minimal systemic toxicity in vivo, in contrast, the distinct liver damage can be observed by the direct treatment of cisplatin. Overall, this research may provide a general approach for the targeted delivery and controlled release of chemotherapy drugs to realize a cooperatively enhanced multimodal tumor therapy.
Collapse
Affiliation(s)
- Xiaochun Hu
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Hui Li
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Ruihao Li
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Sufeng Qiang
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Mengyao Chen
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Shuo Shi
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Chunyan Dong
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| |
Collapse
|
18
|
Zhang L, Ma S, Wang T, Li S, Wang L, Li D, Tian Y, Zhang Q. Four-Photon Absorption Iron Complex for Magnetic Resonance/Photoacoustic Dual-Model Imaging and an Enhanced Ferroptosis Process. Anal Chem 2023; 95:1635-1642. [PMID: 36533710 DOI: 10.1021/acs.analchem.2c04763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four-photon absorption (4PA) multimodal therapeutic agent applied to tumor ferroptosis process tracking is rarely reported. In this paper, two functionalized terpyridine iron complexes (TD-FeCl3, TD-Fe-TD) with four-photon absorption properties were designed and synthesized. The four-photon absorption cross sections of TD-FeCl3 reached 6.87 × 10-74cm8·s3·photon-3. Due to its strong near-infrared absorption, TD-FeCl3 has excellent photoacoustic imaging (PAI) capability for accurate PA imaging. TD-FeCl3 has an efficient longitudinal electron relaxation rate (r1 = 2.26 mM-1 s-1) and high spatial resolution, which can be applied as T1-weighted magnetic resonance imaging (MRI) contrast agent for tumor imaging in vivo. In addition, Fe3+ as a natural ferroptosis tracer, TD-FeCl3, is able to deplete glutathione (GSH) effectively, which can further enhance the ferroptosis process. We found that the series of cheap transition metal complexes has four-photon absorption activity and can be used as multimodal (MRI/PAI) diagnostic agents for tumor tracing processes.
Collapse
Affiliation(s)
- Lidi Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China
| | - Shanheng Ma
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tao Wang
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Shengli Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China
| | - Lianke Wang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Dandan Li
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yupeng Tian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Qiong Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
19
|
Zhu H, Li B, Yu Chan C, Low Qian Ling B, Tor J, Yi Oh X, Jiang W, Ye E, Li Z, Jun Loh X. Advances in Single-component inorganic nanostructures for photoacoustic imaging guided photothermal therapy. Adv Drug Deliv Rev 2023; 192:114644. [PMID: 36493906 DOI: 10.1016/j.addr.2022.114644] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Phototheranostic based on photothermal therapy (PTT) and photoacoustic imaging (PAI), as one of avant-garde medical techniques, have sparked growing attention because it allows noninvasive, deeply penetrative, and highly selective and effective therapy. Among a variety of phototheranostic nanoagents, single-component inorganic nanostructures are found to be novel and attractive PAI and PTT combined nanotheranostic agents and received tremendous attention, which not only exhibit structural controllability, high tunability in physiochemical properties, size-dependent optical properties, high reproducibility, simple composition, easy functionalization, and simple synthesis process, but also can be endowed with multiple therapeutic and imaging functions, realizing the superior therapy result along with bringing less foreign materials into body, reducing systemic side effects and improving the bioavailability. In this review, according to their synthetic components, conventional single-component inorganic nanostructures are divided into metallic nanostructures, metal dichalcogenides, metal oxides, carbon based nanostructures, upconversion nanoparticles (UCNPs), metal organic frameworks (MOFs), MXenes, graphdiyne and other nanostructures. On the basis of this category, their detailed applications in PAI guide PTT of tumor treatment are systematically reviewed, including synthesis strategies, corresponding performances, and cancer diagnosis and therapeutic efficacy. Before these, the factors to influence on photothermal effect and the principle of in vivo PAI are briefly presented. Finally, we also comprehensively and thoroughly discussed the limitation, potential barriers, future perspectives for research and clinical translation of this single-component inorganic nanoagent in biomedical therapeutics.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Bofan Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Beverly Low Qian Ling
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Jiaqian Tor
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore.
| |
Collapse
|
20
|
Luo Y, Wang J, Xu L, Du Q, Fang N, Wu H, Liu F, Hu L, Xu J, Hou J, Zhong Y, Liu Y, Wang Z, Ran H, Guo D. A theranostic metallodrug modulates immunovascular crosstalk to combat immunosuppressive liver cancer. Acta Biomater 2022; 154:478-496. [PMID: 36280029 DOI: 10.1016/j.actbio.2022.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant, fatal disease with a complex tumor microenvironment (TME) characterized by severe immunosuppression and malformed vascular structures, thus most advanced HCC patients do not respond well to current mainstream pharmacotherapy and T-cell-related immunotherapy. Therefore, an efficient immunovascular crosstalk modulation strategy may help combat HCC by reversing immunosuppression and vessel normalization, especially by reprogramming tumor associated macrophages (TAMs). In this study, tyrosine kinase inhibitor lenvatinib (Len) was loaded into mesoporous Fe3O4 (mFe) nanoparticles (NPs), and bovine serum albumin (BSA) was attached to the NP surface to produce a metallodrug (BSA-mFe@Len NPs). In acidic TME, BSA allowed pH-responsive Len release and mFe exposure. Len directly triggered HCC apoptosis and changed the abnormal TME via vessel normalization, cytotoxic T-lymphocyte recruitment, and regulatory T-cell elimination at tailored dosages. After TAM phagocytosis, mFe NPs reprogrammed TAMs into M1 phenotypes to synergistically amplify antitumor immunity. The metallodrug achieved significant tumor growth inhibition, induced tumor vessel normalization effects, and acquired instant antitumor immunity as well as long-term immune memory in vivo. Furthermore, it displayed good T2 weighted magnetic resonance imaging performance, indicating potential theranostic applications. Collectively, this research provides new insights for unleashing the multifaceted potential of current pharmaceuticals in synergy with metallic nanomedicine for treating intractable liver cancer. STATEMENT OF SIGNIFICANCE: Current pharmacotherapy and immunotherapy have limited success in treating advanced hepatocellular carcinoma (HCC) due to its complex tumor microenvironment (TME). Hence, this work first put forward a theranostic metallodrug by loading lenvatinib (Len) into mesoporous Fe3O4 (mFe) nanoparticles (NPs) and coating a pH-degradable bovine serum albumin corona onto the surface. The metallodrug was able to modulate immunovascular TME for combating HCC via metalloimmunotherapy induced by the mFe NPs and Len's multiple functions (direct triggering of tumor apoptosis, vessel normalization, cytotoxic T-lymphocyte recruitment, and regulatory T-cell elimination). In vivo experiments showed that the metallodrug could significantly inhibit HCC growth and evoke long-term antitumor immune memory, paving a new avenue for treating advanced HCC patients.
