1
|
Quintana-Bulla JI, Tonon LAC, Michaliski LF, Hajdu E, Ferreira AG, Berlinck RGS. Testacosides A-D, glycoglycerolipids produced by Microbacterium testaceum isolated from Tedania brasiliensis. Appl Microbiol Biotechnol 2024; 108:112. [PMID: 38217254 PMCID: PMC10786734 DOI: 10.1007/s00253-023-12870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 01/15/2024]
Abstract
Marine bacteria living in association with marine sponges have proven to be a reliable source of biologically active secondary metabolites. However, no studies have yet reported natural products from Microbacterium testaceum spp. We herein report the isolation of a M. testaceum strain from the sponge Tedania brasiliensis. Molecular networking analysis of bioactive pre-fractionated extracts from culture media of M. testaceum enabled the discovery of testacosides A-D. Analysis of spectroscopic data and chemical derivatizations allowed the identification of testacosides A-D as glycoglycerolipids bearing a 1-[α-glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol moiety connected to 12-methyltetradecanoic acid for testacoside A (1), 14-methylpentadecanoic acid for testacoside B (2), and 14-methylhexadecanoic acid for testacosides C (3) and D (4). The absolute configuration of the monosaccharide residues was determined by 1H-NMR analysis of the respective diastereomeric thiazolidine derivatives. This is the first report of natural products isolated from cultures of M. testaceum. KEY POINTS: • The first report of metabolites produced by Microbacterium testaceum. • 1-[α-Glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol lipids isolated and identified. • Microbacterium testaceum strain isolated from the sponge Tedania brasiliensis.
Collapse
Affiliation(s)
- Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Luciane A C Tonon
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Lamonielli F Michaliski
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Eduardo Hajdu
- Museu Nacional, Universidade Federal Do Rio de Janeiro, Quinta da Boa Vista, S/N, CEP , Rio de Janeiro, RJ, 20940-040, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CEP , São Carlos, SP, 13565-905, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Park YS, Kim ES, Deyrup ST, Lee JW, Shim SH. Cytotoxic Peptaibols from Trichoderma strigosum. JOURNAL OF NATURAL PRODUCTS 2024; 87:2081-2094. [PMID: 39038494 DOI: 10.1021/acs.jnatprod.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Five new lipopeptaibols (1-5) and eight new 19-residue peptaibols (8-15) along with two known lipopeptaibols, lipovelutibols C (6) and D (7) were isolated from Trichoderma strigosum. The planar structures of the newly discovered peptaibols (1-5, 8-15) were elucidated using 1D and 2D NMR, and UPLC-MS/MS data. The absolute configurations for new peptaibols (1-5, 8-15) were elucidated using the advanced Marfey's method and GITC (2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate) derivatization. Through analysis of CD spectra, these peptabols were found to have right-handed helical conformations. While most of the new compounds were significantly more active than the positive control, 9, 10, 12, and 15 containing Ser and Leu at positions 10 and 11, respectively, were the most cytotoxic against MDA-MB-231, SNU449, SKOV3, DU145, and HCT116 cancer cell lines, and the 19-residue peptaibols were generally more potent than lipopeptaibols.
Collapse
Affiliation(s)
- Yun Seo Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Londonville, New York 12211, United States
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Han JS, Kim ES, Cho YB, Kim SY, Lee MK, Hwang BY, Lee JW. Cytotoxic Peptaibols from Trichoderma guizhouense, a Fungus Isolated from an Urban Soil Sample. JOURNAL OF NATURAL PRODUCTS 2024; 87:1994-2003. [PMID: 39102454 DOI: 10.1021/acs.jnatprod.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Soil sustains human life by nourishing crops, storing food sources, and housing microbes, which may affect the nutrition and biosynthesis of secondary metabolites, some of which are used as drugs. To identify lead compounds for a new class of drugs, we collected soil-derived fungal strains from various environments, including urban areas. As various human pathogens are assumed to influence the biosynthetic pathways of metabolites in soil fungi, leading to the production of novel scaffolds, we focused our work on densely populated urban areas and tourist attractions. A soil-derived fungal extract library was screened against MDA-MB-231 cells to derive their cytotoxic activity. Notably, 10 μg/mL of the extract of Trichoderma guizhouense (DS9-1) was found to exhibit an inhibitory effect of 71%. Fractionation, isolation, and structure elucidation efforts led to the identification of nine new peptaibols, trichoguizaibols A-I (1-9), comprising 14 amino acid residues (14-AA peptaibols), and three new peptaibols, trichoguizaibols J-L (10-12), comprising 18 amino acid residues (18-AA peptaibols). The chemical structures of 1-12 were determined based on their 1D and 2D NMR spectra, HRESIMS, electronic circular dichroism data, and results of the advanced Marfey's method. The 18-AA peptaibols were found to exhibit cytotoxicity against MDA-MB-231, SK-Hep1, SKOV3, DU145, and HCT116 cells greater than that of the 14-AA peptaibols. Among these compounds, 10-12 exhibited potent sub-micromolar IC50 values. These results are expected to shed light on a new direction for developing novel scaffolds as anticancer agents.
Collapse
Affiliation(s)
- Jae Sang Han
- College of Pharmacy, Chungbuk National University, Cheongju 28610, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Yong Beom Cho
- College of Pharmacy, Chungbuk National University, Cheongju 28610, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28610, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28610, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
4
|
Li X, Cui Y, Wu W, Zhang Z, Fang J, Yu X, Cao J. Characterization and Biosynthetic Regulation of Isoflavone Genistein in Deep-Sea Actinomycetes Microbacterium sp. B1075. Mar Drugs 2024; 22:276. [PMID: 38921587 PMCID: PMC11205022 DOI: 10.3390/md22060276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Deep-sea environments, as relatively unexplored extremes within the Earth's biosphere, exhibit notable distinctions from terrestrial habitats. To thrive in these extreme conditions, deep-sea actinomycetes have evolved unique biochemical metabolisms and physiological capabilities to ensure their survival in this niche. In this study, five actinomycetes strains were isolated and identified from the Mariana Trench via the culture-dependent method and 16S rRNA sequencing approach. The antimicrobial activity of Microbacterium sp. B1075 was found to be the most potent, and therefore, it was selected as the target strain. Molecular networking analysis via the Global Natural Products Social Molecular Networking (GNPS) platform identified 25 flavonoid compounds as flavonoid secondary metabolites. Among these, genistein was purified and identified as a bioactive compound with significant antibacterial activity. The complete synthesis pathway for genistein was proposed within strain B1075 based on whole-genome sequencing data, with the key gene being CHS (encoding chalcone synthase). The expression of the gene CHS was significantly regulated by high hydrostatic pressure, with a consequent impact on the production of flavonoid compounds in strain B1075, revealing the relationship between actinomycetes' synthesis of flavonoid-like secondary metabolites and their adaptation to high-pressure environments at the molecular level. These results not only expand our understanding of deep-sea microorganisms but also hold promise for providing valuable insights into the development of novel pharmaceuticals in the field of biopharmaceuticals.
