1
|
Dauba A, Spitzlei C, Bautista KJB, Jourdain L, Selingue E, VanTreeck KE, Mattern JA, Denis C, Ouldali M, Arteni AA, Truillet C, Larrat B, Tsuruta J, Durham PG, Papadopoulou V, Dayton PA, Tsapis N, Novell A. Low-boiling-point perfluorocarbon nanodroplets for adaptable ultrasound-induced blood-brain barrier opening. J Control Release 2024; 376:441-456. [PMID: 39419451 DOI: 10.1016/j.jconrel.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Low-boiling point perfluorocarbon nanodroplets (NDs) are valued as effective sonosensitive agents, encapsulating a liquid perfluorocarbon that would instantaneously vaporize at body temperature without the NDs shell. Those NDs have been explored for both therapeutic and diagnostic purposes. Here, phospholipid-shelled nanodroplets containing octafluoropropane (C3F8) or decafluorobutane (C4F10) formed by condensation of microbubbles were thoroughly characterized before blood-brain (BBB) permeabilization. Transmission electron microscopy (TEM) and cryo-TEM were employed to confirm droplet formation while providing high-resolution insights into the droplet surface and lipid arrangement assessed from electron density observation after condensation. The vaporization threshold of NDs was determined with a high-speed camera, and the frequency signal emitted by the freshly vaporized bubbles was analyzed using cavitation detection. C3F8 NDs exhibited vaporization at 0.3 MPa (f0 = 1.5 MHz, 50 cycles), and emitted signals at 2 f0 and 1.5 f0 from 0.45 MPa onwards (f0 = 1.5 MHz, 50 cycles), while broadband noise was measured starting from 0.55 MPa. NDs with the higher boiling point C4F10 vaporized at 1.15 MPa and emitted signals at 2 f0 from 0.65 MPa and 1.5 f0 from 0.9 MPa, while broadband noise was detected starting from 0.95 MPa. Both ND formulations were used to permeabilize the BBB in healthy mice using tailored ultrasound sequences, allowing for the identification of optimal applications for each NDs type. C3F8 NDs proved suitable and safe for permeabilizing a large area, potentially the entire brain, at low acoustic pressure. Meanwhile, C4F10 droplets facilitated very localized (400 μm isotropic) permeabilization at higher pressure. This study prompts a closer examination of the structural rearrangements occurring during the condensation of microbubbles into NDs and highlights the potential to tailor solutions for different brain pathologies by choosing the composition of the NDs and adjusting the ultrasound sequence.
Collapse
Affiliation(s)
- Ambre Dauba
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Claire Spitzlei
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France; Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Kathlyne Jayne B Bautista
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Laurène Jourdain
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Erwan Selingue
- Université Paris-Saclay, CEA, CNRS, Baobab, NeuroSpin, Gif-sur-Yvette 91191, France
| | - Kelly E VanTreeck
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacob A Mattern
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caroline Denis
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Ana-Andreea Arteni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, Baobab, NeuroSpin, Gif-sur-Yvette 91191, France
| | - James Tsuruta
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Phillip G Durham
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA; Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France.
| |
Collapse
|
2
|
Su Y, Huang L, Zhang D, Zeng Z, Hong S, Lin X. Recent Advancements in Ultrasound Contrast Agents Based on Nanomaterials for Imaging. ACS Biomater Sci Eng 2024; 10:5496-5512. [PMID: 39246058 DOI: 10.1021/acsbiomaterials.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Ultrasound (US) is a type of mechanical wave that is capable of transmitting energy through biological tissues. By utilization of various frequencies and intensities, it can elicit specific biological effects. US imaging (USI) technology has been continuously developed with the advantages of safety and the absence of radiation. The advancement of nanotechnology has led to the utilization of various nanomaterials composed of both organic and inorganic compounds as ultrasound contrast agents (UCAs). These UCAs enhance USI, enabling real-time monitoring, diagnosis, and treatment of diseases, thereby facilitating the widespread adoption of UCAs in precision medicine. In this review, we introduce various UCAs based on nanomaterials for USI. Their principles can be roughly divided into the following categories: carrying and transporting gases, endogenous gas production, and the structural characteristics of the nanomaterial itself. Furthermore, the synergistic benefits of US in conjunction with various imaging modalities and their combined application in disease monitoring and diagnosis are introduced. In addition, the challenges and prospects for the development of UCAs are also discussed.
Collapse
Affiliation(s)
- Yina Su
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Linjie Huang
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Dongdong Zhang
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Zheng Zeng
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Shanni Hong
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Xiahui Lin
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| |
Collapse
|
3
|
Wu R, Tian G, Zhang S, Zhang P, Lei X. A Comprehensive Review: Versatile Imaging Probe Based on Chemical Materials for Biomedical Applications. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05043-w. [PMID: 39215904 DOI: 10.1007/s12010-024-05043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Imaging probe and contrast agents play significant role in combating cancer. Based on special chemical materials, imaging probe can convert cancer symptoms into information-rich images with high sensitivity and signal amplification, accompanying with detection, diagnosis, drug delivery and treatment. In the paper, some inorganic and organic chemical materials as imaging probe, including Ultrasound imaging (US), Optical imaging (OP), Photoacoustic imaging (PA), X-ray Computed Tomography (CT), Magnetic Resonance imaging (MRI), Radionuclide imaging (RNI) probe, as well as multi-modality imaging probe for diagnosis and therapy of tumour were introduced. The sophisticated and comprehensive chemical materials as imaging probe were highlighted in detail. Meanwhile, the advantages and disadvantages of the imaging probe were compared. In order to provide some reference and help researchers for construction imaging probe for tumour diagnosis and treatment, it attempts to exhaustively cover the whole field. Finally, the prospect and challenge for imaging probe were discussed.
Collapse
Affiliation(s)
- Rui Wu
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
| | - Guanghui Tian
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Pengfei Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China
| | - Xiaoyun Lei
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| |
Collapse
|
4
|
Nehru S, Vergaelen M, Hoogenboom R, Sundaramurthy A. Echogenic Gold Nanorod Incorporated Hybrid Poly(2-oxazoline) Nanocapsules for Real-Time Ultrasound/Fluorescent Imaging and Targeted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2024; 7:4471-4485. [PMID: 38887037 DOI: 10.1021/acsabm.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In recent years, various nanocarrier systems have been explored to enhance the targeting of cancer cells by improving the ligand-receptor interactions between the nanocarrier and cancer cells for selective cancer cell imaging and targeted delivery of anticancer drugs. Herein, we report multifunctional hydrogen-bonded multilayer nanocapsules functionalized with both folic acid-derived quantum dots (FAQDs) and gold nanorods (AuNRs) for targeted cancer therapy and cancer cell imaging using fluorescence microscopy and medical-range ultrasound imaging systems. The encapsulation efficiency of nanocapsules was found to be 49% for 5-fluorouracil (5-FU). The release percentage reached a plateau at 37% after 1 h at pH 7.4 and increased to 57% after 3 h when the release pH was decreased to pH 5.5 (i.e., the pH of the tumor environment). Under ultrasound irradiation, the release was significantly accelerated, with a total release of 52% and 68% after only 6 min at pH 7.4 and pH 5.5, respectively. While the sonoporation process plays an important role in anticancer activity experiments under ultrasound exposure by generating temporary pores, the targeting ability of FAQDs brings the capsules closer to the cell membrane and improves the cellular uptake of the released drug, thereby increasing local drug concentration. In vitro cytotoxicity experiments with HCT-116 and HEp-2 cells demonstrated anticancer activities of 96% and 98%, respectively. The nanocapsules showed enhanced ultrasound scattering signal intensity and bright spots under ultrasound exposure, most likely caused by high scattering ability and internal reflections of preloaded AuNRs in the interior structure of the nanocapsules. Hence, the demonstrated nanocapsule system not only has the potential to be used as an integrated system for early- stage detection and treatment of cancer cells but also has the ability for live tracking and imaging of cancer cells while undergoing treatment with chemotherapy and radiation therapy.