Collapse
Affiliation(s)
- Ying Luo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Junrui Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Lian Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Qianying Du
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Ni Fang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Hongyun Wu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Fan Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Liu Hu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Jingxin Hou
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yixin Zhong
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
21
|
Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022; 291:121906. [DOI: 10.1016/j.biomaterials.2022.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
22
|
Li Y, Younis MH, Wang H, Zhang J, Cai W, Ni D. Spectral computed tomography with inorganic nanomaterials: State-of-the-art. Adv Drug Deliv Rev 2022; 189:114524. [PMID: 36058350 PMCID: PMC9664656 DOI: 10.1016/j.addr.2022.114524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/27/2022] [Indexed: 01/24/2023]
Abstract
Recently, spectral computed tomography (CT) technology has received great interest in the field of radiology. Spectral CT imaging utilizes the distinct, energy-dependent X-ray absorption properties of substances in order to provide additional imaging information. Dual-energy CT and multi-energy CT (Spectral CT) are capable of constructing monochromatic energy images, material separation images, energy spectrum curves, constructing effective atomic number maps, and more. However, poor contrast, due to neighboring X-ray attenuation of organs and tissues, is still a challenge to spectral CT. Hence, contrast agents (CAs) are applied for better differentiation of a given region of interest (ROI). Currently, many different kinds of inorganic nanoparticulate CAs for spectral CT have been developed due to the limitations of clinical iodine (I)-based contrast media, leading to the conclusion that inorganic nanomedicine applied to spectral CT will be a powerful collaboration both in basic research and in clinics. In this review, the underlying principles and types of spectral CT techniques are discussed, and some evolving clinical diagnosis applications of spectral CT techniques are introduced. In particular, recent developments in inorganic CAs used for spectral CT are summarized. Finally, the challenges and future developments of inorganic nanomedicine in spectral CT are briefly discussed.
Collapse
Affiliation(s)
- Yuhan Li
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China
| | - Muhsin H Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Jian Zhang
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China; Shanghai Universal Medical Imaging Diagnostic Center, Bldg 8, No. 406 Guilin Rd, Shanghai 200233, PR China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China.
| |
Collapse
|
23
|
Chen S, Qiu M, Wang R, Zhang L, Li C, Ye C, Zhou X. Photoactivated Nanohybrid for Dual-Nuclei MR/US/PA Multimodal-Guided Photothermal Therapy. Bioconjug Chem 2022; 33:1729-1740. [PMID: 36053016 DOI: 10.1021/acs.bioconjchem.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanohybrids have gained immense popularity for the diagnosis and chemotherapy of lung cancer for their excellent biocompatibility, biodegradability, and targeting ability. However, most of them suffer from limited imaging information, low tumor-to-background ratios, and multidrug resistance, limiting their potential clinical application. Herein, we engineered a photoresponsive nanohybrid by assembling polypyrrole@bovine serum albumin (PPy@BSA) encapsulating perfluoropentane (PFP)/129Xe for selective magnetic resonance (MR)/ultrasonic (US)/photoacoustic (PA) trimodal imaging and photothermal therapy of lung cancer, overcoming these drawbacks of single imaging modality and chemotherapy. The nanohybrid exhibited superior US, PA, and MR multimodal imaging performance for lung cancer detection. The high sensitivity of the nanohybrid to near-infrared light (NIR) resulted in a rapid increase in temperature in a low-intensity laser state, which initiated the phase transition of liquid PFP into the gas. The ultrasound signal inside the tumor, which is almost zero initially, is dramatically increased. Beyond this, it led to the complete depression of 19F/129Xe Hyper-CEST (chemical exchange saturation transfer) MRI during laser irradiation, which can precisely locate lung cancer. In vitro and in vivo results of the nanohybrid exhibited a successful therapeutic effect on lung cancer. Under the guidance of imaging results, a sound effect of photothermal therapy (PTT) for lung cancer was achieved. We expect this nanohybrid and photosensitive behavior will be helpful as fundamental tools to decipher lung cancer in an earlier stage through trimodality imaging methods.
Collapse
Affiliation(s)
- Shizhen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| | - Maosong Qiu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ruifang Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| |
Collapse
|
24
|
Zhou T, Xie S, Zhou C, Chen Y, Li H, Liu P, Jiang R, Hang L, Jiang G. All-In-One Second Near-Infrared Light-Responsive Drug Delivery System for Synergistic Chemo-Photothermal Therapy. ACS APPLIED BIO MATERIALS 2022; 5:3841-3849. [PMID: 35815771 DOI: 10.1021/acsabm.2c00208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-responsive nanocarrier-based drug delivery systems (NDDSs), due to their unique advantages such as safety, minimal cross-reaction, and spatiotemporal precision, have received wide attention. Notably, second near-infrared (NIR-II) light, which has a high penetration depth for manipulating NDDSs to release drugs, is in high demand. Herein, polyethylene glycol (PEG)-modified hollow CuxS nanoparticles (NPs) are developed as an all-in-one NIR-II light-responsive NDDS for synergistic chemo-photothermal therapy. First, CuxS-PEG NPs were prepared under mild conditions by using Cu2O NPs as sacrificial templates. The morphology, photothermal effect, drug loading/releasing abilities, and synergistic chemo-photothermal therapy of CuxS-PEG NPs have been investigated. The CuxS-PEG NPs with hollow structures showed a high drug loading capacity (∼255 μg Dox per mg of CuxS NPs) and stimuli-responsive drug release triggered by NIR-II laser irradiation. The synergistic chemo-photothermal therapy based on the Dox/CuxS-PEG NPs showed 98.5% tumor elimination. Our study emphasizes the great potential of CuxS-PEG NPs as an all-in-one NIR-II light-responsive NDDS for applications in biomedicine.
Collapse
Affiliation(s)
- Tianxing Zhou
- Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Shuangcong Xie
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China
| | - Chunze Zhou
- Interventional Radiology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, P. R. China
| | - Yiyu Chen
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.,School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 518037, P. R. China
| | - Ping Liu
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China
| | - Rongjian Jiang
- Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China
| | - Guihua Jiang
- Guangdong Medical University, Zhanjiang 524023, P. R. China.,The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China
| |
Collapse
|
25
|
Yang M, Zhang J, Shi W, Zhang J, Tao C. Recent advances in metal-organic frameworks and their composites for the phototherapy of skin wounds. J Mater Chem B 2022; 10:4695-4713. [PMID: 35687028 DOI: 10.1039/d2tb00341d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Wound healing is a complex process that greatly affects the normal physiological activities of genes, proteins, signaling pathways, tissues, and organs. Bacterial infection could easily lead to serious tissue damage during wound healing, thus countering wound infections becomes a major challenge for clinicians and nursing professionals. At present, the exploration of highly effective, low toxicity and environment friendly methods for wound healing is attracting considerable interest all over the world. Recently, metal-organic frameworks (MOFs) have presented great potential for treating wound infections due to their unique characteristics of diversified functionality, large specific surface area, and high biocompatibility. These properties endow MOFs/MOF-based composites with an outstanding anti-wound infection effect, which is mainly attributed to the continuously released active components and the exerted catalytic activity with the assistance of phototherapy. In this review, the current progress of MOFs/MOF-based composites for the phototherapy of skin wounds is presented. Firstly, we illustrate the pathophysiological mechanisms, principles of phototherapy and the conventional methods for wound healing. Then, the structures and characteristics of MOFs are systematically summarized. Moreover, the review highlights the recent advances in the application of phototherapy for wound healing (including photodynamic therapy, photothermal therapy, and synergistic therapy) based on various MOFs/MOF-based composites. Finally, the challenges and perspectives are provided for the further development of MOF-based materials for medical application.
