1
|
Hayton TW, Autschbach J. Using NMR Spectroscopy to Evaluate Metal-Ligand Bond Covalency for the f Elements. Acc Chem Res 2025; 58:488-498. [PMID: 39838941 DOI: 10.1021/acs.accounts.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography. NMR spectroscopy is another widely available spectroscopic technique that is complementary to these more established methods; however, its use for measuring 4f/5f covalency is still in its infancy. This Account describes efforts in the authors' laboratories to develop and validate multinuclear NMR spectroscopy as a tool for studying metal-ligand covalency in the actinides and selected lanthanide complexes. Thus far, we have quantified M-L covalency for a variety of ligand types, including chalcogenides, carbenes, alkyls, acetylides, amides, and nitrides, and for a variety of isotopes, including 13C, 15N, 77Se, and 125Te. Using NMR spectroscopy to probe M-C and M-N covalency is particularly attractive because of the ready availability of the13C and 15N isotopes (both I = 1/2), and also because these elements are found in some of the most important f element ligand classes, including alkyls, carbenes, polypyridines, amides, imidos, and nitrides.The covalency analysis is based on the chemical shift (δ) and corresponding nuclear shielding constant (σ) of the metal-bound nucleus. The diamagnetic (σdia), paramagnetic (σpara), and spin-orbit contributions (σSO) to σ can be obtained and analyzed by relativistic density functional theory (DFT). Of particular importance is σSO, which arises from the combination of spin-orbit coupling, the magnetic field, and chemical bonding. Its magnitude correlates with the amount of ligand s-character and metal nf (and (n+1)d) character in the M-L bond. In practice, ΔSO, the total difference between calculated chemical shift for the ligand nucleus including vs excluding SO effects, provides a more convenient metric for analysis. For the examples discussed herein, ΔSO accounts primarily for σSO in an f-element complex, but also includes minor SO effects on the other shielding mechanisms and (usually) minor SO effects on the reference shielding. ΔSO can be very large, as in the case of [U(CH2SiMe3)6] (348 ppm), which is not surprising as the An-C bonds in this example exhibits a high degree of covalency (e.g., 20% 5f character). However, even small values of ΔSO can indicate profound bonding effects, as shown by our analysis of [La(C6Cl5)4]-. In this case, ΔSO is only 9 ppm, consistent with a highly ionic La-C bond (e.g., <1% 4f character). Nonetheless, the inclusion of SO effects in the calculation are necessary to achieve good agreement between the predicted and experimentally determined chemical shifts. Overall, the examples discussed herein highlight the exquisite sensitivity of this method to unravel electronic structure in f element complexes.
Collapse
Affiliation(s)
- Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
2
|
Cao Z, Yu X, Yao YR, Autschbach J, Chen N. ThCTi@ Cs(6)-C 82: Th═C Double Bond in a Mixed Actinide-Transition Metal Cluster. J Am Chem Soc 2025; 147:3584-3592. [PMID: 39813405 DOI: 10.1021/jacs.4c15253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
A thorium-carbon double bond that corresponds to the sum of theoretical covalent double bond radii has long been sought after in the study of actinide-ligand multiple bonding as a synthetic target. However, the stabilization of this chemical bond remains a great challenge to date, in part because of a relatively poor energetic matching between 5f-/6d- orbitals of thorium and the 2s-/2p- frontier orbitals of carbon. Herein, we report the successful synthesis of a thorium-carbon double bond in a carbon-bridged actinide-transition metal cluster, i.e., [Th═C═Ti], encapsulated inside a fullerene cage of C82. ThCTi@Cs(6)-C82 was successfully synthesized by a modified arc discharging method and characterized by mass spectrometry, single-crystal X-ray crystallography, various spectroscopy, and theoretical calculations. X-ray crystallographic analysis reveals a bent μ2-bridged carbide cluster with a Th-C distance of 2.123(18) Å, which is the shortest reported to date in an isolable compound and is comparable to the sum of the covalent Th═C double bond radii (2.10 Å). In addition, Th═C═Ti takes an unexpected nonlinear configuration with a bond angle of 133.0(10)°. The combined experimental and theoretical investigation further revealed the bonding nature of Th═C, which is polarized toward the bridged carbon but has a notably higher covalency than the Th-C bonds reported previously for organometallic compounds. Moreover, pronounced cage-to-metal donation appears to be stabilizing the encapsulated Th═C═Ti cluster. This work offers a deeper understanding of the bonding behavior of thorium and features the unique ability of fullerene cages to stabilize bonding motifs containing different types of metal-ligand multiple bonds.
Collapse
Affiliation(s)
- Zhengkai Cao
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Natural Sciences Complex, Buffalo, New York 14260-3000, United States
| | - Yang-Rong Yao
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Natural Sciences Complex, Buffalo, New York 14260-3000, United States
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
3
|
Ordoñez O, Yu X, Schuerlein MA, Wu G, Autschbach J, Hayton TW. An Actinide Complex with a Nucleophilic Allenylidene Ligand. J Am Chem Soc 2024. [PMID: 39371031 DOI: 10.1021/jacs.4c09076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The reaction of [Cp3Th(3,3-diphenylcyclopropenyl)] (Cp = η5-C5H5) with 1 equiv of lithium diisopropylamide (LDA) results in cyclopropenyl ring opening and formation of the thorium allenylidene complex, [Li(Et2O)2][Cp3Th(CCCPh2)] ([Li(Et2O)2][1]), in good yield. Additionally, deprotonation of [Cp3Th(3,3-diphenylcyclopropenyl)] with 1 equiv of LDA, in the presence of 12-crown-4 or 2.2.2-cryptand, results in the formation of discrete cation/anion pairs, [Li(12-crown-4)(THF)][Cp3Th(CCCPh2)] ([Li(12-crown-4)(THF)][1]) and [Li(2.2.2-cryptand)][Cp3Th(CCCPh2)] ([Li(2.2.2-cryptand)][1]), respectively. Interestingly, the complex [Li(Et2O)2][1] undergoes dimerization upon standing at room temperature, resulting in the formation of [Cp2Th(μ:η1:η3-CCCPh2)]2 (2), via loss of LiCp. The reaction of [Li(Et2O)2][1] with MeI results in electrophilic attack at the Cγ carbon atom, leading to the formation of a thorium acetylide complex, [Cp3Th(C≡CC(Me)Ph2)] (3), which can be isolated in 83% yield upon workup, whereas the reaction of [Li(Et2O)2][1] with benzophenone results in the formation of 1,1,4,4-tetraphenylbutatriene (4) in 99% yield, according to integration against an internal standard. Density functional theory (DFT) calculations performed on [1]- and 2 reveal significant electron delocalization across the allenylidene ligand. Additionally, calculations of the 13C NMR chemical shifts for the Cα, Cβ, and Cγ nuclei of the allenylidene ligand were in good agreement with the experimental shifts. The calculations reveal modest deshielding induced by spin-orbital effects originating at Th due to the involvement of the 5f orbitals in the Th-C bonds. According to a DFT analysis, the cyclopropenyl ring-opening reaction proceeds via [Cp3Th(η1-3,3-Ph2-cyclo-C3)]- (IM), which features a carbanion character at Cβ.
Collapse
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Megan A Schuerlein
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
Kaltsoyannis N, Kerridge A. Understanding covalency in molecular f-block compounds from the synergy of spectroscopy and quantum chemistry. Nat Rev Chem 2024; 8:701-712. [PMID: 39174633 DOI: 10.1038/s41570-024-00641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
One of the most intensely studied areas of f-block chemistry is the nature of the bonds between the f-element and another species, and in particular the role played by covalency. Computational quantum chemical methods have been at the forefront of this research for decades and have a particularly valuable role, given the radioactivity of the actinide series. The very strong agreement that has recently emerged between theory and the results of a range of spectroscopic techniques not only facilitates deeper insight into the experimental data, but it also provides confidence in the conclusions from the computational studies. These synergies are shining new light on the nature of the f element-other element bond.
