1
|
Ding Y, Yao B. Late-Stage Glycosylation of Peptides by Methionine-Directed β-C(sp 3)-H Functionalization with 1-Iodoglycals. Org Lett 2024; 26:7128-7133. [PMID: 39155450 DOI: 10.1021/acs.orglett.4c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Using l-methionine (Met) as the endogenous directing group, we developed Pd-catalyzed β-C(sp3)-H glycosylation of peptides with 1-iodoglycals. A wide range of tri- to hexapeptides containing the Ala-Met motifs underwent Ala C-H glycosylation under the standard conditions to give the glycopeptides smoothly. 15 proteinogenic amino acids (with easily removable protecting groups) were well tolerated. Control experiments indicated that Met acted as a N,S-bidentate directing group and exhibited an effect superior to other amino acid residues such as l-aspartic acid (Asp), l-asparagine (Asn), and S-protected l-cysteine (Cys). In addition, further transformation by HFIP-promoted 1,4-elimination furnished another type of glycopeptide with the 1,3-diene motif, which provides a handle for further derivatization.
Collapse
Affiliation(s)
- Yunhao Ding
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
2
|
Zargar IA, Rasool B, Bappa SK, Mukherjee D. Synthesis of aryl enopyranones directly from glycals and aromatic halides to access 2-deoxy-β-C-aryl glycosides. Org Biomol Chem 2024; 22:6941-6945. [PMID: 39120529 DOI: 10.1039/d4ob01172d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
An efficient synthesis of aryl enopyranones via an oxidative Heck-type coupling reaction between ether protected D/L-glycals and different aryl halides is developed. This one-step method attaches an aryl group at the C-1 position keeping the C-1/C-2 double bond intact via the Saegusa-Ito type oxidation, thus facilitating the synthesis of medicinally important 2-deoxy-β-aryl-C-glycosides after Pd/C reduction.
Collapse
Affiliation(s)
- Irshad Ahmad Zargar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Bisma Rasool
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - S K Bappa
- Department of Chemical Sciences, Bose Institute Kolkata, EN 80, Sector V, Bidhan Nagar, Kolkata-700091, WB, India
| | - Debaraj Mukherjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
- Department of Chemical Sciences, Bose Institute Kolkata, EN 80, Sector V, Bidhan Nagar, Kolkata-700091, WB, India
| |
Collapse
|
3
|
Hornink M, Toledo MFZJ, Pimenta DC, Paschoalin C, Silva PM, Figlino GE, Aguiar E, Cervi G, Ribeiro FWM, Carita Correra T, Ferry A, Stefani HA. 1-Iodoglycal: A Versatile Intermediate for the Synthesis of d-Glyco Amides and Esters Employing Carbonylative Cross-Coupling Reaction. ACS OMEGA 2024; 9:31732-31744. [PMID: 39072121 PMCID: PMC11270555 DOI: 10.1021/acsomega.4c02645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
In this study, we present the development of two catalytic processes: a Pd-PEPPSI-catalyzed aminocarbonylation and a Pd(OAc)2-Xantphos-catalyzed alkoxycarbonylation of d-glycals, utilizing carbonylative cross-coupling reactions. We explored successfully various types of aromatic amines, as well as alkyl amines and amino acids, to synthesize new d-glycal amides. However, we observed limitations in the reactivity of alkyl and heteroaromatic amines. The processes enabled the synthesis of 20 novel C1-branched glycoamides and 7 new d-gluco esters.