Collapse
Affiliation(s)
- Mei Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Wu Shi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| |
Collapse
|
26
|
Bai L, Yi W, Chen J, Wang B, Tian Y, Zhang P, Cheng X, Si J, Hou X, Hou J. Two-Stage Targeted Bismuthene-Based Composite Nanosystem for Multimodal Imaging Guided Enhanced Hyperthermia and Inhibition of Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25050-25064. [PMID: 35608833 DOI: 10.1021/acsami.2c01128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A key challenge for nanomedicines in clinical application is to reduce the dose while achieving excellent efficacy, which has attracted extensive attention in dose toxicity and potential risks. It is thus necessary to reasonably design nanomedicine with high-efficiency targeting and accumulation. Here, we designed and synthesized a tetragonal bismuthene-based "all-in-one" composite nanosystem (TPP-Bi@PDA@CP) with two-stage targeting, multimodal imaging, photothermal therapy, and immune enhancement functions. Through the elaborate design of its structure, the composite nanosystem possesses multiple properties including (i) two-stage targeting function of hepatoma cells and mitochondria [the aggregation at the tumor site is 2.63-fold higher than that of traditional enhanced permeability and retention (EPR) effect]; (ii) computed tomography (CT) contrast-enhancement efficiency as high as ∼51.8 HU mL mg-1 (3.16-fold that of the clinically available iopromide); (iii) ultrahigh photothermal conversion efficiency (52.3%, 808 nm), promising photothermal therapy (PTT), and high-contrast infrared thermal (IRT)/photoacoustic (PA) imaging of tumor; (iv) benefitting from the two-stage targeting function and excellent photothermal conversion ability, the dose used in this strategy is one of the lowest doses in hyperthermia (the inhibition rate of tumor cells was 50% at a dose of 15 μg mL-1 and 75% at a dose of 25 μg mL-1); (v) the compound polysaccharide (CP) shell with hepatoma cell targeting and immune enhancement functions effectively inhibited the recurrence of tumor. Therefore, our work reduces the dose toxicity and potential risk of nanomedicines and highlights the great potential as an all-in-one theranostic nanoplatform for two-stage targeting, integrated diagnostic imaging, photothermal therapy, and inhibition of tumor recurrence.
Collapse
Affiliation(s)
- Lei Bai
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenhui Yi
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jing Chen
- College of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Bojin Wang
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yilong Tian
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ping Zhang
- College of Science, Northwest A&F University, Xi'an, Shaanxi 712100, China
| | - Xin Cheng
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinhai Si
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xun Hou
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jin Hou
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| |
Collapse
|
27
|
Yang L, Jia P, Song S, Dong Y, Shen R, He F, Gai S. On-Demand Triggered Chemodynamic Therapy by NIR-II Light on Oxidation-Prevented Bismuth Nanodots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21787-21799. [PMID: 35506665 DOI: 10.1021/acsami.1c22631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the least toxic heavy metal, monoelemental bismuth nanomaterials with several superiorities are the ideal theranostic agents. However, bismuth nanoparticles are easily oxidized by oxygen in air or media, limiting their clinical application. In contrast, the oxidization of Bi0 to Bi3+ can activate the chemodynamic therapy (CDT) by transferring endogenous H2O2 into •OH. Herein, a well-designed Bi-DMSNs@PCM nanosystem was prepared via in situ growth of Bi nanodots and a coating of phase-change material (PCM) on the surface of dendritic mesoporous silica nanoparticles (DMSNs). The coated PCM protects the Bi nanodots from oxidation by keeping them in the Bi0 state for more than 15 d. When irradiated using the near infrared-II (NIR-II) laser with a low power density (0.5 W/cm2), the heat generated from the Bi nanodots melts the PCM shell to trigger CDT through a Fenton-like reaction, accompanied by heat-induced photothermal therapy (PTT). Notably, the CDT can also compensate for the reduced PTT effect caused by the oxidation of Bi nanodots, and a satisfactory treatment effect is realized. Additionally, photoacoustic and computed tomography imaging properties were obtained. Our strategy transfers the detrimental self-oxidation of bismuth to a beneficial therapeutic mode, enhancing the potential of Bi for clinical use.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Peipei Jia
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shanshan Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - RuiFang Shen
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
28
|
Li W, Fan Y, Lin J, Yu P, Wang Z, Ning C. Near‐Infrared Light‐Activatable Bismuth‐based Nanomaterials for Antibacterial and Antitumor Treatment. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Li
- School of Materials Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Youzhun Fan
- School of Materials Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Jian Lin
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Peng Yu
- School of Materials Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Zhengao Wang
- School of Materials Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
- Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province South China University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
29
|
Zhou B, Liu J, Wang L, Wang M, Zhao C, Lin H, Liang Y, Towner RA, Chen WR. Iron oxide nanoparticles as a drug carrier reduce host immunosuppression for enhanced chemotherapy. NANOSCALE 2022; 14:4588-4594. [PMID: 35253815 PMCID: PMC9001247 DOI: 10.1039/d1nr07750c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemotherapy is still regarded as the main modality for cancer treatment. However, it often suppresses the host immune system, resulting in limited therapeutic effects. It is desirable to design a novel chemotherapeutic agent to reduce the level of immunosuppression. Herein, we designed bovine serum albumin (BSA)-bioinspired iron oxide nanoparticles (IONPs) as a nanocarrier to load anticancer drug mitoxantrone (MTX) for enhanced chemotherapy of orthotopic breast cancer. The treatment with IONPs@BSA-MTX complexes increased CD3+CD4+ and CD3+CD8+ T lymphocytes more than free MTX. The complexes effectively restored the host immune system and exhibited a better anticancer efficacy than free MTX. It was worth noting that the BSA-inspired IONPs were a satisfactory contrast agent for magnetic resonance imaging of tumors and lymph nodes. Our work provides a novel strategy for enhanced chemotherapy with low levels of immunosuppression in the treatment of breast cancer and other cancers.