Collapse
Affiliation(s)
| | - Andrew Kerridge
- Department of Chemistry, The University of Lancaster, Lancaster, UK.
| |
Collapse
|
5
|
Réant BL, Mackintosh FJ, Gransbury GK, Mattei CA, Alnami B, Atkinson BE, Bonham KL, Baldwin J, Wooles AJ, Vitorica-Yrezabal IJ, Lee D, Chilton NF, Liddle ST, Mills DP. Tris-Silanide f-Block Complexes: Insights into Paramagnetic Influence on NMR Chemical Shifts. JACS AU 2024; 4:2695-2711. [PMID: 39055148 PMCID: PMC11267535 DOI: 10.1021/jacsau.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
The paramagnetism of f-block ions has been exploited in chiral shift reagents and magnetic resonance imaging, but these applications tend to focus on 1H NMR shifts as paramagnetic broadening makes less sensitive nuclei more difficult to study. Here we report a solution and solid-state (ss) 29Si NMR study of an isostructural series of locally D 3h -symmetric early f-block metal(III) tris-hypersilanide complexes, [M{Si(SiMe3)3}3(THF)2] (1-M; M = La, Ce, Pr, Nd, U); 1-M were also characterized by single crystal and powder X-ray diffraction, EPR, ATR-IR, and UV-vis-NIR spectroscopies, SQUID magnetometry, and elemental analysis. Only one SiMe3 signal was observed in the 29Si ssNMR spectra of 1-M, while two SiMe3 signals were seen in solution 29Si NMR spectra of 1-La and 1-Ce. This is attributed to dynamic averaging of the SiMe3 groups in 1-M in the solid state due to free rotation of the M-Si bonds and dissociation of THF from 1-M in solution to give the locally C 3v -symmetric complexes [M{Si(SiMe3)3}3(THF) n ] (n = 0 or 1), which show restricted rotation of M-Si bonds on the NMR time scale. Density functional theory and complete active space self-consistent field spin-orbit calculations were performed on 1-M and desolvated solution species to model paramagnetic NMR shifts. We find excellent agreement of experimental 29Si NMR data for diamagnetic 1-La, suggesting n = 1 in solution and reasonable agreement of calculated paramagnetic shifts of SiMe3 groups for 1-M (M = Pr and Nd); the NMR shifts for metal-bound 29Si nuclei could only be reproduced for diamagnetic 1-La, showing the current limitations of pNMR calculations for larger nuclei.
Collapse
Affiliation(s)
- Benjamin
L. L. Réant
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Fraser J. Mackintosh
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gemma K. Gransbury
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Carlo Andrea Mattei
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Barak Alnami
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Benjamin E. Atkinson
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Katherine L. Bonham
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Jack Baldwin
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ashley J. Wooles
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Nicholas F. Chilton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Research
School of Chemistry, The Australian National
University, Sullivans
Creek Road, Canberra 2601, Australian Capital Territory, Australia
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
6
|
MacGregor F, Tarula-Marin JL, Metta-Magaña A, Fortier S. A Metallocene Bis(phosphoranocarbene) of Uranium and a Probe of Its Reactivity with Alcohols. Inorg Chem 2024; 63:9648-9658. [PMID: 38506446 DOI: 10.1021/acs.inorgchem.3c04565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The addition of 2 equiv of the phosphaylide H2C═PPh3 to the dimethyl uranium metallocene Cp*2UMe2 (Cp* = η5-C5Me5) in toluene with gentle heating at 40 °C generates the phosphorano-stabilized bis(carbene) Cp*2U[C(H)PPh3]2 (1) in good yield. Characterization of 1 by X-ray crystallographic analysis reveals two short uranium-carbon bonds, ranging from 2.301(5) to 2.322(5) Å, consistent with the presence of U═C carbene-type bonds. Monitoring the reaction by NMR spectroscopy suggests that it proceeds through the intermediate formation of the methyl carbene complex Cp*2U[C(H)PPh3](Me) (1Int); however, prolonged heating of these solutions leads to the ortho-cyclometalated carbene species Cp*2U{κ2-[C(H)PPh2(C6H4)]} (2) via intramolecular C-H activation. Rapid conversion from 1 to 2 occurs within hours upon heating its toluene solutions to 100 °C. Preliminary reactivity studies of 1 show that it readily reacts with alcohols, such as HODipp (Dipp = 2,6-diisopropylphenyl) and HOC(CF3)3, to give the mixed carbene alkoxide compounds Cp*2U[C(H)PPh3](OR) (R = Dipp (4Dipp), C(CF3)3 (5CF3)). In one case, the reaction of 1 with HODipp in the presence of adventitious water led to the formation of a few crystals of the terminal U(IV) oxo complex, [Ph3PCH3][Cp*2U(O)(ODipp)] (3oxo). The isolation of 1 marks the first instance of an unchelated, heteroatom-stabilized bis(carbene) complex of uranium that also provides an entryway to the synthesis of its monocarbene derivatives through protonolysis.
Collapse
Affiliation(s)
- Frank MacGregor
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - José L Tarula-Marin
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Alejandro Metta-Magaña
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
7
|
Liddle ST. Progress in Nonaqueous Molecular Uranium Chemistry: Where to Next? Inorg Chem 2024; 63:9366-9384. [PMID: 38739898 PMCID: PMC11134516 DOI: 10.1021/acs.inorgchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
There is long-standing interest in nonaqueous uranium chemistry because of fundamental questions about uranium's variable chemical bonding and the similarities of this pseudo-Group 6 element to its congener d-block elements molybdenum and tungsten. To provide historical context, with reference to a conference presentation slide presented around 1988 that advanced a defining collection of top targets, and the challenge, for synthetic actinide chemistry to realize in isolable complexes under normal experimental conditions, this Viewpoint surveys progress against those targets, including (i) CO and related π-acid ligand complexes, (ii) alkylidenes, carbynes, and carbidos, (iii) imidos and terminal nitrides, (iv) homoleptic polyalkyls, -alkoxides, and -aryloxides, (v) uranium-uranium bonds, and (vi) examples of topics that can be regarded as branching out in parallel from the leading targets. Having summarized advances from the past four decades, opportunities to build on that progress, and hence possible future directions for the field, are highlighted. The wealth and diversity of uranium chemistry that is described emphasizes the importance of ligand-metal complementarity in developing exciting new chemistry that builds our knowledge and understanding of elements in a relativistic regime.
Collapse
Affiliation(s)
- Stephen T. Liddle
- Department of Chemistry and Centre
for Radiochemistry Research, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
8
|
Ordoñez O, Yu X, Wu G, Autschbach J, Hayton TW. Quantifying Actinide-Carbon Bond Covalency in a Uranyl-Aryl Complex Utilizing Solution 13C NMR Spectroscopy. Inorg Chem 2024; 63:9427-9433. [PMID: 37788299 DOI: 10.1021/acs.inorgchem.3c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Reaction of [UO2Cl2(THF)2]2 with in situ generated LiFmes (FmesH = 1,3,5-(CF3)3C6H3) in Et2O resulted in the formation of the uranyl aryl complexes [Li(THF)3][UO2(Fmes)3] ([Li(THF)3][1]) and [Li(Et2O)3(THF)][UO2(Fmes)3] ([Li(Et2O)3(THF)][1]) in good to moderate yields after crystallization from hexanes and Et2O, respectively. Both complexes were characterized by X-ray crystallography and NMR spectroscopy. DFT calculations reveal that the Cispo resonance in [1]- exhibits a deshielding of 51 ppm from spin-orbit coupling effects originating at uranium, which indicates an appreciable covalency in the U-C bonding interaction.
Collapse
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
9
|
Hertler PR, Yu X, Brower JD, Nguyen TAD, Wu G, Autschbach J, Hayton TW. Exploring Spin-Orbit Effects in a [Cu 6Tl] + Nanocluster Featuring an Uncommon Tl-H Interaction. Chemistry 2024; 30:e202400390. [PMID: 38381600 DOI: 10.1002/chem.202400390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Reaction of [CuH(PPh3)]6 with 1 equiv. of Tl(OTf) results in formation of [Cu6TlH6(PPh3)6][OTf] ([1]OTf]), which can be isolated in good yields. Variable-temperature 1H NMR spectroscopy, in combination with density functional theory (DFT) calculations, confirms the presence of a rare Tl-H orbital interaction. According to DFT, the 1H chemical shift of the Tl-adjacent hydride ligands of [1]+ includes 7.7 ppm of deshielding due to spin-orbit effects from the heavy Tl atom. This study provides valuable new insights into a rare class of metal hydrides, given that [1][OTf] is only the third isolable species reported to contain a Tl-H interaction.
Collapse
Affiliation(s)
- Phoebe R Hertler
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Jordan D Brower
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Thuy-Ai D Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| |
Collapse
|
10
|
Jörges M, Gremillion AJ, Knyszek D, Kelley SP, Walensky JR, Gessner VH. From a mercury(II) bis(yldiide) complex to actinide yldiides. Chem Commun (Camb) 2024; 60:3190-3193. [PMID: 38415283 DOI: 10.1039/d3cc05553a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The bis(yldiide) mercury complex, (L-Hg-L) [L = C(PPh3)P(S)Ph2], is prepared from the corresponding potassium yldiide and used to access the first substituted yldiide actinide complexes [(C5Me5)2An(L)(Cl)] (An = U, Th) via salt metathesis. Compared to previously reported phosphinocarbene complexes, the complexes exhibit long actinide-carbon distances, which can be explained by the strong polarization of the π-electron density toward carbon.