Collapse
Affiliation(s)
- Milene
M. Hornink
- Departamento
de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-900, SP, Brasil
| | - Monica F. Z. J. Toledo
- Departamento
de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-900, SP, Brasil
| | | | - Caio Paschoalin
- Instituto
de Química, Universidade de São
Paulo, São Paulo 05513-900, SP, Brasil
| | - Pamela M. Silva
- Centro
Universitário São Camilo, São Paulo 04263-200, SP, Brasil
| | | | - Eurípedes Aguiar
- Departamento
de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-900, SP, Brasil
| | - Gustavo Cervi
- Instituto
de Química, Universidade de São
Paulo, São Paulo 05513-900, SP, Brasil
| | | | | | - Angélique Ferry
- Université
Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
- BioCIS,
CNRS, CY Cergy-Paris Université, 5 mail Gay-Lussac, 95000 Cergy-Pontoise cedex, France
- Institut
Universitaire de France (IUF), Paris 75005, France
| | - Hélio A. Stefani
- Departamento
de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-900, SP, Brasil
| |
Collapse
|
4
|
Chen A, Han Y, Wu R, Yang B, Zhu L, Zhu F. Palladium-catalyzed Suzuki-Miyaura cross-couplings of stable glycal boronates for robust synthesis of C-1 glycals. Nat Commun 2024; 15:5228. [PMID: 38898022 PMCID: PMC11187158 DOI: 10.1038/s41467-024-49547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
C-1 Glycals serve as pivotal intermediates in synthesizing diverse C-glycosyl compounds and natural products, necessitating the development of concise, efficient and user-friendly methods to obtain C-1 glycosides is essential. The Suzuki-Miyaura cross-coupling of glycal boronates is notable for its reliability and non-toxic nature, but glycal donor stability remains a challenge. Herein, we achieve a significant breakthrough by developing stable glycal boronates, effectively overcoming the stability issue in glycal-based Suzuki-Miyaura coupling. Leveraging the balanced reactivity and stability of our glycal boronates, we establish a robust palladium-catalyzed glycal-based Suzuki-Miyaura reaction, facilitating the formation of various C(sp2)-C(sp), C(sp2)-C(sp2), and C(sp2)-C(sp3) bonds under mild conditions. Notably, we expand upon this achievement by developing the DNA-compatible glycal-based cross-coupling reaction to synthesize various glycal-DNA conjugates. With its excellent reaction reactivity, stability, generality, and ease of handling, the method holds promise for widespread appication in the preparation of C-glycosyl compounds and natural products.
Collapse
Grants
- We are grateful for financial support from the National Key R&D Program of China (Grant No. 2023YFA1508800, F. Z.), National Science Foundation (Grant No. 22301178, F. Z.), Shanghai Pilot Program for Basic Research - Shanghai Jiao Tong University (Grant No. 21TQ1400210, F. Z.), Fundamental Research Funds for the Central Universities (Grant No. 22X010201631, F. Z.), the Open Grant from the Pingyuan Laboratory (Grant No. 2023PY-OP-0102, F. Z.), Natural Science Foundation of Shanghai (Grant No. 21ZR1435600, F. Z.), Shanghai Sailing Program (Grant No 21YF1420600, F. Z.). Part of this study was supported by the National Science Foundation (Grant No. 22301180, B. Y.).
Collapse
Affiliation(s)
- Anrong Chen
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yang Han
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Rongfeng Wu
- Discovery Chemistry Unit, HitGen Inc., Chengdu, Sichuan, PR China
| | - Bo Yang
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lijuan Zhu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, PR China.
| | - Feng Zhu
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
5
|
Zhang C, He D, Ma Z, Wang M, Zhu Y, Liu Y, Chen J, Lv G, Wu Y. Visible-light-induced synthesis of heteroaryl C-glycosides via decarboxylative C-H glycosylation. Chem Commun (Camb) 2024; 60:5860-5863. [PMID: 38753015 DOI: 10.1039/d4cc01328j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A photoredox promoted decarboxylative C-H glycosylation has been developed for the synthesis of heteroaryl C-glycosides. This methodology is characterized by its exceedingly simple reaction system, high diastereoselectivity and good functional group tolerance. Moreover, this innovative approach circumvents the need for high temperatures, transition metals, and photocatalysts, providing an environmentally friendly, straightforward, and efficient protocol.
Collapse
Affiliation(s)
- Cuimei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Dongqin He
- Department of Pediatrics, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Zhaohui Ma
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Mi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Yafei Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Yan Liu
- Department of Pediatrics, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Guanghui Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
6
|
Liu D, Zhang Y, Niu D. Preparing glycosyl benzothiazoles from 2-isocyanoaryl thioethers and glycosyl radicals under thermal conditions. Chem Commun (Camb) 2024; 60:5498-5501. [PMID: 38696183 DOI: 10.1039/d4cc00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Herein, we report a method for preparing glycosyl benzothiazoles via radical cascade cyclization, in which glycosyl radicals are generated from readily available and bench-stable allyl glycosyl sulfones. This cascade reaction proceeds under simple conditions and tolerates a broad substrate scope in high yield with excellent stereoselectivity. Mechanistic studies support that the reactions proceed via the intermediacy of imidoyl radicals, which attack the appended sulfide unit by a SH2 process to forge the thiazole ring.