Collapse
Affiliation(s)
- Benqing Zhou
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
| | - Jinxing Liu
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
| | - Lu Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Meng Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chong Zhao
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Yuanke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, 73104, USA
| | - Wei R Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
30
|
Zhou Y, Zhang H, Cheng Z, Wang H. Regulation of the PI3K/AKT/mTOR signaling pathway with synthesized bismuth oxide nanoparticles from Ginger (Zingiber officinale) extract: Mitigating the proliferation of colorectal cancer cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
31
|
Ma S, Zhou Z, Ran G, Xie J, Luo X, Li Y, Wang X, Zhuo H, Yan J, Wang L. An outstanding role of novel virus-like heterojunction nanosphere BOCO@Ag as high performance antibacterial activity agent. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126785. [PMID: 34403941 DOI: 10.1016/j.jhazmat.2021.126785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The development of highly efficient photonic nanomaterials with synergistic biological effects is critical and challenging task for public hygiene health well-being and has attracted extensive interest. In this study, a type of near-infrared (NIR) driven, virus-like heterojunction was first developed for synergistic biological application. The Ag-coated Bi2CO5 nanomaterial (BOCO@Ag) demonstrated good biocompatibility, low cytotoxicity, high antibacterial activity and excellent light utilization stability. The synthesized BOCO@Ag performed a potential high photothermal conversion (efficiency~46.81%) to generate high temperatures when irradiated with near-infrared light illumination. As expected, compared to single Ag+ disinfection, BOCO@Ag can exhibit better antibacterial performance when combined with photothermal energy and released Ag+ . These results suggest that BOCO@Ag can be a promising photo-activate antimicrobial candidate and provide security for humans health and the environment treatment.
Collapse
Affiliation(s)
- Sihan Ma
- College of energy, Xiamen University, Xiamen, Fujian 361002, China; Fujian Research Center for Nuclear Engineering, Xiamen, Fujian 361102, China
| | - Zonglang Zhou
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; 174 Clinical College Affiliated to Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, China
| | - Guang Ran
- College of energy, Xiamen University, Xiamen, Fujian 361002, China; Fujian Research Center for Nuclear Engineering, Xiamen, Fujian 361102, China
| | - Jun Xie
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China
| | - Xian Luo
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China
| | - Yipeng Li
- College of energy, Xiamen University, Xiamen, Fujian 361002, China; Fujian Research Center for Nuclear Engineering, Xiamen, Fujian 361102, China
| | - Xin Wang
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; Department of Oncology, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, China.
| | - Huiqing Zhuo
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361004, Fujian, China; Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, Fujian, China.
| | - Jianghua Yan
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361004, Fujian, China.
| | - Lin Wang
- School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; Department of Oncology, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361004, Fujian, China; Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, Fujian, China.
| |
Collapse
|
32
|
Chen G, Li Y, Miao Y, Liu B. Recent developments on bismuth oxyhalide-based functional nanomaterials for biomedical applications. Biomater Sci 2022; 10:5809-5830. [DOI: 10.1039/d2bm01182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional bismuth oxyhalide (BiOX, X = F, Cl, Br, and I) nanomaterials have great potential advantages in medical diagnostic and therapeutic applications. Pure BiOX nanomaterials have some limitations such as...
Collapse
|
33
|
Zhang C, Zhou L, Zhang J, Dai R, Zhuang P, Ye Z. One-pot synthesis of flower-like Bi 2S 3 nanoparticles for spectral CT imaging and photothermal therapy in vivo. NEW J CHEM 2022. [DOI: 10.1039/d2nj00426g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A facile and green strategy was developed for fabricating Bi2S3 nanoparticles for spectral CT imaging and photothermal therapy in vivo.
Collapse
Affiliation(s)
- Cai Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Li Zhou
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Zhang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610044, China
| | - Rui Dai
- Department of Echocardiography, Tianjin Children's Hospital, Tianjin 300074, China
| | - Pengrui Zhuang
- Department of Radiology, Tianjin Medical University Second Hospital, Tianjin 300201, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
34
|
Sabbioni E, Groppi F, Di Gioacchino M, Petrarca C, Manenti S. Metallobiochemistry of ultratrace levels of bismuth in the rat I. Metabolic patterns of 205+206Bi 3+ in the blood. J Trace Elem Med Biol 2021; 68:126760. [PMID: 33895056 DOI: 10.1016/j.jtemb.2021.126760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The number of the applications of bismuth (Bi) is rapidly and remarkably increasing, enhancing the chance to increase the levels to which humans are normally daily exposed. The interest to Bi comes also from the potential of Bi-based nanoparticles (BiNPs) for industrial and biomedical purposes. Like other metal-based NPs used in nanomedicine, BiNPs may release ultratrace amounts of Bi ions when injected. The metabolic fate and toxicity of these ions still needs to be evaluated. At present, knowledge of Bi metabolism in laboratory animals refers almost solely to studies under unnatural "extreme" exposures, i.e. pharmacologically relevant high-doses (up to thousand mg kg-1) in relation to its medical use, or infinitesimal-doses (pg kg-1 as non-carrier-added Bi radioisotopes) for radiobiology protection, diagnostic and radiotherapeutic purposes. No specific study exists on the "metabolic patterns" in animal models exposed to levels of Bi, i.e. at "environmental dose exposure" that reflect the human daily exposure (μg kg-1). METHODOLOGY Rats were intraperitoneally injected with 0.8 μg Bi kg-1 bw as 205+206Bi(NO)3 alone or in combination with 59Fe for radiolabelling of iron proteins. The use of 205+206Bi radiotracers allowed the detection and measurement down to pg fg-1 of the element in the blood biochemical compartments and protein fractions as isolated by differential centrifugation, size exclusion- and ion exchange chromatography, electrophoresis, solvent extraction, precipitation and dialysis. RESULTS 24 h after the administration, the blood concentration of Bi was 0.18 ng mL-1, with a repartition plasma/red blod cells (RBC) in a ratio of 2:1. Elution profiles of plasma from gel filtration on Sephadex G-150 showed four pools of Bi-binder proteins with different molecular sizes (> 300 kDa, 160 kDa, 70 kDa and < 6.5 kDa). In the 70 kDa fraction transferrin and albumin were identified as biomolecule carriers for Bi. In red blood cells, Bi was distributed between cytosol and membranes (ghosts) in a ratio of about 5:1. In the cytosol, low molecular components (LMWC) and the hemoglobin associated the Bi in a ratio of about 1.8:1. In the hemoglobin molecule, Bi was bound to the beta polypeptide chain of the globin. In the ghosts, Bi was detected at more than one site of the protein fraction, with no binding with lipids. Dialysis experiments and the consistently high recovery (80-90 %) of 206Bi from chromatography of 206Bi-containing biocomponents suggest that Bi was firmly complexed at physiological pH with a low degree of breaking during the applications of experimental protocols for the isolation of the 206Bi-biocomplexes. These latter were sensitive to acid buffer pH 5, and to the presence of complexing agents in the dialysis fluid. CONCLUSIONS On the basis of an environmental biochemical toxicology approach, we have undertaken a study on the metabolic patterns of Bi3+ ions in rats at tissue, subcellular and molecular level with the identification of cellular Bi-binding components. As a first part of the study the present work reports the results concerned with the metabolic fate of ultratrace levels of 205+206Bi(NO)3 in the blood.