Collapse
Affiliation(s)
- Mike Jörges
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany.
| | - Alexander J Gremillion
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany.
| | - Daniel Knyszek
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany.
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Viktoria H Gessner
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany.
| |
Collapse
|
11
|
Baker CF, Seed JA, Adams RW, Lee D, Liddle ST. 13C carbene nuclear magnetic resonance chemical shift analysis confirms Ce IV[double bond, length as m-dash]C double bonding in cerium(iv)-diphosphonioalkylidene complexes. Chem Sci 2023; 15:238-249. [PMID: 38131084 PMCID: PMC10732143 DOI: 10.1039/d3sc04449a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Diphosphonioalkylidene dianions have emerged as highly effective ligands for lanthanide and actinide ions, and the resulting formal metal-carbon double bonds have challenged and developed conventional thinking about f-element bond multiplicity and covalency. However, f-element-diphosphonioalkylidene complexes can be represented by several resonance forms that render their metal-carbon double bond status unclear. Here, we report an experimentally-validated 13C Nuclear Magnetic Resonance computational assessment of two cerium(iv)-diphosphonioalkylidene complexes, [Ce(BIPMTMS)(ODipp)2] (1, BIPMTMS = {C(PPh2NSiMe3)2}2-; Dipp = 2,6-diisopropylphenyl) and [Ce(BIPMTMS)2] (2). Decomposing the experimental alkylidene chemical shifts into their corresponding calculated shielding (σ) tensor components verifies that these complexes exhibit Ce[double bond, length as m-dash]C double bonds. Strong magnetic coupling of Ce[double bond, length as m-dash]C σ/π* and π/σ* orbitals produces strongly deshielded σ11 values, a characteristic hallmark of alkylidenes, and the largest 13C chemical shift tensor spans of any alkylidene complex to date (1, 801 ppm; 2, 810 ppm). In contrast, the phosphonium-substituent shielding contributions are much smaller than the Ce[double bond, length as m-dash]C σ- and π-bond components. This study confirms significant Ce 4f-orbital contributions to the Ce[double bond, length as m-dash]C bonding, provides further support for a previously proposed inverse-trans-influence in 2, and reveals variance in the 4f spin-orbit contributions that relate to the alkylidene hybridisation. This work thus confirms the metal-carbon double bond credentials of f-element-diphosphonioalkylidenes, providing quantified benchmarks for understanding diphosphonioalkylidene bonding generally.
Collapse
Affiliation(s)
- Cameron F Baker
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - John A Seed
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Daniel Lee
- Department of Chemical Engineering, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
12
|
Du J, Hurd J, Seed JA, Balázs G, Scheer M, Adams RW, Lee D, Liddle ST. 31P Nuclear Magnetic Resonance Spectroscopy as a Probe of Thorium-Phosphorus Bond Covalency: Correlating Phosphorus Chemical Shift to Metal-Phosphorus Bond Order. J Am Chem Soc 2023; 145:21766-21784. [PMID: 37768555 PMCID: PMC10571089 DOI: 10.1021/jacs.3c02775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 09/29/2023]
Abstract
We report the use of solution and solid-state 31P Nuclear Magnetic Resonance (NMR) spectroscopy combined with Density Functional Theory calculations to benchmark the covalency of actinide-phosphorus bonds, thus introducing 31P NMR spectroscopy to the investigation of molecular f-element chemical bond covalency. The 31P NMR data for [Th(PH2)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-), [Th(PH)(TrenTIPS)][Na(12C4)2] (2, 12C4 = 12-crown-4 ether), [{Th(TrenTIPS)}2(μ-PH)] (3), and [{Th(TrenTIPS)}2(μ-P)][Na(12C4)2] (4) demonstrate a chemical shift anisotropy (CSA) ordering of (μ-P)3- > (═PH)2- > (μ-PH)2- > (-PH2)1- and for 4 the largest CSA for any bridging phosphido unit. The B3LYP functional with 50% Hartree-Fock mixing produced spin-orbit δiso values that closely match the experimental data, providing experimentally benchmarked quantification of the nature and extent of covalency in the Th-P linkages in 1-4 via Natural Bond Orbital and Natural Localized Molecular Orbital analyses. Shielding analysis revealed that the 31P δiso values are essentially only due to the nature of the Th-P bonds in 1-4, with largely invariant diamagnetic but variable paramagnetic and spin-orbit shieldings that reflect the Th-P bond multiplicities and s-orbital mediated transmission of spin-orbit effects from Th to P. This study has permitted correlation of Th-P δiso values to Mayer bond orders, revealing qualitative correlations generally, but which should be examined with respect to specific ancillary ligand families rather than generally to be quantitative, reflecting that 31P δiso values are a very sensitive reporter due to phosphorus being a soft donor that responds to the rest of the ligand field much more than stronger, harder donors like nitrogen.
Collapse
Affiliation(s)
- Jingzhen Du
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Joseph Hurd
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - John A. Seed
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Gábor Balázs
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Ralph W. Adams
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
13
|
Nguyen TH, Paul EL, Lukens WW, Hayton TW. Evaluating f-Orbital Participation in the U V═E Multiple Bonds of [U(E)(NR 2) 3] (E = O, NSiMe 3, NAd; R = SiMe 3). Inorg Chem 2023; 62:6447-6457. [PMID: 37053543 DOI: 10.1021/acs.inorgchem.3c00455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The reaction of 1 equiv of 1-azidoadamantane with [UIII(NR2)3] (R = SiMe3) in Et2O results in the formation of [UV(NR2)3(NAd)] (1, Ad = 1-adamantyl) in good yields. The electronic structure of 1, as well as those of the related U(V) complexes, [UV(NR2)3(NSiMe3)] (2) and [UV(NR2)3(O)] (3), were analyzed with EPR spectroscopy, SQUID magnetometry, NIR-visible spectroscopy, and crystal field modeling. This analysis revealed that, within this series of complexes, the steric bulk of the E2- (E═O, NR) ligand is the most important factor in determining the electronic structure. In particular, the increasing steric bulk of this ligand, on moving from O2- to [NAd]2-, results in increasing U═E distances and E-U-Namide angles. These changes have two principal effects on the resulting electronic structure: (1) the increasing U═E distances decreases the energy of the fσ orbital, which is primarily σ* with respect to the U═E bond, and (2) the increasing E-U-Namide angles increases the energy of fδ, due to increasing antibonding interactions with the amide ligands. As a result of the latter change, the electronic ground state for complexes 1 and 2 is primarily fφ in character, whereas the ground state for complex 3 is primarily fδ.
Collapse
Affiliation(s)
- Thien H Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Edward L Paul
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
14
|
Hsueh FC, Rajeshkumar T, Kooij B, Scopelliti R, Severin K, Maron L, Zivkovic I, Mazzanti M. Bonding and Reactivity in Terminal versus Bridging Arenide Complexes of Thorium Acting as Th II Synthons. Angew Chem Int Ed Engl 2023; 62:e202215846. [PMID: 36576035 DOI: 10.1002/anie.202215846] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Thorium redox chemistry is extremely scarce due to the high stability of ThIV . Here we report two unique examples of thorium arenide complexes prepared by reduction of a ThIV -siloxide complex in presence of naphthalene, the mononuclear arenide complex [K(OSi(Ot Bu)3 )3 Th(η6 -C10 H8 )] (1) and the inverse-sandwich complex [K(OSi(Ot Bu)3 )3 Th]2 (μ-η6 ,η6 -C10 H8 )] (2). The electrons stored in these complexes allow the reduction of a broad range of substrates (N2 O, AdN3 , CO2 , HBBN). Higher reactivity was found for the complex 1 which reacts with the diazoolefin IDipp=CN2 to yield the unexpected ThIV amidoalkynyl complex 5 via a terminal N-heterocyclic vinylidene intermediate. This work showed that arenides can act as convenient redox-active ligands for implementing thorium-ligand cooperative multielectron transfer and that the reactivity can be tuned by the arenide binding mode.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Bastiaan Kooij
- Laboratory of Supramolecular Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Laboratory of Supramolecular Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
15
|
Ordoñez O, Yu X, Wu G, Autschbach J, Hayton TW. Assessing the 4f Orbital Participation in the Ln–C Bonds of [Li(THF) 4][Ln(C 6Cl 5) 4] (Ln = La, Ce). Inorg Chem 2022; 61:15138-15143. [DOI: 10.1021/acs.inorgchem.2c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
16
|
Seed JA, Vondung L, Barton F, Wooles AJ, Lu E, Gregson M, Adams RW, Liddle ST. A Series of Rare‐Earth Mesoionic Carbene Complexes. Chemistry 2022; 28:e202200761. [DOI: 10.1002/chem.202200761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/05/2022]
Affiliation(s)
- John A. Seed
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Lisa Vondung
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Franky Barton
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Erli Lu
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Matthew Gregson
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ralph W. Adams
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
17
|
Seed JA, Vondung L, Adams RW, Wooles AJ, Lu E, Liddle ST. Mesoionic Carbene Complexes of Uranium(IV) and Thorium(IV). Organometallics 2022; 41:1353-1363. [PMID: 36157256 PMCID: PMC9490841 DOI: 10.1021/acs.organomet.2c00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/30/2022]
Abstract
We report the synthesis and characterization of uranium(IV) and thorium(IV) mesoionic carbene complexes [An{N(SiMe3)2}2(CH2SiMe2NSiMe3){MIC}] (An = U, 4U and Th, 4Th; MIC = {CN(Me)C(Me)N(Me)CH}), which represent rare examples of actinide mesoionic carbene linkages and the first example of a thorium mesoionic carbene complex. Complexes 4U and 4Th were prepared via a C-H activation intramolecular cyclometallation reaction of actinide halides, with concomitant formal 1,4-proton migration of an N-heterocyclic olefin (NHO). Quantum chemical calculations suggest that the An-carbene bond comprises only a σ-component, in contrast to the uranium(III) analogue [U{N(SiMe3)2}3(MIC)] (1) where computational studies suggested that the 5f3 uranium(III) ion engages in a weak one-electron π-backbond to the MIC. This highlights the varying nature of actinide-MIC bonding as a function of actinide oxidation state. In solution, 4Th exists in equilibrium with the Th(IV) metallacycle [Th{N(SiMe3)2}2(CH2SiMe2NSiMe3)] (6Th) and free NHO (3). The thermodynamic parameters of this equilibrium were probed using variable-temperature NMR spectroscopy yielding an entropically favored but enthalpically endothermic process with an overall reaction free energy of ΔG 298.15K = 0.89 kcal mol-1. Energy decomposition analysis (EDA-NOCV) of the actinide-carbon bonds in 4U and 4Th reveals that the former is enthalpically stronger and more covalent than the latter, which accounts for the respective stabilities of these two complexes.
