1
|
Li Y, Du B, Yu L, Luo H, Rong H, Gao X, Yin J. Strategies and challenges of cytosolic delivery of proteins. J Drug Target 2025:1-16. [PMID: 39862226 DOI: 10.1080/1061186x.2025.2458616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The cytosolic delivery of therapeutic proteins represents a promising strategy for addressing diseases caused by protein dysfunction. Despite significant advances, efficient delivery remains challenging due to barriers such as cell membrane impermeability, endosomal sequestration and protein instability. This review summarises recent progress in protein delivery systems, including physical, chemical and biological approaches, with a particular focus on strategies that enhance endosomal escape and targeting specificity. We further discuss the clinical translatability of these approaches and propose future directions for improving delivery efficiency and safety, ultimately unlocking the therapeutic potential of intracellular proteins.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Baojie Du
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Lichao Yu
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hong Luo
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xiangdong Gao
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Sancho-Albero M, Decio A, Akpinar R, De Luigi A, Giavazzi R, Terracciano LM, De Cola L. Melanoma extracellular vesicles membrane coated nanoparticles as targeted delivery carriers for tumor and lungs. Mater Today Bio 2025; 30:101433. [PMID: 39866783 PMCID: PMC11764275 DOI: 10.1016/j.mtbio.2024.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Targeting is the most challenging problem to solve for drug delivery systems. Despite the use of targeting units such as antibodies, peptides and proteins to increase their penetration in tumors the amount of therapeutics that reach the target is very small, even with the use of nanoparticles (NPs). Nature has solved the selectivity problem using a combination of proteins and lipids that are exposed on the cell membranes and are able to recognize specific tissues as demonstrated by cancer metastasis. Extracellular vesicles (EVs) have a similar ability in target only certain organs or to return to their original cells, showing home behavior. Here we report a strategy inspired by nature, using a combination of NPs and the targeting cell membranes of EVs. We implement the EV membranes, extracted by the EVs produced by melanoma B16-BL6 cells, as a coating of organosilica porous particles with the aim of targeting tumors and lung metastasis, while avoiding systemic effects and accumulation of the NPs in undesired organs. The tissue-specific fingerprint provided by the EVs-derived membranes from melanoma cells provides preferential uptake into the tumor and selective targeting of lungs. The ability of the EVs hybrid systems to behave as the natural EVs was demonstrated in vitro and in vivo in two different tumor models. As a proof of concept, the loading and release of doxorubicin, was investigated and its accumulation demonstrated in the expected tissues.
Collapse
Affiliation(s)
- María Sancho-Albero
- Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
| | - Alessandra Decio
- Department of Oncology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
| | - Reha Akpinar
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Ada De Luigi
- Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
| | - Raffaella Giavazzi
- Department of Oncology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
| | - Luigi M. Terracciano
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Luisa De Cola
- Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy
- Department of Pharmaceutical Science, DISFARM. Università degli Studi di Milano, Milan, 20133, Italy
| |
Collapse
|
3
|
Aalhate M, Mahajan S, Dhuri A, Singh PK. Biohybrid nano-platforms manifesting effective cancer therapy: Fabrication, characterization, challenges and clinical perspective. Adv Colloid Interface Sci 2025; 335:103331. [PMID: 39522420 DOI: 10.1016/j.cis.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology-based delivery systems have brought a paradigm shift in the management of cancer. However, the main obstacles to nanocarrier-based delivery are their limited circulation duration, excessive immune clearance, inefficiency in interacting effectively in a biological context and overcoming biological barriers. This demands effective engineering of nanocarriers to achieve maximum efficacy. Nanocarriers can be maneuvered with biological components to acquire biological identity for further regulating their biodistribution and cell-to-cell cross-talk. Thus, the integration of synthetic and biological components to deliver therapeutic cargo is called a biohybrid delivery system. These delivery systems possess the advantage of synthetic nanocarriers, such as high drug loading, engineerable surface, reproducibility, adequate communication and immune evasion ability of biological constituents. The biohybrid delivery vectors offer an excellent opportunity to harness the synergistic properties of the best entities of the two worlds for improved therapeutic outputs. The major spotlights of this review are different biological components, synthetic counterparts of biohybrid nanocarriers, recent advances in hybridization techniques, and the design of biohybrid delivery systems for cancer therapy. Moreover, this review provides an overview of biohybrid systems with therapeutic and diagnostic applications. In a nutshell, this article summarizes the advantages and limitations of various biohybrid nano-platforms, their clinical potential and future directions for successful translation in cancer management.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India.
| |
Collapse
|
4
|
Cheng Z, Li F, Qie Y, Sun J, Wang Y, Zhao Y, Nie G. Hepatic Stellate Cell Membrane-Camouflaged Nanoparticles for Targeted Delivery of an Antifibrotic Agent to Hepatic Stellate Cells with Enhanced Antifibrosis Efficacy. NANO LETTERS 2024; 24:15827-15836. [PMID: 39585320 DOI: 10.1021/acs.nanolett.4c04820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Liver fibrosis is characterized by the excessive accumulation of extracellular matrix proteins primarily produced by activated hepatic stellate cells (HSCs). The activation of HSCs plays a pivotal role in driving the progression of liver fibrosis. Achieving specific targeted delivery of antifibrotic agents toward activated HSCs remains a formidable challenge. Here, we developed an HSC membrane-camouflaged nanosystem, named HSC-PLGA-BAY, for the precise delivery of the antifibrosis agent BAY 11-7082 to activated HSCs in the treatment of liver fibrosis. The designed HSC-PLGA-BAY nanosystem exhibited selective targeting toward activated HSCs, with internalization mediated by homologous cell adhesion molecules from the HSC membrane, namely integrins and N-cadherin. Furthermore, our findings demonstrate that treatment with HSC-PGA-BAY significantly increased apoptosis of activated HSCs and ameliorated liver fibrosis progression in a bile duct ligation (BDL)-induced fibrotic mice model. Collectively, the HSCs-targeted therapeutic platform holds promising potential as an effective strategy for liver fibrosis treatment.
Collapse
Affiliation(s)
- Zhaoxia Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jingyi Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yazhou Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
5
|
Xi ZY, Fan CY, Zhu S, Nie GY, Xi XR, Jiang YY, Zhou Y, Mei YH, Xu L. PAFerroptosis Combined with Metabolic Disturbance of Mito by p52-ZER6 for Enhanced Cancer Immunotherapy induced by Nano-Bacilliform-Enzyme. Adv Healthc Mater 2024; 13:e2402314. [PMID: 39171764 DOI: 10.1002/adhm.202402314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 08/23/2024]
Abstract
The confused gene expressions and molecular mechanisms for mitochondrial dysfunction of traditional nanoenzymes is a challenge for tumor therapy. Herein, a nano-bacilliform-enzyme obtains the ability to inhibit p52-ZER6 signal pathway, regulate the genes related to mitochondrial metabolism, and possess the GOx/CAT/POD-like property. NBE acquires catalytic activity from the electronic energy transition. The tannin of NBE as a mitochondrial (Mito)-targeting guide overloads MitoROS, and then metabolic disorder and lipid peroxidation of Mito membrane occurs, thus leading to a novel death pathway called PAFerroptosis (pyroptosis, apoptosis, and Ferroptosis). Simultaneously, in order to refrain from mitophagy, hydroxychloroquine is mixed with NBE to form a combo with strength pyroptosis. As a result, NBE/combo improves the PAFerroptosis obviously by activation of CD8+T cells and inactivation of MDSC cells, up-regulating expression of caspase-3 signal pathway, intercepting DHODH pathway to arrive excellent antitumor effect (93%). Therefore, this study establishes a rational nanoenzyme for mitochondrial dysfunction without mitophagy for effective antitumor therapy.
Collapse
Affiliation(s)
- Zi-Yue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chuan-Yong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuang Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Gan-Yu Nie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xin-Ran Xi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying-Ying Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yao Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Hua Mei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
6
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Gao R, Lin P, Yang W, Fang Z, Gao C, Cheng B, Fang J, Yu W. Bio-Inspired Nanodelivery Platform: Platelet Membrane-Cloaked Genistein Nanosystem for Targeted Lung Cancer Therapy. Int J Nanomedicine 2024; 19:10455-10478. [PMID: 39430311 PMCID: PMC11491070 DOI: 10.2147/ijn.s479438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Background Genistein (Gen), a natural polyphenolic compound, has emerged as a promising candidate for lung cancer treatment. However, the potential clinical application of Gen is limited due to its poor solubility, low bioavailability, and toxic side effects. To address these challenges, a biomimetic delivery platform with cell membranes derived from natural cells as carrier material was constructed. This innovative approach aims to facilitate targeted drug delivery and solve the problem of biocompatibility of synthetic materials. Methods First, the liposomes (LPs) loaded with Gen (LPs@Gen) was prepared using the ethanol injection method. Subsequently, PLTM-LPs@Gen was obtained through co-extrusion after mixing platelet membrane (PLTM) and LPs@Gen. Additionally, the biological and physicochemical properties of PLTM-LPs@Gen were investigated. Finally, the targeting ability, therapeutic efficacy, and safety of PLTM-LPs@Gen for lung cancer were evaluated using both a cell model and a tumor-bearing nude mouse model. Results The optimal preparation ratio for LPs@Gen was Gen: soybean lecithin: cholesterol: DSPE-PEG2000 (3:30:5:10, mass ratio), while the ideal fusion ratio of LPs@Gen and PLTM was 1:1. The particle size of PLTM-LPs@Gen was 108.33 ± 1.06 nm, and the encapsulation efficiency and drug loading were 94.29% and 3.09% respectively. Gen was released continuously and slowly from PLTM-LPs@Gen. Moreover, PLTM-LPs@Gen exhibited good stability within one week. The results of in vitro cellular uptake and in vivo distribution experiments indicated that the carrier material, PLTM-LPs, has the immune escape ability and tumor targeting ability. Consequently, it showed better therapeutic effects than free drugs and traditional LPs in vitro and in vivo tumor models. In addition, safety experiments demonstrated that PLTM-LPs@Gen possesses good biocompatibility. Conclusion Biomimetic nanomedicine provides a new strategy for the precision treatment of lung cancer in clinical practice.