Collapse
Affiliation(s)
- Enrico Sabbioni
- Center for Advanced Studies and Technology (C.A.S.T.), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, Chieti, I-66100, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy
| | - Flavia Groppi
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, Milano, I-20133, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology (C.A.S.T.), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, Chieti, I-66100, Italy; Institute of Clinical Immunotherapy and Advanced Biological Treatments, Piazza Pierangeli 1, Pescara, Rectorate of Leonardo da Vinci Telematic University, Largo San Rocco 11 Torrevecchia Teatina, CH, Italy
| | - Claudia Petrarca
- Center for Advanced Studies and Technology (C.A.S.T.), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, Chieti, I-66100, Italy; Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, via Luigi Polacchi 11, Chieti, I-66100, Italy
| | - Simone Manenti
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, Milano, I-20133, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy.
| |
Collapse
|
35
|
LI TH, SHI SQ, LU XS, SHI LL, WEI SS, GUO H, ZHANG XY, ZHANG HY, SUN GY. A versatile Bi2S3/MnO2 based nano-theranostic agent for triple-modal imaging guided photothermal/photodynamic synergistic therapy. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Wen D, Dong L, Li K, Du Y, Deng R, Feng J, Zhang H, Wang D. Selenium Vacancy Engineering Using Bi 2Se 3 Nanodots for Boosting Highly Efficient Photonic Hyperthermia. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48378-48385. [PMID: 34632756 DOI: 10.1021/acsami.1c13107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite bismuth-based energy conversion nanomaterials having attracted extensive attention for nanomedicine, the nanomaterials suffer from major shortcomings including low tumor accumulation, long internal retention time, and undesirable photothermal conversion efficiency (PCE). To combat these challenges, bovine serum albumin and folic acid co-modified Bi2Se3 nanomedicine with rich selenium vacancies (abbreviated as VSe-BS) was fabricated for the second near-infrared (NIR-II) light-triggered photonic hyperthermia. More importantly, selenium vacancies on the crystal planes (0 1 5) and (0 1 11) of VSe-BS with similar formation energies could be distinctively observed via aberration-corrected scanning transmission electron microscopy images. The defect engineering endows VSe-BS with enhanced conductivity, making VSe-BS possess outstanding PCE (54.1%) in the NIR-II biowindow and desirable photoacoustic imaging performance. Tumor ablation studies indicate that VSe-BS possesses satisfactory therapeutic outcomes triggered by NIR-II light. These findings give rise to inspiration for further broadening the biological applications of defect engineering bismuth-based nanomaterials.
Collapse
Affiliation(s)
- Ding Wen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lile Dong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yechao Du
- Department of Gastric and Colorectal Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Daguang Wang
- Department of Gastric and Colorectal Surgery, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
37
|
Ding M, Liu J, Yang J, Wang H, Xie X, Yang X, Li Y, Guo N, Ouyang R, Miao Y. How do bismuth-based nanomaterials function as promising theranostic agents for the tumor diagnosis and therapy? Curr Med Chem 2021; 29:1866-1890. [PMID: 34365944 DOI: 10.2174/0929867328666210806123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
The complexity of tumor microenvironment and the diversity of tumors seriously affect the therapeutic effect, the focus, therefore, has gradually been shifted from monotherapy to combination therapy in clinical research in order to improve the curative effect. The synergistic enhancement interactions among multiple monotherapies majorly contribute to the birth of the multi-mode cooperative therapy, whose effect of the treatment is clearly stronger than that of any single therapy. In addition, the accurate diagnosis of the tumour location is also crucial to the treatment. Bismuth-based nanomaterials (NMs) hold great properties as promising theranostic platforms based on their many unique features that include low toxicity, excellent photothermal conversion efficiency as well as high ability of X-ray computed tomography imaging and photoacoustic imaging. In this review, we will introduce briefly the main features of tumor microenvironment first and its effect on the mechanism of nanomedicine actions and present the recent advances of bismuth-based NMs for diagnosis and photothermal therapy-based combined therapies using bismuth-based NMs are presented, which may provide a new way for overcoming drug resistance and hypoxia. At the end, further challenges and outlooks regarding this promising field are discussed accompanied with some design tips for bismuth-based NMs, hoping to provide researchers some inspirations to design safe and effective nanotherapeutic agents for the clinical treatments of cancers.
Collapse
Affiliation(s)
- Mengkui Ding
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Jinyao Liu
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Junlei Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Hui Wang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Xianjin Xie
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Xiaoyu Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Yuhao Li
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Ning Guo
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| |
Collapse
|
38
|
Kim WY, Won M, Koo S, Zhang X, Kim JS. Mitochondrial H 2S n-Mediated Anti-Inflammatory Theranostics. NANO-MICRO LETTERS 2021; 13:168. [PMID: 34355274 PMCID: PMC8342730 DOI: 10.1007/s40820-021-00689-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/11/2021] [Indexed: 05/13/2023]
Abstract
The insistent demand for space-controllable delivery, which reduces the side effects of non-steroidal anti-inflammatory drugs (NSAIDs), has led to the development of a new theranostics-based approach for anti-inflammatory therapy. The current anti-inflammatory treatments can be improved by designing a drug delivery system responsive to the inflammatory site biomarker, hydrogen polysulfide (H2Sn). Here, we report a novel theranostic agent 1 (TA1), consisting of three parts: H2Sn-mediated triggering part, a two-photon fluorophore bearing mitochondria targeting unit (Rhodol-TPP), and anti-inflammatory COX inhibitor (indomethacin). In vitro experiments showed that TA1 selectively reacts with H2Sn to concomitantly release both Rhodol-TPP and indomethacin. Confocal-microscopy imaging of inflammation-induced live cells suggested that TA1 is localized in the mitochondria where the H2Sn is overexpressed. The TA1 reacted with H2Sn in the endogenous and exogenous H2Sn environments and in lipopolysaccharide treated inflammatory cells. Moreover, TA1 suppressed COX-2 level in the inflammatory-induced cells and prostaglandin E2 (PGE2) level in blood serum from inflammation-induced mouse models. In vivo experiments with inflammation-induced mouse models suggested that TA1 exhibits inflammation-site-elective drug release followed by significant therapeutic effects, showing its function as a theranostic agent, capable of both anti-inflammatory therapy and precise diagnosis. Theranostic behavior of TA1 is highly applicable in vivo model therapeutics for the inflammatory disease.