Collapse
Affiliation(s)
- John A. Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lisa Vondung
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ralph W. Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ashley J. Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Erli Lu
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Stephen T. Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
18
|
Abstract
Neptunium was the first actinide element to be artificially synthesized, yet, compared with its more famous neighbours uranium and plutonium, is less conspicuously studied. Most neptunium chemistry involves the neptunyl di(oxo)-motif, and transuranic compounds with one metal-ligand multiple bond are rare, being found only in extended-structure oxide, fluoride or oxyhalide materials. These combinations stabilize the required high oxidation states, which are otherwise challenging to realize for transuranic ions. Here we report the synthesis, isolation and characterization of a stable molecular neptunium(V)-mono(oxo) triamidoamine complex. We describe a strong Np≡O triple bond with dominant 5f-orbital contributions and σu > πu energy ordering, akin to terminal uranium-nitrides and di(oxo)-actinyls, but not the uranium-mono(oxo) triple bonds or other actinide multiple bonds reported so far. This work demonstrates that molecular high-oxidation-state transuranic complexes with a single metal-ligand bond can be stabilized and studied in isolation.
Collapse
|
19
|
Kent G, Yu X, Wu G, Autschbach J, Hayton TW. Ring-opening of a Thorium Cyclopropenyl Complex Generates a Transient Thorium-bound Carbene. Chem Commun (Camb) 2022; 58:6805-6808. [DOI: 10.1039/d2cc01780f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of [Cp3ThCl] with in situ generated lithium-3,3-diphenylcyclopropene results in the formation of [Cp3Th(3,3-diphenylcyclopropenyl)] (1), in good yields. Thermolysis of 1 results in isomerization to the ring-opened product, [Cp3Th(3-phenyl-1H-inden-1-yl)]...
Collapse
|
20
|
Maria L, Bandeira NAG, Marçalo J, Santos IC, Ferreira ASD, Ascenso JR. Experimental and Computational Study of a Tetraazamacrocycle Bis(aryloxide) Uranyl Complex and of the Analogues {E═U═NR} 2+ (E = O and NR). Inorg Chem 2021; 61:346-356. [PMID: 34898186 DOI: 10.1021/acs.inorgchem.1c02934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The reaction of [U(κ6-{(t-Bu2ArO)2Me2-cyclam})I][I] (H2{(t-Bu2ArO)2Me2-cyclam} = 1,8-bis(2-hydroxy-3,5-di-tert-butyl)-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane) with 2 equiv of NaNO2 in acetonitrile results in the isolation of the uranyl complex [UO2{(t-Bu2ArO)2Me2-cyclam}] (3) in 31% yield, which was fully characterized, including by single-crystal X-ray diffraction. Density functional theory (DFT) computations were performed to evaluate and compare the level of covalency within the U═E bonds in 3 and in the analogous trans-bis(imido) [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(NPh)2] (1) and trans-oxido-imido [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(O)(NPh)] (2) complexes. Natural bond orbital (NBO) analysis allowed us to determine the mixing covalency parameter λ, showing that in 2, where both U-Ooxido and U-Nimido bonds are present, the U-Nimido bond registers more covalency with regard to 1, and the opposite is seen for U-Ooxido with respect to 3. However, the covalency driven by orbital overlap in the U-Nimido bond is slightly higher in 1 than in 2. The 15N-labeled complexes [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(15NPh)2] (1-15N) and [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(O)(15NPh)] (2-15N) were prepared and analyzed by solution 15N NMR spectroscopy. The calculated and experimental 15N chemical shifts are in good agreement, displaying the same trend of δN (1-15N) > δN (2-15N) and reveal that the 15N chemical shift may serve as a probe for the covalency of the U═NR bond.
Collapse
Affiliation(s)
- Leonor Maria
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Nuno A G Bandeira
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Joaquim Marçalo
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Isabel C Santos
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Ana S D Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry/Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - José R Ascenso
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1000-049 Lisboa, Portugal
| |
Collapse
|
21
|
Yu X, Sergentu DC, Feng R, Autschbach J. Covalency of Trivalent Actinide Ions with Different Donor Ligands: Do Density Functional and Multiconfigurational Wavefunction Calculations Corroborate the Observed "Breaks"? Inorg Chem 2021; 60:17744-17757. [PMID: 34747167 DOI: 10.1021/acs.inorgchem.1c02374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A comprehensive ab initio study of periodic actinide-ligand bonding trends for trivalent actinides is performed. Relativistic density functional theory (DFT) and complete active-space (CAS) self-consistent field wavefunction calculations are used to dissect the chemical bonding in the [AnCl6]3-, [An(CN)6]3-, [An(NCS)6]3-, [An(S2PMe2)3], [An(DPA)3]3-, and [An(HOPO)]- series of actinide (An = U-Es) complexes. Except for some differences for the early actinide complexes with DPA, bond orders and excess 5f-shell populations from donation bonding show qualitatively similar trends in 5f n active-space CAS vs DFT calculations. The influence of spin-orbit coupling on donation bonding is small for the tested systems. Along the actinide series, chemically soft vs chemically harder ligands exhibit clear differences in bonding trends. There are pronounced changes in the 5f populations when moving from Pu to Am or Cm, which correlate with previously noted "breaks" in chemical trends. Bonding involving 5f becomes very weak beyond Cm/Bk. We propose that Cm(III) is a borderline case among the trivalent actinides that can be meaningfully considered to be involved in ground-state 5f covalent bonding.
Collapse
Affiliation(s)
- Xiaojuan Yu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Rulin Feng
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
22
|
Kent GT, Yu X, Wu G, Autschbach J, Hayton TW. Synthesis and electronic structure analysis of the actinide allenylidenes, [{(NR 2) 3}An(CCCPh 2)] - (An = U, Th; R = SiMe 3). Chem Sci 2021; 12:14383-14388. [PMID: 34880989 PMCID: PMC8580070 DOI: 10.1039/d1sc04666g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/02/2021] [Indexed: 11/26/2022] Open
Abstract
The reaction of [AnCl(NR2)3] (An = U, Th, R = SiMe3) with in situ generated lithium-3,3-diphenylcyclopropene results in the formation of [{(NR2)3}An(CH[double bond, length as m-dash]C[double bond, length as m-dash]CPh2)] (An = U, 1; Th, 2) in good yields after work-up. Deprotonation of 1 or 2 with LDA/2.2.2-cryptand results in formation of the anionic allenylidenes, [Li(2.2.2-cryptand)][{(NR2)3}An(CCCPh2)] (An = U, 3; Th, 4). The calculated 13C NMR chemical shifts of the Cα, Cβ, and Cγ nuclei in 2 and 4 nicely reproduce the experimentally assigned order, and exhibit a characteristic spin-orbit induced downfield shift at Cα due to involvement of the 5f orbitals in the Th-C bonds. Additionally, the bonding analyses for 3 and 4 show a delocalized multi-center character of the ligand π orbitals involving the actinide. While a single-triple-single-bond resonance structure (e.g., An-C[triple bond, length as m-dash]C-CPh2) predominates, the An[double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash]CPh2 resonance form contributes, as well, more so for 3 than for 4.