Collapse
Affiliation(s)
- Sangamithra Nehru
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| | - Maarten Vergaelen
- Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Ghent 9000, Belgium
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Ghent 9000, Belgium
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| |
Collapse
|
5
|
Carlier B, Heymans SV, Nooijens S, Collado-Lara G, Toumia Y, Delombaerde L, Paradossi G, D’hooge J, Van Den Abeele K, Sterpin E, Himmelreich U. A Preliminary Investigation of Radiation-Sensitive Ultrasound Contrast Agents for Photon Dosimetry. Pharmaceuticals (Basel) 2024; 17:629. [PMID: 38794199 PMCID: PMC11125270 DOI: 10.3390/ph17050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Radiotherapy treatment plans have become highly conformal, posing additional constraints on the accuracy of treatment delivery. Here, we explore the use of radiation-sensitive ultrasound contrast agents (superheated phase-change nanodroplets) as dosimetric radiation sensors. In a series of experiments, we irradiated perfluorobutane nanodroplets dispersed in gel phantoms at various temperatures and assessed the radiation-induced nanodroplet vaporization events using offline or online ultrasound imaging. At 25 °C and 37 °C, the nanodroplet response was only present at higher photon energies (≥10 MV) and limited to <2 vaporization events per cm2 per Gy. A strong response (~2000 vaporizations per cm2 per Gy) was observed at 65 °C, suggesting radiation-induced nucleation of the droplet core at a sufficiently high degree of superheat. These results emphasize the need for alternative nanodroplet formulations, with a more volatile perfluorocarbon core, to enable in vivo photon dosimetry. The current nanodroplet formulation carries potential as an innovative gel dosimeter if an appropriate gel matrix can be found to ensure reproducibility. Eventually, the proposed technology might unlock unprecedented temporal and spatial resolution in image-based dosimetry, thanks to the combination of high-frame-rate ultrasound imaging and the detection of individual vaporization events, thereby addressing some of the burning challenges of new radiotherapy innovations.
Collapse
Affiliation(s)
- Bram Carlier
- Department of Oncology, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (B.C.); (L.D.); (E.S.)
- Department of Imaging and Pathology, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Sophie V. Heymans
- Department of Physics, KU Leuven Campus Kortrijk—KULAK, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium; (S.V.H.); (K.V.D.A.)
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (S.N.); (J.D.)
| | - Sjoerd Nooijens
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (S.N.); (J.D.)
| | - Gonzalo Collado-Lara
- Department of Cardiology, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Yosra Toumia
- National Institute for Nuclear Physics, INFN Sezione di Roma Tor Vergata, 00133 Rome, Italy;
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Laurence Delombaerde
- Department of Oncology, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (B.C.); (L.D.); (E.S.)
- Department of Radiotherapy, UH Leuven, 3000 Leuven, Belgium
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Jan D’hooge
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (S.N.); (J.D.)
| | - Koen Van Den Abeele
- Department of Physics, KU Leuven Campus Kortrijk—KULAK, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium; (S.V.H.); (K.V.D.A.)
| | - Edmond Sterpin
- Department of Oncology, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (B.C.); (L.D.); (E.S.)
- Particle Therapy Interuniversity Center Leuven—PARTICLE, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Dong F, An J, Guo W, Dang J, Huang S, Feng F, Zhang J, Wang D, Yin J, Fang J, Cheng H, Zhang J. Programmable ultrasound imaging guided theranostic nanodroplet destruction for precision therapy of breast cancer. ULTRASONICS SONOCHEMISTRY 2024; 105:106854. [PMID: 38537562 PMCID: PMC11059134 DOI: 10.1016/j.ultsonch.2024.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
Ultrasound-stimulated contrast agents have gained significant attention in the field of tumor treatment as drug delivery systems. However, their limited drug-loading efficiency and the issue of bulky, imprecise release have resulted in inadequate drug concentrations at targeted tissues. Herein, we developed a highly efficient approach for doxorubicin (DOX) precise release at tumor site and real-time feedback via an integrated strategy of "programmable ultrasonic imaging guided accurate nanodroplet destruction for drug release" (PND). We synthesized DOX-loaded nanodroplets (DOX-NDs) with improved loading efficiency (15 %) and smaller size (mean particle size: 358 nm). These DOX-NDs exhibited lower ultrasound activation thresholds (2.46 MPa). By utilizing a single diagnostic transducer for both ultrasound stimulation and imaging guidance, we successfully vaporized the DOX-NDs and released the drug at the tumor site in 4 T1 tumor-bearing mice. Remarkably, the PND group achieved similar tumor remission effects with less than half the dose of DOX required in conventional treatment. Furthermore, the ultrasound-mediated vaporization of DOX-NDs induced tumor cell apoptosis with minimal damage to surrounding normal tissues. In summary, our PND strategy offers a precise and programmable approach for drug delivery and therapy, combining ultrasound imaging guidance. This approach shows great potential in enhancing tumor treatment efficacy while minimizing harm to healthy tissues.
Collapse
Affiliation(s)
- Feihong Dong
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jie Dang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Feng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiabin Zhang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jingyi Yin
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; College of Engineering, Peking University, Beijing 100871, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, 211899, China.
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; College of Engineering, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Ji Y, Zheng J, Geng Z, Wang X, Hou Y, Tian J, Hu J, Zhang Y, Zhang L. Fluorocarbon Nanodroplets: Their Formation and Stability in Complex Solution Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9108-9119. [PMID: 38632937 DOI: 10.1021/acs.langmuir.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Perfluorocarbon (PFC) nanodroplets (NDs) are expanding in a wide range of applications in biotechnology and nanotechnology. Their efficacy in biological systems is significantly influenced by their size uniformity and stability within bioelectrolyte contexts. Presently, methods for creating monodisperse, highly concentrated, and well-stabilized PFC NDs under harsh conditions using low energy consumption methods have not been thoroughly developed, and their stability has not been sufficiently explored. This gap restricts their applicability for advanced medical interventions in tissues with high pH levels and various electrolytic conditions. To tackle these challenges and to circumvent potential toxicity from surface stabilizers, we have conducted an in-depth investigation into the formation and stability of uncoated perfluorohexane (PFH) NDs, which were synthesized by using a low-energy consumption solvent exchange technique, across complex electrolyte compositions or a broad spectrum of pH levels. The results indicated that low concentrations of low-valent electrolyte ions facilitate the nucleation of NDs and consistently accelerate Ostwald ripening over an extended period. Conversely, high concentrations of highly valent electrolyte ions inhibit nucleation and decelerate the ripening process over time. Given the similarities between the properties of NDs and nanobubbles, we propose a potential stabilization mechanism. Electrolytes influence the Ostwald ripening of NDs by adjusting the adsorption and distribution of ions on the NDs' surface, modifying the thickness of the electric double layer, and fine-tuning the energy barrier between droplets. These insights enable precise control over the stability of PFC NDs through the meticulous adjustment of the surrounding electrolyte composition. This offers an effective preparation method and a theoretical foundation for employing bare PFC NDs in physiological settings.
Collapse
Affiliation(s)
- Yuwen Ji
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanli Geng
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining, Qinghai 810008, China
| | - Xingya Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangqian Hou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakun Tian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
- Xiangfu Laboratory, Jiashan 314102, China
| | - Yi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Changizi S, Marquette IG, VanSant J, Alghazwat O, Elgattar A, Liao Y, Bashur CA. Carbon monoxide release from ultrasound-sensitive microbubbles improves endothelial cell growth. J Biomed Mater Res A 2024; 112:600-612. [PMID: 37855181 DOI: 10.1002/jbm.a.37629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
Carbon monoxide is a gasotransmitter that may be beneficial for vascular tissue engineering and regenerative medicine strategies because it can promote endothelial cell (EC) proliferation and migration by binding to heme-containing compounds within cells. For example, CO may be beneficial for vascular cognitive impairment and dementia because many patients' disrupted blood-brain barriers do not heal naturally. However, control of the CO dose is critical, and new controlled delivery methods need to be developed. This study developed ultrasound-sensitive microbubbles with a carefully controlled precipitation technique, loaded them with CO, and assessed their ability to promote EC proliferation and function. Microbubbles fabricated with perfluoropentane exhibited good stability at room temperature, but they could still be ruptured and release CO in culture with application of ultrasound. Microbubbles synthesized from the higher boiling point compound, perfluorohexane, were too stable at physiological temperature. The lower-boiling point perfluoropentane microbubbles had good biocompatibility and appeared to improve VE-cadherin expression when CO was loaded in the bubbles. Finally, tissue phantoms were used to show that an imaging ultrasound probe can efficiently rupture the microbubbles and that the CO-loaded microbubbles can improve EC spreading and proliferation compared to control conditions without microbubbles as well as microbubbles without application of ultrasound. Overall, this study demonstrated the potential for use of these ultrasound-sensitive microbubbles for improving blood vessel endothelialization.