Collapse
Affiliation(s)
- Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Chunxiao Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Bin Cheng
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315500, People’s Republic of China
| | - Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| |
Collapse
|
8
|
Lee YH, Chen CS. Carcinomembrane-Camouflaged Perfluorochemical Dual-Layer Nanopolymersomes Bearing Indocyanine Green and Camptothecin Effectuate Targeting Photochemotherapy of Cancer. ACS Biomater Sci Eng 2024; 10:6332-6343. [PMID: 39264032 PMCID: PMC11480933 DOI: 10.1021/acsbiomaterials.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Photochemotherapy has been recognized as a promising combinational modality for cancer treatment. However, difficulties such as off-target drug delivery, systemic toxicity, and the hypoxic nature of the tumor microenvironment remain hindrances to its application. To overcome these challenges, cancer cell membrane camouflaged perfluorooctyl bromide (PFOB) dual-layer nanopolymersomes bearing indocyanine green (ICG) and camptothecin (CPT), named MICFNS, were developed in this study, and melanoma was exploited as the model for MICFNS manufacture and therapeutic application. Our data showed that MICFNS were able to stabilize both ICG and CPT in the nanocarriers and can be quickly internalized by B16F10 cells due to melanoma membrane-mediated homology. Upon NIR irradiation, MICFNS can trigger hyperthermia and offer enhanced singlet oxygen production due to the incorporation of PFOB. With ≥10/2.5 μM ICG/CPT, MICFNS + NIR can provide comparable in vitro cancericidal effects to those caused by using an 8-fold higher dose of encapsulated CPT alone. Through the animal study, we further demonstrated that MICFNS can be quickly brought to tumors and have a longer retention time than those of free agents in vivo. Moreover, the MICFNS with 40/10 μM ICG/CPT in combination with 30 s NIR irradiation can successfully inhibit tumor growth without systemic toxicity in mice within the 14 day treatment. We speculate that such an antitumoral effect was achieved by phototherapy followed by chemotherapy, a two-stage tumoricidal process performed by MICFNS. Taken together, we anticipate that MICFNS, a photochemotherapeutic nanoplatform, has high potential for use in clinical anticancer treatment.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department
of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan R.O.C
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan
City 32001, Taiwan R.O.C
| | - Cai-Sin Chen
- Department
of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan R.O.C
| |
Collapse
|
9
|
Duan W, Shen Q, Ju L, Huang Z, Geng J, Wu Q, Yu C, Wei J. Homologous Tumor Cell-Derived Biomimetic Nano-Trojan Horse Integrating Chemotherapy with Genetherapy for Boosting Triple-Negative Breast Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45523-45536. [PMID: 39141925 DOI: 10.1021/acsami.4c08842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that carries the worst prognosis and lacks specific therapeutic targets. To achieve accurate "cargos" delivery at the TNBC site, we herein constructed a novel biomimetic nano-Trojan horse integrating chemotherapy with gene therapy for boosting TNBC treatment. Briefly, we initially introduce the diselenide-bond-containing organosilica moieties into the framework of mesoporous silica nanoparticles (MONs), thereby conferring biodegradability to intratumoral redox conditions in the obtained MONSe. Subsequently, doxorubicin (Dox) and therapeutic miR-34a are loaded into MONSe, thus achieving the combination of chemotherapy and gene-therapy. After homologous tumor cell membrane coating, the ultimate homologous tumor cell-derived biomimetic nano-Trojan horse (namely, MONSe@Dox@miR-34a@CM) can selectively enter the tumor cells in a stealth-like fashion. Notably, such a nanoplatform not only synergistically eradicated the tumor but also inhibited the proliferation of breast cancer stem-like cells (BCSCs) in vitro and in vivo. With the integration of homologous tumor cell membrane-facilitated intratumoral accumulation, excellent biodegradability, and synergistic gene-chemotherapy, our biomimetic nanocarriers hold tremendous promise for the cure of TNBC in the future.
Collapse
Affiliation(s)
- Wenjie Duan
- Department of Pharmacy, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing 210009, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Linjie Ju
- Department of Pharmacy, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing 210009, China
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing 210009, China
| |
Collapse
|
10
|
Li K, Yang W, Chen X, Yu Y, Liu Y, Ni F, Xiao Y, Qing X, Liu S, He Y, Wang B, Xu L, Shao Z, Zhao L, Peng Y, Lin H. A structured biomimetic nanoparticle as inflammatory factor sponge and autophagy-regulatory agent against intervertebral disc degeneration and discogenic pain. J Nanobiotechnology 2024; 22:486. [PMID: 39143545 PMCID: PMC11323362 DOI: 10.1186/s12951-024-02715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Lower back pain (LBP) is a common condition closely associated with intervertebral disc degeneration (IDD), causing a significant socioeconomic burden. Inflammatory activation in degenerated discs involves pro-inflammatory cytokines, dysregulated regulatory cytokines, and increased levels of nerve growth factor (NGF), leading to further intervertebral disc destruction and pain sensitization. Macrophage polarization is closely related to autophagy. Based on these pathological features, a structured biomimetic nanoparticle coated with TrkA-overexpressing macrophage membranes (TMNP@SR) with a rapamycin-loaded mesoporous silica core is developed. TMNP@SR acted like sponges to adsorbe inflammatory cytokines and NGF and delivers the autophagy regulator rapamycin (RAPA) into macrophages through homologous targeting effects of the outer engineered cell membrane. By regulating autophagy activation, TMNP@SR promoted the M1-to-M2 switch of macrophages to avoid continuous activation of inflammation within the degenerated disc, which prevented the apoptosis of nucleus pulposus cells. In addition, TMNP@SR relieved mechanical and thermal hyperalgesia, reduced calcitonin gene-related peptide (CGRP) and substance P (SP) expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat IDD model. In summary, TMNP@SR spontaneously inhibits the aggravation of disc inflammation to alleviate disc degeneration and reduce the ingress of sensory nerves, presenting a promising treatment strategy for LBP induced by disc degeneration.
Collapse
Affiliation(s)
- Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yihan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiran Liu
- Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, 430030, China
| | - Feifei Ni
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - YuXin He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Xu
- Department of Emergency, Union Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
12
|
Zhou J, Wan S, Wu Y, Hu H, Liu Y, Liao Z, Xu M, Wu J, Fan Q. Cancer cell membrane-camouflaged paclitaxel/PLGA nanoparticles for targeted therapy against lung cancer. Biomed Pharmacother 2024; 177:117102. [PMID: 38991303 DOI: 10.1016/j.biopha.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Paclitaxel (PTX) is a first-line drug for the treatment of lung cancer, but its targeting and therapeutic effect are unsatisfactory. Herein, lung cancer cell (A549) membrane biomimetic PTX-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (AM@PTX-NPs) were constructed to eliminate the shortcomings of PTX. The AM@PTX-NPs were successfully prepared with a high drug loading efficiency (10.90±0.06 %). Moreover, transmission electron microscopy, SDS-PAGE, and western blotting proved that AM@PTX-NPs were spherical nanoparticles camouflaged by the A549 cell membrane. Both in vitro and in vivo assays revealed that the AM@PTX-NPs displayed outstanding targeting capacity due to A549 membrane modification. The cytotoxicity experiment showed that the developed biomimetic formulation was able to effectively reduce the proliferation of A549 cells. Moreover, AM@PTX-NPs exhibited a significant tumor growth inhibition rate (73.00 %) with good safety in the tumor-bearing mice, which was higher than that of the PTX-NPs without A549 membrane coating (37.39 %). Overall, the constructed bioinspired vector could provide a novel platform for the PTX delivery and demonstrated a promising strategy for the targeted cancer treatment.
Collapse
Affiliation(s)
- Jiahan Zhou
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengli Wan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuesong Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haiyang Hu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yang Liu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zuyue Liao
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mengyao Xu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianming Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
13
|
Zhao G, Wang S, Nie G, Li N. Unlocking the power of nanomedicine: Cell membrane-derived biomimetic cancer nanovaccines for cancer treatment. MED 2024; 5:660-688. [PMID: 38582088 DOI: 10.1016/j.medj.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Over the past decades, nanomedicine researchers have dedicated their efforts to developing nanoscale platforms capable of more precisely delivering drug payloads to attack tumors. Cancer nanovaccines are exhibiting a distinctive capability in inducing tumor-specific antitumor responses. Nevertheless, there remain numerous challenges that must be addressed for cancer nanovaccines to evoke sufficient therapeutic effects. Cell membrane-derived nanovaccines are an emerging class of cancer vaccines that comprise a synthetic nanoscale core camouflaged by naturally derived cell membranes. The specific cell membrane has a biomimetic nanoformulation with several distinctive abilities, such as immune evasion, enhanced biocompatibility, and tumor targeting, typically associated with a source cell. Here, we discuss the advancements of cell membrane-derived nanovaccines and how these vaccines are used for cancer therapeutics. Translational endeavors are currently in progress, and additional research is also necessary to effectively address crucial areas of demand, thereby facilitating the future successful translation of these emerging vaccine platforms.