Collapse
Affiliation(s)
- Daqi Liu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Ding YN, Xu MZ, Huang YC, Ackermann L, Kong X, Liu XY, Liang YM. Stereoselective assembly of C-oligosaccharides via modular difunctionalization of glycals. Nat Commun 2024; 15:2794. [PMID: 38555346 PMCID: PMC10981691 DOI: 10.1038/s41467-024-47060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
C-oligosaccharides are found in natural products and drug molecules. Despite the considerable progress made during the last decades, modular and stereoselective synthesis of C-oligosaccharides continues to be challenging and underdeveloped compared to the synthesis technology of O-oligosaccharides. Herein, we design a distinct strategy for the stereoselective and efficient synthesis of C-oligosaccharides via palladium-catalyzed nondirected C1-H glycosylation/C2-alkenylation, cyanation, and alkynylation of 2-iodoglycals with glycosyl chloride donors while realizing the difunctionalization of 2-iodoglycals. The catalysis approach tolerates various functional groups, including derivatives of marketed drugs and natural products. Notably, the obtained C-oligosaccharides can be further transformed into various C-glycosides while fully conserving the stereochemistry. The results of density functional theory (DFT) calculations support oxidative addition mechanism of alkenyl-norbornyl-palladacycle (ANP) intermediate with α-mannofuranose chloride and the high stereoselectivity of glycosylation is due to steric hindrance.
Collapse
Affiliation(s)
- Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, Gansu Province, China
| | - Mei-Ze Xu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, Gansu Province, China
| | - Yan-Chong Huang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, Gansu Province, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany.
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 455000, Anyang, China.
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, Gansu Province, China.
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, Gansu Province, China.
| |
Collapse
|
8
|
Shankar B, Kumar B, Kumar S, Arora A, Kavita, Tomar R, Singh BK. Efficient synthesis of glycosylated imidazo[1,2-a]pyridines via solvent catalysed Groebke-Blackburn-Bienayme reaction. Carbohydr Res 2023; 534:108974. [PMID: 37922684 DOI: 10.1016/j.carres.2023.108974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/13/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
A solvent catalysed and metal catalyst-free Groebke-Blackburn-Bienayame three component reaction (GBB-3CR) has been developed for the synthesis of 2-(β-D-glycal-1-yl)-3-N-alkylamino-1-azaindolizines and 2-alkyl/aryl/heteroaryl-3-N-alkylamino-1-azaindolizines. The modified GBB reaction protocol is highly efficient, versatile, atom economic and has been performed in hexafluoroisopropanol (HFIP) without any added catalyst. The GBB-3CR showed high tolerance for a large no of substrates in term of aldehydes, differently substituted 2-aminopyridines and isocyanides without being affected by the presence of electron donating and electron withdrawing substituents at either aldehydes or 2-aminopyridines.
Collapse
Affiliation(s)
- Bhawani Shankar
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi, 110019, India; Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Banty Kumar
- Department of Chemistry, Rajdhani College, University of Delhi, Delhi, 110015, India
| | - Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Kavita
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Rashmi Tomar
- Department of Chemistry, M.S.J. College, Bharatpur, Rajasthan, 321001, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
9
|
Xiao X, Han P, Wan JP, Liu J. Stereoselective Synthesis of Indolyl- C-glycosides Enabled by Sequential Aminopalladation and Heck Glycosylation of 2-Alkynylanilines with Glycals. Org Lett 2023; 25:7170-7175. [PMID: 37756216 DOI: 10.1021/acs.orglett.3c02688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
An efficient and general approach for the synthesis of indolyl-C-glycosides via aminopalladation and subsequent Heck-type glycosylation of easily available 2-alkynylanilines and glycals has been developed. This protocol features excellent stereoselectivity, a broad substrate scope, and mild reaction conditions. In addition, 2,3-pseudoglycals also successfully participated in this cascade reaction, affording C2/C3-branched indolyl glycosides with high regio-/stereoselectivity. The utility of this protocol was also demonstrated by a large-scale reaction and diversified synthetic transformations of the desired products.
Collapse
Affiliation(s)
- Xiao Xiao
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Puren Han
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jianchao Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
10
|
Kohout VR, Wardzala CL, Kramer JR. Mirror Image Mucins and Thio Mucins with Tunable Biodegradation. J Am Chem Soc 2023; 145:16573-16583. [PMID: 37473442 PMCID: PMC11080933 DOI: 10.1021/jacs.3c03659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Mucin glycoproteins are the major component of mucus and are integral to the cellular glycocalyx. Mucins play diverse roles in health and disease, are an important element in epithelial tissue models, and have broad therapeutic potential. All mucin applications are currently challenged by their inherent structural heterogeneity and degradation by proteases. In this study, we describe the synthesis and study of chemically defined mucin analogues bearing native glycans. We utilized combinations of enantiomer amino acids and glycan thioether linkages to achieve tunable proteolysis while maintaining cytocompatibility and binding activity. Structural characterization revealed a previously unknown mirror-image helix and sheds light on the molecular drivers of glycoprotein conformation. This work represents an important step toward the development of artificial mucins for biomedical applications.
