1
|
Jeon BK, Cho SY, Lee DH. Stereoselective Approach to the Core Structure of (+)-Phainanoid A via Strategically Engineered Cascade Polyene Cyclization. Org Lett 2024; 26:8079-8083. [PMID: 39291842 DOI: 10.1021/acs.orglett.4c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Stereoselective synthesis of 3b and its cascade polyene cyclization to 18b have been described. Acyclic polyene 3b was prepared from allyl bromide 4 and 1,3-dithiane 5, and intermediates 4 and 5 were synthesized from the commercially available geraniol (6) and cyclopenten-2-one (8), respectively, using enantioselective reduction of ketone, Johnson-Claisen rearrangement, and the Suzuki reaction as key steps. Au(I)-mediated diastereoselective polyene cyclization of 3b efficiently afforded tetracyclic compound 18b.
Collapse
Affiliation(s)
- Bo Keun Jeon
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - So Yong Cho
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Duck Hyung Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| |
Collapse
|
2
|
Luo N, Turberg M, Leutzsch M, Mitschke B, Brunen S, Wakchaure VN, Nöthling N, Schelwies M, Pelzer R, List B. The catalytic asymmetric polyene cyclization of homofarnesol to ambrox. Nature 2024; 632:795-801. [PMID: 39085607 PMCID: PMC11338820 DOI: 10.1038/s41586-024-07757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
Polyene cyclizations are among the most complex and challenging transformations in biology. In a single reaction step, multiple carbon-carbon bonds, ring systems and stereogenic centres are constituted from simple, acyclic precursors1-3. Simultaneously achieving this kind of precise control over product distribution and stereochemistry poses a formidable task for chemists. In particular, the polyene cyclization of (3E,7E)-homofarnesol to the valuable naturally occurring ambergris odorant (-)-ambrox is recognized as a longstanding challenge in chemical synthesis1,4-7. Here we report a diastereoselective and enantioselective synthesis of (-)-ambrox and the sesquiterpene lactone natural product (+)-sclareolide by a catalytic asymmetric polyene cyclization by using a highly Brønsted-acidic and confined imidodiphosphorimidate catalyst in the presence of fluorinated alcohols. Several experiments, including deuterium-labelling studies, suggest that the reaction predominantly proceeds through a concerted pathway in line with the Stork-Eschenmoser hypothesis8-10. Mechanistic studies show the importance of the enzyme-like microenvironment of the imidodiphosphorimidate catalyst for attaining exceptionally high selectivities, previously thought to be achievable only in enzyme-catalysed polyene cyclizations.
Collapse
Affiliation(s)
- Na Luo
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Mathias Turberg
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Benjamin Mitschke
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Sebastian Brunen
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Vijay N Wakchaure
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | - Ralf Pelzer
- New Business Development Aroma Ingredients, BASF SE, Ludwigshafen, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
3
|
Zhu L, Ren Y, Liu X, Xu S, Li T, Xu W, Li Z, Liu Y, Xiong B. Catalyst- and Additive-free, Regioselective 1,6-Hydroarylation of para-Quinone Methides with Anilines in HFIP. Chem Asian J 2023; 18:e202300792. [PMID: 37845179 DOI: 10.1002/asia.202300792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
A simple and efficient method for the synthesis of diarylmethyl-functionalized anilines through the hexafluoroisopropanol (HFIP)-mediated regioselective 1,6-hydroarylation reaction of para-quinone methides (p-QMs) with anilines under catalyst- and additive-free conditions is reported. Various kinds of p-QMs and amines (e. g. primary, secondary and tertiary amines) are well tolerated in this transformation without the pre-protection of amino group, and the corresponding products could be generated with good to excellent yields and satisfactory regioselectivity under the optimized reaction conditions. In addition to adaptable amine compounds, indoles and their derivatives are also compatible with this reaction system. This transformation can be easily extended to a gram scale-synthesis level to synthesize the target product. Furthermore, it is worth noting that some complex small aniline molecules with biological activity can be selectively modified using this method. The possible reaction mechanism is proposed through the step-by-step control experiments and DFT calculations, showing that the key process for achieving the regioselective 1,6-hydroarylation of p-QMs is the hydrogen bonding effect of HFIP to substrates.
Collapse
Affiliation(s)
- Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Yining Ren
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Xianping Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Shipan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Tao Li
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha, 410007 (P. R., China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University Hung Hom, Hong Kong, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| |
Collapse
|
4
|
Kratena N, Weil M, Gärtner P. A biomimetic approach for the concise total synthesis of greenwaylactams A-C. Org Biomol Chem 2023; 21:6317-6319. [PMID: 37496493 PMCID: PMC10410498 DOI: 10.1039/d3ob01001e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
A concise, racemic total synthesis of three sesquiterpenoid alkaloids (greenwaylactams A-C) exhibiting an unprecedented 8-membered benzolactam is disclosed. Key transformations of this work include the ring expansion through cleavage of an indole via Witkop oxidation, as well as an HFIP mediated cationic cyclisation to build up the pentacyclic carbon skeleton.