Collapse
Affiliation(s)
- Xin Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Yukun Cui
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Weichao Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China;
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Xi Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Junwei Cao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| |
Collapse
|
5
|
Liang X, Yang JF, Huang ZH, Ma X, Yan Y, Qi SH. New Antibacterial Peptaibiotics against Plant and Fish Pathogens from the Deep-Sea-Derived Fungus Simplicillium obclavatum EIODSF 020. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6402-6413. [PMID: 38491989 DOI: 10.1021/acs.jafc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Bacterial diseases could severely harm agricultural production. To develop new antibacterial agents, the secondary metabolites of a deep-sea-derived fungus Simplicillium obclavatum EIODSF 020 with antibacterial activities against plant and fish pathogens were investigated by a bioassay-guided approach, which led to the isolation of 11 new peptaibiotics, simplicpeptaibs A-K (1-11). They contain 16-19 residues, including β-alanine, tyrosine, or tyrosine O-sulfate, that were rarely present in peptaibiotics. Their structures were elucidated by spectroscopic analyses (NMR, HRMS, HRMS2, and ECD) and Marfey's method. The primary and secondary structures of novel sulfated peptaibiotic 9 were reconfirmed by single-crystal X-ray diffraction analysis. Genome sequencing of S. obclavatum EIODSF 020 allowed the detection of a gene cluster encoding two individual NRPSs (totally containing 19 modules) that was closely related to simplicpeptaib biosynthesis. Antibacterial investigations of 1-11 together with the previously isolated linear and cyclic peptides from this strain suggested the antibacterial property of this fungus was attributed to the peptaibiotics and cyclic lipopeptides. Among them, compounds 4, 6, 7, and 9 showed significant activity against the tobacco pathogen Ralstonia solanacearum or tilapia pathogens Streptococcus iniae and Streptococcus agalactiae. The antibacterial activity of 6 against R. solanacearum could be enhanced by the addition of 1% NaCl. The structure-bioactivity relationship of simplicpeptaibs was discussed.
Collapse
Affiliation(s)
- Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jia-Fan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuan Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yan Yan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
6
|
Pereira-Dias L, Oliveira-Pinto PR, Fernandes JO, Regalado L, Mendes R, Teixeira C, Mariz-Ponte N, Gomes P, Santos C. Peptaibiotics: Harnessing the potential of microbial secondary metabolites for mitigation of plant pathogens. Biotechnol Adv 2023; 68:108223. [PMID: 37536466 DOI: 10.1016/j.biotechadv.2023.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Agricultural systems are in need of low-cost, safe antibiotics to protect crops from pests and diseases. Peptaibiotics, a family of linear, membrane-active, amphipathic polypeptides, have been shown to exhibit antibacterial, antifungal, and antiviral activity, and to be inducers of plant resistance against a wide range of phytopathogens. Peptaibiotics belong to the new generation of alternatives to agrochemicals, aligned with the United Nations Sustainable Development Goals and the One Health approach toward ensuring global food security and safety. Despite that, these fungi-derived, non-ribosomal peptides remain surprisingly understudied, especially in agriculture, where only a small number has been tested against a reduced number of phytopathogens. This lack of adoption stems from peptaibiotics' poor water solubility and the difficulty to synthesize and purify them in vitro, which compromises their delivery and inclusion in formulations. In this review, we offer a comprehensive analysis of peptaibiotics' classification, biosynthesis, relevance to plant protection, and mode of action against phytopathogens, along with the techniques enabling researchers to extract, purify, and elucidate their structure, and the databases holding such valuable data. It is also discussed how chemical synthesis and ionic liquids could increase their solubility, how genetic engineering and epigenetics could boost in vitro production, and how omics can reduce screenings' workload through in silico selection of the best candidates. These strategies could turn peptaibiotics into effective, ultra-specific, biodegradable tools for phytopathogen control.
Collapse
Affiliation(s)
- Leandro Pereira-Dias
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Paulo R Oliveira-Pinto
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Juliana O Fernandes
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Laura Regalado
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rafael Mendes
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Nuno Mariz-Ponte
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Conceição Santos
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Xu YT, Luo YC, Xue JH, Li YP, Dong L, Li WJ, Zhou ZY, Wei XY. Micropyrones A and B, two new α-pyrones from the actinomycete Microbacterium sp. GJ312 isolated from Glycyrrhiza uralensis Fisch. Nat Prod Res 2023; 37:462-467. [PMID: 34544305 DOI: 10.1080/14786419.2021.1979546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two new α-pyrones, micropyrones A (1) and B (2), along with four known γ-pyrones, nocapyrone D (3), nocapyrone A (4), marinactinone A (5), and nocapyrone H (6), were isolated from the culture extract of actinomycete Microbacterium sp. GJ312, which was isolated from Glycyrrhiza uralensis. The structures of these compounds were identified by analysis of spectral data. They are the first α- and γ-pyrones reported from the genus Microbacterium. The antibacterial activity of all compounds against Staphylococcus aureus and methicillin resistant S. aureus was evaluated. However, none of them showed significant activity. This study represents the first phytochemical example of a Glycyrrhiza-derived actinomycete.
Collapse
Affiliation(s)
- Ying-Ting Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Cai Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Hua Xue
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Ping Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhong-Yu Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Ribeiro I, Antunes JT, Alexandrino DAM, Tomasino MP, Almeida E, Hilário A, Urbatzka R, Leão PN, Mucha AP, Carvalho MF. Actinobacteria from Arctic and Atlantic deep-sea sediments-Biodiversity and bioactive potential. Front Microbiol 2023; 14:1158441. [PMID: 37065153 PMCID: PMC10100589 DOI: 10.3389/fmicb.2023.1158441] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
The deep-sea covers over 70% of the Earth's surface and harbors predominantly uncharacterized bacterial communities. Actinobacteria are the major prokaryotic source of bioactive natural products that find their way into drug discovery programs, and the deep-sea is a promising source of biotechnologically relevant actinobacteria. Previous studies on actinobacteria in deep-sea sediments were either regionally restricted or did not combine a community characterization with the analysis of their bioactive potential. Here we characterized the actinobacterial communities of upper layers of deep-sea sediments from the Arctic and the Atlantic (Azores and Madeira) ocean basins, employing 16S rRNA metabarcoding, and studied the biosynthetic potential of cultivable actinobacteria retrieved from those samples. Metabarcoding analysis showed that the actinobacterial composition varied between the sampled regions, with higher abundance in the Arctic samples but higher diversity in the Atlantic ones. Twenty actinobacterial genera were detected using metabarcoding, as a culture-independent method, while culture-dependent methods only allowed the identification of nine genera. Isolation of actinobacteria resulted on the retrieval of 44 isolates, mainly associated with Brachybacterium, Microbacterium, and Brevibacterium genera. Some of these isolates were only identified on a specific sampled region. Chemical extracts of the actinobacterial isolates were subsequently screened for their antimicrobial, anticancer and anti-inflammatory activities. Extracts from two Streptomyces strains demonstrated activity against Candida albicans. Additionally, eight extracts (obtained from Brachybacterium, Brevibacterium, Microbacterium, Rhodococcus, and Streptomyces isolates) showed significant activity against at least one of the tested cancer cell lines (HepG2 and T-47D). Furthermore, 15 actinobacterial extracts showed anti-inflammatory potential in the RAW 264.4 cell model assay, with no concomitant cytotoxic response. Dereplication and molecular networking analysis of the bioactive actinobacterial extracts showed the presence of some metabolites associated with known natural products, but one of the analyzed clusters did not show any match with the natural products described as responsible for these bioactivities. Overall, we were able to recover taxonomically diverse actinobacteria with different bioactivities from the studied deep-sea samples. The conjugation of culture-dependent and -independent methods allows a better understanding of the actinobacterial diversity of deep-sea environments, which is important for the optimization of approaches to obtain novel chemically-rich isolates.