Collapse
Affiliation(s)
- Won Young Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
39
|
Chen N, Fu W, Zhou J, Mei L, Yang J, Tian Y, Wang Q, Yin W. Mn2+-doped ZrO2@PDA nanocomposite for multimodal imaging-guided chemo-photothermal combination therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Tu L, Fan Z, Zhu F, Zhang Q, Zeng S, Chen Z, Ren L, Hou Z, Ye S, Li Y. Self-recognizing and stimulus-responsive carrier-free metal-coordinated nanotheranostics for magnetic resonance/photoacoustic/fluorescence imaging-guided synergistic photo-chemotherapy. J Mater Chem B 2021; 8:5667-5681. [PMID: 32500886 DOI: 10.1039/d0tb00850h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carrier-free nanotheranostics directly assembled by using clinically used photosensitizers and chemotherapeutic drugs are a promising alternative to tumor theranostics. However, the weak interaction-driven assembly still suffers from low structural stability against disintegration, lack of targeting specificity, and poor stimulus-responsive property. Moreover, almost all exogenous ligands possess no therapeutic effect. Enlightened by the concept of metal-organic frameworks, we developed a novel self-recognizing metal-coordinated nanotheranostic agent by the coordination-driven co-assembly of photosensitizer indocyanine green (ICG) and chemo-drug methotrexate (MTX, also served as a specific "targeting ligand" towards folate receptors), in which ferric (FeIII) ions acted as a bridge to tightly associate ICG with MTX. Such carrier-free metal-coordinated nanotheranostics with high dual-drug payload (∼94 wt%) not only possessed excellent structural and physiological stability, but also exhibited prolonged blood circulation. In addition, the nanotheranostics could achieve the targeted on-demand drug release by both stimuli of internal lysosomal acidity and external near-infrared laser. More importantly, the nanotheranostics could self-recognize the cancer cells and selectively target the tumors, and therefore they decreased toxicity to normal tissues and organs. Consequently, the nanotheranostics showed strongly synergistic potency for tumor photo-chemotherapy under the precise guidance of magnetic resonance/photoacoustic/fluorescence imaging, thereby achieving highly effective tumor curing efficiency. Considering that ICG and bi-functional MTX are approved by the Food and Drug Administration, and FeIII ions have high biosafety, the self-recognizing and stimulus-responsive carrier-free metal-coordinated nanotheranostics may hold potential applications in tumor theranostics.
Collapse
Affiliation(s)
- Li Tu
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Fukai Zhu
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Qiang Zhang
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Sen Zeng
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Zhong Chen
- School of Electronic Science and Engineering, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Lei Ren
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Shefang Ye
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. and Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, China
| |
Collapse
|
41
|
Zhou Z, Xie J, Ma S, Luo X, Liu J, Wang S, Chen Y, Yan J, Luo F. Construction of Smart Nanotheranostic Platform Bi-Ag@PVP: Multimodal CT/PA Imaging-Guided PDT/PTT for Cancer Therapy. ACS OMEGA 2021; 6:10723-10734. [PMID: 34056226 PMCID: PMC8153791 DOI: 10.1021/acsomega.1c00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/09/2021] [Indexed: 05/11/2023]
Abstract
High-efficiency nanotheranostic agents with multimodal imaging guidance have attracted considerable interest in the field of cancer therapy. Herein, novel silver-decorated bismuth-based heterostructured polyvinyl pyrrolidone nanoparticles (NPs) with good biocompatibility (Bi-Ag@PVP NPs) were synthesized for accurate theranostic treatment, which can integrate computed tomography (CT)/photoacoustic (PA) imaging and photodynamic therapy/photothermal therapy (PDT/PTT) into one platform. The Bi-Ag@PVP NPs can enhance light absorption and achieve a better photothermal effect than bismuth NPs. Moreover, after irradiation under an 808 nm laser, the Bi-Ag@PVP NPs can efficiently induce the generation of reactive oxygen species (ROS), thereby synergizing PDT/PTT to exert an efficient tumor ablation effect both in vitro and in vivo. Furthermore, Bi-Ag@PVP NPs can also be employed to perform enhanced CT/PA imaging because of their high X-ray absorption attenuation and enhanced photothermal conversion. Thus, they can be utilized as a highly effective CT/PA imaging-guided nanotheranostic agent. In addition, an excellent antibacterial effect was achieved. After irradiation under an 808 nm laser, the Bi-Ag@PVP NPs can destroy the integrity of Escherichia coli, thereby inhibiting E. coli growth, which can minimize the risk of infection during cancer therapy. In conclusion, our study provides a novel nanotheranostic platform that can achieve CT/PA-guided PDT/PTT synergistic therapy and have potential antibacterial properties. Thus, this work provides an effective strategy for further broad clinical application prospects.
Collapse
Affiliation(s)
- Zonglang Zhou
- The
174th Clinic College of People’s Liberation Army, Anhui Medical University, Hefei 230031, China
- The
73rd Army Hospital of the Chinese People’s Liberation Army, Xiamen 361003, China
| | - Jun Xie
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Sihan Ma
- College
of Energy, Xiamen University, Xiamen 361005, China
| | - Xian Luo
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Jiajing Liu
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Shengyu Wang
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Yuqiang Chen
- The
174th Clinic College of People’s Liberation Army, Anhui Medical University, Hefei 230031, China
- The
73rd Army Hospital of the Chinese People’s Liberation Army, Xiamen 361003, China
| | - Jianghua Yan
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Fanghong Luo
- School
of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
42
|
Wang J, Pan M, Yuan J, Liu G, Zhu L. Capillary Action-Inspired Nanoengineering of Spheres-on-Sphere Microspheres with Hollow Core and Hierarchical Shell. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14669-14678. [PMID: 33739827 DOI: 10.1021/acsami.0c22273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The current syntheses of spheres-on-sphere (SOS) microsphere, which possesses both hollow cavity and hierarchical structure, mainly rely on complicated routes and template removal. In this study, a one pot nanoengineering strategy inspired by the automatic transport behavior of water in plants is successfully developed to fabricate SOS microsphere in tandem with a traditional soft template method in the preparation of hollow structure. Amphiphilic siloxane oligomers generated in situ from methyltriethoxylsilane (MTES) under acidic conditions are anchored on the surface of soft template St monomer droplets, sequentially completing hydrolysis-polycondensation and forming a mesoporous polysilsesquioxane (PSQ) shell. Then, the St monomers located in cavity migrate outward under the combined action of capillary force stemming from mesoporous and osmotic pressure generating from inside-outside of the PSQ shell and polymerize on the outside of the hollow PSQ shell, in which residual siloxane oligomers further anchor on the polystyrene (PS) surface to reduce the surface energy of the system, finally resulting in the successful formation of SOS particles. To reduce thermal insulation coefficient of the material, the PS phase in SOS particles is removed to obtain the particles with multiscale hollow structure (SOS-MH), which have more hollow cavities to encapsulate more air. The presence of a much hollow structure in SOS-MH particles enables the thermal conductivity of polyacrylonitrile (PAN)/SOS-MH composite fibrous membranes (0.0307 W m-1 K-1) to decrease by about 40% compared to that of pure PAN fibrous films (0.0520 W m-1 K-1) at the same thickness of 1 mm, and the material also has moisture resistance due to the existence of a hierarchical shell.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
- Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, PR China
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
- Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, PR China
| | - Gang Liu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| |
Collapse
|
43
|
Bernal A, Calcagno C, Mulder WJM, Pérez-Medina C. Imaging-guided nanomedicine development. Curr Opin Chem Biol 2021; 63:78-85. [PMID: 33735814 DOI: 10.1016/j.cbpa.2021.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Nanomedicine research is an active field that produces thousands of studies every year. However, translation of nanotherapeutics to the clinic has yet to catch up with such a vast output. In recent years, the need to better understand nanomedicines' in vivo behavior has been identified as one of the major challenges for efficient clinical translation. In this context, noninvasive imaging offers attractive solutions to provide valuable information about nanomedicine biodistribution, pharmacokinetics, stability, or therapeutic efficacy. Here, we review the latest imaging approaches used in the development of therapeutic nanomedicines, discuss why these strategies bring added value along the translational pipeline, and give a perspective on future advances in the field.