Collapse
Affiliation(s)
- Nicolas Kratena
- Institute for Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Matthias Weil
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Peter Gärtner
- Institute for Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria.
| |
Collapse
|
5
|
Binder J, Biswas A, Gulder T. Biomimetic chlorine-induced polyene cyclizations harnessing hypervalent chloroiodane-HFIP assemblies. Chem Sci 2023; 14:3907-3912. [PMID: 37035703 PMCID: PMC10074399 DOI: 10.1039/d2sc06664e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
While bromo- and iodocyclizations have recently been successfully implemented, the challenging chlorocyclizations have been scantly investigated. We present a selective and generally applicable concept of chlorination-induced polyene cyclization by utilizing HFIP-chloroiodane networks mimicking terpene cyclases. A manifold of different alkenes was converted with excellent selectivities (up to d.r. >95 : 5). The cyclization platform was even extended to several structurally challenging terpenes and terpenoid carbon frameworks.
Collapse
Affiliation(s)
- Julia Binder
- Institute of Chemistry and Mineralogy, Leipzig University Johannisallee 29 04103 Leipzig Germany
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 85748 Garching Germany
| | - Aniruddha Biswas
- Institute of Chemistry and Mineralogy, Leipzig University Johannisallee 29 04103 Leipzig Germany
| | - Tanja Gulder
- Institute of Chemistry and Mineralogy, Leipzig University Johannisallee 29 04103 Leipzig Germany
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
6
|
Hu X, Zhao X, Lv X, Wu YB, Bu Y, Lu G. Ab Initio Metadynamics Simulations of Hexafluoroisopropanol Solvent Effects: Synergistic Role of Solvent H-Bonding Networks and Solvent-Solute C-H/π Interactions. Chemistry 2023; 29:e202203879. [PMID: 36575142 DOI: 10.1002/chem.202203879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The solvent effects in Friedel-Crafts cycloalkylation of epoxides and Cope rearrangement of aldimines were investigated by using ab initio molecular dynamics simulations. Explicit molecular treatments were applied for both reactants and solvents. The reaction mechanisms were elucidated via free energy calculations based on metadynamics simulations. The results reveal that both reactions proceed in a concerted fashion. Key solvent-substrate interactions are identified from the structures of transition states with explicit solvent molecules. The remarkable promotion effect of hexafluoroisopropanol solvent is ascribed to the synergistic effect of H-bonding networks and C-H/π interactions with substrates.
Collapse
Affiliation(s)
- Xinmin Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xia Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province, and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
7
|
Aynetdinova D, Jacques R, Christensen KE, Donohoe TJ. Alcohols as Efficient Intermolecular Initiators for a Highly Stereoselective Polyene Cyclisation Cascade. Chemistry 2023; 29:e202203732. [PMID: 36478469 PMCID: PMC10946764 DOI: 10.1002/chem.202203732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The use of benzylic and allylic alcohols in HFIP solvent together with Ti(Oi Pr)4 has been shown to trigger a highly stereoselective polyene cyclisation cascade. Three new carbon-carbon bonds are made during the process and complete stereocontrol of up to five new stereogenic centers is observed. The reaction is efficient, has high functional group tolerance and is atom-economic generating water as a stoichiometric by-product. A new polyene substrate-class is employed, and subsequent mechanistic studies indicate a stereoconvergent mechanism. The products of this reaction can be used to synthesize steroid-analogues in a single step.
Collapse
Affiliation(s)
- Daniya Aynetdinova
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Reece Jacques
- Early Chemical Development, Medicinal Chemistry R&DVertex PharmaceuticalsAbingtonOX14 4RWUK
| | | | - Timothy J. Donohoe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
| |
Collapse
|
8
|
Enzyme-like polyene cyclizations catalyzed by dynamic, self-assembled, supramolecular fluoro alcohol-amine clusters. Nat Commun 2023; 14:813. [PMID: 36781877 PMCID: PMC9925744 DOI: 10.1038/s41467-023-36157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Terpene cyclases catalyze one of the most powerful transformations with respect to efficiency and selectivity in natural product (bio)synthesis. In such polyene cyclizations, structurally highly complex carbon scaffolds are built by the controlled ring closure of linear polyenes. Thereby, multiple C,C bonds and stereocenters are simultaneously created with high precision. Structural pre-organization of the substrate carbon chain inside the active center of the enzyme is responsible for the product- and stereoselectivity of this cyclization. Here, we show that in-situ formed fluorinated-alcohol-amine supramolecular clusters serve as artificial cyclases by triggering enzyme-like reactivity and selectivity by controlling substrate conformation in solution. Because of the dynamic nature of these supramolecular assemblies, a broad range of terpenes can be produced diastereoselectively. Mechanistic studies reveal a finely balanced interplay of fluorinated solvent, catalyst, and substrate as key to establishing nature's concept of a shape-selective polyene cyclization in organic synthesis.
Collapse
|
9
|
Huo CY, Zheng TL, Dai WH, Zhang ZH, Wang JD, Zhu DY, Wang SH, Zhang XM, Xu XT. InI 3-catalyzed polyene cyclization of allenes and its application in the total synthesis of seven abietane-type diterpenoids. Chem Sci 2022; 13:13893-13897. [PMID: 36544726 PMCID: PMC9710309 DOI: 10.1039/d2sc04229k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
A novel polyene cyclization using the allene group as the initiator has been successfully developed. This methodology provides an efficient strategy for the construction of an abietane-type tricyclic skeleton with a functionalizable C2-C3 double bond and features a wide substrate scope and excellent stereoselectivities. Potential utility of this approach has been well demonstrated by the collective total synthesis of seven abietane-type diterpenoids. Specifically, (±)-2,3-dihydroxyferruginol and (±)-2,3-dihydroxy-15,16-dinor-ent-pimar-8,11,13-triene were synthesized for the first time.