Collapse
Affiliation(s)
- Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100000, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
14
|
Wang HC, Yang W, Xu L, Han YH, Lin Y, Lu CT, Kim K, Zhao YZ, Yu XC. BV2 Membrane-Coated PEGylated-Liposomes Delivered hFGF21 to Cortical and Hippocampal Microglia for Alzheimer's Disease Therapy. Adv Healthc Mater 2024; 13:e2400125. [PMID: 38513154 DOI: 10.1002/adhm.202400125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Microglia-mediated inflammation is involved in the pathogenesis of Alzheimer's disease (AD), whereas human fibroblast growth factor 21 (hFGF21) has demonstrated the ability to regulate microglia activation in Parkinson's disease, indicating a potential therapeutic role in AD. However, challenges such as aggregation, rapid inactivation, and the blood-brain barrier hinder its effectiveness in treating AD. This study develops targeted delivery of hFGF21 to activated microglia using BV2 cell membrane-coated PEGylated liposomes (hFGF21@BCM-LIP), preserving the bioactivity of hFGF21. In vitro, hFGF21@BCM-LIP specifically targets Aβ1-42-induced BV2 cells, with uptake hindered by anti-VCAM-1 antibody, indicating the importance of VCAM-1 and integrin α4/β1 interaction in targeted delivery to BV2 cells. In vivo, following subcutaneous injection near the lymph nodes of the neck, hFGF21@BCM-LIP diffuses into lymph nodes and distributes along the meningeal lymphatic vasculature and brain parenchyma in amyloid-beta (Aβ1-42)-induced mice. Furthermore, the administration of hFGF21@BCM-LIP to activated microglia improves cognitive deficits caused by Aβ1-42 and reduces levels of tau, p-Tau, and BACE1. It also decreases interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) release while increasing interleukin-10 (IL-10) release both in vivo and in vitro. These results indicate that hFGF21@BCM-LIP can be a promising treatment for AD, by effectively crossing the blood-brain barrier and targeting delivery to brain microglia via the neck-meningeal lymphatic vasculature-brain parenchyma pathways.
Collapse
Affiliation(s)
- Heng-Cai Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Wei Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Ling Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yong-Hui Han
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang Province, 325101, China
| | - Yi Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Kwonseop Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang Province, 315302, China
| | - Xi-Chong Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| |
Collapse
|
15
|
Yang K, Ren D, Wang Z, Dong Q, Xu M, Wang T, Wang Z. Apoptotic bodies encapsulating Ti 2N nanosheets for synergistic chemo-photothermal therapy. NANOTECHNOLOGY 2024; 35:365703. [PMID: 38861968 DOI: 10.1088/1361-6528/ad5690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Extracellular vesicles (EVs) have great potential in oncology drug delivery because of their unique biological origin. Apoptotic bodies (ABs), as a member of the EV family, offer distinct advantages in terms of size, availability and membrane properties, but have been neglected for a long time. Here, using ABs and Ti2N nanosheets, we propose a novel drug delivery system (Ti2N-DOX@ABs), which exhibit a homologous targeting ability for dual-strategy tumor therapy with intrinsic biological property. The experimental results demonstrate that such a drug delivery system possesses a drug loading capacity of 496.5% and a near-infrared photothermal conversion efficiency of 38.4%. In addition, the investigation of drug internalization process proved that Ti2N-DOX@ABs featured a supreme biocompatibility. Finally, the dual-strategy response based on photothermal and chemotherapeutic effects was studied under near-infrared laser radiation. This work explores the opportunity of apoptosome membranes in nanomedicine systems, which provides a technical reference for cancer-oriented precision medicine research.
Collapse
Affiliation(s)
- Kuo Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Daolu Ren
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Zuyao Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Qianqian Dong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Mulong Xu
- Nanjing Foreign Language School, Nanjing 210008, People's Republic of China
| | - Tingyu Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
16
|
Tan J, Zhu C, Li L, Wang J, Xia XH, Wang C. Engineering Cell Membranes: From Extraction Strategies to Emerging Biosensing Applications. Anal Chem 2024; 96:7880-7894. [PMID: 38272835 DOI: 10.1021/acs.analchem.3c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Affiliation(s)
- Jing Tan
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Chengcheng Zhu
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Lulu Li
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, P.R. China
| | - Jin Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, P.R. China
| | - Chen Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
17
|
Sarkar Lotfabadi A, Abadi B, Rezaei N. Biomimetic nanotechnology for cancer immunotherapy: State of the art and future perspective. Int J Pharm 2024; 654:123923. [PMID: 38403091 DOI: 10.1016/j.ijpharm.2024.123923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Cancer continues to be a significant worldwide cause of mortality. This underscores the urgent need for novel strategies to complement and overcome the limitations of conventional therapies, such as imprecise targeting and drug resistance. Cancer Immunotherapy utilizes the body's immune system to target malignant cells, reducing harm to healthy tissue. Nevertheless, the efficacy of immunotherapy exhibits variation across individuals and has the potential to induce autoimmune responses. Biomimetic nanoparticles (bNPs) have transformative potential in cancer immunotherapy, promising improved accurate targeting, immune system activation, and resistance mechanisms, while also reducing the occurrence of systemic autoimmune side effects. This integration offers opportunities for personalized medicine and better therapeutic outcomes. Despite considerable potential, bNPs face barriers like insufficient targeting, restricted biological stability, and interactions within the tumor microenvironment. The resolution of these concerns is crucial in order to expedite the integration of bNPs from the research setting into clinical therapeutic uses. In addition, optimizing manufacturing processes and reducing bNP-related costs are essential for practical implementation. The present research introduces comprehensive classifications of bNPs as well as recent achievements in their application in cancer immunotherapies, emphasizing the need to address barriers for swift clinical integration.
Collapse
Affiliation(s)
- Alireza Sarkar Lotfabadi
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran; Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Poinsot V, Pizzinat N, Ong-Meang V. Engineered and Mimicked Extracellular Nanovesicles for Therapeutic Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:639. [PMID: 38607173 PMCID: PMC11013861 DOI: 10.3390/nano14070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Exosomes are spherical extracellular nanovesicles with an endosomal origin and unilamellar lipid-bilayer structure with sizes ranging from 30 to 100 nm. They contain a large range of proteins, lipids, and nucleic acid species, depending on the state and origin of the extracellular vesicle (EV)-secreting cell. EVs' function is to encapsulate part of the EV-producing cell content, to transport it through biological fluids to a targeted recipient, and to deliver their cargos specifically within the aimed recipient cells. Therefore, exosomes are considered to be potential biological drug-delivery systems that can stably deliver their cargo into targeted cells. Various cell-derived exosomes are produced for medical issues, but their use for therapeutic purposes still faces several problems. Some of these difficulties can be avoided by resorting to hemisynthetic approaches. We highlight here the uses of alternative exosome-mimes involving cell-membrane coatings on artificial nanocarriers or the hybridization between exosomes and liposomes. We also detail the drug-loading strategies deployed to make them drug-carrier systems and summarize the ongoing clinical trials involving exosomes or exosome-like structures. Finally, we summarize the open questions before considering exosome-like disposals for confident therapeutic delivery.
Collapse
Affiliation(s)
- Verena Poinsot
- Inserm, CNRS, Faculté de Santé, Université Toulouse III—Paul Sabatier, I2MC U1297, 31432 Toulouse, France; (N.P.); (V.O.-M.)
| | | | | |
Collapse
|
19
|
Guo Q, Wang S, Xu R, Tang Y, Xia X. Cancer cell membrane-coated nanoparticles: a promising anti-tumor bionic platform. RSC Adv 2024; 14:10608-10637. [PMID: 38567339 PMCID: PMC10985588 DOI: 10.1039/d4ra01026d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Nanoparticle (NP) drug delivery systems have shown promise in tumor therapy. However, limitations such as susceptibility to immune clearance and poor targeting in a complex intercellular environment still exist. Recently, cancer cell membrane-encapsulated nanoparticles (CCM-NPs) constructed using biomimetic nanotechnology have been developed to overcome these problems. Proteins on the membrane surface of cancer cells can provide a wide range of activities for CCM-NPs, including immune escape and homologous cell recognition properties. Meanwhile, the surface of the cancer cell membrane exhibits obvious antigen enrichment, so that CCM-NPs can transmit tumor-specific antigen, activate a downstream immune response, and produce an effective anti-tumor effect. In this review, we first provided an overview of the functions of cancer cell membranes and summarized the preparation techniques and characterization methods of CCM-NPs. Then, we focused on the application of CCM-NPs in tumor therapy. In addition, we summarized the functional modifications of cancer cell membranes and compiled the patent applications related to CCM-NPs in recent years. Finally, we proposed the future challenges and directions of this technology in order to provide guidance for researchers in this field.