Collapse
Affiliation(s)
- Inês Ribeiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Inês Ribeiro,
| | - Jorge T. Antunes
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Diogo A. M. Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Environmental Health, School of Health, Polytechnic of Porto, Porto, Portugal
| | - Maria Paola Tomasino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Eduarda Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Ana Hilário
- Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ralph Urbatzka
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Pedro N. Leão
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Ana P. Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Maria F. Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Bahrami Y, Bouk S, Kakaei E, Taheri M. Natural Products from Actinobacteria as a Potential Source of New Therapies Against Colorectal Cancer: A Review. Front Pharmacol 2022; 13:929161. [PMID: 35899111 PMCID: PMC9310018 DOI: 10.3389/fphar.2022.929161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common, and deadly disease. Despite the improved knowledge on CRC heterogeneity and advances in the medical sciences, there is still an urgent need to cope with the challenges and side effects of common treatments for the disease. Natural products (NPs) have always been of interest for the development of new medicines. Actinobacteria are known to be prolific producers of a wide range of bioactive NPs, and scientific evidence highlights their important protective role against CRC. This review is a holistic picture on actinobacter-derived cytotoxic compounds against CRC that provides a good perspective for drug development and design in near future. This review also describes the chemical structure of 232 NPs presenting anti-CRC activity with the being majority of quinones, lactones, alkaloids, peptides, and glycosides. The study reveals that most of these NPs are derived from marine actinobacteria followed by terrestrial and endophytic actinobacteria, respectively. They are predominantly produced by Streptomyces, Micromonospors, Saliniospors and Actinomadura, respectively, in which Streptomyces, as the predominant contributor generating over 76% of compounds exclusively. Besides it provides a valuable snapshot of the chemical structure-activity relationship of compounds, highlighting the presence or absence of some specific atoms and chemical units in the structure of compounds can greatly influence their biological activities. To the best of our knowledge, this is the first comprehensive review on natural actinobacterial compounds affecting different types of CRC. Our study reveals that the high diversity of actinobacterial strains and their NPs derivatives, described here provides a new perspective and direction for the production of new anti-CRC drugs and paves the way to innovation for drugs discovery in the future. The knowledge obtain from this review can help us to understand the pivotal application of actinobacteria in future drugs development.
Collapse
Affiliation(s)
- Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Biotechnology, School of Medicine, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- *Correspondence: Yadollah Bahrami, ; Mohammad Taheri,
| | - Sasan Bouk
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Kakaei
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Yadollah Bahrami, ; Mohammad Taheri,
| |
Collapse
|
10
|
Zhang SH, Yue XL, Zhao X, Tang J, Yang Y, Xu R, Ma H, Zhu SM, Luo FY, Zhang Q, Zhang GG, Li CW. Longibrachiamide A, a 20-Residue Peptaibol Isolated from Trichoderma longibrachiatum Rifai DMG-3-1-1. Chem Biodivers 2022; 19:e202200286. [PMID: 35502602 DOI: 10.1002/cbdv.202200286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 11/07/2022]
Abstract
Longibrachiamide A (1), a new 20-residue peptaibol, along with three known ones (2-4), were isolated from the fungus Trichoderma longibrachiatum Rifai DMG-3-1-1, isolated from a mushroom Clitocybe nebularis (Batsch) P. Kumm, which was collected from coniferous forest of northeast China in our previous work. The structure of longibrachiamide A (1) was determined by its NMR and ESI-MS/MS data, the absolute configuration of 1 was further determined by Marfey's analyses. And the complete NMR data of 2-4 were also reported for the first time. The similar CD spectra of 1-4 showed that they all had mixed 310 -/α-helical conformations. Compounds 1-4 showed strong cytotoxicities against BV2, A549 and MCF-7 cells, and also showed moderate inhibitory effects against the tested Gram-positive bacteria, including MRSA T144 and VRE-10.
Collapse
Affiliation(s)
- Shu-Hua Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Xian-Lin Yue
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Xue Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Jing Tang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Yu Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Rui Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Hao Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Shuai-Ming Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Fu-Yao Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Qin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Guo-Gang Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Chang-Wei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| |
Collapse
|
11
|
Qiu Z, Wu Y, Lan K, Wang S, Yu H, Wang Y, Wang C, Cao S. Cytotoxic compounds from marine actinomycetes: Sources, Structures and Bioactivity. ACTA MATERIA MEDICA 2022; 1:445-475. [PMID: 36588746 PMCID: PMC9802659 DOI: 10.15212/amm-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Marine actinomycetes produce a substantial number of natural products with cytotoxic activity. The strains of actinomycetes were isolated from different sources like fishes, coral, sponges, seaweeds, mangroves, sediments etc. These cytotoxic compounds can be categorized briefly into four classes: polyketides, non-ribosomal peptides and hybrids, isoprenoids and hybrids, and others, among which majority are polyketides (146). Twenty two out of the 254 compounds showed potent cytotoxicity with IC50 values at ng/mL or nM level. This review highlights the sources, structures and antitumor activity of 254 natural products isolated from marine actinomycetes, which were new when they were reported from 1989 to 2020.
Collapse
Affiliation(s)
- Ziyan Qiu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yinshuang Wu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Kunyan Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Shiyi Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Huilin Yu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yufei Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China,Correspondence: (C.W.); (S.C.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA,Correspondence: (C.W.); (S.C.)
| |
Collapse
|
12
|
Lam YTH, Ricardo MG, Rennert R, Frolov A, Porzel A, Brandt W, Stark P, Westermann B, Arnold N. Rare Glutamic Acid Methyl Ester Peptaibols from Sepedonium ampullosporum Damon KSH 534 Exhibit Promising Antifungal and Anticancer Activity. Int J Mol Sci 2021; 22:ijms222312718. [PMID: 34884518 PMCID: PMC8657771 DOI: 10.3390/ijms222312718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 01/29/2023] Open
Abstract
Fungal species of genus Sepedonium are rich sources of diverse secondary metabolites (e.g., alkaloids, peptaibols), which exhibit variable biological activities. Herein, two new peptaibols, named ampullosporin F (1) and ampullosporin G (2), together with five known compounds, ampullosporin A (3), peptaibolin (4), chrysosporide (5), c(Trp-Ser) (6) and c(Trp-Ala) (7), have been isolated from the culture of Sepedonium ampullosporum Damon strain KSH534. The structures of 1 and 2 were elucidated based on ESI-HRMSn experiments and intense 1D and 2D NMR analyses. The sequence of ampullosporin F (1) was determined to be Ac-Trp1-Ala2-Aib3-Aib4-Leu5-Aib6-Gln7-Aib8-Aib9-Aib10-GluOMe11-Leu12-Aib13-Gln14-Leuol15, while ampullosporin G (2) differs from 1 by exchanging the position of Gln7 with GluOMe11. Furthermore, the total synthesis of 1 and 2 was carried out on solid-phase to confirm the absolute configuration of all chiral amino acids as L. In addition, ampullosporin F (1) and G (2) showed significant antifungal activity against B. cinerea and P. infestans, but were inactive against S. tritici. Cell viability assays using human prostate (PC-3) and colorectal (HT-29) cancer cells confirmed potent anticancer activities of 1 and 2. Furthermore, a molecular docking study was performed in silico as an attempt to explain the structure-activity correlation of the characteristic ampullosporins (1–3).