Collapse
Affiliation(s)
- Shirin Changizi
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Isabel G Marquette
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Jennifer VanSant
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Osamah Alghazwat
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Adnan Elgattar
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Yi Liao
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Chris A Bashur
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
9
|
Lin X, Chen S, Su Y, Wu Y, Huang L, Ye Q, Song J. Ultrasound Activated Nanobowls with Deep Penetration for Enhancing Sonodynamic Therapy of Orthotopic Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306301. [PMID: 38247202 PMCID: PMC10987158 DOI: 10.1002/advs.202306301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Indexed: 01/23/2024]
Abstract
Owing to the high penetration ability and the safety of ultrasound (US) of sonodynamic therapy (SDT), it has gained significant attention in tumor treatment. However, its therapeutic efficiency depends on the performance of the sonosensitizers. The hypoxic microenvironment and abnormal stromal matrix restrict the full potential of sonosensitizers. In this study, a US-activated bowl-shaped nanobomb (APBN) is designed as a novel sonosensitizer to enhance the SDT effect through various means. This enhancement strategy combines three major characteristics: relieving tumor hypoxia, amplifying bubble cavitation damage, and US-movement-enhanced permeation. The unique bowl-shaped structure of APBN provides more favorable attachment sites for the generated oxygen gas bubbles. Thus, when catalase-like APBN catalyzes endogenous hydrogen peroxide to produce oxygen, bubbles accumulate at the groove, preventing the dissipation of oxygen and increasing the number of cavitation nuclei to improve the acoustic cavitation effect. This approach differs from traditional SDT strategies because it couples the sonodynamic effect with reactive oxygen species generation and bubble cavitation damage rather than a single action. Additionally, the asymmetric bowl-shaped structure generates a driving force under the US field, improving the distribution of sonosensitizers in the tumors. Using US and photoacoustic imaging for dual localization, these sonosensitizers can improve the accuracy of orthotopic liver tumor treatment, which presents a promising avenue for the treatment of deep tumors.
Collapse
Affiliation(s)
- Xiahui Lin
- School of Medical ImagingFujian Medical UniversityFuzhouFujian350122P. R. China
| | - Shan Chen
- College of Geography and OceanMinjiang UniversityFuzhou350108P. R. China
| | - Yina Su
- School of Medical ImagingFujian Medical UniversityFuzhouFujian350122P. R. China
| | - Ying Wu
- College of ChemistryBeijing University of Chemical TechnologyBeijing10010P. R. China
| | - Linjie Huang
- School of Medical ImagingFujian Medical UniversityFuzhouFujian350122P. R. China
| | - Qin Ye
- Department of UltrasoundUnion HospitalFujian Medical UniversityFujian Institute of Ultrasonic MedicineFuzhou350108P. R. China
| | - Jibin Song
- College of ChemistryBeijing University of Chemical TechnologyBeijing10010P. R. China
| |
Collapse
|
10
|
Woodward A, Mattrey RF, de Gracia Lux C. Direct Emulsification of Stable Superheated Perfluorobutane Nanodroplets by Sonication: Addressing the Limitations of the Microbubble Condensation Technique. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:445-452. [PMID: 38171955 DOI: 10.1016/j.ultrasmedbio.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/18/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE We have previously determined that direct formulation of a phospholipid-based perfluorobutane (PFB) emulsion using high-pressure homogenization produces monodispersed PFB nanodroplets (NDs) with relatively few non-PFB-filled NDs. In this article, we describe a simpler strategy to reproducibly formulate highly concentrated superheated PFB NDs using a probe sonicator, a more widely available tool. METHODS Similar to the homogenization technique, sonicating at low power a solution of phospholipids with condensed PFB at -10°C consistently yields NDs with an encapsulation efficiency close to 100% and very few non-PFB-filled particles. RESULTS The PFB emulsion is stable with absence of spontaneous vaporization at 37°C and for more than 14 d when frozen or refrigerated and for 3 d at 25°C. Acoustic droplet vaporization (ADV) occurred at a mechanical index >0.5 and continued to increase thereafter. The ADV threshold was similar for freshly made or frozen emulsion after thawing. In contrast to the microbubble (MB) condensation method, in which the ratio of non-PFB-filled to PFB-filled is 2000:1, particularly if MBs are not washed after formulation, nearly 94% of particles produced by direct sonication are PFB filled. CONCLUSION PFB NDs can be manufactured with high yield, stability and reproducibility using a probe sonicator that is available in many laboratories. Their ease of manufacture could spark discoveries into highly impactful ND-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Adam Woodward
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert F Mattrey
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Caroline de Gracia Lux
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, TX, USA; Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Howells AR, Welch PJ, Kim J, Forest CR, Shi C, Lian XL. A drug-selectable acoustic reporter gene system for human cell ultrasound imaging. Bioeng Transl Med 2024; 9:e10584. [PMID: 38435822 PMCID: PMC10905554 DOI: 10.1002/btm2.10584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 03/05/2024] Open
Abstract
A promising new field of genetically encoded ultrasound contrast agents in the form of gas vesicles has recently emerged, which could extend the specificity of medical ultrasound imaging. However, given the delicate genetic nature of how these genes are integrated and expressed, current methods of producing gas vesicle-expressing mammalian cell lines requires significant cell processing time to establish a clonal/polyclonal line that robustly expresses the gas vesicles sufficiently enough for ultrasound contrast. Here, we describe an inducible and drug-selectable acoustic reporter gene system that can enable gas vesicle expression in mammalian cell lines, which we demonstrate using HEK293T cells. Our drug-selectable construct design increases the stability and proportion of cells that successfully integrate all plasmids into their genome, thus reducing the amount of cell processing time required. Additionally, we demonstrate that our drug-selectable strategy forgoes the need for single-cell cloning and fluorescence-activated cell sorting, and that a drug-selected mixed population is sufficient to generate robust ultrasound contrast. Successful gas vesicle expression was optically and ultrasonically verified, with cells expressing gas vesicles exhibiting an 80% greater signal-to-noise ratio compared to negative controls and a 500% greater signal-to-noise ratio compared to wild-type HEK293T cells. This technology presents a new reporter gene paradigm by which ultrasound can be harnessed to visualize specific cell types for applications including cellular reporting and cell therapies.
Collapse
Affiliation(s)
| | - Phoebe J. Welch
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - John Kim
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Craig R. Forest
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Chengzhi Shi
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Xiaojun Lance Lian
- Department of Biomedical EngineeringPennsylvania State UniversityPennsylvaniaUSA
- Huck Institutes of the Life Sciences, Pennsylvania State UniversityPennsylvaniaUSA
- Department of BiologyPennsylvania State UniversityPennsylvaniaUSA
| |
Collapse
|
12
|
Lyons B, Balkaran JPR, Dunn-Lawless D, Lucian V, Keller SB, O’Reilly CS, Hu L, Rubasingham J, Nair M, Carlisle R, Stride E, Gray M, Coussios C. Sonosensitive Cavitation Nuclei-A Customisable Platform Technology for Enhanced Therapeutic Delivery. Molecules 2023; 28:7733. [PMID: 38067464 PMCID: PMC10708135 DOI: 10.3390/molecules28237733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Ultrasound-mediated cavitation shows great promise for improving targeted drug delivery across a range of clinical applications. Cavitation nuclei-sound-sensitive constructs that enhance cavitation activity at lower pressures-have become a powerful adjuvant to ultrasound-based treatments, and more recently emerged as a drug delivery vehicle in their own right. The unique combination of physical, biological, and chemical effects that occur around these structures, as well as their varied compositions and morphologies, make cavitation nuclei an attractive platform for creating delivery systems tuned to particular therapeutics. In this review, we describe the structure and function of cavitation nuclei, approaches to their functionalization and customization, various clinical applications, progress toward real-world translation, and future directions for the field.
Collapse
Affiliation(s)
- Brian Lyons
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Joel P. R. Balkaran
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Darcy Dunn-Lawless
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Veronica Lucian
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Sara B. Keller
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Colm S. O’Reilly
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX1 3PJ, UK;
| | - Luna Hu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Jeffrey Rubasingham
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Malavika Nair
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Robert Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Constantin Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| |
Collapse
|
13
|
Jourdain R, Chivukula VK, Bashur CA. Modeling Gasotransmitter Availability to Brain Capillary Endothelial Cells with Ultrasound-sensitive Microbubbles. Pharm Res 2023; 40:2399-2411. [PMID: 37783924 DOI: 10.1007/s11095-023-03606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Vascular cognitive impairment and dementia results from blood components passing through disrupted blood brain barriers (BBBs). Current treatments can reduce further progress of neuronal damage but do not treat the primary cause. Instead, these treatments typically aim to temporarily disrupt the BBB. Alternatively, this study computationally assessed the feasibility of delivering carbon monoxide (CO) from ultrasound-sensitive microbubbles (MBs) as a strategy to promote BBB repair and integrity. CO can interact with heme-containing compounds within cells and promote cell growth. However, careful dose control is critical for safety and efficacy because CO also binds at high affinity to hemoglobin (Hb). METHODS Ultrasound activation was simulated at the internal carotid artery, and CO released from the resulting MB rupture was tracked along the shortest path to the BBB for several activation times and doses. The CO dose available to brain capillary endothelial cells (BCECs) was predicted by considering hemodynamics, mass transport, and binding kinetics. RESULTS The half-life of CO binding to Hb indicated that CO is available to interact with BCECs for several cardiac cycles. Further, MB and COHb concentrations would not be near toxic levels and free Hb would be available. The axisymmetric model indicated that biologically-relevant CO concentrations will be available to BCECs, and these levels can be sustained with controlled ultrasound activation. A patient-specific geometry shows that while vessel tortuosity provides a heterogeneous response, a relevant CO concentration could still be achieved. CONCLUSIONS This computational study demonstrates feasibility of the CO / MB strategy, and that controlled delivery is important for viability of this strategy.