Collapse
Affiliation(s)
- Chen-Yu Huo
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University730000P. R. China
| | - Tian-Lu Zheng
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University730000P. R. China
| | - Wei-Hao Dai
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University730000P. R. China
| | - Zi-Hao Zhang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University730000P. R. China
| | - Jin-Da Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University730000P. R. China
| | - Dao-Yong Zhu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University730000P. R. China,Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan UniversityChengdu610041P. R. China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University730000P. R. China
| | - Xiao-Ming Zhang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University730000P. R. China
| | - Xue-Tao Xu
- School of Biotechnology and Health Science, Wuyi UniversityJiangmen 529020P. R. China
| |
Collapse
|
10
|
Plangger I, Wurst K, Magauer T. Short, Divergent, and Enantioselective Total Synthesis of Bioactive ent-Pimaranes. Org Lett 2022; 24:7151-7156. [PMID: 36170466 PMCID: PMC7613685 DOI: 10.1021/acs.orglett.2c02843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the first total synthesis of eight ent-pimaranes via a short and enantioselective route (11-16 steps). Key features of the divergent synthesis are a Sharpless asymmetric dihydroxylation, a Brønsted acid catalyzed cationic bicyclization, and a mild Rh-catalyzed arene hydrogenation for rapid access to a late synthetic branching point. From there on, selective functional group manipulations enable the synthesis of ent-pimaranes bearing different modifications in the A- and C-rings.
Collapse
Affiliation(s)
- Immanuel Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold-Franzens-University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, Leopold-Franzens-University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold-Franzens-University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
12
|
Della-Negra O, Cirillo Y, Brotin T, Dutasta JP, Saaidi PL, Chatelet B, Martinez A. Access to the Syn diastereomers of cryptophane cages using HFIP. Chem Commun (Camb) 2022; 58:3330-3333. [PMID: 35188150 DOI: 10.1039/d1cc06607b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cryptophane cages can adopt either an anti or syn configuration that present different recognition properties. While the synthesis of anti-cryptophanes is well reported, the synthesis of syn-cryptophanes remains a challenge. Herein, we demonstrate that the use of HFIP as a co-solvent during the second ring closure reaction significantly affects the regioselectivity, providing easier access to the syn-cryptophane stereomers.
Collapse
Affiliation(s)
| | - Yoann Cirillo
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Thierry Brotin
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 46 Allée d'Italie, F-69364 Lyon, France
| | - Jean-Pierre Dutasta
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 46 Allée d'Italie, F-69364 Lyon, France
| | - Pierre-Loic Saaidi
- UMR 8030 Génomique métabolique/CEA/Institut de Biologie François Jacob/Genoscope/Université d'Evry Val d'Essonne/Université Paris-Saclay, France
| | - Bastien Chatelet
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France.
| | | |
Collapse
|
13
|
Vayer M, Zhang S, Moran J, Lebœuf D. Rapid and Mild Metal-Free Reduction of Epoxides to Primary Alcohols Mediated by HFIP. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marie Vayer
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Shaofei Zhang
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Joseph Moran
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - David Lebœuf
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| |
Collapse
|
14
|
Chen X, Lu S, Yan Y, Wang J, Yang L, Sun P. Hydrogen Bond‐enabled Catalyst and Additive‐free Oxy‐sulfonylation of Alkynes for the Synthesis of β‐Keto sulfones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingyu Chen
- Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China CHINA
| | - Sixian Lu
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Yuyan Yan
- Shenzhen People's Hospital ( Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology) CHINA
| | - Jigang Wang
- Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China SINGAPORE
| | - Lan Yang
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Peng Sun
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| |
Collapse
|
15
|
Tian FX, Qu J. Studies on the Origin of the Stabilizing Effects of Fluorinated Alcohols and Weakly Coordinated Fluorine-Containing Anions on Cationic Reaction Intermediates. J Org Chem 2022; 87:1814-1829. [PMID: 35020378 DOI: 10.1021/acs.joc.1c02361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many synthetic methods that use fluorinated alcohols as solvents have been reported, and the fluorinated alcohols have been found to be crucial to the success of these methods. In addition, there have been reports indicating that adding a weakly coordinated fluorine-containing anion, such as BF4-, PF6-, or SbF6-, to fluorinated alcohols can improve yields. The boosting effect of fluorinated alcohols is attributed mainly to hydrogen bond activation. A few studies have suggested that the very polar fluorinated alcohols can stabilize cationic reaction intermediates. However, how they do so and why weakly coordinated fluorine-containing anions improve yields have not been studied in depth. Here, we used quaternary ammonium cations, a quaternary phosphonium cation, and a triaryl-substituted carbocation as models for short-lived cationic intermediates and studied the possible interactions of these cations with fluorinated alcohols and BF4-, PF6-, or SbF6-. On the basis of the results, we propose that the C-F dipoles of fluorinated alcohols and the E-F dipoles (where E is B, P, or Sb) of weakly coordinated fluorine-containing anions stabilized these cations by intermolecular charge-dipole interactions. We deduced that in the same fashion the C-F and E-F dipoles can thermodynamically stabilize cationic reaction intermediates.