Collapse
Affiliation(s)
- Victoria R Kohout
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Casia L Wardzala
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
11
|
Fan Z, Strassfeld DA, Park HS, Wu K, Yu JQ. Formal γ-C-H Functionalization of Cyclobutyl Ketones: Synthesis of cis-1,3-Difunctionalized Cyclobutanes. Angew Chem Int Ed Engl 2023; 62:e202303948. [PMID: 37051944 PMCID: PMC10330309 DOI: 10.1002/anie.202303948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/14/2023]
Abstract
1,3-Difunctionalized cyclobutanes are an emerging scaffold in medicinal chemistry that can confer beneficial pharmacological properties to small-molecule drug candidates. However, the diastereocontrolled synthesis of these compounds typically requires complicated synthetic routes, indicating a need for novel methods. Here, we report a sequential C-H/C-C functionalization strategy for the stereospecific synthesis of cis-γ-functionalized cyclobutyl ketones from readily available cyclobutyl aryl ketones. Specifically, a bicyclo[1.1.1]pentan-2-ol intermediate is generated from the parent cyclobutyl ketone via an optimized Norrish-Yang procedure. This intermediate then undergoes a ligand-enabled, palladium-catalyzed C-C cleavage/functionalization to produce valuable cis-γ-(hetero)arylated, alkenylated, and alkynylated cyclobutyl aryl ketones, the benzoyl moiety of which can subsequently be converted to a wide range of functional groups including amides and esters.
Collapse
Affiliation(s)
- Zhoulong Fan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniel A Strassfeld
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Han Seul Park
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kevin Wu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Dong W, Keess S, Molander GA. Nickel-Mediated Alkyl-, Acyl-, and Sulfonylcyanation of [1.1.1]Propellane. CHEM CATALYSIS 2023; 3:100608. [PMID: 37840854 PMCID: PMC10572913 DOI: 10.1016/j.checat.2023.100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The replacement of traditional functional groups with polycyclic scaffolds has been increasingly rewarding in medicinal chemistry programs. Over the decades, 1,3-disubstituted bicyclo[1.1.1]pentanes (BCPs) have demonstrated the potential for being competent bioisosteres for aryl-, alkyl- and alkynyl substructures. Although highly desired, mild and versatile synthetic methods to access synthetically valuable BCP-containing building blocks remain limited. Herein, a versatile way to access bridgehead substituted BCP nitriles, a useful BCP building block, is described, enabled by the unexpected selectivity of nickel in the multi-component radical cyanation. Commodity materials including carboxylic acids, amines, sulfonyl chlorides, and alkyl chlorides are engaged to provide a broad spectrum of substituted BCP nitriles in a single-step, multi-component fashion.
Collapse
Affiliation(s)
- Weizhe Dong
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
- Lead contact
| |
Collapse
|
13
|
Halder S, Addanki RB, Kancharla PK. Regio- and Stereoselective C-Glycosylation of Indoles Using o-[1-( p-MeO-Phenyl)vinyl]benzoates (PMPVB) as Glycosyl Donors under Brønsted Acid Catalysis. J Org Chem 2023; 88:1844-1854. [PMID: 36695723 DOI: 10.1021/acs.joc.2c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The alkene-based o-[1-(p-MeO-phenyl)vinyl]benzoates (PMPVB) donors that can be remotely activated under catalytic Brønsted acidic conditions have been utilized to synthesize the C-linked indolyl glycosides in a regio- and stereoselective manner. The highly reactive glycosyl donors allow the usage of the poorly nucleophilic N-Boc and N-acetyl indole derivatives, leading to the indolyl glycosides in excellent yields and stereoselectivities. Also, conditions were developed for recycling the byproduct, which significantly improves the potential of these donors.
Collapse
Affiliation(s)
- Suvendu Halder
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rupa Bai Addanki
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
14
|
Synergistic Pd/Cu catalysis enabled cross-coupling of glycosyl stannanes with sulfonium salts to access C-aryl/alkenyl glycals. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Ding YN, Li N, Huang YC, An Y, Liang YM. Visible-Light-Induced Copper-Catalyzed Asymmetric C(sp 3)-C(sp 3)-H Glycosylation: Access to C-Glycopeptides. Org Lett 2022; 24:4519-4523. [PMID: 35729799 DOI: 10.1021/acs.orglett.2c01501] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, a practical and highly efficient method for visible-light-induced copper-catalyzed N-aminoquinoline-directed asymmetric C(sp3)-C(sp3)-H glycosylation was reported. At the same time, C(sp3)-C(sp3)-H glycosylation of nondeoxysugars with amino acids to construct C-glycopeptides was achieved. This approach promoted the synthesis of various C-glycopeptides and provided a new model for the synthesis of C-glycoamino acids.