Collapse
Affiliation(s)
- Rubens Jourdain
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL, USA
| | - Venkat Keshav Chivukula
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL, USA
| | - Chris A Bashur
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL, USA.
| |
Collapse
|
14
|
Bautista KJB, Kim J, Xu Z, Jiang X, Dayton PA. Current Status of Sub-micron Cavitation-Enhancing Agents for Sonothrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1049-1057. [PMID: 36868959 DOI: 10.1016/j.ultrasmedbio.2023.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 05/11/2023]
Abstract
Thrombosis in cardiovascular disease is an urgent global issue, but treatment progress is limited by the risks of current antithrombotic approaches. The cavitation effect in ultrasound-mediated thrombolysis offers a promising mechanical alternative for clot lysis. Further addition of microbubble contrast agents introduces artificial cavitation nuclei that can enhance the mechanical disruption induced by ultrasound. Recent studies have proposed sub-micron particles as novel sonothrombolysis agents with increased spatial specificity, safety and stability for thrombus disruption. In this article, the applications of different sub-micron particles for sonothrombolysis are discussed. Also reviewed are in vitro and in vivo studies that apply these particles as cavitation agents and as adjuvants to thrombolytic drugs. Finally, perspectives on future developments in sub-micron agents for cavitation-enhanced sonothrombolysis are shared.
Collapse
Affiliation(s)
- Kathlyne Jayne B Bautista
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Recent progress in theranostic microbubbles. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Ultrastable shelled PFC nanobubbles: A platform for ultrasound-assisted diagnostics, and therapy. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2022; 46:102611. [DOI: 10.1016/j.nano.2022.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022]
|
17
|
Welch PJ, Li DS, Forest CR, Pozzo LD, Shi C. Perfluorocarbon nanodroplet size, acoustic vaporization, and inertial cavitation affected by lipid shell composition in vitro. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2493. [PMID: 36319242 PMCID: PMC9812515 DOI: 10.1121/10.0014934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 10/04/2022] [Indexed: 05/25/2023]
Abstract
Perfluorocarbon nanodroplets (PFCnDs) are ultrasound contrast agents that phase-transition from liquid nanodroplets to gas microbubbles when activated by laser irradiation or insonated with an ultrasound pulse. The dynamics of PFCnDs can vary drastically depending on the nanodroplet composition, including the lipid shell properties. In this paper, we investigate the effect of varying the ratio of PEGylated to non-PEGylated phospholipids in the outer shell of PFCnDs on the acoustic nanodroplet vaporization (liquid to gas phase transition) and inertial cavitation (rapid collapse of the vaporized nanodroplets) dynamics in vitro when insonated with focused ultrasound. Nanodroplets with a high concentration of PEGylated lipids had larger diameters and exhibited greater variance in size distribution compared to nanodroplets with lower proportions of PEGylated lipids in the lipid shell. PFCnDs with a lipid shell composed of 50:50 PEGylated to non-PEGylated lipids yielded the highest B-mode image intensity and duration, as well as the greatest pressure difference between acoustic droplet vaporization onset and inertial cavitation onset. We demonstrate that slight changes in lipid shell composition of PFCnDs can significantly impact droplet phase transitioning and inertial cavitation dynamics. These findings can help guide researchers to fabricate PFCnDs with optimized compositions for their specific applications.
Collapse
Affiliation(s)
- Phoebe J Welch
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - Craig R Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Chengzhi Shi
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
18
|
Heymans SV, Collado-Lara G, Rovituso M, Vos HJ, D'hooge J, de Jong N, Van Abeele KD. Acoustic Modulation Enables Proton Detection With Nanodroplets at Body Temperature. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2028-2038. [PMID: 35385380 DOI: 10.1109/tuffc.2022.3164805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Superheated nanodroplet (ND) vaporization by proton radiation was recently demonstrated, opening the door to ultrasound-based in vivo proton range verification. However, at body temperature and physiological pressures, perfluorobutane nanodroplets (PFB-NDs), which offer a good compromise between stability and radiation sensitivity, are not directly sensitive to primary protons. Instead, they are vaporized by infrequent secondary particles, which limits the precision for range verification. The radiation-induced vaporization threshold (i.e., sensitization threshold) can be reduced by lowering the pressure in the droplet such that ND vaporization by primary protons can occur. Here, we propose to use an acoustic field to modulate the pressure, intermittently lowering the proton sensitization threshold of PFB-NDs during the rarefactional phase of the ultrasound wave. Simultaneous proton irradiation and sonication with a 1.1 MHz focused transducer, using increasing peak negative pressures (PNPs), were applied on a dilution of PFB-NDs flowing in a tube, while vaporization was acoustically monitored with a linear array. Sensitization to primary protons was achieved at temperatures between [Formula: see text] and 40 °C using acoustic PNPs of relatively low amplitude (from 800 to 200 kPa, respectively), while sonication alone did not lead to ND vaporization at those PNPs. Sensitization was also measured at the clinically relevant body temperature (i.e., 37 °C) using a PNP of 400 kPa. These findings confirm that acoustic modulation lowers the sensitization threshold of superheated NDs, enabling a direct proton response at body temperature.
Collapse
|
19
|
Durham PG, Kim J, Eltz KM, Caskey CF, Dayton PA. Polyvinyl Alcohol Cryogels for Acoustic Characterization of Phase-Change Contrast Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:954-960. [PMID: 35246338 PMCID: PMC9012345 DOI: 10.1016/j.ultrasmedbio.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 05/03/2023]
Abstract
Phase-change contrast agents (PCCAs) consisting of lipid-encapsulated low-boiling-point perfluorocarbons can be used in conjunction with ultrasound for diagnostic and therapeutic applications. One benefit of PCCAs is site-specific activation, whereby the liquid core is acoustically vaporized into a bubble detectable via ultrasound imaging. For further evaluation of PCCAs in a variety of applications, it is useful to disperse these nanodroplets into an acoustically compatible stationary matrix. However, many traditional phantom preparations require heating, which causes premature thermal activation of low-boiling-point PCCAs. Polyvinyl alcohol (PVA) cryogels do not require heat to set. Here we propose a simple method for the incorporation of the low-boiling-point PCCAs using octafluoropropane (OFP) and decafluorobutane (DFB) into PVA cryogels for a variety of acoustic characterization applications. We determined the utility of the phantoms by activating droplets with a focused transducer, visualizing the lesions with ultrasound imaging. At 1 MHz, droplet activation was consistently observed at 2.0 and 4.0 MPa for OFP and DFB, respectively.
Collapse
Affiliation(s)
- Phillip G Durham
- Department of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| | - Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Katherine M Eltz
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul A Dayton
- Department of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Zhou A, Fang T, Chen K, Xu Y, Chen Z, Ning X. Biomimetic Activator of Sonodynamic Ferroptosis Amplifies Inherent Peroxidation for Improving the Treatment of Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106568. [PMID: 35092152 DOI: 10.1002/smll.202106568] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Ferroptosis is a type of nonapoptotic cell death and is gradually emerging as an important anticancer treatment. However, its therapeutic efficacy is impaired by low intracellular levels of reactive oxygen species (ROS) and long-chain polyunsaturated fatty acids, significantly limiting its therapeutic potential. Herein, a multimodal strategy to improve ferroptosis is presented, in which a state-of-art engineered erythrocyte, termed as sonodynamic amplified ferroptosis erythrocyte (SAFE), is developed for simultaneously activating ferroptosis and oxygen-riched sonodynamic therapy (SDT). SAFE is composed of internalizing RGD peptide and red blood cell membrane hybrid camouflaged nanocomplex of hemoglobin, perfluorocarbon, ferroptosis activator (dihomo-γ-linolenic acid, DGLA), and sonosensitizer verteporfin. It is identified that SAFE, under ultrasound stimulation, can not only substantially supply oxygen to overcome tumor hypoxia associated therapeutic resistance, but effectively activate ferroptosis through the coeffect of SDT triggered ROS production and DGLA mediated lipid peroxidation. In vivo studies reveal that SAFE selectively accumulates in tumor tissues and induces desirable anticancer effects under mild ultrasound stimulation. Importantly, SAFE can effectively inhibit tumor growth with minimal invasiveness, resulting in a prolonged survival period of mice. Therefore, a multimodal ferroptosis therapy driven by oxygen-riched sonodynamic peroxidation of lipids, significantly advancing synergistic cancer treatment, is presented.