Collapse
Affiliation(s)
- Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| | - Shengmei Wang
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| | - Rubing Xu
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| | - Yingnan Tang
- School of Pharmacy, Hunan Vocational College of Science and Technology Changsha Hunan 410208 China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| |
Collapse
|
20
|
Prasad R, Peng B, Mendes BB, Kilian HI, Gorain M, Zhang H, Kundu GC, Xia J, Lovell JF, Conde J. Biomimetic bright optotheranostics for metastasis monitoring and multimodal image-guided breast cancer therapeutics. J Control Release 2024; 367:300-315. [PMID: 38281670 DOI: 10.1016/j.jconrel.2024.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Nanoparticle formulations blending optical imaging contrast agents and therapeutics have been a cornerstone of preclinical theranostic applications. However, nanoparticle-based theranostics clinical translation faces challenges on reproducibility, brightness, photostability, biocompatibility, and selective tumor targeting and penetration. In this study, we integrate multimodal imaging and therapeutics within cancer cell-derived nanovesicles, leading to biomimetic bright optotheranostics for monitoring cancer metastasis. Upon NIR light irradiation, the engineered optotheranostics enables deep visualization and precise localization of metastatic lung, liver, and solid breast tumors along with solid tumor ablation. Metastatic cell-derived nanovesicles (∼80 ± 5 nm) are engineered to encapsulate imaging (emissive organic dye and gold nanoparticles) and therapeutic agents (anticancer drug doxorubicin and photothermally active organic indocyanine green dye). Systemic administration of biomimetic bright optotheranostic nanoparticles shows escape from mononuclear phagocytic clearance with (i) rapid tumor accumulation (3 h) and retention (up to 168 h), (ii) real-time monitoring of metastatic lung, liver, and solid breast tumors and (iii) 3-fold image-guided solid tumor reduction. These findings are supported by an improvement of X-ray, fluorescence, and photoacoustic signals while demonstrating a tumor reduction (201 mm3) in comparison with single therapies that includes chemotherapy (134 mm3), photodynamic therapy (72 mm3), and photothermal therapy (88mm3). The proposed innovative platform opens new avenues to improve cancer diagnosis and treatment outcomes by allowing the monitorization of cancer metastasis, allowing the precise cancer imaging, and delivering synergistic therapeutic agents at the solid tumor site.
Collapse
Affiliation(s)
- Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India; Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Berney Peng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hailey I Kilian
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Huijuan Zhang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - Gopal Chandra Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India; School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
21
|
Wang Y, Dong H, Qu H, Cheng W, Chen H, Gu Y, Jiang H, Xue X, Hu R. Biomimetic Lung-Targeting Nanoparticles with Antioxidative and Nrf2 Activating Properties for Treating Ischemia/Reperfusion-Induced Acute Lung Injury. NANO LETTERS 2024; 24:2131-2141. [PMID: 38227823 DOI: 10.1021/acs.nanolett.3c03671] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Ischemia/reperfusion (IR)-induced acute lung injury (ALI) has a high mortality rate. Reactive oxygen species (ROS) play a crucial role in causing cellular damage and death in IR-induced ALI. In this work, we developed a biomimetic lung-targeting nanoparticle (PC@MB) as an antioxidative lung protector for treating IR-induced ALI. PC@MBs showed excellent ROS scavenging and Nrf2 activation properties, along with a lung-targeting function through autologous cell membrane coating. The PC@MBs exhibited an impressive antioxidative and pulmonary protective role via redox homeostasis recovery through Nrf2 and heme oxygenase-1 activation. PC@MBs could maintain cell viability by effectively scavenging the intracellular ROS and restoring the redox equilibrium in the lesion. In the IR mouse model, the PC@MBs preferentially accumulated in the lung and distinctly repaired the pneumonic damage. Our strategy has the potential to offer a promising therapeutic paradigm for treating IR-induced ALI through the incorporation of different therapeutic mechanisms.
Collapse
Affiliation(s)
- Yanjun Wang
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Dong
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haijing Qu
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Cheng
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Chen
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunfan Gu
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hong Jiang
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiangdong Xue
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Hu
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
22
|
Fernández-Borbolla A, García-Hevia L, Fanarraga ML. Cell Membrane-Coated Nanoparticles for Precision Medicine: A Comprehensive Review of Coating Techniques for Tissue-Specific Therapeutics. Int J Mol Sci 2024; 25:2071. [PMID: 38396747 PMCID: PMC10889273 DOI: 10.3390/ijms25042071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoencapsulation has become a recent advancement in drug delivery, enhancing stability, bioavailability, and enabling controlled, targeted substance delivery to specific cells or tissues. However, traditional nanoparticle delivery faces challenges such as a short circulation time and immune recognition. To tackle these issues, cell membrane-coated nanoparticles have been suggested as a practical alternative. The production process involves three main stages: cell lysis and membrane fragmentation, membrane isolation, and nanoparticle coating. Cell membranes are typically fragmented using hypotonic lysis with homogenization or sonication. Subsequent membrane fragments are isolated through multiple centrifugation steps. Coating nanoparticles can be achieved through extrusion, sonication, or a combination of both methods. Notably, this analysis reveals the absence of a universally applicable method for nanoparticle coating, as the three stages differ significantly in their procedures. This review explores current developments and approaches to cell membrane-coated nanoparticles, highlighting their potential as an effective alternative for targeted drug delivery and various therapeutic applications.
Collapse
Affiliation(s)
- Andrés Fernández-Borbolla
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| | - Lorena García-Hevia
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| | - Mónica L. Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
23
|
Lu Y, Fan L, Wang J, Hu M, Wei B, Shi P, Li J, Feng J, Zheng Y. Cancer Cell Membrane-Based Materials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306540. [PMID: 37814370 DOI: 10.1002/smll.202306540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The nanodelivery system provides a novel direction for disease diagnosis and treatment; however, its delivery effectiveness is restricted by the short biological half-life and inadequate tumor targeting. The immune evasion properties and homologous targeting capabilities of natural cell membranes, particularly those of cancer cell membranes (CCM), have gained significant interest. The integration of CCM and nanoparticles has resulted in the emergence of CCM-based nanoplatforms (CCM-NPs), which have gained significant attention due to their unique properties. CCM-NPs not only prolong the blood circulation time of core nanoparticles, but also direct them for homologous tumor targeting. Herein, the history and development of CCM-NPs as well as how these platforms have been used for biomedical applications are discussed. The application of CCM-NPs for cancer therapy will be described in detail. Translational efforts are currently under way and further research to address key areas of need will ultimately be required to facilitate the successful clinical adoption of CCM-NPs.
Collapse
Affiliation(s)
- Yongping Lu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
- Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Linming Fan
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jun Wang
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Mingxiang Hu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Baogang Wei
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Ping Shi
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Jinyan Feng
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Yu Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
24
|
Shen X, Pan D, Gong Q, Gu Z, Luo K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact Mater 2024; 32:445-472. [PMID: 37965242 PMCID: PMC10641097 DOI: 10.1016/j.bioactmat.2023.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.
Collapse
Affiliation(s)
- Xiaoding Shen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
25
|
Zhang M, Li J, Ji N, Bao Q, Sun N, Rong H, Peng X, Yang L, Xie M, He S, Lin Q, Zhang Z, Li L, Zhang L. Reducing Cholesterol Level in Live Macrophages Improves Delivery Performance by Enhancing Blood Shear Stress Adaptation. NANO LETTERS 2024; 24:607-616. [PMID: 38095305 DOI: 10.1021/acs.nanolett.3c03569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In recent years, live-cell-based drug delivery systems have gained considerable attention. However, shear stress, which accompanies blood flow, may cause cell death and weaken the delivery performance. In this study, we found that reducing cholesterol in macrophage plasma membranes enhanced their tumor targeting ability by more than 2-fold. Our study demonstrates that the reduced cholesterol level deactivated the mammalian target of rapamycin (mTOR) and consequently promoted the nuclear translocation of transcription factor EB (TFEB), which in turn enhanced the expression of superoxide dismutase (SOD) to reduce reactive oxygen species (ROS) induced by shear stress. A proof-of-concept system using low cholesterol macrophages attached to MXene (e.g., l-RX) was fabricated. In a melanoma mouse model, l-RX and laser irradiation treatments eliminated tumors with no recurrences observed in mice. Therefore, cholesterol reduction is a simple and effective way to enhance the targeting performance of macrophage-based drug delivery systems.
Collapse
Affiliation(s)
- Mengxing Zhang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Na Ji
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qixue Bao
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ningyun Sun
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hongding Rong
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xu Peng
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lan Yang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mingxin Xie
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Lin Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
26
|
Li S, Meng X, Peng B, Huang J, Liu J, Xiao H, Ma L, Liu Y, Tang J. Cell membrane-based biomimetic technology for cancer phototherapy: Mechanisms, recent advances and perspectives. Acta Biomater 2024; 174:26-48. [PMID: 38008198 DOI: 10.1016/j.actbio.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Despite significant advances in medical technology and antitumour treatments, the diagnosis and treatment of tumours have undergone remarkable transformations. Noninvasive phototherapy methods, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have gained significant interest in antitumour medicine. However, traditional photosensitisers or photothermal agents face challenges like immune system recognition, rapid clearance from the bloodstream, limited tumour accumulation, and phototoxicity concerns. Researchers combine photosensitisers or photothermal agents with natural cell membranes to overcome these obstacles to create a nano biomimetic therapeutic platform. When used to coat nanoparticles, red blood cells, platelets, cancer cells, macrophages, lymphocytes, and bacterial outer membranes could provide prolonged circulation, tumour targeting, immune stimulation, or antigenicity. This article covers the principles of cellular membrane biomimetic nanotechnology and phototherapy, along with recent advancements in applying nano biomimetic technology to PDT, PTT, PCT, and combined diagnosis and treatment. Furthermore, the challenges and issues of using nano biomimetic nanoparticles in phototherapy are discussed. STATEMENT OF SIGNIFICANCE: Currently, there has been significant progress in the field of cell membrane biomimetic technology. Researchers are exploring its potential application in tumor diagnosis and treatment through phototherapy. Scholars have conducted extensive research on combining cell membrane technology and phototherapy in anticancer diagnosis and treatment. This review aims to highlight the mechanisms of phototherapy and the latest advancements in single phototherapy (PTT, PDT) and combination phototherapy (PCT, PRT, and PIT), as well as diagnostic approaches. The review provides an overview of various cell membrane technologies, including RBC membranes, platelet membranes, macrophage cell membranes, tumour cell membranes, bacterial membranes, hybrid membranes, and their potential for anticancer applications under phototherapy. Lastly, the review discusses the challenges and future directions in this field.