Collapse
Affiliation(s)
- Yen T. H. Lam
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Department of Organic Chemistry, Faculty of Chemistry, Hanoi National University of Education, Hanoi 100000, Vietnam
| | - Manuel G. Ricardo
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, D-14476 Potsdam, Germany
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Department of Biochemistry, Faculty of Biology, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Pauline Stark
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Correspondence: ; Tel.: +49-345-5582-1310
| |
Collapse
|
13
|
Kim CK, Krumpe LRH, Smith E, Henrich CJ, Brownell I, Wendt KL, Cichewicz RH, O’Keefe BR, Gustafson KR. Roseabol A, a New Peptaibol from the Fungus Clonostachys rosea. Molecules 2021; 26:molecules26123594. [PMID: 34208349 PMCID: PMC8231123 DOI: 10.3390/molecules26123594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022] Open
Abstract
A new 11 amino acid linear peptide named roseabol A (1) and the known compound 13-oxo-trans-9,10-epoxy-11(E)-octadecenoic acid (2) were isolated from the fungus Clonostachys rosea. Combined NMR and MS analysis revealed that roseabol A (1) contained amino acid residues characteristic of the peptaibol family of peptides such as isovaline, α-aminoisobutyric acid, hydroxyproline, leucinol, and an N-terminal isovaleric acid moiety. The amino acid sequence was established by a combination of NMR studies and tandem MS fragmentation analyses, and the absolute configurations of the constituent amino acids of 1 were determined by the advanced Marfey’s method. Compound 2 showed inhibitory activity against Merkel cell carcinoma, a rare and difficult-to-treat type of skin cancer, with an IC50 value of 16.5 μM.
Collapse
Affiliation(s)
- Chang-Kwon Kim
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (C.-K.K.); (L.R.H.K.); (E.S.); (C.J.H.); (B.R.O.)
| | - Lauren R. H. Krumpe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (C.-K.K.); (L.R.H.K.); (E.S.); (C.J.H.); (B.R.O.)
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Emily Smith
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (C.-K.K.); (L.R.H.K.); (E.S.); (C.J.H.); (B.R.O.)
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Curtis J. Henrich
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (C.-K.K.); (L.R.H.K.); (E.S.); (C.J.H.); (B.R.O.)
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20893, USA;
| | - Karen L. Wendt
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA; (K.L.W.); (R.H.C.)
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA; (K.L.W.); (R.H.C.)
| | - Barry R. O’Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (C.-K.K.); (L.R.H.K.); (E.S.); (C.J.H.); (B.R.O.)
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD 21701, USA
| | - Kirk R. Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (C.-K.K.); (L.R.H.K.); (E.S.); (C.J.H.); (B.R.O.)
- Correspondence: ; Tel.: +1-301-846-5197
| |
Collapse
|
14
|
Zhang SH, Yang J, Ma H, Yang Y, Zhou GF, Zhao X, Xu R, Nie D, Zhang GG, Shan JJ, Cui CB, Li CW. Longibramides A-E, Peptaibols Isolated from a Mushroom Derived Fungus Trichoderma longibrachiatum Rifai DMG-3-1-1. Chem Biodivers 2021; 18:e2100128. [PMID: 33709565 DOI: 10.1002/cbdv.202100128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/12/2021] [Indexed: 01/21/2023]
Abstract
Five new peptaibols, longibramides A-E (1-5) with 11 amino acid residues, were isolated from a fungus Trichoderma longibrachiatum Rifai DMG-3-1-1, which was isolated from a mushroom Clitocybe nebularis (Batsch) P. Kumm collected from coniferous forest in the subboreal area of northeast China. The structures of longibramides A-E were determined by their spectroscopic data (NMR and MS-MS spectra), their absolute configurations were determined by X-ray diffractions and Marfey's analyses. The X-ray diffractions of longibramides A, B, and the similar CD spectra of A-E showed that they all had α-helix conformations. Longibramides B and E showed moderate cytotoxicities against BV2 and MCF-7 cells and also showed some inhibitory effects against methicillin-resistant Staphylococcus aureus MRSA T144. L-trans-Hyp was not commonly found in natural peptaibols, which was the 6th or 10th amino acid residue in longibramides C-E. The X-ray diffractions of longibramides A and B afforded the accuracy conformations of their secondary structures, which maybe help to interpret the structure-activity relationships of the family of peptaibols in the future.
Collapse
Affiliation(s)
- Shu-Hua Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.,State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Jiewei Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Hao Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Yu Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Guo-Feng Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Xue Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Rui Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Dan Nie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Guo-Gang Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jun-Jie Shan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Cheng-Bin Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Chang-Wei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| |
Collapse
|
15
|
Lee JW, Collins JE, Wendt KL, Chakrabarti D, Cichewicz RH. Leveraging Peptaibol Biosynthetic Promiscuity for Next-Generation Antiplasmodial Therapeutics. JOURNAL OF NATURAL PRODUCTS 2021; 84:503-517. [PMID: 33565879 PMCID: PMC7941592 DOI: 10.1021/acs.jnatprod.0c01370] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Malaria remains a worldwide threat, afflicting over 200 million people each year. The emergence of drug resistance against existing therapeutics threatens to destabilize global efforts aimed at controlling Plasmodium spp. parasites, which is expected to leave vast portions of humanity unprotected against the disease. To address this need, systematic testing of a fungal natural product extract library assembled through the University of Oklahoma Citizen Science Soil Collection Program has generated an initial set of bioactive extracts that exhibit potent antiplasmodial activity (EC50 < 0.30 μg/mL) and low levels of toxicity against human cells (less than 50% reduction in HepG2 growth at 25 μg/mL). Analysis of the two top-performing extracts from Trichoderma sp. and Hypocrea sp. isolates revealed both contained chemically diverse assemblages of putative peptaibol-like compounds that were responsible for their antiplasmodial actions. Purification and structure determination efforts yielded 30 new peptaibols and lipopeptaibols (1-14 and 28-43), along with 22 known metabolites (15-27 and 44-52). While several compounds displayed promising activity profiles, one of the new metabolites, harzianin NPDG I (14), stood out from the others due to its noteworthy potency (EC50 = 0.10 μM against multi-drug-resistant P. falciparum line Dd2) and absence of gross toxicity toward HepG2 at the highest concentrations tested (HepG2 EC50 > 25 μM, selectivity index > 250). The unique chemodiversity afforded by these fungal isolates serves to unlock new opportunities for translating peptaibols into a bioactive scaffold worthy of further development.