Collapse
Affiliation(s)
- Anwei Zhou
- Jiangsu Province Nanjing, Qixia District, Xianlin Road No. 163, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, School of Physics, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Tianliang Fang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangzhou, 510008, China
| | - Kerong Chen
- Jiangsu Province Nanjing, Qixia District, Xianlin Road No. 163, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yurui Xu
- Jiangsu Province Nanjing, Qixia District, Xianlin Road No. 163, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Zhuo Chen
- Jiangsu Province Nanjing, Qixia District, Xianlin Road No. 163, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, School of Physics, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinghai Ning
- Jiangsu Province Nanjing, Qixia District, Xianlin Road No. 163, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
21
|
An J, Zhang J, Dong F, Yin J, Feng F, Guo W, Huang S, Wang D, Dang J, Zhang J, Cheng H. Arterial Labeling Ultrasound Subtraction Angiography (ALUSA) Based on Acoustic Phase-Change Nanodroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105989. [PMID: 35088522 DOI: 10.1002/smll.202105989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Biomedical imaging technology (like digital subtraction angiography (DSA)) based on contrast agents has been widely employed in the diagnosis of vascular-related diseases. While the DSA achieves the high-resolution observation of specified vessels and their downstream perfusion at the cost of invasive, radioactive operation and hepatorenal toxicity. To address those problems, this study develops arterial labeling ultrasound (US) subtraction angiography (ALUSA) based on a new perfluorobutane (PFB) nanodroplets with a lower vaporization threshold through spontaneous nucleation. The nanodroplets can be selectively vaporized to microbubbles, indicating a highly echogenic signal at B-mode images only using a diagnostic transducer. By labeling a single blood vessel for nanodroplets vaporization and tracking its downstream blood perfusion in segmental renal arteries at a frame rate of 500 Hz. The results demonstrate the color-coded super-resolution ALUSA image, exhibiting the downstream arcuate and interlobular arteries of each segmental renal artery with a resolution of 36 µm in a rabbit kidney. Furthermore, ALUSA could offer the vascular structures, blood flow velocity, and direction of their primary supply vessels in the mouse breast tumor. ALUSA fills the gap of noninvasive labeling angiography in US and opens a broad vista in the diagnosis and treatment of tumor and vascular-related diseases.
Collapse
Affiliation(s)
- Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jiabin Zhang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, 100871, China
| | - Feihong Dong
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jingyi Yin
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Feng Feng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jie Dang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- College of Engineering, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Heping Cheng
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, 210031, China
| |
Collapse
|
22
|
Zhang W, Shi Y, Abd Shukor S, Vijayakumaran A, Vlatakis S, Wright M, Thanou M. Phase-shift nanodroplets as an emerging sonoresponsive nanomaterial for imaging and drug delivery applications. NANOSCALE 2022; 14:2943-2965. [PMID: 35166273 DOI: 10.1039/d1nr07882h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanodroplets - emerging phase-changing sonoresponsive materials - have attracted substantial attention in biomedical applications for both tumour imaging and therapeutic purposes due to their unique response to ultrasound. As ultrasound is applied at different frequencies and powers, nanodroplets have been shown to cavitate by the process of acoustic droplet vapourisation (ADV), causing the development of mechanical forces which promote sonoporation through cellular membranes. This allows drugs to be delivered efficiently into deeper tissues where tumours are located. Recent reviews on nanodroplets are mostly focused on the mechanism of cavitation and their applications in biomedical fields. However, the chemistry of the nanodroplet components has not been discussed or reviewed yet. In this review, the commonly used materials and preparation methods of nanodroplets are summarised. More importantly, this review provides examples of variable chemistry components in nanodroplets which link them to their efficiency as ultrasound-multimodal imaging agents to image and monitor drug delivery. Finally, the drawbacks of current research, future development, and future direction of nanodroplets are discussed.
Collapse
Affiliation(s)
- Weiqi Zhang
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Yuhong Shi
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | | | | | - Stavros Vlatakis
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Michael Wright
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| |
Collapse
|
23
|
Honari A, Kapilavaih PS, Akter N, Sirsi SR. Remote Loading of Gas Bubbles into Polylactic Acid Microcapsules Creates Acoustically Active Janus Particles. ACS APPLIED POLYMER MATERIALS 2022; 4:773-780. [PMID: 35187494 PMCID: PMC8846221 DOI: 10.1021/acsapm.1c01562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Polymeric microcapsules (MCs) are biocompatible agents used in biomedical applications such as drug delivery and in vivo imaging. We have discovered a method of remotely loading air into polylactic acid (PLA)-based MCs with an aqueous core. When the microcapsules are suspended in high content glycerol and propylene glycol solutions, changes in gas solubility cause bubbles to nucleate within the core through an "Ouzo-like" effect. The resulting bubble displaces the internal fluid of the MCs, but small molecules are retained in their interior. The residual content does not homogeneously distribute; rather, it localizes to one specific location, creating gas-filled Janus particles.
Collapse
|
24
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
25
|
Optical sensor arrays designed for guided manufacture of perfluorocarbon nanoemulsions with a non-synthetic stabilizer. Acta Biomater 2021; 136:558-569. [PMID: 34563723 DOI: 10.1016/j.actbio.2021.09.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Hydrophobic drugs are incorporated into oil-in-water nanoemulsions (OIW) either as new formulations or repurposed for intravenous delivery. Typically, these are manufactured through stepwise processes of sonication or high-pressure homogenization (HPH). The guiding criteria for most nanoemulsion manufacture are the size and homogeneity/polydispersity of the drug-laden particles with strict requirements for clinical injectables. To date, most formulation optimization is done through trial and error with stepwise sampling during processing utilizing dynamic light scattering (DLS), light obscuration sensing (LOS) or laser particle tracking (LPT) to assess manufacturing progress. The objective of this work was to develop and implement an in-line optical turbidity/nephelometry sensor array for the longitudinal in-process monitoring of nanoemulsion manufacture. A further objective was the use of this sensor array to rapidly optimize the manufacture of a sub-120 nm oxygen carrying perfluorocarbon nanoemulsion with a non-synthetic stabilizer. During processing, samples were taken for particle size measurement and further characterization. There was a significant correlation and agreement between particle size and sensor signal as well as improved process reproducibility through sensor-guided manufacture. Given the cost associated with nanoemulsion development and scale-up manufacture, our sensor arrays could be an invaluable tool for efficient and cost-effective drug development. Sensor-guided manufacturing was used to optimize oxygen-carrying nanoemulsions. These were tested, in vitro, for their ability to improve the viability of encapsulated endocrine clusters (mouse insulinoma, Min6) and to eliminate hypoxia due to oxygen mass transfer limitations. The nanomulsions significantly improved encapsulated cluster viability and reduced hypoxia within the microcapsule environment. STATEMENT OF SIGNIFICANCE: Nanoemulsions are rapidly becoming vehicles for the controlled release delivery of both hydrophilic and hydrophobic drugs given their large surface area for exchange. As work shifts from bench to large scale manufacturing, there is a critical need for technologies that can monitor and accumulate data during processing, particularly regarding the endpoint criteria of particle size and stability. To date, no such technology has been implemented in nanoemulsion manufacture. In this paper we develop and implement an optical sensor array for in-line nanoemulsion process monitoring and then use the array to optimize the development and manufacture of novel reproducible oxygen carrying nanoemulsions lacking synthetic surfactants.
Collapse
|
26
|
Durham PG, Dayton PA. Applications of sub-micron low-boiling point phase change contrast agents for ultrasound imaging and therapy. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Dong F, An J, Zhang J, Yin J, Guo W, Wang D, Feng F, Huang S, Zhang J, Cheng H. Blinking Acoustic Nanodroplets Enable Fast Super-resolution Ultrasound Imaging. ACS NANO 2021; 15:16913-16923. [PMID: 34647449 DOI: 10.1021/acsnano.1c07896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advent of localization-based super-resolution ultrasound (SRUS) imaging creates a vista for precision vasculature and hemodynamic measurements in brain science, cardiovascular diseases, and cancer. As blinking fluorophores are crucial to super-resolution optical imaging, blinking acoustic contrast agents enabling ultrasound localization microscopy have been highly sought, but only with limited success. Here we report on the discovery and characterization of a type of blinking acoustic nanodroplets (BANDs) ideal for SRUS. BANDs of 200-500 nm diameters comprise a perfluorocarbon-filled core and a shell of DSPC, Pluronic F68, and DSPE-PEG2000. When driven by clinically safe acoustic pulses (MI < 1.9) provided by a diagnostic ultrasound transducer, BANDs underwent reversible vaporization and reliquefaction, manifesting as "blinks", at rates of up to 5 kHz. By sparse activation of perfluorohexane-filled BANDs-C6 at high concentrations, only 100 frames of ultrasound imaging were sufficient to reconstruct super-resolution images of a no-flow tube through either cumulative localization or temporal radiality autocorrelation. Furthermore, the use of high-density BANDs-C6-4 (1 × 108/mL) with a 1:9 admixture of perfluorohexane and perfluorobutane supported the fast SRUS imaging of muscle vasculature in live animals, at 64 μm resolution requiring only 100 frames per layer. We anticipate that the BANDs developed here will greatly boost the application of SRUS in both basic science and clinical settings.