Collapse
Affiliation(s)
- Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ning Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yan-Chong Huang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
16
|
Liu F, Huang H, Sun L, Yan Z, Tan X, Li J, Luo X, Ding H, Xiao Q. P(v) intermediate-mediated E1cB elimination for the synthesis of glycals. Chem Sci 2022; 13:5588-5596. [PMID: 35694351 PMCID: PMC9116453 DOI: 10.1039/d2sc01423h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
Glycals are highly versatile and useful building blocks in the chemistry of carbohydrate and natural products. However, the practical synthesis of glycals remains a long-standing and mostly unsolved problem in synthetic chemistry. Herein, we present an unprecedented approach to make a variety of glycals using phosphonium hydrolysis-induced, P(v) intermediate-mediated E1cB elimination. The method provides a highly efficient, practical and scalable strategy for the synthesis of glycals with good generality and excellent yields. Furthermore, the strategy was successfully applied to late-stage modification of complex drug-like molecules. Additionally, the corresponding 1-deuterium-glycals were produced easily by simple t BuONa/D2O-hydrolysis-elimination. Mechanistic investigations indicated that the oxaphosphorane intermediate-mediated E1cB mechanism is responsible for the elimination reaction.
Collapse
Affiliation(s)
- Fen Liu
- Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University Nanchang 330013 Jiangxi Province China
| | - Haiyang Huang
- Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University Nanchang 330013 Jiangxi Province China
| | - Longgen Sun
- Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University Nanchang 330013 Jiangxi Province China
| | - Zeen Yan
- Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University Nanchang 330013 Jiangxi Province China
| | - Xiao Tan
- Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University Nanchang 330013 Jiangxi Province China
| | - Jing Li
- Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University Nanchang 330013 Jiangxi Province China
| | - Xinyue Luo
- Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University Nanchang 330013 Jiangxi Province China
| | - Haixin Ding
- Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University Nanchang 330013 Jiangxi Province China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University Nanchang 330013 Jiangxi Province China
| |
Collapse
|
17
|
Tracz A, Malinowska M, Leśniak S, Zawisza A. Aziridine Ring Opening as Regio- and Stereoselective Access to C-Glycosyl-Aminoethyl Sulfide Derivatives. Molecules 2022; 27:1764. [PMID: 35335129 PMCID: PMC8952378 DOI: 10.3390/molecules27061764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
A short synthetic route to stereoselective access to C-glycosyl-aminoethyl sulfide derivatives has been developed through the reaction of tributhyltin derivatives of glycals with aziridinecarboaldehyde and the regioselective ring opening of a chiral aziridine with thiophenol. The absolute configurations of the resulting diastereoisomers were determined by 1H NMR spectroscopy.
Collapse
Affiliation(s)
| | | | | | - Anna Zawisza
- Department of Organic and Applied Chemistry, University of Łódź, 91-403 Łódź, Poland; (A.T.); (M.M.); (S.L.)
| |
Collapse
|
18
|
Azeem Z, Mandal PK. Recent advances in palladium-catalyzed C(sp 3)/C(sp 2)-H bond functionalizations: access to C-branched glycosides. Org Biomol Chem 2022; 20:264-281. [PMID: 34904995 DOI: 10.1039/d1ob02142g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the recent decades, tremendous interest has developed in the transformation of complex substrates by C-H activation and functionalization. In particular, palladium-catalyzed directing and non-directing group-assisted C-H functionalization has emerged as a powerful avenue to access C-branched glycosides. Due to the extreme complexity, delicate functionalities, and high stability of C-H bonds, site-selective functionalization of carbohydrate under mild conditions is highly desirable. The purpose of this review is to cover most of the recent advances in palladium-catalyzed C(sp3) and C(sp2)-H bond functionalizations for the synthesis of C-branched glycosides along with future directions.