Collapse
Affiliation(s)
- Feng-Xian Tian
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin Qu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Song H, Zhou H, Shen Y, Wang H, Song H, Cai X, Xu C. HFIP as Protonation Reagent and Solvent for Regioselective Alkylation of Indoles with All-Carbon Centers. J Org Chem 2022; 87:1086-1097. [PMID: 35015536 DOI: 10.1021/acs.joc.1c02412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The regio- and chemoselective construction of indole bearing an all-carbon center at the C3-position, a versatile bioactive building block, by C(sp2)-C(sp3) formation with olefins has been achieved through utilization of hexafluoroisopropanol (HFIP) as the protonation reagent and solvent. The catalytic reactions are operationally simple and green compared with previous reports utilizing elaborated olefins and catalysts. This protocol allows for alkylation of a variety of substituted indoles with diverse of styrene type alkenes in excellent yields and with high selectivity. Application of this protocol to the synthesis of drug was pursued and with an improved yield in contrast to previous art. Catalytic kinetics and deuterium-labeling experiments suggest that the rate-determining step involves the protonation of olefin by HFIP to generate carbocation, followed by electrophilic addition to indole derivative.
Collapse
Affiliation(s)
- Heng Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| | - Hu Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| | - Yang Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| | - Hao Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| | - Hua Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| | - Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| | - Chen Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| |
Collapse
|
17
|
Shukla PM, Bhattacharya A, Pratap A, Pradhan A, Sinha P, Soni T, Maji B. HFIP-promoted halo-carbocyclizations of N- and O-tethered arene–alkene substrates to access all halo (X = Br, I, Cl)-functionalized tetrahydroquinoline and chroman cores. Org Biomol Chem 2022; 20:8136-8144. [DOI: 10.1039/d2ob01597h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Herein, a HFIP-promoted mild and efficient method for the synthesis of all halo (X = Br, I, Cl)-functionalized tetrahydroquinoline and chroman building blocks is disclosed.
Collapse
Affiliation(s)
- Pushpendra Mani Shukla
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Aditya Bhattacharya
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Aniruddh Pratap
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Akash Pradhan
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Puspita Sinha
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Tanishk Soni
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| |
Collapse
|
18
|
Ge C, Wang L, Hu F, Ding Z, Li X, Xiao D, Wang J, Li SS. HFIP-mediated three-component imidization of electron-rich arenes with in situ formed spiroindolenines for facile construction of 2-arylspiroindolenines. Org Chem Front 2022. [DOI: 10.1039/d1qo01862k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The three-component reaction of o-aminobenzaldehydes with 5-hydroxyindole and electron-rich arenes has been achieved through HFIP-mediated cascade hydride transfer/dearomative cyclization/CDC-type imidization at room temperature under air.
Collapse
Affiliation(s)
- Chunyan Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhanshuai Ding
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinyao Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Deshuai Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiayi Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
19
|
Zheng Y, Fang X, Deng WH, Zhao B, Liao RZ, Xie Y. Direct activation of alcohols via perrhenate ester formation for an intramolecular dehydrative Friedel–Crafts reaction. Org Chem Front 2022. [DOI: 10.1039/d2qo00229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and highly efficient intramolecular dehydrative Friedel–Crafts reactions via Re2O7 mediated hydroxyl group activation is described for the syntheses of tetrahydronaphthalene, tetrahydroquinoline, tetrahydroisoquinoline, chromane, and isochromane derivatives.
Collapse
Affiliation(s)
- Yuzhu Zheng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiong Fang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wen-Hao Deng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Bin Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Youwei Xie
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
20
|
Gadde K, Maes BUW, Abbaspour Tehrani K. HFIP-mediated 2-aza-Cope rearrangement: metal-free synthesis of α-substituted homoallylamines at ambient temperature. Org Biomol Chem 2021; 19:4067-4075. [PMID: 33978010 DOI: 10.1039/d1ob00404b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient metal-free strategy for the synthesis of α-substituted homoallylamine derivatives has been developed via a 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-promoted 2-aza-Cope rearrangement of aldimines, generated in situ by condensation of aldehydes with easily accessible 1,1-diphenylhomoallylamines. This reaction provides rapid access to α-substituted homoallylamines with excellent functional group tolerance and yields. The reaction takes place at room temperature and no chromatographic purification is required for product isolation. The synthetic utility of the current method is further demonstrated by the transformation of the obtained benzophenone ketimines into N-unprotected homoallylamines, an α-amino alcohol and an α-amino amide.