Collapse
Affiliation(s)
- Feihong Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiabin Zhang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jingyi Yin
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Feng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Engineering, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 211899, China
| |
Collapse
|
28
|
Ultrasound and Photoacoustic Imaging of Laser-Activated Phase-Change Perfluorocarbon Nanodroplets. PHOTONICS 2021. [DOI: 10.3390/photonics8100405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Laser-activated perfluorocarbon nanodroplets (PFCnDs) are emerging phase-change contrast agents that showed promising potential in ultrasound and photoacoustic (US/PA) imaging. Unlike monophase gaseous microbubbles, PFCnDs shift their state from liquid to gas via optical activation and can provide high US/PA contrast on demand. Depending on the choice of perfluorocarbon core, the vaporization and condensation dynamics of the PFCnDs are controllable. Therefore, these configurable properties of activation and deactivation of PFCnDs are employed to enable various imaging approaches, including contrast-enhanced imaging and super-resolution imaging. In addition, synchronous application of both acoustic and optical pulses showed a promising outcome vaporizing PFCnDs with lower activation thresholds. Furthermore, due to their sub-micrometer size, PFCnDs can be used for molecular imaging of extravascular tissue. PFCnDs can also be an effective therapeutic tool. As PFCnDs can carry therapeutic drugs or other particles, they can be used for drug delivery, as well as photothermal and photodynamic therapies. Blood barrier opening for neurological applications was recently demonstrated with optically-triggered PFCnDs. This paper specifically focuses on the activation and deactivation properties of laser-activated PFCnDs and associated US/PA imaging approaches, and briefly discusses their theranostic potential and future directions.
Collapse
|
29
|
Guo R, Xu N, Liu Y, Ling G, Yu J, Zhang P. Functional ultrasound-triggered phase-shift perfluorocarbon nanodroplets for cancer therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2064-2079. [PMID: 33992473 DOI: 10.1016/j.ultrasmedbio.2021.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
In recent years, because of their unique properties, the use of perfluorocarbon nanodroplets (PFC NDs) in ultrasound-mediated tumor theranostics has attracted increasing interest. PFC is one of the most stable organic compounds with high hydrophobicity. Phase-shift PFC NDs can be transformed into highly echogenic microbubbles for ultrasound and photoacoustic imaging by ultrasound and laser light. In addition, in the process of acoustic droplet vaporization, PFC NDs with cavitation nuclei can be combined with a variety of ultrasound technologies to produce cavitation effects for tumor ablation, antivascular therapy and release of therapeutic agents loaded in nanodroplets. Moreover, they can also be used to overcome tumor hypoxia by virtue of high oxygen solubility. In this review, first the preparation and stabilization of PFC NDs are summarized and then the issues and outlook are discussed. More importantly, multifunctional platforms based on PFC NDs for cancer diagnostics, therapy and theranostics are reviewed in detail.
Collapse
Affiliation(s)
- Ranran Guo
- Shenyang Pharmaceutical University, Shenyang, China
| | - Na Xu
- Shenyang Pharmaceutical University, Shenyang, China
| | - Ying Liu
- Shenyang Pharmaceutical University, Shenyang, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, Shenyang, China
| | - Jia Yu
- Shenyang Pharmaceutical University, Shenyang, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
30
|
Megone W, Kong D, Peng L, Gautrot JE. Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets. J Colloid Interface Sci 2021; 594:650-657. [PMID: 33780768 DOI: 10.1016/j.jcis.2021.03.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
The structuring of liquid-liquid and liquid-air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emulsions. Understanding the mechanical anisotropy of associated liquid interfaces is essential for the development of such systems. Models of AFM indentation at liquid interfaces, based on the Young-Laplace model, currently do not allow the quantification of interfacial mechanical properties of associated molecular films. This report presents such a model and compares its predictions to interfacial mechanical properties characterised via interfacial shear rheology. An extreme reversal of mechanical anisotropy of liquid-liquid interfaces is observed, upon self-assembly of protein nanosheets, by 5 orders of magnitude. Results indicate that, although interfacial rheology is more sensitive than AFM indentation to the mechanics of molecular films in the low range of interfacial mechanics, AFM indentation allows the quantification of mechanical properties of stiffer molecular films, and remains better adapted to the characterisation of small samples and enables the characterisation of local heterogeneity.
Collapse
Affiliation(s)
- William Megone
- Institute of Bioengineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Dexu Kong
- Institute of Bioengineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Lihui Peng
- Institute of Bioengineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Julien E Gautrot
- Institute of Bioengineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
31
|
Mai X, Chang Y, You Y, He L, Chen T. Designing intelligent nano-bomb with on-demand site-specific drug burst release to synergize with high-intensity focused ultrasound cancer ablation. J Control Release 2021; 331:270-281. [DOI: 10.1016/j.jconrel.2020.09.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022]
|
32
|
Dai L, Shen G, Wang Y, Yang P, Wang H, Liu Z. PSMA-targeted melanin-like nanoparticles as a multifunctional nanoplatform for prostate cancer theranostics. J Mater Chem B 2021; 9:1151-1161. [PMID: 33434248 DOI: 10.1039/d0tb02576c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is highly expressed on the surface of most prostate tumor cells and is considered a promising target for prostate cancer imaging and treatment. It is possible to establish a PSMA-targeted theranostic probe to achieve early diagnosis and treatment of this cancer type. In this contribution, we prepared a multifunctional melanin-like polydopamine (PDA) nanocarrier decorated with a small-molecule PSMA inhibitor, N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-(S)-l-lysine (DCL). PDA-DCL was then functionalized with perfluoropentane (PFP) and loaded with the photosensitizer chlorin e6 (Ce6) to give Ce6@PDA-DCL-PFP, which was successfully used for ultrasound-guided combined photodynamic/photothermal therapy (PDT/PTT) of prostate cancer. Compared with the corresponding non-targeted probe (Ce6@PDA-PEG-PFP), our targeted probe induced higher cellular uptake in vitro (6.5-fold) and more tumor accumulation in vivo (4.6-fold), suggesting strong active targeting capacity. Meanwhile, this new nanoplatform significantly enhanced the ultrasound contrast signal at the tumor site in vivo, thus facilitating precise and real-time detection of the tumor. In addition, this Ce6-loaded PDA nanoplatform produced a synergistic effect of PDT and PTT under 660 nm and 808 nm irradiation, inducing a more efficient killing effect compared with the individual therapy in vitro and in vivo. Furthermore, the tumor in the targeted group was more effectively suppressed than that in the non-targeted group under the same irradiation condition. This multifunctional probe may hold great potential for precise and early theranostics of prostate cancer.
Collapse
Affiliation(s)
- Liqun Dai
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Li DS, Jeng GS, Pitre JJ, Kim M, Pozzo LD, O’Donnell M. Spatially localized sono-photoacoutic activation of phase-change contrast agents. PHOTOACOUSTICS 2020; 20:100202. [PMID: 32817821 PMCID: PMC7424230 DOI: 10.1016/j.pacs.2020.100202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 05/29/2023]
Abstract
Sono-photoacoustic (SPA) activation lowers the threshold of phase-change contrast agents by timing a laser shot to coincide with the arrival of an acoustic wave at a region of interest. The combination of photothermal heating from optical absorption and negative pressure from the acoustic wave greatly reduces the droplet's combined vaporization threshold compared to using laser energy or acoustic energy alone. In previous studies, SPA imaging used a broadly illuminated optical pulse combined with plane wave acoustic pulses transmitted from a linear ultrasound array. Acoustic plane waves cover a wide lateral field of view, enabling direct visualization of the contrast agent distribution. In contrast, we demonstrate here that localized SPA activation is possible using electronically steered/focused ultrasound pulses. The focused SPA activation region is defined axially by the number of cycles in the acoustic pulse and laterally by the acoustic beam width. By reducing the spot size and enabling rapid electronic steering, complex activation patterns are possible, which may be particularly useful in therapeutic applications.