Collapse
Affiliation(s)
- Songtao Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiangrui Meng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Bo Peng
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ju Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jingwen Liu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hang Xiao
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Li Ma
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China.
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
27
|
Ning D, Wang ZG, Wang L, Tian YF, Jing F, Jiang LH, Zhang MQ, Liu YY, Pang DW, Cho W, Liu SL. Lipid-Centric Design of Plasma Membrane-Mimicking Nanocarriers for Targeted Chemotherapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306808. [PMID: 37732588 PMCID: PMC10898849 DOI: 10.1002/adma.202306808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Indexed: 09/22/2023]
Abstract
The plasma membranes (PM) of mammalian cells contain diverse lipids, proteins, and carbohydrates that are important for systemic recognition and communication in health and disease. Cell membrane coating technology that imparts unique properties of natural plasma membranes to the surface of encapsulated nanoparticles is thus becoming a powerful platform for drug delivery, immunomodulation, and vaccination. However, current coating methods fail to take full advantage of the natural systems because they disrupt the complex and functionally essential features of PMs, most notably the chemical diversity and compositional differences of lipids in two leaflets of the PM. Herein, a new lipid coating approach is reported in which the lipid composition is optimized through a combination of biomimetic and systematic variation approaches for the custom design of nanocarrier systems for precision drug delivery. Nanocarriers coated with the optimized lipids offer unique advantages in terms of bioavailability and efficiency in tumor targeting, tumor penetration, cellular uptake, and drug release. This pilot study provides new insight into the rational design and optimization of nanocarriers for cancer chemotherapeutic drugs and lays the foundation for further customization of cell membrane-mimicking nanocarriers through systematic incorporation of other components.
Collapse
Affiliation(s)
- Di Ning
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - Yi-Fan Tian
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - Fang Jing
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - Lin-Han Jiang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - Meng-Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - Yang-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
28
|
Xi Z, Jiang Y, Ma Z, Li Q, Xi X, Fan C, Zhu S, Zhang J, Xu L. Using Mesoporous Silica-Based Dual Biomimetic Nano-Erythrocytes for an Improved Antitumor Effect. Pharmaceutics 2023; 15:2785. [PMID: 38140125 PMCID: PMC10747987 DOI: 10.3390/pharmaceutics15122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The nano-delivery system with a dual biomimetic effect can penetrate deeper in tumor microenvironments (TMEs) and release sufficient antitumor drugs, which has attracted much attention. In this study, we synthesized erythrocyte-like mesoporous silica nanoparticles (EMSNs) as the core loaded with doxorubicin (DOX) and coated them with calcium phosphate (CaP) and erythrocyte membrane (EM) to obtain DOX/EsPMs. The transmission electron microscopy (TEM), fluorescent co-localization and protein bands of SDS-PAGE were used to confirm the complete fabrication of EsPMs. The EsPMs with erythrocyte-like shape exhibited superior penetration ability in in vitro diffusion and tumor-sphere penetration experiments. Intracellular Ca2+ and ROS detection experiments showed that the CaP membranes of EsPMs with pH-sensitivity could provide Ca2+ continuously to induce reactive oxide species' (ROS) generation in the TME. The EM as a perfect "camouflaged clothing" which could confuse macrophagocytes into prolonging blood circulation. Hemolysis and non-specific protein adsorption tests proved the desirable biocompatibility of EsPMs. An in vivo pharmacodynamics evaluation showed that the DOX/EsPMs group had a satisfactory tumor-inhibition effect. These advantages of the nano-erythrocytes suggest that by modifying the existing materials to construct a nano-delivery system, nanoparticles will achieve a biomimetic effect from both their structure and function with a facilitated and sufficient drug release profile, which is of great significance for antitumor therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.X.); (Y.J.); (Z.M.); (Q.L.); (X.X.); (C.F.); (S.Z.); (J.Z.)
| |
Collapse
|
29
|
Dinakar YH, Rajana N, Kumari NU, Jain V, Mehra NK. Recent Advances of Multifunctional PLGA Nanocarriers in the Management of Triple-Negative Breast Cancer. AAPS PharmSciTech 2023; 24:258. [PMID: 38097825 DOI: 10.1208/s12249-023-02712-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Even though chemotherapy stands as a standard option in the therapy of TNBC, problems associated with it such as anemia, bone marrow suppression, immune suppression, toxic effects on healthy cells, and multi-drug resistance (MDR) can compromise their effects. Nanoparticles gained paramount importance in overcoming the limitations of conventional chemotherapy. Among the various options, nanotechnology has appeared as a promising path in preclinical and clinical studies for early diagnosis of primary tumors and metastases and destroying tumor cells. PLGA has been extensively studied amongst various materials used for the preparation of nanocarriers for anticancer drug delivery and adjuvant therapy because of their capability of higher encapsulation, easy surface functionalization, increased stability, protection of drugs from degradation versatility, biocompatibility, and biodegradability. Furthermore, this review also provides an overview of PLGA-based nanoparticles including hybrid nanoparticles such as the inorganic PLGA nanoparticles, lipid-coated PLGA nanoparticles, cell membrane-coated PLGA nanoparticles, hydrogels, exosomes, and nanofibers. The effects of all these systems in various in vitro and in vivo models of TNBC were explained thus pointing PLGA-based NPs as a strategy for the management of TNBC.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Nalla Usha Kumari
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
30
|
Lee H, Park B, Lee J, Kang Y, Han M, Lee J, Kim C, Kim WJ. Transcytosis-Inducing Multifunctional Albumin Nanomedicines with Deep Penetration Ability for Image-Guided Solid Tumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303668. [PMID: 37612796 DOI: 10.1002/smll.202303668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Transcytosis is an active transcellular transportation pathway that has garnered interest for overcoming the limited deep penetration of nanomedicines in solid tumors. In this study, a charge-convertible nanomedicine that facilitates deep penetration into solid tumors via transcytosis is designed. It is an albumin-based calcium phosphate nanomedicine loaded with IR820 (mAlb-820@CaP) for high-resolution photoacoustic imaging and enhanced photothermal therapy. Biomineralization on the surface stabilizes the albumin-IR820 complex during circulation and provides calcium ions (Ca2+ ) for tissue penetration on degradation in an acidic environment. pH-triggered transcytosis of the nanomedicine enabled by caveolae-mediated endocytosis and calcium ion-induced exocytosis in 2D cellular, 3D spheroid, and in vivo tumor models is demonstrated. Notably, the extravasation and penetration ability of the nanomedicine is observed in vivo using a high-resolution photoacoustic system, and nanomedicine shows the most potent photothermal antitumor effect in vivo. Overall, the strategy provides a versatile theragnosis platform for both noninvasive photoacoustic imaging and high therapeutic efficiency resulting from deep penetration of nanomedicine.
Collapse
Affiliation(s)
- Hyori Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihye Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeoul Kang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Moongyu Han
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
31
|
Hasan N, Imran M, Jain D, Jha SK, Nadaf A, Chaudhary A, Rafiya K, Jha LA, Almalki WH, Mohammed Y, Kesharwani P, Ahmad FJ. Advanced targeted drug delivery by bioengineered white blood cell-membrane camouflaged nanoparticulate delivery nanostructures. ENVIRONMENTAL RESEARCH 2023; 238:117007. [PMID: 37689337 DOI: 10.1016/j.envres.2023.117007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Targeted drug delivery has emerged as a pivotal approach within precision medicine, aiming to optimize therapeutic efficacy while minimizing systemic side effects. Leukocyte membrane coated nanoparticles (NPs) have attracted a lot of interest as an effective approach for delivering targeted drugs, capitalizing on the natural attributes of leukocytes to achieve site-specific accumulation, and heightened therapeutic outcomes. An overview of the present state of the targeted medication delivery research is given in this review. Notably, Leukocyte membrane-coated NPs offer inherent advantages such as immune evasion, extended circulation half-life, and precise homing to inflamed or diseased tissues through specific interactions with adhesion molecules. leukocyte membrane-coated NPs hold significant promise in advancing targeted drug delivery for precision medicine. As research progresses, they are anticipated to contribute to improved therapeutic outcomes, enabling personalized and effective treatments for a wide range of diseases and conditions. The review covers the method of preparation, characterization, and biological applications of leucocytic membrane coated NPs. Further, patents related factors, gap of translation from laboratory to clinic, and future prospective were discussed in detail. Overall, the review covers extensive literature to establish leucocytic membrane NPs for targeted drug delivery.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Dhara Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arshi Chaudhary
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Km Rafiya
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
32
|
Li X, Gao Y, Li H, Majoral JP, Shi X, Pich A. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. PROGRESS IN MATERIALS SCIENCE 2023; 140:101170. [DOI: 10.1016/j.pmatsci.2023.101170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
34
|
Zhang F, Wen C, Peng Y, Hu Z, Zheng S, Chen W, Wen L. Biomimetic lipid nanoparticles for homologous-targeting and enhanced photodynamic therapy against glioma. Eur J Pharm Sci 2023; 190:106574. [PMID: 37659459 DOI: 10.1016/j.ejps.2023.106574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Biomimetic nano-platforms have attracted extensive attention due to their good biocompatibility, low immunogenicity, and homologous targeting to lesions. In this study, glioma cell membranes are used to encapsulate indocyanine green (ICG) loaded nanoparticles (SLNP/ICG), termed as SLNP/ICG@M for targeted photodynamic therapy (PDT) against glioma. Cell membrane modification significantly enhances cellular uptake of SLNP/ICG@M in homologous glioma cells in vitro and tumor distribution in vivo. Furthermore, SLNP/ICG@M can stimulate glioma cells to generate plentiful reactive oxygen species (ROS) under NIR irradiation, finally producing excellent photo-cytotoxicity and the optimal tumor growth inhibition with a tumor suppression rate of 93.2%. We also confirm that SLNP/ICG@M combined with NIR irradiation could activate mitochondria mediated apoptosis pathway, and the increased proliferation of CD4+ T cells and CD8+ T cells accompanied by immune activation further enhances PDT effect of SLNP/ICG@M. Herein, SLNP/ICG@M is a promising biomimetic nano drug delivery system for glioma targeted PDT therapy.