Collapse
Affiliation(s)
- Aurora Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Willem J M Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Chemical Biology, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Carlos Pérez-Medina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
44
|
Ma S, Xie J, Wang L, Zhou Z, Luo X, Yan J, Ran G. Hetero-Core-Shell BiNS-Fe@Fe as a Potential Theranostic Nanoplatform for Multimodal Imaging-Guided Simultaneous Photothermal-Photodynamic and Chemodynamic Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10728-10740. [PMID: 33645960 DOI: 10.1021/acsami.0c21579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal/photodynamic therapy (PTT/PDT) and synergistic therapeutic strategies are often sought after, owing to their low side effects and minimal invasiveness compared to chemotherapy and surgical treatments. However, in spite of the development of the most PTT/PDT materials with good tumor-inhibitory effect, there are some disadvantages of photosensitizers and photothermal agents, such as low stability and low photonic efficiency, which greatly limit their further application. Therefore, in this study, a novel bismuth-based hetero-core-shell semiconductor nanomaterial BiNS-Fe@Fe with good photonic stability and synergistic theranostic functions was designed. On the one hand, BiNS-Fe@Fe with a high atomic number exhibits good X-ray absorption, enhanced magnetic resonance (MR) T2-weighted imaging, and strong photoacoustic imaging (PAI) signals. In addition, the hetero-core-shell provides a strong barrier to decline the recombination of electron-hole pairs, inducing the generation of a large amount of reactive oxygen species (ROS) when irradiated with visible-NIR light. Meanwhile, a Fenton reaction can further increase ROS generation in the tumor microenvironment. Furthermore, an outstanding chemodynamic therapeutic potential was determined for this material. In particular, a high photothermal conversion efficiency (η = 37.9%) is of significance and could be achieved by manipulating surface decoration with Fe, which results in tumor ablation. In summary, BiNS-Fe@Fe could achieve remarkable utilization of ROS, high photothermal conversion law, and good chemodynamic activity, which highlight the multimodal theranostic potential strategies of tumors, providing a potential viewpoint for theranostic applications of tumors.
Collapse
Affiliation(s)
- Sihan Ma
- College of Energy, Xiamen University, Xiamen 361002, Fujian, China
- Fujian Research Center for Nuclear Engineering, Xiamen 361102, Fujian, China
| | - Jun Xie
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
| | - Lin Wang
- Department of Oncology, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen 361004, Fujian, China
| | - Zonglang Zhou
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
- 174 Clinical College affiliated to Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xian Luo
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
| | - Jianghua Yan
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
| | - Guang Ran
- College of Energy, Xiamen University, Xiamen 361002, Fujian, China
| |
Collapse
|
45
|
Yu X, Liu X, Yang K, Chen X, Li W. Pnictogen Semimetal (Sb, Bi)-Based Nanomaterials for Cancer Imaging and Therapy: A Materials Perspective. ACS NANO 2021; 15:2038-2067. [PMID: 33486944 DOI: 10.1021/acsnano.0c07899] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Despite the rapid development, the extensive previous work treated Sb- and Bi-based nanoparticles as mutually independent species, and therefore a thorough understanding of their relationship in cancer theranostics was lacking. We propose here that the identical chemical nature of Sb and Bi, being semimetals, provides their derived nanoparticles with inherent multifunction for near-infrared laser-driven and/or X-ray-based cancer imaging and therapy as well as some other imparted functions. An overview of recent progress on Sb- and Bi-based nanoparticles for cancer theranostics is provided to highlight the relationship between chemical nature and multifunction. The understanding of Sb- and Bi-based nanoparticles in this way might shed light on the further design of smart multifunctional nanoparticles for cancer theranostics.