Collapse
Affiliation(s)
- David S. Li
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Geng-Shi Jeng
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - John J. Pitre
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - MinWoo Kim
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Lilo D. Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Matthew O’Donnell
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
34
|
|
35
|
Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, Menciassi A, Medina-Sánchez M, Schmidt OG. Medical Imaging of Microrobots: Toward In Vivo Applications. ACS NANO 2020; 14:10865-10893. [PMID: 32869971 DOI: 10.1021/acsnano.0c05530] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications.
Collapse
Affiliation(s)
- Azaam Aziz
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Stefano Pane
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Veronica Iacovacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Nektarios Koukourakis
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Jürgen Czarske
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, Reichenhainer Strasse 10, 09107 Chemnitz, Germany
- School of Science, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
36
|
Lim I, Vian A, van de Wouw HL, Day RA, Gomez C, Liu Y, Rheingold AL, Campàs O, Sletten EM. Fluorous Soluble Cyanine Dyes for Visualizing Perfluorocarbons in Living Systems. J Am Chem Soc 2020; 142:16072-16081. [PMID: 32808518 PMCID: PMC8366720 DOI: 10.1021/jacs.0c07761] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bioorthogonal nature of perfluorocarbons provides a unique platform for introducing dynamic nano- and microdroplets into cells and organisms. To monitor the localization and deformation of the droplets, fluorous soluble fluorophores that are compatible with standard fluorescent protein markers and applicable to cells, tissues, and small organisms are necessary. Here, we introduce fluorous cyanine dyes that represent the most red-shifted fluorous soluble fluorophores to date. We study the effect of covalently appended fluorous tags on the cyanine scaffold and evaluate the changes in photophysical properties imparted by the fluorous phase. Ultimately, we showcase the utility of the fluorous soluble pentamethine cyanine dye for tracking the localization of perfluorocarbon nanoemulsions in macrophage cells and for measurements of mechanical forces in multicellular spheroids and zebrafish embryonic tissues. These studies demonstrate that the red-shifted cyanine dyes offer spectral flexibility in multiplexed imaging experiments and enhanced precision in force measurements.
Collapse
Affiliation(s)
- Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Antoine Vian
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Heidi L. van de Wouw
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Rachael A. Day
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Carlos Gomez
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093-0505, United States
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
37
|
Jing B, Kashyap EP, Lindsey BD. Transcranial activation and imaging of low boiling point phase-change contrast agents through the temporal bone using an ultrafast interframe activation ultrasound sequence. Med Phys 2020; 47:4450-4464. [PMID: 32657429 DOI: 10.1002/mp.14390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE As a cavitation enhancer, low boiling point phase-change contrast agents (PCCA) offer potential for ultrasound-mediated drug delivery in applications including intracerebral hemorrhage or brain tumors. In addition to introducing cavitation, ultrasound imaging also has the ability to provide guidance and monitoring of the therapeutic process by localizing delivery events. However, the highly attenuating skull poses a challenge for achieving an image with useful contrast. In this study, the feasibility of transcranial activation and imaging of low boiling point PCCAs through the human temporal bone was investigated by using a low frequency ultrafast interframe activation ultrasound (UIAU) imaging sequence with singular value decomposition-based denoising. METHODS Lipid-shelled PCCAs filled with decafluorobutane were activated and imaged at 37°C in tissue-mimicking phantoms both without and with an ex vivo human skull using the new UIAU sequence and a low frequency diagnostic transducer array at frequencies from 1.5 to 3.5 MHz. A singular value decomposition-based denoising filter was developed and used to further enhance transcranial image contrast. The contrast-to-tissue ratio (CTR) and contrast enhancement (CE) of UIAU was quantitatively evaluated and compared with the amplitude modulation pulse inversion (AMPI) and vaporization detection imaging (VDI) approaches. RESULTS Image results demonstrate enhanced contrast in the phantom channel with suppressed background when the low boiling point PCCA was activated both without and with an ex vivo human skull using the UIAU sequence. Quantitative results show that without the skull, low frequency UIAU imaging provided significantly higher image contrast (CTR ≥ 18.56 dB and CE ≥ 18.66 dB) than that of AMPI and VDI (P < 0.05). Transcranial imaging results indicated that the CE of UIAU (≥18.80 dB) was significantly higher than AMPI for free-field activation pressures of 5 and 6 MPa. The CE of UIAU is also significantly higher than that of VDI when PCCAs were activated at 2.5 MHz and 3 MHz (P < 0.05). The CTR (23.30 [20.07-25.56] dB) of denoised UIAU increased by 12.58 dB relative to the non-denoised case and was significantly higher than that of AMPI at an activation pressure of 4 MPa (P < 0.05). CONCLUSIONS Results indicate that low boiling point PCCAs can be activated and imaged at low frequencies including imaging through the temporal bone using the UIAU sequence. The UIAU imaging approach provides higher contrast than AMPI and VDI, especially at lower activation pressures with additional removal of electronic noise.
Collapse
Affiliation(s)
- Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Esha P Kashyap
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
38
|
Xu Y, Lu Q, Sun L, Feng S, Nie Y, Ning X, Lu M. Nanosized Phase-Changeable "Sonocyte" for Promoting Ultrasound Assessment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002950. [PMID: 32697421 DOI: 10.1002/smll.202002950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/16/2020] [Indexed: 05/13/2023]
Abstract
Despite the ability of microbubble contrast agents to improve ultrasound diagnostic performance, their application potential is limited due to low stability, fast clearance, and poor tissue permeation. This study presents a promising nanosized phase-changeable erythrocyte (Sonocyte), composed of liposomal dodecafluoropentane coated with multilayered red blood cell membranes (RBCm), for improving ultrasound assessments. Sonocyte is the first RBCm-functionalized ultrasound contrast agent with uniform nanosized morphology, and exhibits good stability, systemic circulation, target-tissue accumulation, and even ultrasound-responsive phase transition, thereby satisfying the inherent requirement of ultrasound imaging. It is identified that Sonocyte displays similar sensitivity as microbubble SonoVue, a clinical ultrasound contrast agent, for effectively detecting normal parenchyma and hepatic necrosis. Importantly, compared with SonoVue lacking of ability to detect tumors, Sonocyte can identify tumors with high sensitivity and specificity due to superior tumor accumulation and penetration. Therefore, Sonocyte exhibits superior capabilities over SonoVue, endowing with a great clinical application potential.
Collapse
Affiliation(s)
- Yurui Xu
- National Laboratory of Solid State Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Qiangbing Lu
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Lei Sun
- National Laboratory of Solid State Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Shujun Feng
- National Laboratory of Solid State Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yuanyuan Nie
- National Laboratory of Solid State Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Minghui Lu
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
39
|
On-demand drug release nanoplatform based on fluorinated aza-BODIPY for imaging-guided chemo-phototherapy. Biomaterials 2020; 256:120211. [PMID: 32634718 DOI: 10.1016/j.biomaterials.2020.120211] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Intelligent drug delivery systems (DDS), integrating with multi-modal imaging guidance and controlled drug release, have practical significance in enhancing the therapeutic efficiency of tumors. Herein, fluorinated aza-boron-dipyrromethene (NBF) with high near-infrared absorption is synthesized by introducing nonadecafluorodecanoic acid into aza-BODIPY via the amide bond. Through the co-precipitation methods, nanoparticles (NPs) based on NBF are fabricated and the obtained NBF NPs can not only load with DOX with a high loading efficiency (25%, DNBF NPs), but also absorb PFC droplets (1H-perfluoropentane) with bp of 42 °C because of the fluorinated chains inside NBF NPs (PDNBF NPs). Under 808-nm laser irradiation, the hyperthermia effect of NBF could induce the liquid-gas phase transition of PFC droplets, triggering the burst release of DOX and enhancing echo signals for ultrasound imaging as well. With efficient enrichment of PDNBF NPs at tumor site as revealed by in vivo ultrasound imaging and photoacoustic imaging, significant improvement in inhibiting tumor growth is achieved with PDNBF NPs under laser irradiation without noticeable side effects. The work presents a multifunctional organic DDS with great biocompatibility, high drug loading efficiency and light-stimuli-responsive drug release, which provides a new strategy for the manufacture of intelligent composite theranostic nanoplatform.