Collapse
Affiliation(s)
- Karthik Gadde
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | - Bert U W Maes
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | |
Collapse
|
21
|
Paraja M, Gini A, Sakai N, Matile S. Pnictogen‐Bonding Catalysis: An Interactive Tool to Uncover Unorthodox Mechanisms in Polyether Cascade Cyclizations. Chemistry 2020; 26:15471-15476. [DOI: 10.1002/chem.202003426] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/05/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Andrea Gini
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| |
Collapse
|
22
|
Li FX, Ren SJ, Li PF, Yang P, Qu J. An Endo-Selective Epoxide-Opening Cascade for the Fast Assembly of the Polycyclic Core Structure of Marine Ladder Polyethers. Angew Chem Int Ed Engl 2020; 59:18473-18478. [PMID: 32666578 DOI: 10.1002/anie.202007980] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 12/13/2022]
Abstract
The rapid synthesis of marine ladder polyethers from polyepoxide precursors (in analogy with the biosynthetic pathway hypothesized by Nakanishi) is hampered by the fact that the exo-selective epoxide-opening cyclization cascade that gives THF-type polyethers is preferred over the endo-selective cascade that gives the desired products. We found that perfluoro-tert-butanol (PFTB) cooperating with 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM]BF4 ) can promote endo-selective epoxide-opening cyclization reactions of trisubstituted epoxy alcohols. Starting from readily accessible homochiral polyepoxy alcohols with a methyl group at all the endo-cyclization sites, we were able to construct polyethers up to five consecutive fused 6-, 7-, and/or 8-membered rings in one step. Notably, molecules with the 7/7/6/6 and 7/7/6/7/6 polyether frameworks of hemibrevetoxin B and brevenal, respectively, could be synthesized in 40 % and 17 % chemical yields.
Collapse
Affiliation(s)
- Feng-Xing Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shu-Jian Ren
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Pei-Fang Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peng Yang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jin Qu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
23
|
Paraja M, Hao X, Matile S. Polyether Natural Product Inspired Cascade Cyclizations: Autocatalysis on π-Acidic Aromatic Surfaces. Angew Chem Int Ed Engl 2020; 59:15093-15097. [PMID: 32181559 DOI: 10.1002/anie.202000681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/03/2023]
Abstract
Anion-π catalysis functions by stabilizing anionic transition states on aromatic π surfaces, thus providing a new approach to molecular transformation. The delocalized nature of anion-π interactions suggests that they serve best in stabilizing long-distance charge displacements. Aiming therefore for an anionic cascade reaction that is as charismatic as the steroid cyclization is for conventional cation-π biocatalysis, reported here is the anion-π-catalyzed epoxide-opening ether cyclizations of oligomers. Only on π-acidic aromatic surfaces having a positive quadrupole moment, such as hexafluorobenzene to naphthalenediimides, do these polyether cascade cyclizations proceed with exceptionally high autocatalysis (rate enhancements kauto /kcat >104 m-1 ). This distinctive characteristic adds complexity to reaction mechanisms (Goldilocks-type substrate concentration dependence, entropy-centered substrate destabilization) and opens intriguing perspectives for future developments.
Collapse
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Xiaoyu Hao
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
24
|
Li F, Ren S, Li P, Yang P, Qu J. An
Endo
‐Selective Epoxide‐Opening Cascade for the Fast Assembly of the Polycyclic Core Structure of Marine Ladder Polyethers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng‐Xing Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Shu‐Jian Ren
- The State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Pei‐Fang Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Peng Yang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jin Qu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
25
|
Paraja M, Hao X, Matile S. Polyether Natural Product Inspired Cascade Cyclizations: Autocatalysis on π‐Acidic Aromatic Surfaces. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Xiaoyu Hao
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| |
Collapse
|
26
|
Llopis N, Baeza A. HFIP-Promoted Synthesis of Substituted Tetrahydrofurans by Reaction of Epoxides with Electron-Rich Alkenes. Molecules 2020; 25:E3464. [PMID: 32751509 PMCID: PMC7435839 DOI: 10.3390/molecules25153464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022] Open
Abstract
In the present work, the employment of fluorinated alcohols, specifically 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), as solvent and promoter of the catalyst-free synthesis of substituted tetrahydrofuranes through the addition of electron-rich alkenes to epoxydes is described. The unique properties of this fluorinated alcohol, which is very different from their non-fluorinated analogs, allows carrying out this new straightforward protocol under smooth reaction conditions affording the corresponding adducts in moderate yields in the majority of cases. Remarkably, this methodology has allowed the synthesis of new tetrahydrofuran-based spiro compounds as well as tetrahydrofurobenzofuran derivatives. The scope and limitations of the process are also discussed. Mechanistic studies were also performed pointing towards a purely ionic or a SN2-type process depending on the nucleophilicity of the alkene employed.
Collapse
Affiliation(s)
| | - Alejandro Baeza
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Facultad de Ciencias, Universidad de Alicante. Apdo. 99, E-03080 Alicante, Spain;
| |
Collapse
|
27
|
Affiliation(s)
- Ignacio Colomer
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- IMDEA Nanociencia, Faraday 9, Campus UAM, 28049 Madrid, Spain
| |
Collapse
|
28
|
Vrubliauskas D, Vanderwal CD. Cobalt-Catalyzed Hydrogen-Atom Transfer Induces Bicyclizations that Tolerate Electron-Rich and Electron-Deficient Intermediate Alkenes. Angew Chem Int Ed Engl 2020; 59:6115-6121. [PMID: 31991035 PMCID: PMC7124983 DOI: 10.1002/anie.202000252] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 12/12/2022]
Abstract
A novel CoII -catalyzed polyene cyclization was developed that is uniquely effective when performed in hexafluoroisopropanol as the solvent. The process is presumably initiated by metal-catalyzed hydrogen-atom transfer (MHAT) to 1,1-disubstituted or monosubstituted alkenes, and the reaction is remarkable for its tolerance of internal alkenes bearing either electron-rich methyl or electron-deficient nitrile substituents. Electron-rich aromatic terminators are required in both cases. Terpenoid scaffolds with different substitution patterns are obtained with excellent diastereoselectivities, and the bioactive C20-oxidized abietane diterpenoid carnosaldehyde was made to showcase the utility of the nitrile-bearing products. Also provided are the results of several mechanistic experiments that suggest the process features an MHAT-induced radical bicyclization with late-stage oxidation to regenerate the aromatic terminator.