Collapse
Affiliation(s)
- Greggory T Kent
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260 USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260 USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| |
Collapse
|
23
|
Kent GT, Yu X, Pauly C, Wu G, Autschbach J, Hayton TW. Synthesis of Parent Acetylide and Dicarbide Complexes of Thorium and Uranium and an Examination of Their Electronic Structures. Inorg Chem 2021; 60:15413-15420. [PMID: 34585570 DOI: 10.1021/acs.inorgchem.1c02064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The reaction of [AnCl(NR2)3] (An = U or Th; R = SiMe3) with NaCCH and tetramethylethylenediamine (TMEDA) results in the formation of [An(C≡CH)(NR2)3] (1, An = U; 2, An = Th), which can be isolated in good yields after workup. Similarly, the reaction of 3 equiv of NaCCH and TMEDA with [AnCl(NR2)3] results in the formation of [Na(TMEDA)][An(C≡CH)2(NR2)3] (4, An = U; 5, An = Th), which can be isolated in fair yields after workup. The reaction of 1 with 2 equiv of KC8 and 1 equiv of 2.2.2-cryptand in tetrahydrofuran results in formation of the uranium(III) acetylide complex [K(2.2.2-cryptand)][U(C≡CH)(NR2)3] (3). Thermolysis of 1 or 2 results in formation of the bimetallic dicarbide complexes [{An(NR2)3}2(μ,η1:η1-C2)] (6, An = U; 7, An = Th), whereas the reaction of 1 with [Th{N(R)(SiMe2CH2)}(NR2)2] results in the formation of [U(NR2)3(μ,η1:η1-C2)Th(NR2)3] (8). The 13C NMR chemical shifts of the α-acetylide carbon atoms in 2, 5, and 7 exhibit a characteristic spin-orbit-induced downfield shift, due to participation of the 5f orbitals in the Th-C bonds. Magnetism measurements demonstrate that 6 displays weak ferromagnetic coupling between the uranium(IV) centers (J = 1.78 cm-1).
Collapse
Affiliation(s)
- Greggory T Kent
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Christophe Pauly
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 40, Münster 48149, Germany
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
24
|
Tarlton ML, Vilanova SP, Kaumini MG, Kelley SP, Huang P, Walensky JR. Structural, Spectroscopic, and Computational Analysis of Heterometallic Thorium Phosphinidiide Complexes. Inorg Chem 2021; 60:14932-14943. [PMID: 34528785 DOI: 10.1021/acs.inorgchem.1c02308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To synthesize complexes with thorium-phosphorus multiple-bond character, reactions of (C5Me5)2Th[P(H)Mes]2 with monovalent alkali-metal bases, MN(SiMe3)2, as well as CuMes, have been investigated. The results with MN(SiMe3)2 are phosphinidiide complexes of the form {(C5Me5)2Th[μ2-P(Mes)][μ2-P(H)Mes]M(L)n}2 (M = Na, n = 0; M = K, L = THF, n = 1; M = Rb, L = THF, n = 1; M = Cs, L = Et2O, n = 1). With CuMes, the product is a Th2Cu3P5 heterometallic structure, {(C5Me5)2Th[(μ2-P(H)Mes)P(Mes)]Cu}2Cu[μ2-P(H)Mes]. All complexes have been characterized using heteronuclear NMR and IR spectroscopy, density functional theory calculations, and their solid-state structure identified by X-ray crystallography. We also report the structure of {(C5Me5)2Th[(μ2-As(H)Mes)As(Mes)]Cu}2Cu[μ2-As(H)Mes] obtained from (C5Me5)2Th[As(H)Mes]2 with CuMes.
Collapse
Affiliation(s)
- Michael L Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Sean P Vilanova
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - M Gayanethra Kaumini
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Patrick Huang
- Department of Chemistry and Biochemistry, California State University, East Bay, Hayward, California 94542, United States
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
25
|
Du J, Seed JA, Berryman VEJ, Kaltsoyannis N, Adams RW, Lee D, Liddle ST. Exceptional uranium(VI)-nitride triple bond covalency from 15N nuclear magnetic resonance spectroscopy and quantum chemical analysis. Nat Commun 2021; 12:5649. [PMID: 34561448 PMCID: PMC8463702 DOI: 10.1038/s41467-021-25863-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Determining the nature and extent of covalency of early actinide chemical bonding is a fundamentally important challenge. Recently, X-ray absorption, electron paramagnetic, and nuclear magnetic resonance spectroscopic studies have probed actinide-ligand covalency, largely confirming the paradigm of early actinide bonding varying from ionic to polarised-covalent, with this range sitting on the continuum between ionic lanthanide and more covalent d transition metal analogues. Here, we report measurement of the covalency of a terminal uranium(VI)-nitride by 15N nuclear magnetic resonance spectroscopy, and find an exceptional nitride chemical shift and chemical shift anisotropy. This redefines the 15N nuclear magnetic resonance spectroscopy parameter space, and experimentally confirms a prior computational prediction that the uranium(VI)-nitride triple bond is not only highly covalent, but, more so than d transition metal analogues. These results enable construction of general, predictive metal-ligand 15N chemical shift-bond order correlations, and reframe our understanding of actinide chemical bonding to guide future studies.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Victoria E J Berryman
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Daniel Lee
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
26
|
Staun SL, Kent GT, Gomez-Torres A, Wu G, Fortier S, Hayton TW. Reductive Coupling of Xylyl Isocyanide Mediated by Low-Valent Uranium. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Selena L. Staun
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Greggory T. Kent
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alejandra Gomez-Torres
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
27
|
Ordoñez O, Yu X, Wu G, Autschbach J, Hayton TW. Homoleptic Perchlorophenyl "Ate" Complexes of Thorium(IV) and Uranium(IV). Inorg Chem 2021; 60:12436-12444. [PMID: 34328317 DOI: 10.1021/acs.inorgchem.1c01686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reaction of AnCl4(DME)n (An = Th, n = 2; U, n = 0) with 5 equiv of LiC6Cl5 in Et2O resulted in the formation of homoleptic actinide-aryl "ate" complexes [Li(DME)2(Et2O)]2[Li(DME)2][Th(C6Cl5)5]3 ([Li][1]) and [Li(Et2O)4][U(C6Cl5)5] ([Li][2]). Similarly, the reaction of AnCl4(DME)n (An = Th, n = 2; U, n = 0) with 3 equiv of LiC6Cl5 in Et2O resulted in the formation of heteroleptic actinide-aryl "ate" complexes [Li(DME)2(Et2O)][Li(Et2O)2][ThCl3(C6Cl5)3] ([Li][3]) and [Li(Et2O)3][UCl2(C6Cl5)3] ([Li][4]). Density functional calculations show that the An-Cipso σ-bonds are considerably more covalent for the uranium complexes vs the thorium analogues, in line with past results. Additionally, good agreement between experiment and calculations is obtained for the 13Cipso NMR chemical shifts in [Li][1] and [Li][3]. The calculations demonstrate a deshielding by ca. 29 ppm from spin-orbit coupling effects originating at Th, which is a direct consequence of 5f orbital participation in the Th-C bonds.
Collapse
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
28
|
Réant BLL, Berryman VEJ, Basford AR, Nodaraki LE, Wooles AJ, Tuna F, Kaltsoyannis N, Mills DP, Liddle ST. 29Si NMR Spectroscopy as a Probe of s- and f-Block Metal(II)-Silanide Bond Covalency. J Am Chem Soc 2021; 143:9813-9824. [PMID: 34169713 DOI: 10.1021/jacs.1c03236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the use of 29Si NMR spectroscopy and DFT calculations combined to benchmark the covalency in the chemical bonding of s- and f-block metal-silicon bonds. The complexes [M(SitBu3)2(THF)2(THF)x] (1-M: M = Mg, Ca, Yb, x = 0; M = Sm, Eu, x = 1) and [M(SitBu2Me)2(THF)2(THF)x] (2-M: M = Mg, x = 0; M = Ca, Sm, Eu, Yb, x = 1) have been synthesized and characterized. DFT calculations and 29Si NMR spectroscopic analyses of 1-M and 2-M (M = Mg, Ca, Yb, No, the last in silico due to experimental unavailability) together with known {Si(SiMe3)3}--, {Si(SiMe2H)3}--, and {SiPh3}--substituted analogues provide 20 representative examples spanning five silanide ligands and four divalent metals, revealing that the metal-bound 29Si NMR isotropic chemical shifts, δSi, span a wide (∼225 ppm) range when the metal is kept constant, and direct, linear correlations are found between δSi and computed delocalization indices and quantum chemical topology interatomic exchange-correlation energies that are measures of bond covalency. The calculations reveal dominant s- and d-orbital character in the bonding of these silanide complexes, with no significant f-orbital contributions. The δSi is determined, relatively, by paramagnetic shielding for a given metal when the silanide is varied but by the spin-orbit shielding term when the metal is varied for a given ligand. The calculations suggest a covalency ordering of No(II) > Yb(II) > Ca(II) ≈ Mg(II), challenging the traditional view of late actinide chemical bonding being equivalent to that of the late lanthanides.