Collapse
Affiliation(s)
- Zanjila Azeem
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extn, Sitapur Road, P.O. Box 173, Lucknow 226031, India. .,Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Pintu Kumar Mandal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extn, Sitapur Road, P.O. Box 173, Lucknow 226031, India. .,Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| |
Collapse
|
19
|
Zhu W, Sun Q, Chang H, Zhang H, Wang Q, Chen G, He G. Synthesis of
2‐Deoxy‐
C
‐Glycosides
via
Iridium‐Catalyzed
sp
2
and sp
3
C—H Glycosylation with Unfunctionalized Glycals
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wanjun Zhu
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Qikai Sun
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Hai Chang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Hui‐Xing Zhang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Quanquan Wang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Gang He
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
20
|
Yu C, Liu Y, Xie X, Hu S, Zhang S, Zeng M, Zhang D, Wang J, Liu H. Ir(I)‐Catalyzed C−H Glycosylation for Synthesis of 2‐Indolyl‐
C
‐Deoxyglycosides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Changyue Yu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences 19 A Yuquan Road Beijing 100049 People's Republic of China
| | - Yichu Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Xiong Xie
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences 19 A Yuquan Road Beijing 100049 People's Republic of China
| | - Shulei Hu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
| | - Shurui Zhang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
| | - Mingjie Zeng
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
| | - Dan Zhang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Jiang Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences 19 A Yuquan Road Beijing 100049 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 People's Republic of China
| | - Hong Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences 19 A Yuquan Road Beijing 100049 People's Republic of China
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 People's Republic of China
| |
Collapse
|
21
|
Hussain N, Hussain A. Advances in Pd-catalyzed C-C bond formation in carbohydrates and their applications in the synthesis of natural products and medicinally relevant molecules. RSC Adv 2021; 11:34369-34391. [PMID: 35497292 PMCID: PMC9042403 DOI: 10.1039/d1ra06351k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in the Pd-catalyzed synthesis of C-glycosides and branched sugars are summarized herein and the strategies are categorized based on named reactions or types of sugar moieties involved in the reactions. These include cross-coupling reactions, C-H activations, and carbonylative cross-coupling reactions. Applications of Pd-catalyzed C-glycosylation reactions are discussed in the synthesis of natural products and biologically active molecules such as bergenin, papulacandin D, and SGLT2-inhibitors. Important mechanistic cycles are drawn and the mechanisms for how Pd-activates the sugar moieties for various coupling partners are discussed. The directing group-assisted C-glycosylation and some intramolecular C-H activation reactions are also included.
Collapse
Affiliation(s)
- Nazar Hussain
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU Varanasi-221005 India
| | - Altaf Hussain
- Department of Chemistry, Govt. Degree College Poonch J&K India 185101
| |
Collapse
|
22
|
An Y, Zhang BS, Ding YN, Zhang Z, Gou XY, Li XS, Wang X, Li Y, Liang YM. Palladium-catalyzed C-H glycosylation and retro Diels-Alder tandem reaction via structurally modified norbornadienes (smNBDs). Chem Sci 2021; 12:13144-13150. [PMID: 34745545 PMCID: PMC8513894 DOI: 10.1039/d1sc03569j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/27/2021] [Indexed: 01/12/2023] Open
Abstract
This report describes palladium-catalyzed C–H glycosylation and retro Diels–Alder tandem reaction via structurally modified norbornadienes (smNBDs). smNBDs were proposed to regulate the reactivity of the aryl-norbornadiene-palladacycle (ANP), including its high chemoselectivity and regioselectivity, which were the key to constructing C2 and C3 unsubstituted C4-glycosidic indoles. The scope of this substrate is extensive; the halogenated six-membered and five-membered glycosides were applied to the reaction smoothly, and N-alkyl (primary, secondary and tertiary) C4-glycosidic indoles can also be obtained by this method. In terms of mechanism, the key ANP intermediates characterized by X-ray single-crystal diffraction and further controlled experiments proved that the migration-insertion of smNBDs with phenylpalladium intermediate endows them with high chemo- and regioselectivity. Finally, density functional theory (DFT) calculation further verified the rationality of the mechanism. This report describes palladium-catalyzed C–H glycosylation and retro Diels–Alder tandem reaction via structurally modified norbornadienes (smNBDs).![]()
Collapse
Affiliation(s)
- Yang An
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Bo-Sheng Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Yuke Li
- Department of Chemistry, Centre for Scientific Modeling and Computation, Chinese University of Hong Kong Shatin Hong Kong P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
23
|
Shi WY, Ding YN, Zheng N, Gou XY, Zhang Z, Chen X, Luan YY, Niu ZJ, Liang YM. Highly regioselective and stereoselective synthesis of C-Aryl glycosides via nickel-catalyzed ortho-C-H glycosylation of 8-aminoquinoline benzamides. Chem Commun (Camb) 2021; 57:8945-8948. [PMID: 34397048 DOI: 10.1039/d1cc03589d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-Aryl glycosides are of high value as drug candidates. Here a novel and cost-effective nickel catalyzed ortho-CAr-H glycosylation reaction with high regioselectivity and excellent α-selectivity is described. This method shows great functional group compatibility with various glycosides, showing its synthetic potential. Mechanistic studies indicate that C-H activation could be the rate-determining step.