Collapse
Affiliation(s)
- Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Yang
- School of Radiation Medicine and Protection (SRMP) and School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 117597
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
46
|
Ouyang R, Cao P, Jia P, Wang H, Zong T, Dai C, Yuan J, Li Y, Sun D, Guo N, Miao Y, Zhou S. Bistratal Au@Bi 2S 3 nanobones for excellent NIR-triggered/multimodal imaging-guided synergistic therapy for liver cancer. Bioact Mater 2021; 6:386-403. [PMID: 32954056 PMCID: PMC7481884 DOI: 10.1016/j.bioactmat.2020.08.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
To fabricate a highly biocompatible nanoplatform enabling synergistic therapy and real-time imaging, novel Au@Bi2S3 core shell nanobones (NBs) (Au@Bi2S3 NBs) with Au nanorods as cores were synthesized. The combination of Au nanorods with Bi2S3 film made the Au@Bi2S3 NBs exhibit ultrahigh photothermal (PT) conversion efficiency, remarkable photoacoustic (PA) imaging and high computed tomography (CT) performance; these Au@Bi2S3 NBs thus are a promising nanotheranostic agent for PT/PA/CT imaging. Subsequently, poly(N-vinylpyrrolidone)-modified Au@Bi2S3 NBs (Au@Bi2S3-PVP NBs) were successfully loaded with the anticancer drug doxorubicin (DOX), and a satisfactory pH sensitive release profile was achieved, thus revealing the great potential of Au@Bi2S3-PVP NBs in chemotherapy as a drug carrier to deliver DOX into cancer cells. Both in vitro and in vivo investigations demonstrated that the Au@Bi2S3-PVP NBs possessed multiple desired features for cancer therapy, including extremely low toxicity, good biocompatibility, high drug loading ability, precise tumor targeting and effective accumulation. Highly efficient ablation of the human liver cancer cell HepG2 was achieved through Au@Bi2S3-PVP NB-mediated photothermal therapy (PTT). As both a contrast enhancement probe and therapeutic agent, Au@Bi2S3-PVP NBs provided outstanding NIR-triggered multi-modal PT/PA/CT imaging-guided PTT and effectively inhibited the growth of HepG2 liver cancer cells via synergistic chemo/PT therapy.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Penghui Cao
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Pengpeng Jia
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hui Wang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Tianyu Zong
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chenyu Dai
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jie Yuan
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Dong Sun
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Ning Guo
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuang Zhou
- Cancer Institute, Tongji University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
47
|
Yang J, Wang H, Liu J, Ding M, Xie X, Yang X, Peng Y, Zhou S, Ouyang R, Miao Y. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy. RSC Adv 2021; 11:3241-3263. [PMID: 35424280 PMCID: PMC8694185 DOI: 10.1039/d0ra09878g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Metal organic-frameworks (MOFs) are novel materials that have attracted increasing attention for applications in a wide range of research, owing to their unique advantages including their small particle size, porous framework structure and high specific surface area. Because of their adjustable size, nanoscale MOFs (nano-MOFs) can be prepared as carriers of biotherapy drugs, thus enabling biotherapeutic applications. Nano-MOFs' metal ion catalytic activity and organic group functional characteristics can be exploited in biological treatments. Furthermore, the applications of nano-MOFs can be broadened by hybridization with other materials to form composites. This review focuses on the preparation and recent advances in nano-MOFs as drug carriers, therapeutic materials and functionalized materials in drug delivery and tumor therapy based on the single/multiple stimulus response of drug release to achieve the targeted therapy, offering a comprehensive reference for drug carrier design. At the end, the current challenges and prospects are discussed to provide significant insight into the design and applications of nano-MOFs in drug delivery and tumor therapy.
Collapse
Affiliation(s)
- Junlei Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Hui Wang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jinyao Liu
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Mengkui Ding
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xianjin Xie
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xiaoyu Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yaru Peng
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Shuang Zhou
- Cancer Institute, Tongji University School of Medicine Shanghai 200092 China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
48
|
Xue K, Wei F, Lin J, Tian H, Zhu F, Li Y, Hou Z. Tumor acidity-responsive carrier-free nanodrugs based on targeting activation via ICG-templated assembly for NIR-II imaging-guided photothermal–chemotherapy. Biomater Sci 2021; 9:1008-1019. [DOI: 10.1039/d0bm01864c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel tumor microenvironment-driven self-targeting supramolecular nanodrugs via ICG-templated small-molecule self-assembly for NIR-II imaging-guided synergistic photothermal–chemotherapy.
Collapse
Affiliation(s)
- Kaihang Xue
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Feng Wei
- Department of Translational Medicine
- Xiamen Institute of Rare Earth Materials
- Chinese Academy of Sciences
- Xiamen 361024
- P. R. China
| | - Jinyan Lin
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Haina Tian
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Fukai Zhu
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- P.R. China
| | - Zhenqing Hou
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| |
Collapse
|
49
|
Fang X, Lui KH, Li S, Lo WS, Li X, Gu Y, Wong WT. Multifunctional Nanotheranostic Gold Nanocage/Selenium Core-Shell for PAI-Guided Chemo-Photothermal Synergistic Therapy in vivo. Int J Nanomedicine 2020; 15:10271-10284. [PMID: 33364758 PMCID: PMC7751612 DOI: 10.2147/ijn.s275846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/05/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction Cancer theragnosis involving cancer diagnosis and targeted therapy simultaneously in one integrated system would be a promising solution of cancer treatment. Herein, a convenient and practical cancer theragnosis agent was constructed by combining gold nanocages (AuNCs) covered with selenium and a chitosan (CS) shell (AuNCs/Se) to incorporate the anti-cancer drug doxorubicin (DOX) as a multifunctional targeting nanocomposite (AuNCs/DOX@Se-iRGD) for photoacoustic imaging (PAI)-guided chemo-photothermal synergistic therapy that contributes to enhanced anti-cancer efficacy. The novel design of AuNCs/DOX@Se-iRGD gives the nanocomposite two outstanding properties: (1) AuNCs, with excellent LSPR property in the NIR region, act as a contrast agent for enhanced PAI and photothermal therapy (PTT); (2) Se acts as an anti-cancer nanoagent and drug delivery cargo. Methods The photothermal performance of these nanocomposites was evaluated in different concentrations with laser powder densities. These nanocomposites were also incubated in pH 5.3, 6.5, 7.4 PBS and NIR laser to study their drug release ability. The cellular uptake was studied by measuring the Se and Au concentrations inside the cells using inductively coupled plasma-mass spectrometry (ICP-MS). Besides, in vitro and in vivo anti-tumor activity were carried out by cytotoxicity assay MTT and tumor model nude mice, respectively. As for imaging, the PA value and images of these nanocomposites accumulated in the tumor site were sequentially collected at specific time points for 48 h. Results and Discussion The prepared AuNCs/DOX@Se-iRGD showed excellent biocompatibility and physiological stability in different media. In vivo results indicated that the targeting nanocomposite presented the strongest contrast-enhanced PAI signals, which could provide contour and location information of tumor, 24 h after intravenous injection. Likewise, the combined treatment of chemo- and photothermal synergistic therapy significantly inhibited tumor growth when compared with the two treatments carried out separately and showed negligible acute toxicity to the major organs. Conclusion This study demonstrates that AuNCs/DOX@Se-iRGD has great prospect to become a multifunctional anti-tumor nanosystem for PAI-guided chemo- and photothermal synergistic therapy.
Collapse
Affiliation(s)
- Xueyang Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| | - Kwok-Ho Lui
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| | - Shiying Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| | - Xin Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| | - Yanjuan Gu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
50
|
Shah RA, Frazar EM, Hilt JZ. Recent developments in stimuli responsive nanomaterials and their bionanotechnology applications. Curr Opin Chem Eng 2020; 30:103-111. [PMID: 34307003 PMCID: PMC8300877 DOI: 10.1016/j.coche.2020.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bionanotechnology is an ever-expanding field as innovations in nanotechnology continue to be developed based on biological systems or to be applied to address unmet needs in biology, biomedicine, etc., including various sensor and drug delivery solutions. Amidst the wide range of bionanomaterials that have been developed, stimuli responsive bionanomaterials are of particular interest and are thus emphasized within this review. Here, we have highlighted the most recent advances for stimuli responsive bionanomaterials with focus on those possessing responses based on activation, expansion/contraction and self-assembly/disassembly. The aim of this review is to bring attention to some of the most current bionanotechnology research and the interesting applications within this field.
Collapse
Affiliation(s)
- Rishabh A Shah
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Erin Molly Frazar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - James Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|