Collapse
Affiliation(s)
- Benjamin L L Réant
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Victoria E J Berryman
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Annabel R Basford
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Lydia E Nodaraki
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Floriana Tuna
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Nikolas Kaltsoyannis
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David P Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
29
|
Ordoñez O, Yu X, Wu G, Autschbach J, Hayton TW. Synthesis and Characterization of Two Uranyl-Aryl "Ate" Complexes. Chemistry 2021; 27:5885-5889. [PMID: 33270947 DOI: 10.1002/chem.202005078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 11/10/2022]
Abstract
Reaction of [UO2 Cl2 (THF)3 ] with 3 equivalents of LiC6 Cl5 in Et2 O resulted in the formation of first uranyl aryl complex [Li(Et2 O)2 (THF)][UO2 (C6 Cl5 )3 ] ([Li][1]) in good yields. Subsequent dissolution of [Li][1] in THF resulted in conversion into [Li(THF)4 ][UO2 (C6 Cl5 )3 (THF)] ([Li][2]), also in good yields. DFT calculations reveal that the U-C bonds in [Li][1] and [Li][2] exhibit appreciable covalency. Additionally, the 13 C NMR chemical shifts for their Cipso environments are strongly affected by spin-orbit coupling-a consequence of 5f orbital participation in the U-C bonds.
Collapse
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
30
|
Panetti GB, Sergentu DC, Gau MR, Carroll PJ, Autschbach J, Walsh PJ, Schelter EJ. Isolation and characterization of a covalent Ce IV-Aryl complex with an anomalous 13C chemical shift. Nat Commun 2021; 12:1713. [PMID: 33731719 PMCID: PMC7969749 DOI: 10.1038/s41467-021-21766-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
The synthesis of bona fide organometallic CeIV complexes is a formidable challenge given the typically oxidizing properties of the CeIV cation and reducing tendencies of carbanions. Herein, we report a pair of compounds comprising a CeIV - Caryl bond [Li(THF)4][CeIV(κ2-ortho-oxa)(MBP)2] (3-THF) and [Li(DME)3][CeIV(κ2-ortho-oxa)(MBP)2] (3-DME), ortho-oxa = dihydro-dimethyl-2-[4-(trifluoromethyl)phenyl]-oxazolide, MBP2- = 2,2'-methylenebis(6-tert-butyl-4-methylphenolate), which exhibit CeIV - Caryl bond lengths of 2.571(7) - 2.5806(19) Å and strongly-deshielded, CeIV - Cipso 13C{1H} NMR resonances at 255.6 ppm. Computational analyses reveal the Ce contribution to the CeIV - Caryl bond of 3-THF is ~12%, indicating appreciable metal-ligand covalency. Computations also reproduce the characteristic 13C{1H} resonance, and show a strong influence from spin-orbit coupling (SOC) effects on the chemical shift. The results demonstrate that SOC-driven deshielding is present for CeIV - Cipso 13C{1H} resonances and not just for diamagnetic actinide compounds.
Collapse
Affiliation(s)
- Grace B Panetti
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael R Gau
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Carroll
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| | - Eric J Schelter
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Staun SL, Stevens LM, Smiles DE, Goodwin CAP, Billow BS, Scott BL, Wu G, Tondreau AM, Gaunt AJ, Hayton TW. Expanding the Nonaqueous Chemistry of Neptunium: Synthesis and Structural Characterization of [Np(NR 2) 3Cl], [Np(NR 2) 3Cl] -, and [Np{ N(R)(SiMe 2CH 2)} 2(NR 2)] - (R = SiMe 3). Inorg Chem 2021; 60:2740-2748. [PMID: 33539075 DOI: 10.1021/acs.inorgchem.0c03616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reaction of 3 equiv of NaNR2 (R = SiMe3) with NpCl4(DME)2 in THF afforded the Np(IV) silylamide complex, [Np(NR2)3Cl] (1), in good yield. Reaction of 1 with 1.5 equiv of KC8 in THF, in the presence of 1 equiv of dibenzo-18-crown-6, resulted in formation of [{K(DB-18-C-6)(THF)}3(μ3-Cl)][Np(NR2)3Cl]2 (4), also in good yield. Complex 4 represents the first structurally characterized Np(III) amide. Finally, reaction of NpCl4(DME)2 with 5 equiv of NaNR2 and 1 equiv of dibenzo-18-crown-6 afforded the Np(IV) bis(metallacycle), [{Na(DB-18-C-6)(Et2O)0.62(κ1-DME)0.38}2(μ-DME)][Np{N(R)(SiMe2CH2)}2(NR2)]2 (8), in moderate yield. Complex 8 was characterized by 1H NMR spectroscopy and X-ray crystallography and represents a rare example of a structurally characterized neptunium-hydrocarbyl complex. To support these studies, we also synthesized the uranium analogues of 4 and 8, namely, [K(2,2,2-cryptand)][U(NR2)3Cl] (2), [K(DB-18-C-6)(THF)2][U(NR2)3Cl] (3), [Na(DME)3][U{N(R)(SiMe2CH2)}2(NR2)] (6), and [{Na(DB-18-C-6)(Et2O)0.5(κ1-DME)0.5}2(μ-DME)][U{N(R)(SiMe2CH2)}2(NR2)]2 (7). Complexes 2, 3, 6, and 7 were characterized by a number of techniques, including NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Selena L Staun
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lauren M Stevens
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Danil E Smiles
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brennan S Billow
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brian L Scott
- Materials and Physics Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Aaron M Tondreau
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
32
|
Seed JA, Sharpe HR, Futcher HJ, Wooles AJ, Liddle ST. Nature of the Arsonium‐Ylide Ph
3
As=CH
2
and a Uranium(IV) Arsonium–Carbene Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John A. Seed
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Helen R. Sharpe
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Harry J. Futcher
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
33
|
Paprocki V, Hrobárik P, Harriman KLM, Luff MS, Kupfer T, Kaupp M, Murugesu M, Braunschweig H. Ein neutrales 1,4‐Diborabenzol als π‐Ligand in Actinoidkomplexen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Valerie Paprocki
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Peter Hrobárik
- Institut für Chemie Theoretische Chemie/Quantenchemie, Sekr. C7 Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
- Department of Inorganic Chemistry Faculty of Natural Sciences Comenius University 84215 Bratislava Slowakei
| | - Katie L. M. Harriman
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Kanada
| | - Martin S. Luff
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Thomas Kupfer
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Martin Kaupp
- Institut für Chemie Theoretische Chemie/Quantenchemie, Sekr. C7 Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Kanada
| | - Holger Braunschweig
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
34
|
Paprocki V, Hrobárik P, Harriman KLM, Luff MS, Kupfer T, Kaupp M, Murugesu M, Braunschweig H. Stable Actinide π Complexes of a Neutral 1,4-Diborabenzene. Angew Chem Int Ed Engl 2020; 59:13109-13115. [PMID: 32329111 PMCID: PMC7496575 DOI: 10.1002/anie.202004501] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 11/25/2022]
Abstract
The π coordination of arene and anionic heteroarene ligands is a ubiquitous bonding motif in the organometallic chemistry of d-block and f-block elements. By contrast, related π interactions of neutral heteroarenes including neutral bora-π-aromatics are less prevalent particularly for the f-block, due to less effective metal-to-ligand backbonding. In fact, π complexes with neutral heteroarene ligands are essentially unknown for the actinides. We have now overcome these limitations by exploiting the exceptionally strong π donor capabilities of a neutral 1,4-diborabenzene. A series of remarkably robust, π-coordinated thorium(IV) and uranium(IV) half-sandwich complexes were synthesized by simply combining the bora-π-aromatic with ThCl4 (dme)2 or UCl4 , representing the first examples of actinide complexes with a neutral boracycle as sandwich-type ligand. Experimental and computational studies showed that the strong actinide-heteroarene interactions are predominately electrostatic in nature with distinct ligand-to-metal π donation and without significant π/δ backbonding contributions.