Collapse
Affiliation(s)
- Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Nian Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yu-Yong Luan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
24
|
Kumar K, Kumar P, Singh B, Yadav S, Mishra UK, Ansari AJ, Ramasastry SSV. Hypothesis-Driven Palladium-Catalyzed Transformations for the Construction of New Molecular Architectures. CHEMICAL RECORD (NEW YORK, N.Y.) 2021; 21:3470-3482. [PMID: 33971073 DOI: 10.1002/tcr.202100095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/09/2022]
Abstract
The development of new synthetic protocols to access diverse molecular scaffolds from readily available starting compounds is of significance in both academia and industry. Towards this, the catalysis by transition metals has been employed as a powerful tool to access molecules with broad structural and functional diversity. An overview of the recent literature manifested the tremendous potential of transition metal-catalyzed processes in advancing organic synthesis in a new direction. This account compiles new conceptual advancements in the palladium-catalyzed Alder-ene type cycloisomerization reactions, C-H functionalizations, and one-pot multicatalytic processes, which have become essential tools to access new classes of molecules.
Collapse
Affiliation(s)
- Ketan Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - Prashant Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - Bara Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - Sonu Yadav
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - Uttam K Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - Arshad J Ansari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| |
Collapse
|
25
|
Zhu Z, Liu S, Hu Z, Xie Z, Tang J, Le Z. Visible‐Light‐Induced Aerobic Oxidative C
sp
3
−H Functionalization of Glycine Derivatives for 2‐Substituted Benzoxazoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhi‐Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| | - Shan Liu
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| | - Zhi‐Yu Hu
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| | - Zong‐Bo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| | - Juan Tang
- Ministry of Education Key Laboratory of Functional Small Organic Molecule Department of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Zhang‐Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| |
Collapse
|
26
|
Liu S, Zhu ZQ, Hu ZY, Tang J, Yuan E. Copper-catalyzed oxidative cyclization of glycine derivatives toward 2-substituted benzoxazoles. Org Biomol Chem 2021; 19:1616-1619. [PMID: 33533370 DOI: 10.1039/d0ob02490b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel and straightforward intramolecular cyclization of glycine derivatives to 2-substituted benzoxazoles through copper-catalyzed oxidative C-H/O-H cross-coupling was described. A variety of glycine derivatives involving short peptides underwent cross-dehydrogenative-coupling readily to afford diverse 2-substituted benzoxazoles. The synthetic method has the advantages of simple operation, broad substrate scope and mild reaction conditions, thus providing an alternative effective approach for benzoxazole construction.
Collapse
Affiliation(s)
- Shan Liu
- Jiangxi Province Key Laboratory of Synthetic chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, China.
| | - Zhi-Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, China.
| | - Zhi-Yu Hu
- Jiangxi Province Key Laboratory of Synthetic chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, China.
| | - Juan Tang
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and chemical engineering, Jiangxi Normal University, Nanchang 330022, China
| | - En Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
27
|
A general approach to C-Acyl glycosides via palladium/copper Co-catalyzed coupling reaction of glycosyl carbothioates and arylboronic acids. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Ghouilem J, Tran C, Grimblat N, Retailleau P, Alami M, Gandon V, Messaoudi S. Diastereoselective Pd-Catalyzed Anomeric C(sp3)–H Activation: Synthesis of α-(Hetero)aryl C-Glycosides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05052] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juba Ghouilem
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Christine Tran
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Nicolas Grimblat
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 S2002LRK, Rosario, República Argentina
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
- Université Paris-Saclay, CNRS, ICMMO, 91405, Orsay Cedex, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| |
Collapse
|
29
|
Shinozuka T. Synthesis of Benzyl 2-Deoxy- C-Glycosides. ACS OMEGA 2020; 5:33196-33205. [PMID: 33403281 PMCID: PMC7774260 DOI: 10.1021/acsomega.0c04874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
A synthetic method for benzyl 2-deoxy-C-glycosides has been developed. Palladium-catalyzed benzyl C-glycosylation of TIPS-protected 1-tributylstannyl glycals with a variety of benzyl bromides provided protected benzyl C-glycals. In this reaction, the use of PdCl2(dppe) promoted a clean reaction, whereas the reaction was accelerated by the addition of Na2CO3. The subsequent transformations provided a novel class of benzyl 2-deoxy-C-glycosides.