Collapse
Affiliation(s)
- Fengtian Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China; Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Jinling East Avenue, Zhanggong District, Ganzhou 341000, People's Republic of China
| | - Changlong Wen
- Department of Infectious Diseases, Ganzhou People's Hospital, 17 Hongqi Avenue, Zhanggong District, Ganzhou 341000, People's Republic of China
| | - Yu Peng
- College of Pharmacy, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China
| | - Zhihao Hu
- College of Pharmacy, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China
| | - Shikeng Zheng
- College of Pharmacy, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China
| | - Weiliang Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China; College of Pharmacy, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China.
| | - Lijuan Wen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China; College of Pharmacy, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China.
| |
Collapse
|
35
|
Wen H, Poutiainen P, Batnasan E, Latonen L, Lehto VP, Xu W. Biomimetic Inorganic Nanovectors as Tumor-Targeting Theranostic Platform against Triple-Negative Breast Cancer. Pharmaceutics 2023; 15:2507. [PMID: 37896267 PMCID: PMC10610067 DOI: 10.3390/pharmaceutics15102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Mesoporous silicon nanoparticles (PSi NPs) are promising platforms of nanomedicine because of their good compatibility, high payload capacities of anticancer drugs, and easy chemical modification. Here, PSi surfaces were functionalized with bisphosphonates (BP) for radiolabeling, loaded with doxorubicin (DOX) for chemotherapy, and the NPs were coated with cancer cell membrane (CCm) for homotypic cancer targeting. To enhance the CCm coating, the NP surfaces were covered with polyethylene glycol prior to the CCm coating. The effects of the BP amount and pH conditions on the radiolabeling efficacy were studied. The maximum BP was (2.27 wt%) on the PSi surfaces, and higher radiochemical yields were obtained for 99mTc (97% ± 2%) and 68Ga (94.6% ± 0.2%) under optimized pH conditions (pH = 5). The biomimetic NPs exhibited a good radiochemical and colloidal stability in phosphate-buffered saline and cell medium. In vitro studies demonstrated that the biomimetic NPs exhibited an enhanced cellular uptake and increased delivery of DOX to cancer cells, resulting in better chemotherapy than free DOX or pure NPs. Altogether, these findings indicate the potential of the developed platform for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Huang Wen
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland;
| | - Pekka Poutiainen
- Kuopio University Hospital, University of Eastern Finland, Puijonlaaksontie 2, 70210 Kuopio, Finland;
| | - Enkhzaya Batnasan
- School of Medicine, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland; (E.B.); (L.L.)
| | - Leena Latonen
- School of Medicine, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland; (E.B.); (L.L.)
| | - Vesa-Pekka Lehto
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland;
| | - Wujun Xu
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland;
| |
Collapse
|
36
|
Li J, Zhou H, Liu C, Zhang S, Du R, Deng Y, Zou X. Biomembrane‐inspired design of medical micro/nanorobots: From cytomembrane stealth cloaks to cellularized Trojan horses. AGGREGATE 2023; 4. [DOI: 10.1002/agt2.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractMicro/nanorobots are promising for a wide range of biomedical applications (such as targeted tumor, thrombus, and infection therapies in hard‐to‐reach body sites) because of their tiny size and high maneuverability through the actuation of external fields (e.g., magnetic field, light, ultrasound, electric field, and/or heat). However, fully synthetic micro/nanorobots as foreign objects are susceptible to phagocytosis and clearance by diverse phagocytes. To address this issue, researchers have attempted to develop various cytomembrane‐camouflaged micro/nanorobots by two means: (1) direct coating of micro/nanorobots with cytomembranes derived from living cells and (2) the swallowing of micro/nanorobots by living immunocytes via phagocytosis. The camouflaging with cytomembranes or living immunocytes not only protects micro/nanorobots from phagocytosis, but also endows them with new characteristics or functionalities, such as prolonging propulsion in biofluids, targeting diseased areas, or neutralizing bacterial toxins. In this review, we comprehensively summarize the recent advances and developments of cytomembrane‐camouflaged medical micro/nanorobots. We first discuss how cytomembrane coating nanotechnology has been employed to engineer synthetic nanomaterials, and then we review in detail how cytomembrane camouflage tactic can be exploited to functionalize micro/nanorobots. We aim to bridge the gap between cytomembrane‐cloaked micro/nanorobots and nanomaterials and to provide design guidance for developing cytomembrane‐camouflaged micro/nanorobots.
Collapse
Affiliation(s)
- Jinhua Li
- School of Medical Technology Beijing Institute of Technology Beijing China
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing China
| | - Chun Liu
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Shuailong Zhang
- School of Mechatronical Engineering Beijing Institute of Technology Beijing China
| | - Ran Du
- School of Materials Science & Engineering Key Laboratory of High Energy Density Materials of the Ministry of Education Beijing Institute of Technology Beijing China
| | - Yulin Deng
- School of Life Science Beijing Institute of Technology Beijing China
| | - Xuenong Zou
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|
37
|
Liu WS, Wu LL, Chen CM, Zheng H, Gao J, Lu ZM, Li M. Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors. Mater Today Bio 2023; 22:100751. [PMID: 37636983 PMCID: PMC10448342 DOI: 10.1016/j.mtbio.2023.100751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are among the leading causes of death worldwide. Cell-derived biomimetic functional materials have shown great promise in the treatment of tumors. These materials are derived from cell membranes, extracellular vesicles and bacterial outer membrane vesicles and may evade immune recognition, improve drug targeting and activate antitumor immunity. However, their use is limited owing to their low drug-loading capacity and complex preparation methods. Liposomes are artificial bionic membranes that have high drug-loading capacity and can be prepared and modified easily. Although they can overcome the disadvantages of cell-derived biomimetic functional materials, they lack natural active targeting ability. Lipids can be hybridized with cell membranes, extracellular vesicles or bacterial outer membrane vesicles to form lipid-hybrid cell-derived biomimetic functional materials. These materials negate the disadvantages of both liposomes and cell-derived components and represent a promising delivery platform in the treatment of tumors. This review focuses on the design strategies, applications and mechanisms of action of lipid-hybrid cell-derived biomimetic functional materials and summarizes the prospects of their further development and the challenges associated with it.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Li-Li Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hao Zheng
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| |
Collapse
|
38
|
Li N, Zhang T, Wang R, Sun Y, Chu L, Lu X, Sun K. Homotypic targeted nanoplatform enable efficient chemoimmunotherapy and reduced DOX cardiotoxicity in chemoresistant cancer via TGF-β1 blockade. J Control Release 2023; 361:147-160. [PMID: 37536544 DOI: 10.1016/j.jconrel.2023.07.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Doxorubicin (DOX) with broad-spectrum antitumor activity has been reported to induce effective immunogenic cell death (ICD) effect. However, the serious cardiotoxicity and chemoresistance severely restrict the widely clinical application of DOX. Herein, for the first time, a bio-inspired nanoplatform via co-assembly of DOX-conjugated polyethyleneimine (PEI-DOX), cancer cell membrane (CCM) and TGF-β1 siRNA (siTGF-β1) was rationally designed, which can not only overcome the drawbacks of DOX but also display high capability to modulate the tumor microenvironment and prevent the tumor progressing and metastasis. Experimental studies confirmed the pH-sensitivity of PEI-DOX and the homotypic-targeting and immuno-escapable ability of CCM, resulting an enhanced accumulation of DOX and siTGF-β1 in tumor sites. In addition to this, the bio-inspired nanoplatform could also improve the stability and facilitate the endosomal escape of siTGF-β1. All these effects ensured the silence efficiency of siTGF-β1 in tumor sites, which could further modulate the chemoresistant and immunosuppressive tumor microenvironment, resulting a synergistic effect with DOX to prevent tumor progressing and metastasis. Additionally, even trapped in cardiac tissues, siTGF-β1 could inhibit the production of TGF-β1 and ROS induced by DOX, resulting a reduced myocardial damage. Therefore, our newly designed bio-inspired nano-delivery system may be a promising nanoplatform with efficient chemoimmunotherapy to ameliorate DOX-induced cardiotoxicity and combat tumor growth and metastasis in chemoresistant cancer.