Collapse
Affiliation(s)
- Darius Vrubliauskas
- Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA
| | | |
Collapse
|
29
|
Bahou KA, Braddock DC, Meyer AG, Savage GP, Shi Z, He T. A Relay Strategy Actuates Pre-Existing Trisubstituted Olefins in Monoterpenoids for Cross-Metathesis with Trisubstituted Alkenes. J Org Chem 2020; 85:4906-4917. [PMID: 32191466 PMCID: PMC7145354 DOI: 10.1021/acs.joc.0c00067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A retrosynthetic disconnection-reconnection analysis of epoxypolyenes-substrates that can undergo cyclization to podocarpane-type tricycles-reveals relay-actuated Δ6,7-functionalized monoterpenoid alcohols for ruthenium benzylidene catalyzed olefin cross-metathesis with homoprenyl benzenes. Successful implementation of this approach provided several epoxypolyenes as expected (E/Z, ca. 2-3:1). The method is further generalized for the cross-metathesis of pre-existing trisubstituted olefins in other relay-actuated Δ6,7-functionalized monoterpenoid alcohols with various other trisubstituted alkenes to form new trisubstituted olefins. Epoxypolyene cyclization of an enantiomerically pure, but geometrically impure, epoxypolyene substrate provides an enantiomerically pure, trans-fused, podocarpane-type tricycle (from the E-geometrical isomer).
Collapse
Affiliation(s)
- Karim A Bahou
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - D Christopher Braddock
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Adam G Meyer
- CSIRO Manufacturing, Jerry Price Laboratory, Research Way, Clayton 3168, Victoria, Australia
| | - G Paul Savage
- CSIRO Manufacturing, Jerry Price Laboratory, Research Way, Clayton 3168, Victoria, Australia
| | - Zhensheng Shi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Tianyou He
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
30
|
Tian Y, Kong XQ, Niu J, Huang YB, Wu ZH, Xu B. Rhodium-catalyzed regioselective C(sp2)–H bond activation reactions of N-(hetero)aryl-7-azaindoles and cross-coupling with α-carbonyl sulfoxonium ylides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Vrubliauskas D, Vanderwal CD. Cobalt‐Catalyzed Hydrogen‐Atom Transfer Induces Bicyclizations that Tolerate Electron‐Rich and Electron‐Deficient Intermediate Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Shen YB, Wang LX, Sun YM, Dong FY, Yu L, Liu Q, Xiao J. Hexafluoroisopropanol-Mediated Redox-Neutral α-C(sp 3)-H Functionalization of Cyclic Amines via Hydride Transfer. J Org Chem 2020; 85:1915-1926. [PMID: 31823616 DOI: 10.1021/acs.joc.9b02606] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hexafluoroisopropanol has been demonstrated as the versatile promoter for redox-neutral α-C(sp3)-H functionalization of cyclic amines via the cascade [1,5]-hydride transfer/cyclization strategy. A wide range of cyclic amines are functionalized into bioactive tetrahydroquinolines, quinazolines, benzoxazines, and benzotriazepines in moderate to excellent yields. This protocol features additive-free conditions, operational simplicity, and wide substrate scope.
Collapse
Affiliation(s)
| | | | | | | | | | - Qing Liu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , China
| | | |
Collapse
|
33
|
Paraja M, Matile S. Primary Anion–π Catalysis of Epoxide‐Opening Ether Cyclization into Rings of Different Sizes: Access to New Reactivity. Angew Chem Int Ed Engl 2020; 59:6273-6277. [DOI: 10.1002/anie.202000579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Miguel Paraja
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| |
Collapse
|
34
|
Primary Anion–π Catalysis of Epoxide‐Opening Ether Cyclization into Rings of Different Sizes: Access to New Reactivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Hu J, Jia Z, Xu K, Ding H. Total Syntheses of (+)-Stemarin and the Proposed Structures of Stemara-13(14)-en-18-ol and Stemara-13(14)-en-17-acetoxy-18-ol. Org Lett 2020; 22:1426-1430. [DOI: 10.1021/acs.orglett.0c00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jialei Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Jia
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Kaixiang Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
36
|
|
37
|
Pozhydaiev V, Power M, Gandon V, Moran J, Lebœuf D. Exploiting hexafluoroisopropanol (HFIP) in Lewis and Brønsted acid-catalyzed reactions. Chem Commun (Camb) 2020; 56:11548-11564. [PMID: 32930690 DOI: 10.1039/d0cc05194b] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hexafluoroisopropanol (HFIP) is a solvent with unique properties that has recently gained attention for promoting a wide range of challenging chemical reactions. It was initially believed that HFIP was almost exclusively involved in the stabilization of cationic intermediates, owing to its high polarity and low nucleophilicity. However, in many cases, the mechanism of action of HFIP appears to be more complex. Recent findings reveal that many Lewis and Brønsted acid-catalyzed transformations conducted in HFIP additionally involve cooperation between the catalyst and HFIP hydrogen-bond clusters, akin to Lewis- or Brønsted acid-assisted-Brønsted acid catalysis. This feature article showcases the remarkable versatility of HFIP in Lewis and Brønsted acid-catalyzed reactions, with an emphasis on examples yielding mechanistic insight.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67000 Strasbourg, France.
| | - Martin Power
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67000 Strasbourg, France.