Collapse
Affiliation(s)
| | | | - Karen L. Wendt
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Debopam Chakrabarti
- Corresponding Authors: Robert H. Cichewicz – Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States; ; Debopam Chakrabarti – Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States;
| | - Robert H. Cichewicz
- Corresponding Authors: Robert H. Cichewicz – Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States; ; Debopam Chakrabarti – Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States;
| |
Collapse
|
16
|
Yi Z, Cao X, Li H, Jian H, Xu X, Yu L, Tang X. Genomic analysis of Microbacterium sediminis YLB-01 T reveals backgrounds related to its deep-sea environment adaptation. Mar Genomics 2020; 56:100818. [PMID: 33632425 DOI: 10.1016/j.margen.2020.100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
Microbacterium sediminis YLB-01T, a piezotolerant and psychrotolerant actinomycete, was isolated from deep-sea sediment of the South-West Indian Ocean and could be a good model for understanding the adaptation of extremophiles to the benthic piezosphere. Here, we report the analysis of the complete genome sequence of strain YLB-01T. The genome sequence consists of a single circular chromosome comprising 2,792,195 bp and a linear plasmid comprising 127,669 bp with G + C content of 71.76 and 68.49 mol%, respectively. In this regard, strain YLB-01T possesses the smallest genome size but the highest G + C content among the genus Microbacterium sequenced to date. As the first complete genome sequence of the genus Microbacterium isolated from deep-sea environment, the strain YLB-01T genome is unique or enriched in genes involved in xenobiotics biodegradation and metabolism, compatible solutes, and transposases, some of which might be related to bacterial enhancement of ecological fitness in the deep sea.
Collapse
Affiliation(s)
- Zhiwei Yi
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiaorong Cao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hong Li
- China National Accreditation Insititute for Conformity Assessment, No. 8 Nanhuashi Dajie Chongwen District, Beijing 10086, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiashutong Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Libo Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; China Ocean Sample Respository (Biology), Xiamen 361005, China.
| |
Collapse
|
17
|
Yang C, Qian R, Xu Y, Yi J, Gu Y, Liu X, Yu H, Jiao B, Lu X, Zhang W. Marine Actinomycetes-derived Natural Products. Curr Top Med Chem 2020; 19:2868-2918. [PMID: 31724505 DOI: 10.2174/1568026619666191114102359] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Abstract
Actinomycetes is an abundant resource for discovering a large number of lead compounds, which play an important role in microbial drug discovery. Compared to terrestrial microorganisms, marine actinomycetes have unique metabolic pathways because of their special living environment, which has the potential to produce a variety of bioactive substances. In this paper, secondary metabolites isolated from marine actinomycetes are reviewed (2013-2018), most of which exhibited cytotoxic, antibacterial, and antiviral biological activities.
Collapse
Affiliation(s)
- Chengfang Yang
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Rui Qian
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Yao Xu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Junxi Yi
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Yiwen Gu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Xiaoyu Liu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Haobing Yu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Binghua Jiao
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Xiaoling Lu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, Australia.,Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, Australia
| |
Collapse
|
18
|
Singh VP, Pathania AS, Kushwaha M, Singh S, Sharma V, Malik FA, Khan IA, Kumar A, Singh D, Vishwakarma RA. 14-Residue peptaibol velutibol A from Trichoderma velutinum: its structural and cytotoxic evaluation. RSC Adv 2020; 10:31233-31242. [PMID: 35520634 PMCID: PMC9056410 DOI: 10.1039/d0ra05780k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/08/2020] [Indexed: 11/21/2022] Open
Abstract
Velutibol A (1), a new 14-residue peptaibol was isolated from the Himalayan cold habitat fungus Trichoderma velutinum. The structural characterization was carried out by 1D and 2D NMR studies, and tandem mass studies, and Marfey's method aided in determining the stereochemistry of the amino acids. The CD analysis revealed folding of the peptide in a 310-helical conformation. The intramolecular H-bonding was determined by an NMR-VT experiment. Cytotoxic evaluation was carried out against a panel of cancer cell lines. The cell cycle assay was carried out on human myeloid leukaemia (HL-60) cells and revealed the formation of apoptotic bodies and DNA damage in a dose-dependent manner. Three other peptaibols namely velutibol B (2), velutibol C (3), and velutibol D (4) were also isolated in trace amounts from the psychotropic fungus and characterized through tandem mass spectroscopy and Marfey's analysis. Velutibol A (1), a new 14-residue peptaibol isolated from the Himalayan cold habitat fungus Trichoderma velutinum.![]()
Collapse
Affiliation(s)
- Varun Pratap Singh
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
- Department of Biotechnology
| | - Anup Singh Pathania
- Pharmacology Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
| | - Manoj Kushwaha
- Quality Control & Quality Assurance Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
| | - Samsher Singh
- Clinical Microbiology Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
| | - Vandana Sharma
- Quality Control & Quality Assurance Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
- Academy of Scientific and Innovative Research
| | - Fayaz A. Malik
- Pharmacology Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
| | - Inshad A. Khan
- Clinical Microbiology Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
- Department of Microbiology
| | - Anil Kumar
- Department of Biotechnology
- Faculty of Sciences
- Shri Mata Vaishno Devi University
- India
| | - Deepika Singh
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
- Quality Control & Quality Assurance Division
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
| |
Collapse
|
19
|
Tang XX, Liu SZ, Yan X, Tang BW, Fang MJ, Wang XM, Wu Z, Qiu YK. Two New Cytotoxic Compounds from a Deep-Sea Penicillum citreonigrum XT20-134. Mar Drugs 2019; 17:md17090509. [PMID: 31470583 PMCID: PMC6780507 DOI: 10.3390/md17090509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Penicillum citreonigrum XT20-134 (MCCC 3A00956) is a fungus with cytotoxic activity, derived from deep-sea sediment. Five new compounds, adeninylpyrenocine (1), 2-hydroxyl-3-pyrenocine-thio propanoic acid (2), ozazino-cyclo-(2,3-dihydroxyl-trp-tyr) (3), 5,5-dichloro-1-(3,5-dimethoxyphenyl)-1,4-dihydroxypentan-2-one (4), and 2,3,4-trihydroxybutyl cinnamate (5), together with 19 known compounds (6-24), were isolated from an ethyl acetate (EtOAc) extract of its fermentation. The structures of the new compounds were comprehensively characterized by high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS), 1D and 2D nuclear magnetic resonance (NMR). All isolates were evaluated for their cytotoxic activities. The heteroatom-containing new compounds 2 and 4 showed potent cytotoxicity to the human hepatoma tumor cell Bel7402 with IC50 values of 7.63 ± 1.46, 13.14 ± 1.41 μM and the human fibrosarcoma tumor cell HT1080 with IC50 values of 10.22 ± 1.32, 16.53 ± 1.67 μM, respectively.
Collapse
Affiliation(s)
- Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State Oceanic Administration, Xiamen 361005, China
| | - Shun-Zhi Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Xia Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315832, China
| | - Bo-Wen Tang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Mei-Juan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Xiu-Min Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China.
| | - Ying-Kun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China.
| |
Collapse
|
20
|
Subramani R, Sipkema D. Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Mar Drugs 2019; 17:E249. [PMID: 31035452 PMCID: PMC6562664 DOI: 10.3390/md17050249] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
Collapse
Affiliation(s)
- Ramesh Subramani
- School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji.