Collapse
Affiliation(s)
- Nuannuan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Tianyu Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Ru Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Yiying Sun
- Yantai Saipute Analyzing Service Co. Ltd, Yantai, Shandong Province, China
| | - Liuxiang Chu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Xiaoyan Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Kaoxiang Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China.
| |
Collapse
|
39
|
Liu X, Xiao C, Xiao K. Engineered extracellular vesicles-like biomimetic nanoparticles as an emerging platform for targeted cancer therapy. J Nanobiotechnology 2023; 21:287. [PMID: 37608298 PMCID: PMC10463632 DOI: 10.1186/s12951-023-02064-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
Nanotechnology offers the possibility of revolutionizing cancer theranostics in the new era of precision oncology. Extracellular vesicles (EVs)-like biomimetic nanoparticles (EBPs) have recently emerged as a promising platform for targeted cancer drug delivery. Compared with conventional synthetic vehicles, EBPs have several advantages, such as lower immunogenicity, longer circulation time, and better targeting capability. Studies on EBPs as cancer therapeutics are rapidly progressing from in vitro experiments to in vivo animal models and early-stage clinical trials. Here, we describe engineering strategies to further improve EBPs as effective anticancer drug carriers, including genetic manipulation of original cells, fusion with synthetic nanomaterials, and direct modification of EVs. These engineering approaches can improve the anticancer performance of EBPs, especially in terms of tumor targeting effectiveness, stealth property, drug loading capacity, and integration with other therapeutic modalities. Finally, the current obstacles and future perspectives of engineered EBPs as the next-generation delivery platform for anticancer drugs are discussed.
Collapse
Affiliation(s)
- Xinyi Liu
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunxiu Xiao
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Xiao
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jingcheng Laboratory (Frontier Medical Center), Chengdu, 610041, China.
| |
Collapse
|
40
|
Lee EJ, Jang WB, Choi J, Lim HJ, Park S, Rethineswaran VK, Ha JS, Yun J, Hong YJ, Choi YJ, Kwon SM. The Protective Role of Glutathione against Doxorubicin-Induced Cardiotoxicity in Human Cardiac Progenitor Cells. Int J Mol Sci 2023; 24:12070. [PMID: 37569446 PMCID: PMC10419046 DOI: 10.3390/ijms241512070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
This study investigated the protective effect of glutathione (GSH), an antioxidant drug, against doxorubicin (DOX)-induced cardiotoxicity. Human cardiac progenitor cells (hCPCs) treated with DOX (250 to 500 nM) showed increased viability and reduced ROS generation and apoptosis with GSH treatment (0.1 to 1 mM) for 24 h. In contrast to the 500 nM DOX group, pERK levels were restored in the group co-treated with GSH and suppression of ERK signaling improved hCPCs' survival. Similarly to the previous results, the reduced potency of hCPCs in the 100 nM DOX group, which did not affect cell viability, was ameliorated by co-treatment with GSH (0.1 to 1 mM). Furthermore, GSH was protected against DOX-induced cardiotoxicity in the in vivo model (DOX 20 mg/kg, GSH 100 mg/kg). These results suggest that GSH is a potential therapeutic strategy for DOX-induced cardiotoxicity, which performs its function via ROS reduction and pERK signal regulation.
Collapse
Affiliation(s)
- Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hye Ji Lim
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sangmi Park
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Vinoth Kumar Rethineswaran
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jong Seong Ha
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jisoo Yun
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University School of Medicine, Chonnam National University Hospital, Gwangju 61469, Republic of Korea;
| | - Young Jin Choi
- Department of Hemato-Oncology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
41
|
Heng X, Pan Y, Chen X, Pu L, Lu J, Li K, Tang K. Long-Term and Stable Dental Therapies via an In Situ Spontaneous Medicine Delivery System. ACS OMEGA 2023; 8:23936-23944. [PMID: 37426210 PMCID: PMC10324093 DOI: 10.1021/acsomega.3c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Chronic oral diseases are boring, long-term, and discomfort intense diseases, which endanger the physical and mental health of patients constantly. Traditional therapeutic methods based on medicines (including swallowing drugs, applying ointment, or injection in situ) bring much inconvenience and discomfort. A new method possessing accurate, long-term, stable, convenient, and comfortable features is in great need. In this study, we demonstrated a development of one spontaneous administration for the prevention and therapy on a series of oral diseases. By uniting dental resin and medicine-loaded mesoporous molecular sieve, nanoporous medical composite resin (NMCR) was synthesized by a simple physical mixing and light curing method. Physicochemical investigations of XRD, SEM, TEM, UV-vis, N2 adsorption, and biochemical experiments of antibacterial and pharmacodynamic evaluation on periodontitis treatment of SD rats were carried on to characterize an NMCR spontaneous medicine delivery system. Compared to existing pharmacotherapy and in situ treatments, NMCR can keep a quite long time of stable in situ medicine release during the whole therapeutic period. Taking the periodontitis treatment as an instance, the probing pocket depth value in a half-treatment time of 0.69 from NMCR@MINO was much lower than that of 1.34 from the present commercial Periocline ointment, showing an over two times effect.
Collapse
Affiliation(s)
- Xuan Heng
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Yuhao Pan
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xinghui Chen
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Liuyi Pu
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jiaping Lu
- Dental
Clinic of Xuhui District, Shanghai 200031, People’s
Republic of China
| | - Ka Li
- Institute
of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, People’s
Republic of China
| | - Kangjian Tang
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
42
|
Huang W, Yao F, Tian S, Liu M, Liu G, Jiang Y. Recent Advances in Zein-Based Nanocarriers for Precise Cancer Therapy. Pharmaceutics 2023; 15:1820. [PMID: 37514006 PMCID: PMC10384823 DOI: 10.3390/pharmaceutics15071820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer has emerged as a leading cause of death worldwide. However, the pursuit of precise cancer therapy and high-efficiency delivery of antitumor drugs remains an enormous obstacle. The major challenge is the lack of a smart drug delivery system with the advantages of biodegradability, biocompatibility, stability, targeting and response release. Zein, a plant-based protein, possesses a unique self-assembly ability to encapsulate anticancer drugs directly or indirectly. Using zein as a nanotherapeutic pharmaceutic preparation can protect anticancer drugs from harsh environments, such as sunlight, stomach acid and pepsin. Moreover, the surface functionalization of zein is easily realized, which can endow it with targeting and stimulus-responsive release capacity. Hence, zein is an ideal nanocarrier for the precise delivery of anticancer drugs. Combined with our previous research experiences, we attempt to review the current state of the preparation of zein-based nanocarriers for anticancer drug delivery. The challenges, solutions and development trends of zein-based nanocarriers for precise cancer therapy are discussed. This review will provide a guideline for precise cancer therapy in the future.
Collapse
Affiliation(s)
- Wenquan Huang
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Fei Yao
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Shuangyan Tian
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Mohao Liu
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Guijin Liu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Yanbin Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
43
|
Li J, Peng H, Ji W, Lu D, Wang N, Peng C, Zhang W, Li M, Li Y. Advances in surface-modified nanometal-organic frameworks for drug delivery. Int J Pharm 2023:123119. [PMID: 37302666 DOI: 10.1016/j.ijpharm.2023.123119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Nanometal-organic frameworks (NMOFs) are porous network structures composed of metal ions or metal clusters through self-assembly. NMOFs have been considered as a promising nano-drug delivery system due to their unique properties such as pore and flexible structures, large specific surface areas, surface modifiability, non-toxic and degradable properties. However, NMOFs face a series complex environment during in vivo delivery. Therefore, surface functionalization of NMOFs is vital to ensure that the structure of NMOFs remain stable during delivery, and can overcome physiological barriers to deliver drugs more accurately to specific sites, and achieve controllable release. In this review, the first part summarizes the physiological barriers that NMOFs faced during drug delivery after intravenous injection and oral administration. The second part summarizes the current main ways to load drugs into NMOFs, mainly including pore adsorption, surface attachment, formation of covalent/coordination bonds between drug molecules and NMOFs, and in situ encapsulation. The third part is the main review part of this paper, which summarizes the surface modification methods of NMOFs used in recent years to overcome the physiological barriers and achieve effective drug delivery and disease therapy, which are mainly divided into physical modifications and chemical modifications. Finally, the full text is summarized and prospected, with the hope to provide ideas for the future development of NMOFs as drug delivery.
Collapse
Affiliation(s)
- Jiaxin Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huan Peng
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Weihong Ji
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Dengyang Lu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nan Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chen Peng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wen Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Muzi Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
44
|
Desai N, Rana D, Pande S, Salave S, Giri J, Benival D, Kommineni N. "Bioinspired" Membrane-Coated Nanosystems in Cancer Theranostics: A Comprehensive Review. Pharmaceutics 2023; 15:1677. [PMID: 37376125 DOI: 10.3390/pharmaceutics15061677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Achieving precise cancer theranostics necessitates the rational design of smart nanosystems that ensure high biological safety and minimize non-specific interactions with normal tissues. In this regard, "bioinspired" membrane-coated nanosystems have emerged as a promising approach, providing a versatile platform for the development of next-generation smart nanosystems. This review article presents an in-depth investigation into the potential of these nanosystems for targeted cancer theranostics, encompassing key aspects such as cell membrane sources, isolation techniques, nanoparticle core selection, approaches for coating nanoparticle cores with the cell membrane, and characterization methods. Moreover, this review underscores strategies employed to enhance the multi-functionality of these nanosystems, including lipid insertion, membrane hybridization, metabolic engineering, and genetic modification. Additionally, the applications of these bioinspired nanosystems in cancer diagnosis and therapeutics are discussed, along with the recent advances in this field. Through a comprehensive exploration of membrane-coated nanosystems, this review provides valuable insights into their potential for precise cancer theranostics.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
45
|
Zeng S, Tang Q, Xiao M, Tong X, Yang T, Yin D, Lei L, Li S. Cell membrane-coated nanomaterials for cancer therapy. Mater Today Bio 2023; 20:100633. [PMID: 37128288 PMCID: PMC10148189 DOI: 10.1016/j.mtbio.2023.100633] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/01/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023] Open
Abstract
With the development of nanotechnology, nanoparticles have emerged as a delivery carrier for tumor drug therapy, which can improve the therapeutic effect by increasing the stability and solubility and prolonging the half-life of drugs. However, nanoparticles are foreign substances for humans, are easily cleared by the immune system, are less targeted to tumors, and may even be toxic to the body. As a natural biological material, cell membranes have unique biological properties, such as good biocompatibility, strong targeting ability, the ability to evade immune surveillance, and high drug-carrying capacity. In this article, we review cell membrane-coated nanoparticles (CMNPs) and their applications to tumor therapy. First, we briefly describe CMNP characteristics and applications. Second, we present the characteristics and advantages of different cell membranes as well as nanoparticles, provide a brief description of the process of CMNPs, discuss the current status of their application to tumor therapy, summarize their shortcomings for use in cancer therapy, and propose future research directions. This review summarizes the research progress on CMNPs in cancer therapy in recent years and assesses remaining problems, providing scholars with new ideas for future research on CMNPs in tumor therapy.