Collapse
Affiliation(s)
- Valerie Paprocki
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Peter Hrobárik
- Institut für ChemieTheoretische Chemie/Quantenchemie, Sekr. C7Technische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
- Department of Inorganic ChemistryFaculty of Natural SciencesComenius University84215BratislavaSlovakia
| | - Katie L. M. Harriman
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa10 Marie CurieOttawaOntarioK1N 6N5Canada
| | - Martin S. Luff
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Thomas Kupfer
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Martin Kaupp
- Institut für ChemieTheoretische Chemie/Quantenchemie, Sekr. C7Technische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa10 Marie CurieOttawaOntarioK1N 6N5Canada
| | - Holger Braunschweig
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
35
|
Seed JA, Sharpe HR, Futcher HJ, Wooles AJ, Liddle ST. Nature of the Arsonium-Ylide Ph 3 As=CH 2 and a Uranium(IV) Arsonium-Carbene Complex. Angew Chem Int Ed Engl 2020; 59:15870-15874. [PMID: 32484980 DOI: 10.1002/anie.202004983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Indexed: 11/11/2022]
Abstract
Treatment of [Ph3 EMe][I] with [Na{N(SiMe3 )2 }] affords the ylides [Ph3 E=CH2 ] (E=As, 1As; P, 1P). For 1As this overcomes prior difficulties in the synthesis of this classical arsonium-ylide that have historically impeded its wider study. The structure of 1As has now been determined, 45 years after it was first convincingly isolated, and compared to 1P, confirming the long-proposed hypothesis of increasing pyramidalisation of the ylide-carbon, highlighting the increasing dominance of E+ -C- dipolar resonance form (sp3 -C) over the E=C ene π-bonded form (sp2 -C), as group 15 is descended. The uranium(IV)-cyclometallate complex [U{N(CH2 CH2 NSiPri 3 )2 (CH2 CH2 SiPri 2 CH(Me)CH2 )}] reacts with 1As and 1P by α-proton abstraction to give [U(TrenTIPS )(CHEPh3 )] (TrenTIPS =N(CH2 CH2 NSiPri 3 )3 ; E=As, 2As; P, 2P), where 2As is an unprecedented structurally characterised arsonium-carbene complex. The short U-C distances and obtuse U-C-E angles suggest significant U=C double bond character. A shorter U-C distance is found for 2As than 2P, consistent with increased uranium- and reduced pnictonium-stabilisation of the carbene as group 15 is descended, which is supported by quantum chemical calculations.
Collapse
Affiliation(s)
- John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Helen R Sharpe
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Harry J Futcher
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
36
|
Thorium-nitrogen multiple bonds provide evidence for pushing-from-below for early actinides. Nat Commun 2019; 10:4203. [PMID: 31519900 PMCID: PMC6744569 DOI: 10.1038/s41467-019-12206-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022] Open
Abstract
Although the chemistry of uranium-ligand multiple bonding is burgeoning, analogous complexes involving other actinides such as thorium remain rare and there are not yet any terminal thorium nitrides outside of cryogenic matrix isolation conditions. Here, we report evidence that reduction of a thorium-azide produces a transient Th≡N triple bond, but this activates C-H bonds to produce isolable parent imido derivatives or it can be trapped in an N-heterocycle amine. Computational studies on these thorium-nitrogen multiple bonds consistently evidences a σ > π energy ordering. This suggests pushing-from-below for thorium, where 6p-orbitals principally interact with filled f-orbitals raising the σ-bond energy. Previously this was dismissed for thorium, being the preserve of uranium-nitrides or the uranyl dication. Recognising that pushing-from-below perhaps occurs with thorium as well as uranium, and with imido ligands as well as nitrides, suggests this phenomenon may be more widespread than previously thought. Despite the burgeoning nature of uranium–ligand multiple bonding, analogous thorium complexes remain incredibly rare. Here the authors report evidence for a transient thorium–nitride species, which, together with data on parent imido derivatives, suggests that the pushing-from-below phenomenon may be more widespread than previously thought.
Collapse
|
37
|
Fustier-Boutignon M, Nebra N, Mézailles N. Geminal Dianions Stabilized by Main Group Elements. Chem Rev 2019; 119:8555-8700. [PMID: 31194516 DOI: 10.1021/acs.chemrev.8b00802] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review is dedicated to the chemistry of stable and isolable species that bear two lone pairs at the same C center, i.e., geminal dianions, stabilized by main group elements. Three cases can thus be considered: the geminal-dilithio derivative, for which the two substituents at C are neutral, the yldiide derivatives, for which one substituent is neutral while the other is charged, and finally the geminal bisylides, for which the two substituents are positively charged. In this review, the syntheses and electronic structures of the geminal dianions are presented, followed by the studies dedicated to their reactivity toward organic substrates and finally to their coordination chemistry and applications.
Collapse
Affiliation(s)
- Marie Fustier-Boutignon
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| | - Noel Nebra
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| | - Nicolas Mézailles
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| |
Collapse
|
38
|
Staun SL, Sergentu DC, Wu G, Autschbach J, Hayton TW. Use of 15N NMR spectroscopy to probe covalency in a thorium nitride. Chem Sci 2019; 10:6431-6436. [PMID: 31367305 PMCID: PMC6615217 DOI: 10.1039/c9sc01960j] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/02/2019] [Indexed: 01/29/2023] Open
Abstract
The first isolable molecular thorium nitride, [(NR2)3Th(μ-N)Th(NR2)3]–, was synthesized by reaction of [Th{N(R)(SiMe2)CH2}(NR2)2] with NaNH2 and characterized by X-ray crystallography, 15N NMR spectroscopy, and DFT calculations.
Reaction of the thorium metallacycle, [Th{N(R)(SiMe2)CH2}(NR2)2] (R = SiMe3) with 1 equiv. of NaNH2 in THF, in the presence of 18-crown-6, results in formation of the bridged thorium nitride complex, [Na(18-crown-6)(Et2O)][(R2N)3Th(μ-N)(Th(NR2)3] ([Na][1]), which can be isolated in 66% yield after work-up. Complex [Na][1] is the first isolable molecular thorium nitride complex. Mechanistic studies suggest that the first step of the reaction is deprotonation of [Th{N(R)(SiMe2)CH2}(NR2)2] by NaNH2, which results in formation of the thorium bis(metallacycle) complex, [Na(THF)x][Th{N(R)(SiMe2CH2)}2(NR2)], and NH3. NH3 then reacts with unreacted [Th{N(R)(SiMe2)CH2}(NR2)2], forming [Th(NR2)3(NH2)] (2), which protonates [Na(THF)x][Th{N(R)(SiMe2CH2)}2(NR2)] to give [Na][1]. Consistent with hypothesis, addition of excess NH3 to a THF solution of [Th{N(R)(SiMe2)CH2}(NR2)2] results in formation of [Th(NR2)3(NH2)] (2), which can be isolated in 51% yield after work-up. Furthermore, reaction of [K(DME)][Th{N(R)(SiMe2CH2)}2(NR2)] with 2, in THF-d8, results in clean formation of [K][1], according to 1H NMR spectroscopy. The electronic structures of [1]– and 2 were investigated by 15N NMR spectroscopy and DFT calculations. This analysis reveals that the Th–Nnitride bond in [1]– features more covalency and a greater degree of bond multiplicity than the Th–NH2 bond in 2. Similarly, our analysis indicates a greater degree of covalency in [1]–vs. comparable thorium imido and oxo complexes.
Collapse
Affiliation(s)
- Selena L Staun
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , USA .
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry , University at Buffalo , State University of New York , 312 Natural Sciences Complex , Buffalo , NY 14260-3000 , USA .
| | - Guang Wu
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , USA .
| | - Jochen Autschbach
- Department of Chemistry , University at Buffalo , State University of New York , 312 Natural Sciences Complex , Buffalo , NY 14260-3000 , USA .