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
21
|
Santos JD, Vitorino I, De la Cruz M, Díaz C, Cautain B, Annang F, Pérez-Moreno G, Gonzalez Martinez I, Tormo JR, Martín JM, Urbatzka R, Vicente FM, Lage OM. Bioactivities and Extract Dereplication of Actinomycetales Isolated From Marine Sponges. Front Microbiol 2019; 10:727. [PMID: 31024503 PMCID: PMC6467163 DOI: 10.3389/fmicb.2019.00727] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
In the beginning of the twenty-first century, humanity faces great challenges regarding diseases and health-related quality of life. A drastic rise in bacterial antibiotic resistance, in the number of cancer patients, in the obesity epidemics and in chronic diseases due to life expectation extension are some of these challenges. The discovery of novel therapeutics is fundamental and it may come from underexplored environments, like marine habitats, and microbial origin. Actinobacteria are well-known as treasure chests for the discovery of novel natural compounds. In this study, eighteen Actinomycetales isolated from marine sponges of three Erylus genera collected in Portuguese waters were tested for bioactivities with the main goal of isolating and characterizing the responsible bioactive metabolites. The screening comprehended antimicrobial, anti-fungal, anti-parasitic, anti-cancer and anti-obesity properties. Fermentations of the selected strains were prepared using ten different culturing media. Several bioactivities against the fungus Aspergillus fumigatus, the bacteria Staphylococcus aureus methicillin-resistant (MRSA) and the human liver cancer cell line HepG2 were obtained in small volume cultures. Screening in higher volumes showed consistent anti-fungal activity by strain Dermacoccus sp. #91-17 and Micrococcus luteus Berg02-26. Gordonia sp. Berg02-22.2 showed anti-parasitic (Trypanosoma cruzi) and anti-cancer activity against several cell lines (melanoma A2058, liver HepG2, colon HT29, breast MCF7 and pancreatic MiaPaca). For the anti-obesity assay, Microbacterium foliorum #91-29 and #91-40 induced lipid reduction on the larvae of zebrafish (Danio rerio). Dereplication of the extracts from several bacteria showed the existence of a variety of secondary metabolites, with some undiscovered molecules. This work showed that Actinomycetales are indeed good candidates for drug discovery.
Collapse
Affiliation(s)
- José D Santos
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Inês Vitorino
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Mercedes De la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Bastien Cautain
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Frederick Annang
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Ignacio Gonzalez Martinez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Jose R Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Jesús M Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Francisca M Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| |
Collapse
|
22
|
Yin Q, Zhang L, Song ZM, Wu Y, Hu ZL, Zhang XH, Zhang Y, Yu M, Xu Y. Euzebya rosea sp. nov., a rare actinobacterium isolated from the East China Sea and analysis of two genome sequences in the genus Euzebya. Int J Syst Evol Microbiol 2018; 68:2900-2905. [DOI: 10.1099/ijsem.0.002917] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Qi Yin
- 1Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
- 2Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Lv Zhang
- 1Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhi-Man Song
- 1Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yanhong Wu
- 3College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhang-Li Hu
- 1Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
- 2Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xiao-Hua Zhang
- 3College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yu Zhang
- 1Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Min Yu
- 3College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ying Xu
- 1Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
23
|
Fan Y, Wang C, Wang L, Chairoungdua A, Piyachaturawat P, Fu P, Zhu W. New Ansamycins from the Deep-Sea-Derived Bacterium Ochrobactrum sp. OUCMDZ-2164. Mar Drugs 2018; 16:md16080282. [PMID: 30111735 PMCID: PMC6117703 DOI: 10.3390/md16080282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 01/19/2023] Open
Abstract
Two new ansamycins, trienomycins H (1) and I (2), together with the known trienomycinol (3), were isolated from the fermentation broth of the deep-sea-derived bacterium Ochrobactrum sp. OUCMDZ-2164. Their structures, including their absolute configurations, were elucidated based on spectroscopic analyses, ECD spectra, and Marfey’s method. Compound 1 exhibited cytotoxic effects on A549 and K562 cell lines with IC50 values of 15 and 23 μM, respectively.
Collapse
Affiliation(s)
- Yaqin Fan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Cong Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| |
Collapse
|
24
|
Liu H, Zhu G, Fan Y, Du Y, Lan M, Xu Y, Zhu W. Natural Products Research in China From 2015 to 2016. Front Chem 2018; 6:45. [PMID: 29616210 PMCID: PMC5869933 DOI: 10.3389/fchem.2018.00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
This review covers the literature published by chemists from China during the 2015-2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin.
Collapse
Affiliation(s)
- Haishan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guoliang Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yaqin Fan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuqi Du
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Lan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yibo Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
25
|
Singh VP, Yedukondalu N, Sharma V, Kushwaha M, Sharma R, Chaubey A, Kumar A, Singh D, Vishwakarma RA. Lipovelutibols A-D: Cytotoxic Lipopeptaibols from the Himalayan Cold Habitat Fungus Trichoderma velutinum. JOURNAL OF NATURAL PRODUCTS 2018; 81:219-226. [PMID: 29373791 DOI: 10.1021/acs.jnatprod.6b00873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four novel lipovelutibols A (1), B (2), C (3), and D (4) containing six amino acid residues with leucinol at the C-terminus and a fatty acyl moiety (n-octanoyl) at its N-terminus were isolated from the psychrotrophic fungus Trichoderma velutinum collected from the Himalayan cold habitat. The structures (1-4) were determined by NMR and MS/MS, and the stereochemistry of amino acids by Marfey's method. Lipopeptaibols 2 and 4 were found to contain d-isovaline, a nonproteinogenic amino acid, but lacked α-aminoisobutyric acid, characteristic of peptaibols. Cytotoxic activity of 2 and 4 was observed against HL-60, LS180, MDA-MB-231, and A549 cancer cell lines.
Collapse
Affiliation(s)
- Varun Pratap Singh
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
- Department of Biotechnology, Faculty of Sciences, Shri Mata Vaishno Devi University , Katra, Jammu and Kashmir 182320, India
| | - Nalli Yedukondalu
- Academy of Scientific and Innovative Research , Jammu 180 001, India
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
| | - Vandana Sharma
- Quality Control and Quality Assurance, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
| | - Manoj Kushwaha
- Quality Control and Quality Assurance, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
| | - Richa Sharma
- Academy of Scientific and Innovative Research , Jammu 180 001, India
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
| | - Asha Chaubey
- Academy of Scientific and Innovative Research , Jammu 180 001, India
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
| | - Anil Kumar
- Department of Biotechnology, Faculty of Sciences, Shri Mata Vaishno Devi University , Katra, Jammu and Kashmir 182320, India
| | - Deepika Singh
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
- Academy of Scientific and Innovative Research , Jammu 180 001, India
- Quality Control and Quality Assurance, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
- Academy of Scientific and Innovative Research , Jammu 180 001, India
| |
Collapse
|
26
|
|
27
|
Shin YH, Bae S, Sim J, Hur J, Jo SI, Shin J, Suh YG, Oh KB, Oh DC. Nicrophorusamides A and B, Antibacterial Chlorinated Cyclic Peptides from a Gut Bacterium of the Carrion Beetle Nicrophorus concolor. JOURNAL OF NATURAL PRODUCTS 2017; 80:2962-2968. [PMID: 29112406 DOI: 10.1021/acs.jnatprod.7b00506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nicrophorusamides A and B (1 and 2) were discovered from a rare actinomycete, Microbacterium sp., which was isolated from the gut of the carrion beetle Nicrophorus concolor. The structures of the nicrophorusamides were established as new chlorinated cyclic hexapeptides bearing uncommon amino acid units mainly based on 1D and 2D NMR spectroscopic analysis. The absolute configurations of the amino acid residues 5-chloro-l-tryptophan, d-threo-β-hydroxyasparagine/d-asparagine, l-ornithine, l-allo-isoleucine, d-leucine, and d-valine were determined using Marfey's method and chemical derivatization with 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate followed by LC/MS analysis. Nicrophorusamide A (1) showed antibacterial activity against several Gram-positive bacteria.