Collapse
Affiliation(s)
- Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tao Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Danhui Yin
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Corresponding author.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Corresponding author.
| |
Collapse
|
46
|
Yang D, Tang Y, Zhu B, Pang H, Rong X, Gao Y, Du F, Cheng C, Qiu L, Ma L. Engineering Cell Membrane-Cloaked Catalysts as Multifaceted Artificial Peroxisomes for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206181. [PMID: 37096840 PMCID: PMC10265064 DOI: 10.1002/advs.202206181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Indexed: 05/03/2023]
Abstract
Artificial peroxisomes (APEXs) or peroxisome mimics have caught a lot of attention in nanomedicine and biomaterial science in the last decade, which have great potential in clinically diagnosing and treating diseases. APEXs are typically constructed from a semipermeable membrane that encloses natural enzymes or enzyme-mimetic catalysts to perform peroxisome-/enzyme-mimetic activities. The recent rapid progress regarding their biocatalytic stability, adjustable activity, and surface functionality has significantly promoted APEXs systems in real-life applications. In addition, developing a facile and versatile system that can simulate multiple biocatalytic tasks is advantageous. Here, the recent advances in engineering cell membrane-cloaked catalysts as multifaceted APEXs for diverse biomedical applications are highlighted and commented. First, various catalysts with single or multiple enzyme activities have been introduced as cores of APEXs. Subsequently, the extraction and function of cell membranes that are used as the shell are summarized. After that, the applications of these APEXs are discussed in detail, such as cancer therapy, antioxidant, anti-inflammation, and neuron protection. Finally, the future perspectives and challenges of APEXs are proposed and outlined. This progress review is anticipated to provide new and unique insights into cell membrane-cloaked catalysts and to offer significant new inspiration for designing future artificial organelles.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Yuanjiao Tang
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Bihui Zhu
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Houqing Pang
- Department of UltrasoundWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xiao Rong
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Yang Gao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Fangxue Du
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Li Qiu
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Lang Ma
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| |
Collapse
|
47
|
Wang J, Hu D, Chen Q, Liu T, Zhou X, Xu Y, Zhou H, Gu D, Gao C. Intracellular hydrogelation of macrophage conjugated probiotics for hitchhiking delivery and combined treatment of colitis. Mater Today Bio 2023; 20:100679. [PMID: 37273799 PMCID: PMC10232887 DOI: 10.1016/j.mtbio.2023.100679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Immune cell membrane coated nanomedicine was developed to neutralize cytokines via receptor-ligand interaction, which showed potential for the treatment of inflammatory bowel disease (IBD). However, cell membrane isolation and re-assembly process involved protein loss and spatial disorder, which reduced the sequestration efficiency towards cytokines. In addition, oral administration of probiotics was accepted for IBD treatment via gut microbiota modulation, but most probiotics showed weak adhesion to intestine mucosa and were quickly expelled from gastrointestinal tract. Herein, an intracellular hydrogelation technology was proposed to construct gelated peritoneal macrophage (GPM) with intact membrane structure, resulting from the avoidance of membrane isolation and re-assembly process. GPM efficiently neutralized multiple cytokines in vitro and in vivo to ameliorate inflammatory Caco-2 cells and colitis rats by regulating oxidative stress, inflammation level and intestinal barrier repair. Moreover, the probiotics (Nissle1917, EcN) were easily attached on GPM surface through specific recognition, to construct GPM-EcN conjugate for GPM hitchhiking delivery to colitis tissue. Conjugation process of GPM and EcN showed no damage on bacterial physiological function. Due to the chemical attachment on inflammatory cells, GPM carried the attached EcN hand-in-hand to accumulate in the colitis tissue of IBD rat, and enhanced intestine retention time of EcN in comparison to free EcN, which improved bacterial diversity, and shifted the microbiota community and acid metabolites to an anti-inflammatory phenotype. This study transferred the hydrogel synthesis from in vitro to intracellular cytoplasm, and came to a new insight of conjugating strategy of GPM and probiotics for hitchhiking delivery and combined anti-IBD treatment.
Collapse
Affiliation(s)
- Jingzhe Wang
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Dini Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Tonggong Liu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xiaoting Zhou
- Yulin Center for Food and Drug Control, Yulin, 719000, China
| | - Yong Xu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Hongzhong Zhou
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Cheng Gao
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| |
Collapse
|
48
|
Hang Y, Liu Y, Teng Z, Cao X, Zhu H. Mesoporous nanodrug delivery system: a powerful tool for a new paradigm of remodeling of the tumor microenvironment. J Nanobiotechnology 2023; 21:101. [PMID: 36945005 PMCID: PMC10029196 DOI: 10.1186/s12951-023-01841-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Tumor microenvironment (TME) plays an important role in tumor progression, metastasis and therapy resistance. Remodeling the TME has recently been deemed an attractive tumor therapeutic strategy. Due to its complexity and heterogeneity, remodeling the TME still faces great challenges. With the great advantage of drug loading ability, tumor accumulation, multifactor controllability, and persistent guest molecule release ability, mesoporous nanodrug delivery systems (MNDDSs) have been widely used as effective antitumor drug delivery tools as well as remolding TME. This review summarizes the components and characteristics of the TME, as well as the crosstalk between the TME and cancer cells and focuses on the important role of drug delivery strategies based on MNDDSs in targeted remodeling TME metabolic and synergistic anticancer therapy.
Collapse
Affiliation(s)
- Yinhui Hang
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Yanfang Liu
- Laboratory of Medical Imaging, The First People's Hospital of Zhenjiang, Zhenjiang, 212001, People's Republic of China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China.
| | - Xiongfeng Cao
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, People's Republic of China.
| | - Haitao Zhu
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, People's Republic of China.
| |
Collapse
|
49
|
Liu Y, Wu Y, Luo Z, Li M. Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy. iScience 2023; 26:106279. [PMID: 36936787 PMCID: PMC10014307 DOI: 10.1016/j.isci.2023.106279] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Stimuli-responsive nanomaterials have attracted substantial interest in cancer therapy, as they hold promise to deliver anticancer agents to tumor sites in a precise and on-demand manner. Interestingly, supramolecular chemistry is a burgeoning discipline that entails the reversible bonding between components at the molecular and nanoscale levels, and the recent advances in this area offer the possibility to design nanotherapeutics with improved controllability and functionality for cancer therapy. Herein, we provide a comprehensive summary of typical non-covalent interaction modes, which primarily include hydrophobic interaction, hydrogel bonding, host-guest interaction, π-π stacking, and electrostatic interaction. Special emphasis is placed on the implications of these interaction modes to design novel stimuli-responsive drug delivery principles and concepts, aiming to enhance the spatial, temporal, and dosage precision of drug delivery to cancer cells. Finally, future perspectives are discussed to highlight current challenges and future opportunities in self-assembly-based stimuli-responsive drug delivery nanotechnologies for cancer therapy.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yunyun Wu
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
50
|
Liu H, Su YY, Jiang XC, Gao JQ. Cell membrane-coated nanoparticles: a novel multifunctional biomimetic drug delivery system. Drug Deliv Transl Res 2023; 13:716-737. [PMID: 36417162 PMCID: PMC9684886 DOI: 10.1007/s13346-022-01252-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 11/24/2022]
Abstract
Recently, nanoparticle-based drug delivery systems have been widely used for the treatment, prevention, and detection of diseases. Improving the targeted delivery ability of nanoparticles has emerged as a critical issue that must be addressed as soon as possible. The bionic cell membrane coating technology has become a novel concept for the design of nanoparticles. The diverse biological roles of cell membrane surface proteins endow nanoparticles with several functions, such as immune escape, long circulation time, and targeted delivery; therefore, these proteins are being extensively studied in the fields of drug delivery, detoxification, and cancer treatment. Furthermore, hybrid cell membrane-coated nanoparticles enhance the beneficial effects of monotypic cell membranes, resulting in multifunctional and efficient delivery carriers. This review focuses on the synthesis, development, and application of the cell membrane coating technology and discusses the function and mechanism of monotypic/hybrid cell membrane-modified nanoparticles in detail. Moreover, it summarizes the applications of cell membranes from different sources and discusses the challenges that may be faced during the clinical application of bionic carriers, including their production, mechanism, and quality control. We hope this review will attract more scholars toward bionic cell membrane carriers and provide certain ideas and directions for solving the existing problems.
Collapse
Affiliation(s)
- Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Yu-Yan Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xin-Chi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
| | - Jian-Qing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People's Republic of China.
| |
Collapse
|