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , USA .
| |
Collapse
|
39
|
Mullane KC, Hrobárik P, Cheisson T, Manor BC, Carroll PJ, Schelter EJ. 13C NMR Shifts as an Indicator of U-C Bond Covalency in Uranium(VI) Acetylide Complexes: An Experimental and Computational Study. Inorg Chem 2019; 58:4152-4163. [PMID: 30848588 DOI: 10.1021/acs.inorgchem.8b03175] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of uranium(VI)-acetylide complexes of the general formula UVI(O)(C≡C-C6H4-R)[N(SiMe3)2]3, with variation of the para substituent (R = NMe2, OMe, Me, Ph, H, Cl) on the aryl(acetylide) ring, was prepared. These compounds were analyzed by 13C NMR spectroscopy, which showed that the acetylide carbon bound to the uranium(VI) center, U- C≡C-Ar, was shifted strongly downfield, with δ(13C) values ranging from 392.1 to 409.7 ppm for Cl and NMe2 substituted complexes, respectively. These extreme high-frequency 13C resonances are attributed to large negative paramagnetic (σpara) and relativistic spin-orbit (σSO) shielding contributions, associated with extensive U(5f) and C(2s) orbital contributions to the U-C bonding in title complexes. The trend in the 13C chemical shift of the terminal acetylide carbon is opposite that observed in the series of parent (aryl)acetylenes, due to shielding effects of the para substituent. The 13C chemical shifts of the acetylide carbon instead correlate with DFT computed U-C bond lengths and corresponding QTAIM delocalization indices or Wiberg bond orders. SQUID magnetic susceptibility measurements were indicative of the Van Vleck temperature independent paramagnetism (TIP) of the uranium(VI) complexes, suggesting a magnetic field-induced mixing of the singlet ground-state (f0) of the U(VI) ion with low-lying (thermally inaccessible) paramagnetic excited states (involved also in the perturbation-theoretical treatment of the unusually large paramagnetic and SO contributions to the 13C shifts). Thus, together with reported data, we demonstrate that the sensitive 13C NMR shifts serve as a direct, simple, and accessible measure of uranium(VI)-carbon bond covalency.
Collapse
Affiliation(s)
- Kimberly C Mullane
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences , Comenius University , SK-84215 Bratislava , Slovakia.,Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
40
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Wu W, Rehe D, Hrobárik P, Kornienko AY, Emge TJ, Brennan JG. Molecular Thorium Compounds with Dichalcogenide Ligands: Synthesis, Structure, 77Se NMR Study, and Thermolysis. Inorg Chem 2018; 57:14821-14833. [DOI: 10.1021/acs.inorgchem.8b02555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen Wu
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - David Rehe
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G. Brennan
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
42
|
Edelmann FT. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Behrle AC, Myers AJ, Kerridge A, Walensky JR. Coordination Chemistry and QTAIM Analysis of Homoleptic Dithiocarbamate Complexes, M(S2CNiPr2)4 (M = Ti, Zr, Hf, Th, U, Np). Inorg Chem 2018; 57:10518-10524. [DOI: 10.1021/acs.inorgchem.8b00077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew C. Behrle
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211-7600, United States
| | - Alexander J. Myers
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211-7600, United States
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211-7600, United States
| |
Collapse
|
44
|
Rocchigiani L, Fernandez-Cestau J, Chambrier I, Hrobárik P, Bochmann M. Unlocking Structural Diversity in Gold(III) Hydrides: Unexpected Interplay of cis/ trans-Influence on Stability, Insertion Chemistry, and NMR Chemical Shifts. J Am Chem Soc 2018; 140:8287-8302. [PMID: 29860842 PMCID: PMC6047844 DOI: 10.1021/jacs.8b04478] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 11/29/2022]
Abstract
The synthesis of new families of stable or at least spectroscopically observable gold(III) hydride complexes is reported, including anionic cis-hydrido chloride, hydrido aryl, and cis-dihydride complexes. Reactions between (C^C)AuCl(PR3) and LiHBEt3 afford the first examples of gold(III) phosphino hydrides (C^C)AuH(PR3) (R = Me, Ph, p-tolyl; C^C = 4,4'-di- tert-butylbiphenyl-2,2'-diyl). The X-ray structure of (C^C)AuH(PMe3) was determined. LiHBEt3 reacts with (C^C)AuCl(py) to give [(C^C)Au(H)Cl]-, whereas (C^C)AuH(PR3) undergoes phosphine displacement, generating the dihydride [(C^C)AuH2]-. Monohydrido complexes hydroaurate dimethylacetylene dicarboxylate to give Z-vinyls. (C^N^C)Au pincer complexes give the first examples of gold(III) bridging hydrides. Stability, reactivity and bonding characteristics of Au(III)-H complexes crucially depend on the interplay between cis and trans-influence. Remarkably, these new gold(III) hydrides extend the range of observed NMR hydride shifts from δ -8.5 to +7 ppm. Relativistic DFT calculations show that the origin of this wide chemical shift variability as a function of the ligands depends on the different ordering and energy gap between "shielding" Au(dπ)-based orbitals and "deshielding" σ(Au-H)-type MOs, which are mixed to some extent upon inclusion of spin-orbit (SO) coupling. The resulting 1H hydride shifts correlate linearly with the DFT optimized Au-H distances and Au-H bond covalency. The effect of cis ligands follows a nearly inverse ordering to that of trans ligands. This study appears to be the first systematic delineation of cis ligand influence on M-H NMR shifts and provides the experimental evidence for the dramatic change of the 1H hydride shifts, including the sign change, upon mutual cis and trans ligand alternation.
Collapse
Affiliation(s)
- Luca Rocchigiani
- School
of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| | - Julio Fernandez-Cestau
- School
of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| | - Isabelle Chambrier
- School
of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| | - Peter Hrobárik
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
- Department
of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Manfred Bochmann
- School
of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| |
Collapse
|
45
|
Rungthanaphatsophon P, Huang P, Walensky JR. Phosphorano-Stabilized Carbene Complexes with Short Thorium(IV)– and Uranium(IV)–Carbon Bonds. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Patrick Huang
- Department of Chemistry and Biochemistry, California State University, East Bay, Hayward, California 94542, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
46
|
Ringgold M, Rehe D, Hrobárik P, Kornienko AY, Emge TJ, Brennan JG. Thorium Cubanes–Synthesis, Solid-State and Solution Structures, Thermolysis, and Chalcogen Exchange Reactions. Inorg Chem 2018; 57:7129-7141. [DOI: 10.1021/acs.inorgchem.8b00836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marissa Ringgold
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - David Rehe
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Peter Hrobárik
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G. Brennan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
47
|
Wooles AJ, Mills DP, Tuna F, McInnes EJL, Law GTW, Fuller AJ, Kremer F, Ridgway M, Lewis W, Gagliardi L, Vlaisavljevich B, Liddle ST. Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings. Nat Commun 2018; 9:2097. [PMID: 29844376 PMCID: PMC5974406 DOI: 10.1038/s41467-018-04560-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022] Open
Abstract
Despite the fact that non-aqueous uranium chemistry is over 60 years old, most polarised-covalent uranium-element multiple bonds involve formal uranium oxidation states IV, V, and VI. The paucity of uranium(III) congeners is because, in common with metal-ligand multiple bonding generally, such linkages involve strongly donating, charge-loaded ligands that bind best to electron-poor metals and inherently promote disproportionation of uranium(III). Here, we report the synthesis of hexauranium-methanediide nanometre-scale rings. Combined experimental and computational studies suggest overall the presence of formal uranium(III) and (IV) ions, though electron delocalisation in this Kramers system cannot be definitively ruled out, and the resulting polarised-covalent U = C bonds are supported by iodide and δ-bonded arene bridges. The arenes provide reservoirs that accommodate charge, thus avoiding inter-electronic repulsion that would destabilise these low oxidation state metal-ligand multiple bonds. Using arenes as electronic buffers could constitute a general synthetic strategy by which to stabilise otherwise inherently unstable metal-ligand linkages.
Collapse
Affiliation(s)
- Ashley J Wooles
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - David P Mills
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Eric J L McInnes
- School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gareth T W Law
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Adam J Fuller
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Felipe Kremer
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Mark Ridgway
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - William Lewis
- School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Laura Gagliardi
- Department of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Bess Vlaisavljevich
- Department of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA.
- Department of Chemistry, University of South Dakota, 414 E Clark Street, Vermillion, SD, 57069, USA.
| | - Stephen T Liddle
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
48
|
Liu J, Seed JA, Formanuik A, Ortu F, Wooles AJ, Mills DP, Liddle ST. Thorium(IV) alkyl synthesis from a thorium(III) cyclopentadienyl complex and an N-heterocyclic olefin. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Wu QY, Cheng ZP, Lan JH, Wang CZ, Chai ZF, Gibson JK, Shi WQ. Insight into the nature of M–C bonding in the lanthanide/actinide-biscarbene complexes: a theoretical perspective. Dalton Trans 2018; 47:12718-12725. [DOI: 10.1039/c8dt02702a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The An/Ln–C bonding nature was explored using relativistic theory. Inclusion of Np and Pu extends understanding to later actinides bonding.
Collapse
Affiliation(s)
- Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhong-Ping Cheng
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - John K. Gibson
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
50
|
Mao W, Xiang L, Maron L, Leng X, Chen Y. Nonchelated Phosphoniomethylidene Complexes of Scandium and Lutetium. J Am Chem Soc 2017; 139:17759-17762. [DOI: 10.1021/jacs.7b11097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weiqing Mao
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Li Xiang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Xuebing Leng
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yaofeng Chen
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|