Collapse
Affiliation(s)
- Yern-Hyerk Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Suhyun Bae
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaehoon Sim
- College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- College of Pharmacy, CHA University , 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Joonseong Hur
- College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Shin-Il Jo
- Animal Welfare Division, Seoul Zoo, Seoul Grand Park , 102 Daegongwongwangjang-ro, Gwacheon-si, Gyeonggi-do 13829, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- College of Pharmacy, CHA University , 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
28
|
Du L, Risinger AL, Mitchell CA, You J, Stamps BW, Pan N, King JB, Bopassa JC, Judge SIV, Yang Z, Stevenson BS, Cichewicz RH. Unique amalgamation of primary and secondary structural elements transform peptaibols into potent bioactive cell-penetrating peptides. Proc Natl Acad Sci U S A 2017; 114:E8957-E8966. [PMID: 29073092 PMCID: PMC5664515 DOI: 10.1073/pnas.1707565114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mass-spectrometry-based metabolomics and molecular phylogeny data were used to identify a metabolically prolific strain of Tolypocladium that was obtained from a deep-water Great Lakes sediment sample. An investigation of the isolate's secondary metabolome resulted in the purification of a 22-mer peptaibol, gichigamin A (1). This peptidic natural product exhibited an amino acid sequence including several β-alanines that occurred in a repeating ααβ motif, causing the compound to adopt a unique right-handed 311 helical structure. The unusual secondary structure of 1 was confirmed by spectroscopic approaches including solution NMR, electronic circular dichroism (ECD), and single-crystal X-ray diffraction analyses. Artificial and cell-based membrane permeability assays provided evidence that the unusual combination of structural features in gichigamins conferred on them an ability to penetrate the outer membranes of mammalian cells. Compound 1 exhibited potent in vitro cytotoxicity (GI50 0.55 ± 0.04 µM) and in vivo antitumor effects in a MIA PaCa-2 xenograft mouse model. While the primary mechanism of cytotoxicity for 1 was consistent with ion leakage, we found that it was also able to directly depolarize mitochondria. Semisynthetic modification of 1 provided several analogs, including a C-terminus-linked coumarin derivative (22) that exhibited appreciably increased potency (GI50 5.4 ± 0.1 nM), but lacked ion leakage capabilities associated with a majority of naturally occurring peptaibols such as alamethicin. Compound 22 was found to enter intact cells and induced cell death in a process that was preceded by mitochondrial depolarization.
Collapse
Affiliation(s)
- Lin Du
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229
- Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, TX 78229
| | - Carter A Mitchell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| | - Jianlan You
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| | - Blake W Stamps
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019-5251
| | - Ning Pan
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
| | - Jarrod B King
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| | - Jean C Bopassa
- Department of Physiology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - Susan I V Judge
- Department of Biochemistry, High Throughput Screening Facility, Center for Innovative Drug Discovery, University of Texas Health Science Center, San Antonio, TX 78229
- CytoBioscience Incorporated, San Antonio, TX 78229
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
| | - Bradley S Stevenson
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019-5251
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251;
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| |
Collapse
|
29
|
Rivera-Chávez J, Raja HA, Graf TN, Gallagher JM, Metri P, Xue D, Pearce CJ, Oberlies NH. Prealamethicin F50 and related peptaibols from Trichoderma arundinaceum: Validation of their authenticity via in situ chemical analysis. RSC Adv 2017; 7:45733-45751. [PMID: 29379602 PMCID: PMC5786278 DOI: 10.1039/c7ra09602j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the field of natural products chemistry, a common question pertains to the authenticity of an isolated compound, i.e. are the interesting side chains biosynthesized naturally or an artefact of the isolation/purification processes? The droplet-liquid microjunction-surface sampling probe (droplet-LMJ-SSP) coupled to a hyphenated system (UPLC-UV-HRESIMS) empowers the analysis of natural product sources in situ, providing data on the biosynthetic timing and spatial distribution of secondary metabolites. In this study the droplet-LMJ-SSP was utilized to validate the authenticity of two new peptaibols (2 and 3) as biosynthesized secondary metabolites, even though both them had structural features that could be perceived as artefacts. Compounds 2 and 3 were isolated from the scaled up fermentation of Trichoderma arundinaceum (strain MSX70741), along with a new member of the trichobrevin BIII complex (1), and four known compounds (4-7). The structures of the isolates were established using a set of spectroscopic and spectrometric methods, and their absolute configurations were determined by Marfey's analysis. The cytotoxic activity of compounds 1, 3, 4 and 6 was evaluated against a panel of cancer cell lines, where cytotoxic activity in the single digit μM range was observed.
Collapse
Affiliation(s)
- José Rivera-Chávez
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Tyler N Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Jacklyn M Gallagher
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Prashant Metri
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
30
|
Microindolinone A, a Novel 4,5,6,7-Tetrahydroindole, from the Deep-Sea-Derived Actinomycete Microbacterium sp. MCCC 1A11207. Mar Drugs 2017. [DOI: 10.3390/md15070230 pmid: 287539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Niu S, Zhou TT, Xie CL, Zhang GY, Yang XW. Microindolinone A, a Novel 4,5,6,7-Tetrahydroindole, from the Deep-Sea-Derived Actinomycete Microbacterium sp. MCCC 1A11207. Mar Drugs 2017; 15:md15070230. [PMID: 28753937 PMCID: PMC5532672 DOI: 10.3390/md15070230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 11/16/2022] Open
Abstract
A novel indole, microindolinone A (1), was isolated from a deep-sea-derived actinomycete Microbacterium sp. MCCC 1A11207, together with 18 known compounds (2-19). By detailed analysis of the ¹H, 13C, HSQC, COSY, HMBC, high resolution electron spray ionization mass spectrum (HRESIMS), and circular dichroism (CD) data, the absolute configuration of 1 was elucidated as 5R-hydroxy-4,5,6,7-tetrahydroindole-4-one. It is noteworthy that 1 is the second example of a saturated indole isolated from nature.