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, 91405 Orsay, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67000 Strasbourg, France.
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
38
|
Quilez Del Moral JF, Domingo V, Pérez Á, Martínez Andrade KA, Enríquez L, Jaraiz M, López-Pérez JL, Barrero AF. Mimicking Halimane Synthases: Monitoring a Cascade of Cyclizations and Rearrangements from Epoxypolyprenes. J Org Chem 2019; 84:13764-13779. [PMID: 31559826 DOI: 10.1021/acs.joc.9b01996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have developed and rationalized a biomimetic transformation mimicking halimane synthases based on a Lewis acid-catalyzed cascade of cyclizations and rearrangements of epoxypolyprenes. Two rings, three stereogenic centers, and a new double bond were generated in a single chemical operation. Based on this cascade transformation, we achieved a unified strategy toward the stereoselective total syntheses of halimene-type terpenoids and analogues as a proof-of-concept study. This method has been applied to the rapid synthesis of diterpene isotuberculosinol, a virulence factor of Mycobacterium tuberculosis as a representative example.
Collapse
Affiliation(s)
- José F Quilez Del Moral
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| | - Victoriano Domingo
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| | - Álvaro Pérez
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| | - Kevin A Martínez Andrade
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| | - Lourdes Enríquez
- Department of Electronics , University of Valladolid , 47011 Valladolid , Spain
| | - Martín Jaraiz
- Department of Electronics , University of Valladolid , 47011 Valladolid , Spain
| | - José Luis López-Pérez
- Department of Pharmaceutical Sciences, IBSAL-CIETUS , University of Salamanca , 37007 Salamanca , Spain.,Department of Pharmacology, Faculty of Medicine , University of Panama , 3366 Panama , Republic of Panama
| | - Alejandro F Barrero
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| |
Collapse
|
39
|
Qi C, Yang S, Gandon V, Lebœuf D. Calcium(II)- and Triflimide-Catalyzed Intramolecular Hydroacyloxylation of Unactivated Alkenes in Hexafluoroisopropanol. Org Lett 2019; 21:7405-7409. [DOI: 10.1021/acs.orglett.9b02705] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Chenxiao Qi
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay 91405 Cedex, France
| | - Shengwen Yang
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay 91405 Cedex, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, Palaiseau 91128 Cedex, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay 91405 Cedex, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, Palaiseau 91128 Cedex, France
| | - David Lebœuf
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay 91405 Cedex, France
| |
Collapse
|
40
|
Pradhan S, Roy S, Ghosh S, Chatterjee I. Regiodivergent Aromatic Electrophilic Substitution Using Nitrosoarenes in Hexafluoroisopropanol: A Gateway for Diarylamines and
p
‐Iminoquinones Synthesis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Suman Pradhan
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road Rupnagar Punjab-140001 India
| | - Sourav Roy
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road Rupnagar Punjab-140001 India
| | - Soumen Ghosh
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road Rupnagar Punjab-140001 India
| | - Indranil Chatterjee
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road Rupnagar Punjab-140001 India
| |
Collapse
|
41
|
Liu S, Zeng X, Xu B. Hydrogen‐Bonding‐Network‐Assisted Regioselective Trifluoromethylthiolation and Sulfenylation of Electron‐Rich (Hetero)arenes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shiwen Liu
- College of Chemistry Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 China
| | - Xiaojun Zeng
- College of Chemistry Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 China
| | - Bo Xu
- College of Chemistry Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 China
| |
Collapse
|
42
|
Maji B. Stereoselective Haliranium, Thiiranium and Seleniranium Ion‐Triggered Friedel–Crafts‐Type Alkylations for Polyene Cyclizations. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Biswajit Maji
- Department of ChemistryIndira Gandhi National Tribal University Amarkantak – 484886 Madhya Pradesh India
| |
Collapse
|
43
|
Yang S, Cheng R, Zhang M, Bin Z, You J. Rh/Ag-Mediated Peri-Selective Heteroarylation/Single Electron Transfer Annulation Cascade of 1-(Methylthio)naphthalenes and Analogues: Road Less Traveled to Benzo[de]thioacenes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01426] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shiping Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Rui Cheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Min Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
44
|
Zhu Y, Colomer I, Thompson AL, Donohoe TJ. HFIP Solvent Enables Alcohols To Act as Alkylating Agents in Stereoselective Heterocyclization. J Am Chem Soc 2019; 141:6489-6493. [DOI: 10.1021/jacs.9b02198] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuxiang Zhu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ignacio Colomer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Amber L. Thompson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Timothy J. Donohoe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
45
|