Collapse
|
40
|
Harmon JN, Celingant-Copie CA, Kabinejadian F, Bull JL. Lipid Shell Retention and Selective Binding Capability Following Repeated Transient Acoustic Microdroplet Vaporization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6626-6634. [PMID: 32420747 PMCID: PMC9704545 DOI: 10.1021/acs.langmuir.0c00320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Targeted therapy and molecular imaging using ultrasound have been widely explored using microbubble contrast agents, and more recently, activatable droplet contrast agents that vaporize when exposed to focused ultrasound have been explored. These droplets are coated with a stabilizing, functionalizable shell, typically comprised of fully saturated phospholipids. While the shedding of the lipid shell under ultrasound exposure is a well-studied phenomenon in microbubbles, it has not been fully explored in droplet-based contrast agents, particularly in those that undergo a reversible phase change and recondense following vaporization. Here, we investigate the retention of the lipid shell following repeated transient vaporization events. Two separate fluorescent markers were used to track individual lipid subpopulations: PEGylated lipids, to which targeting ligands are typically bound, and non-PEGylated lipids, which primarily contribute to droplet stability. Following confirmation of the homogeneous surface distribution of each subpopulation of shell lipids using confocal microscopy, high-speed optical imaging provided visual evidence of the ability to repeatedly induce vaporization and recondensation in micron-scale droplets using 5.208 MHz, 3.17 MPa focused ultrasound pulses transmitted from an imaging transducer. Flow cytometry analysis indicated that while PEGylated lipids were fully retained following repeated transient phase change events, 20% of the bulk lipids were shed. While this likely contributed to an observed significant reduction in the average droplet diameter, the selective binding capabilities of droplets functionalized with an RGD peptide, targeted to the integrin αvβ3, were not affected. These results indicate that repeated droplet activation may promote shifts in the droplet size distribution but will not influence the accuracy of targeting for therapy or molecular imaging.
Collapse
Affiliation(s)
- Jennifer N Harmon
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Chloe A Celingant-Copie
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Foad Kabinejadian
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Joseph L Bull
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
41
|
Brambila CJ, Lux J, Mattrey RF, Boyd D, Borden MA, de Gracia Lux C. Bubble Inflation Using Phase-Change Perfluorocarbon Nanodroplets as a Strategy for Enhanced Ultrasound Imaging and Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2954-2965. [PMID: 32090572 DOI: 10.1021/acs.langmuir.9b03647] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Phase-change perfluorocarbon microdroplets were introduced over 2 decades ago to occlude downstream vessels in vivo. Interest in perfluorocarbon nanodroplets has recently increased to enable extravascular targeting, to rescue the weak ultrasound signal of perfluorocarbon droplets by converting them to microbubbles and to improve ultrasound-based therapy. Despite great scientific interest and advances, applications of phase-change perfluorocarbon agents have not reached clinical testing because of efficacy and safety concerns, some of which remain unexplained. Here, we report that the coexistence of perfluorocarbon droplets and microbubbles in blood, which is inevitable when droplets spontaneously or intentionally vaporize to form microbubbles, is a major contributor to the observed side effects. We develop the theory to explain why the coexistence of droplets and microbubbles results in microbubble inflation induced by perfluorocarbon transfer from droplets to adjacent microbubbles. We also present the experimental data showing up to 6 orders of magnitude microbubble volume expansion, which occludes a 200 μm tubing in the presence of perfluorocarbon nanodroplets. More importantly, we demonstrate that the rate of microbubble inflation and ultimate size can be controlled by manipulating formulation parameters to tailor the agent's design for the potential theranostic application while minimizing the risk to benefit ratio.
Collapse
Affiliation(s)
- Carlos J Brambila
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jacques Lux
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Organic Chemistry Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Robert F Mattrey
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Dustin Boyd
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Caroline de Gracia Lux
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
42
|
Aliabouzar M, Lu X, Kripfgans OD, Fowlkes JB, Fabiilli ML. Acoustic Droplet Vaporization in Acoustically Responsive Scaffolds: Effects of Frequency of Excitation, Volume Fraction and Threshold Determination Method. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3246-3260. [PMID: 31561948 PMCID: PMC6823163 DOI: 10.1016/j.ultrasmedbio.2019.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/11/2019] [Accepted: 08/23/2019] [Indexed: 05/03/2023]
Abstract
Ultrasound-induced vaporization of liquid perfluorocarbon (PFC) droplets into microbubbles, termed acoustic droplet vaporization (ADV), has potential therapeutic and diagnostic applications. Recently, we demonstrated how ADV-a threshold-based phenomenon-can modulate the release of biomolecules from composite hydrogels, thereby stimulating regenerative processes, such as angiogenesis. These composite hydrogels, called acoustically responsive scaffolds (ARSs), consist of monodispersed, micron size PFC emulsions embedded within a fibrin matrix. This study investigated the effects of frequency of excitation (2.25, 5, 7.5 and 10 MHz) and volume fraction (0.05%, 0.2% and 1% [v/v]) of monodispersed, double emulsions in the ARSs on the ADV threshold. We determined and compared the ADV thresholds via acoustic methods, including active detection, passive detection and attenuation, as well as an echogenicity-based method using B-mode imaging. The ADV threshold determined via these four techniques showed an increasing trend with frequency of excitation. Further analysis of the wave propagation showed that the amplitudes of high frequency harmonics were diminished in ARSs with high volume fractions of emulsion. The ADV threshold inversely correlated with the volume fraction of emulsion at the lowest excitation frequency. However, at higher frequencies, possibly due to the high acoustic reflectivity of the PFC emulsions, the ADV threshold correlated directly with the volume fraction of the emulsion. Additionally, the ADV efficiency correlated with the supra-threshold acoustic pressure. Overall, these results elucidate fundamental acoustic properties of the ARSs, which can be used in future applications.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaofang Lu
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA; Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA; Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA; Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
43
|
Xie Y, Wang J, Wang J, Hu Z, Hariri A, Tu N, Krug KA, Burkart MD, Gianneschi NC, Jokerst JV, Rinehart JD. Tuning the ultrasonic and photoacoustic response of polydopamine-stabilized perfluorocarbon contrast agents. J Mater Chem B 2019; 7:4833-4842. [PMID: 31389967 PMCID: PMC6690494 DOI: 10.1039/c9tb00928k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Contrast-enhanced ultrasound (CEUS) offers the exciting prospect of retaining the ease of ultrasound imaging while enhancing imaging clarity, diagnostic specificity, and theranostic capability. To advance the capabilities of CEUS, the synthesis and understanding of new ultrasound contrast agents (UCAs) is a necessity. Many UCAs are nano- or micro-scale materials composed of a perfluorocarbon (PFC) and stabilizer that synergistically induce an ultrasound response that is both information-rich and easily differentiated from natural tissue. In this work, we probe the extent to which CEUS is modulated through variation in a PFC stabilized with fluorine-modified polydopamine nanoparticles (PDA NPs). The high level of synthetic tunability in this system allows us to study signal as a function of particle aggregation and PFC volatility in a systematic manner. Separation of aggregated and non-aggregated nanoparticles lead to a fundamentally different signal response, and for this system, PFC volatility has little effect on CEUS intensity despite a range of over 50 °C in boiling point. To further explore the imaging tunability and multimodality, Fe3+-chelation was employed to generate an enhanced photoacoustic (PA) signal in addition to the US signal. In vitro and in vivo results demonstrate that PFC-loaded PDA NPs show stronger PA signal than the non-PFC ones, indicating that the PA signal can be used for in situ differentiation between PFC-loading levels. In sum, these data evince the rich role synthetic chemistry can play in guiding new directions of development for UCAs.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hallam KA, Emelianov SY. Toward optimization of blood brain barrier opening induced by laser-activated perfluorocarbon nanodroplets. BIOMEDICAL OPTICS EXPRESS 2019; 10:3139-3151. [PMID: 31360596 PMCID: PMC6640833 DOI: 10.1364/boe.10.003139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 05/09/2023]
Abstract
The blood brain barrier (BBB), a component of the brain's natural defense system, is often a roadblock for the monitoring and treatment of neurological disorders. Recently, we introduced a technique to open the blood brain barrier through the use of laser-activated perfluorohexane nanodroplets (PFHnDs), a phase-change nanoagent that undergoes repeated vaporization and recondensation when excited by a pulsed laser. Laser-activated PFHnDs were shown to enable noninvasive and localized opening of the BBB, allowing extravasation of various sized agents into the brain tissue. In this current work, the laser-activated PFHnD-induced BBB opening is further explored. In particular, laser fluence and the number of laser pulses used for the PFHnD-induced BBB opening are examined and evaluated both qualitatively and quantitatively to determine the effect of these parameters on BBB opening. The results of these studies show trends between increased laser fluence and an increased BBB opening as well as between an increased number of laser pulses and an increased BBB opening, however, with limitations on the extent of the BBB opening after a certain number of pulses. Overall, the results of these studies serve as a guideline to choosing suitable laser parameters for safe and effective BBB opening.
Collapse
Affiliation(s)
- Kristina A. Hallam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stanislav Y. Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|