Collapse
Affiliation(s)
- Siwen Niu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Ting-Ting Zhou
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Chun-Lan Xie
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Gai-Yun Zhang
- Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Xian-Wen Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
- Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| |
Collapse
|
32
|
Rivera-Chávez J, Raja HA, Graf TN, Burdette JE, Pearce CJ, Oberlies NH. Biosynthesis of Fluorinated Peptaibols Using a Site-Directed Building Block Incorporation Approach. JOURNAL OF NATURAL PRODUCTS 2017; 80:1883-1892. [PMID: 28594169 PMCID: PMC5485375 DOI: 10.1021/acs.jnatprod.7b00189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Indexed: 05/20/2023]
Abstract
Synthetic biological approaches, such as site-directed biosynthesis, have contributed to the expansion of the chemical space of natural products, making possible the biosynthesis of unnatural metabolites that otherwise would be difficult to access. Such methods may allow the incorporation of fluorine, an atom rarely found in nature, into complex secondary metabolites. Organofluorine compounds and secondary metabolites have both played pivotal roles in the development of drugs; however, their discovery and development are often via nonintersecting tracks. In this context, we used the biosynthetic machinery of Trichoderma arundinaceum (strain MSX70741) to incorporate a fluorine atom into peptaibol-type molecules in a site-selective manner. Thus, fermentation of strain MSX70741 in media containing ortho- and meta-F-phenylalanine resulted in the biosynthesis of two new fluorine-containing alamethicin F50 derivatives. The fluorinated products were characterized using spectroscopic (1D and 2D NMR, including 19F) and spectrometric (HRESIMS/MSn) methods, and their absolute configurations were established by Marfey's analysis. Fluorine-containing alamethicin F50 derivatives exhibited potency analogous to the nonfluorinated parent when evaluated against a panel of human cancer cell lines. Importantly, the biosynthesis of fluorinated alamethicin F50 derivatives by strain MSX70741 was monitored in situ using a droplet-liquid microjunction-surface sampling probe coupled to a hyphenated system.
Collapse
Affiliation(s)
- José Rivera-Chávez
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27412, United States
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27412, United States
| | - Tyler N. Graf
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27412, United States
| | - Joanna E. Burdette
- Department
of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cedric J. Pearce
- Mycosynthetix, Inc., 505 Meadowlands Drive, Suite 103, Hillsborough, North Carolina 27278, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27412, United States
- E-mail: . Tel: 336-334-5474
| |
Collapse
|
33
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
34
|
Wu Z, Li Y, Liu D, Ma M, Chen J, Lin W. New Resorcinol Derivatives from a Sponge-Derived Fungus Hansfordia sinuosae. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201700059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/30/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Zehong Wu
- The Eighth Affiliated Hospital; Sun Yat-sen University; Shenzhen 518033 P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station; Jinan University; Guangzhou 510632 P. R. China
| | - Yuan Li
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 P. R. China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 P. R. China
| | - Min Ma
- Integrated Chinese and Western Medicine Postdoctoral Research Station; Jinan University; Guangzhou 510632 P. R. China
| | - Jianliang Chen
- The Eighth Affiliated Hospital; Sun Yat-sen University; Shenzhen 518033 P. R. China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 P. R. China
| |
Collapse
|
35
|
Kamjam M, Sivalingam P, Deng Z, Hong K. Deep Sea Actinomycetes and Their Secondary Metabolites. Front Microbiol 2017; 8:760. [PMID: 28507537 PMCID: PMC5410581 DOI: 10.3389/fmicb.2017.00760] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/12/2017] [Indexed: 12/28/2022] Open
Abstract
Deep sea is a unique and extreme environment. It is a hot spot for hunting marine actinomycetes resources and secondary metabolites. The novel deep sea actinomycete species reported from 2006 to 2016 including 21 species under 13 genera with the maximum number from Microbacterium, followed by Dermacoccus, Streptomyces and Verrucosispora, and one novel species for the other 9 genera. Eight genera of actinomycetes were reported to produce secondary metabolites, among which Streptomyces is the richest producer. Most of the compounds produced by the deep sea actinomycetes presented antimicrobial and anti-cancer cell activities. Gene clusters related to biosynthesis of desotamide, heronamide, and lobophorin have been identified from the deep sea derived Streptomyces.
Collapse
Affiliation(s)
- Manita Kamjam
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical SciencesWuhan, China
| | - Periyasamy Sivalingam
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical SciencesWuhan, China
| | - Zinxin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical SciencesWuhan, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical SciencesWuhan, China
| |
Collapse
|
36
|
Abstract
This is an update report on marine natural products isolated from cold-water organisms in the last decade, following the previous review that covered the literature up to 2005. Emphasis is on structural assignments and biological activity.
Collapse
Affiliation(s)
- Sylvia Soldatou
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
- Department of Chemistry
| | - Bill J. Baker
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
- Department of Chemistry
| |
Collapse
|
37
|
Liu S, Fan L, Sun J, Lao X, Zheng H. Computational resources and tools for antimicrobial peptides. J Pept Sci 2016; 23:4-12. [PMID: 27966278 DOI: 10.1002/psc.2947] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs), as evolutionarily conserved components of innate immune system, protect against pathogens including bacteria, fungi, viruses, and parasites. In general, AMPs are relatively small peptides (<10 kDa) with cationic nature and amphipathic structure and have modes of action different from traditional antibiotics. Up to now, there are more than 19 000 AMPs that have been reported, including those isolated from nature sources or by synthesis. They have been considered to be promising substitutes of conventional antibiotics in the quest to address the increasing occurrence of antibiotic resistance. However, most AMPs have modest direct antimicrobial activity, and their mechanisms of action, as well as their structure-activity relationships, are still poorly understood. Computational strategies are invaluable assets to provide insight into the activity of AMPs and thus exploit their potential as a new generation of antimicrobials. This article reviews the advances of AMP databases and computational tools for the prediction and design of new active AMPs. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shicai Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Linlin Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Sun
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
38
|
Mohamed-Benkada M, François Pouchus Y, Vérité P, Pagniez F, Caroff N, Ruiz N. Identification and Biological Activities of Long-Chain Peptaibols Produced by a Marine-Derived Strain ofTrichoderma longibrachiatum. Chem Biodivers 2016; 13:521-30. [DOI: 10.1002/cbdv.201500159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 12/11/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Mustapha Mohamed-Benkada
- Département de Biotechnologie; Faculté des Sciences de la Nature et de la Vie; Université des Sciences et de la Technologie d'Oran-Mohamed Boudiaf (USTO-MB); El Mnaouar, B.P. 1505 Bir El Djir 31000 Oran Algeria
| | | | - Philippe Vérité
- Laboratoire de Chimie Analytique; Faculté de Médecine et Pharmacie; Université de Rouen; FR-76000 Rouen
| | - Fabrice Pagniez
- Laboratoire de Parasitologie et Mycologie Médicale, IICiMed; Faculté de Pharmacie; Université de Nantes; FR-44000 Nantes
| | - Nathalie Caroff
- Laboratoire Thérapeutiques Cliniques et Expérimentales des Infections; Faculté de Médecine; Université de Nantes; FR-44000 Nantes
| | - Nicolas Ruiz
- Faculté de Pharmacie, MMS; Université de Nantes; FR-44000 Nantes
| |
Collapse
|
39
|
Stach M, Weidkamp AJ, Yang SH, Hung KY, Furkert DP, Harris PWR, Smaill JB, Patterson AV, Brimble MA. Improved Strategy for the Synthesis of the Anticancer Agent Culicinin D. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|