Fukuda Y, Watanabe T, Hoshino T. Mutated variants of squalene-hopene cyclase: enzymatic syntheses of triterpenes bearing oxygen-bridged monocycles and a new 6,6,6,6,6-fusded pentacyclic scaffold, named neogammacerane, from 2,3-oxidosqualene. Org Biomol Chem 2019; 16:8365-8378. [PMID: 30209480 DOI: 10.1039/c8ob02009d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Squalene-hopene cyclase (SHC) catalyzes the conversion of acyclic squalene molecule into a 6,6,6,6,5-fused pentacyclic hopene and hopanol. SHC is also able to convert (3S)-2,3-oxidosqualene into 3β-hydroxyhopene and 3β-hydroxyhopanol and can generate 3α-hydroxyhopene and 3α-hydroxyhopanol from (3R)-2,3-oxidosqualene. Functional analyses of active site residues toward the squalene cyclization reaction have been extensively reported, but investigations of the cyclization reactions of (3R,S)-oxidosqualene by SHC have rarely been reported. The cyclization reactions of oxidosqualene with W169X, G600F/F601G and F601G/P602F were examined. The variants of the W169L generated new triterpene skeletons possessing a 7-oxabicyclo[2.2.1]heptane moiety (oxygen-bridged monocycle) with (1S,2S,4R)- and (1R,2S,4S)-stereochemistry, which were produced from (3R)- and (3S)-oxidosqualenes, respectively. The F601G/P602F double mutant also furnished a novel triterpene, named neogammacer-21(22)-en-3β-ol, consisting of a 6,6,6,6,6-fused pentacyclic system, in which Me-29 at C-22 of the gammacerane skeleton migrated to C-21. We propose to name this novel scaffold neogammacerane. The formation mechanisms of the enzymatic products from 2,3-oxidosqualene are discussed.
Collapse
Affiliation(s)
- Yoriyuki Fukuda
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| | | | | |
Collapse
|
46
|
Wang G, Gao L, Chen H, Liu X, Cao J, Chen S, Cheng X, Li S. Chemoselective Borane‐Catalyzed Hydroarylation of 1,3‐Dienes with Phenols. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guoqiang Wang
- Institute of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Liuzhou Gao
- Institute of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Hui Chen
- Institute of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Xueting Liu
- Institute of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Jia Cao
- Institute of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Shengda Chen
- School of Minerals Processing and BioengineeringCentral South University Changsha 410083 Hunan China
| | - Xu Cheng
- Institute of Chemistry and Biomedical SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Shuhua Li
- Institute of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| |
Collapse
|
47
|
Wang G, Gao L, Chen H, Liu X, Cao J, Chen S, Cheng X, Li S. Chemoselective Borane-Catalyzed Hydroarylation of 1,3-Dienes with Phenols. Angew Chem Int Ed Engl 2019; 58:1694-1699. [PMID: 30515921 DOI: 10.1002/anie.201811729] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 12/18/2022]
Abstract
A B(C6 F5 )3 -catalyzed hydroarylation of a series of 1,3-dienes with various phenols has been established through a combination of theoretical and experimental investigations, affording structurally diverse ortho-allyl phenols. DFT calculations show that the reaction proceeds through a borane-promoted protonation/Friedel-Crafts pathway involving a π-complex of a carbocation-anion contact ion pair. This protocol features simple and mild reaction conditions, broad functional-group tolerance, and low catalyst loading. The obtained ortho-allyl phenols could be further converted into flavan derivatives using B(C6 F5 )3 with good cis diastereoselectivity. Furthermore, this transformation was applied in the late-stage modification of pharmaceutical compounds.
Collapse
Affiliation(s)
- Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Liuzhou Gao
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hui Chen
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xueting Liu
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jia Cao
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shengda Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shuhua Li
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
48
|
Yu L, Li SS, Li W, Yu S, Liu Q, Xiao J. Fluorinated Alcohol-Promoted Reaction of Chlorohydrocarbons with Diverse Nucleophiles for the Synthesis of Triarylmethanes and Tetraarylmethanes. J Org Chem 2018; 83:15277-15283. [PMID: 30450905 DOI: 10.1021/acs.joc.8b02549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This article reports an efficient synthesis of triarylmethanes and tetraarylmethanes from chlorohydrocarbons with miscellaneous nucleophiles in fluorinated alcohols, featuring metal-free, wide substrate scope, excellent functional group tolerance, and mild reaction conditions.
Collapse
Affiliation(s)
- Liping Yu
- College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Shuai-Shuai Li
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Weina Li
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Shitao Yu
- College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Qing Liu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , China
| | - Jian Xiao
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| |
Collapse
|
49
|
Chen B, Xia X, Zeng X, Xu B. Hydrogen bonding network assisted regio- and stereo- controlled hydrohalogenations of sulfonyl alkynes. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Shin JH, Seong EY, Mun HJ, Jang YJ, Kang EJ. Electronically Mismatched Cycloaddition Reactions via First-Row Transition Metal, Iron(III)–Polypyridyl Complex. Org Lett 2018; 20:5872-5876. [DOI: 10.1021/acs.orglett.8b02541] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jung Ha Shin
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Eun Young Seong
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Hyeon Jin Mun
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Yu Jeong Jang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|