Collapse
|
30
|
Ghouilem J, de Robichon M, Le Bideau F, Ferry A, Messaoudi S. Emerging Organometallic Methods for the Synthesis of C-Branched (Hetero)aryl, Alkenyl, and Alkyl Glycosides: C-H Functionalization and Dual Photoredox Approaches. Chemistry 2020; 27:491-511. [PMID: 32813294 DOI: 10.1002/chem.202003267] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Transition-metal-catalyzed C-H functionalization and photoredox nickel dual catalysis have emerged as innovative and powerful avenues for the synthesis of C-branched glycosides. These two concepts have been recently established and provide efficient and mild methods for accessing a series of valuable complex C-branched glycosides of great interest. Herein, recent developments in the synthesis of C-branched aryl/alkenyl/alkyl glycosides through these two approaches are highlighted.
Collapse
Affiliation(s)
- Juba Ghouilem
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Morgane de Robichon
- CY Cergy-Paris Université, BioCIS, Equipe de Chimie Biologique, CNRS, 95000, Neuville sur Oise, France
| | - Franck Le Bideau
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Angélique Ferry
- CY Cergy-Paris Université, BioCIS, Equipe de Chimie Biologique, CNRS, 95000, Neuville sur Oise, France
| | - Samir Messaoudi
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| |
Collapse
|
31
|
Singh B, Bankar SK, Kumar K, Ramasastry SSV. Palladium-catalysed 5- endo-trig allylic (hetero)arylation. Chem Sci 2020; 11:4948-4953. [PMID: 34122951 PMCID: PMC8159216 DOI: 10.1039/d0sc01932a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/14/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
A palladium-catalysed intramolecular allylic (hetero)arylation strategy for the synthesis of fused cyclopentenes incorporated with all-carbon quaternary and spiro centres is described. The method is straightforward, shows broad scope, proceeds in synthetically useful yields, and provides a rare means to construct complex cyclopentanoids. The reaction is believed to involve a kinetically unfavourable 5-endo-trig carbocyclisation of the tethered (π-allyl)palladium system. Further, this method was successfully applied as the key step in the total synthesis of diterpene natural products taiwaniaquinone H and dichroanone.
Collapse
Affiliation(s)
- Bara Singh
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Manauli PO, S. A. S. Nagar Punjab 140306 India
| | - Siddheshwar K Bankar
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Manauli PO, S. A. S. Nagar Punjab 140306 India
| | - Ketan Kumar
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Manauli PO, S. A. S. Nagar Punjab 140306 India
| | - S S V Ramasastry
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Manauli PO, S. A. S. Nagar Punjab 140306 India
| |
Collapse
|
32
|
Liu J, Xiao X, Han P, Zhou H, Yin QS, Sun JS. Palladium-catalyzed C-glycosylation and annulation of o-alkynylanilines with 1-iodoglycals: convenient access to 3-indolyl- C-glycosides. Org Biomol Chem 2020; 18:8834-8838. [PMID: 33103171 DOI: 10.1039/d0ob01812k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and practical approach for the synthesis of 3-indolyl-C-Δ1,2-glycosides through a palladium-catalyzed annulation/C-glycosylation sequence of o-alkynylanilines with 1-iodoglycals has been developed. This methodology has a wide scope of substrates and gives access to 3-indolyl-C-Δ1,2-glycosides in high yields. Furthermore, the product obtained here exhibits a high utility for further transformations.
Collapse
Affiliation(s)
- Jianchao Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China.
| | | | | | | | | | | |
Collapse
|
33
|
Song X, Gu M, Chen X, Xu L, Ni Q. Highly Stereoselective Palladium‐Catalyzed [3+2] Cycloaddition of Vinyl Epoxides and
N
‐Benzothiazolimines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241002 P. R. China
| | - Mengjie Gu
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241002 P. R. China
| | - Xiaoyun Chen
- School of Environmental and Chemical EngineeringJiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Lei Xu
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241002 P. R. China
| | - Qijian Ni
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241002 P. R. China
| |
Collapse
|
34
|
Jovanovic P, Petkovic M, Simic M, Jovanovic M, Tasic G, Crnogorac MD, Zizak Z, Savic V. Stereocontrolled Synthesis of Highly Substituted transα,β-Unsaturated Ketones with Potent Anticancer Properties from Glycals. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Predrag Jovanovic
- Faculty of Pharmacy; Department of Organic Chemistry; University of Belgrade; Vojvode Stepe 450 11221 Belgrade Serbia
| | - Milos Petkovic
- Faculty of Pharmacy; Department of Organic Chemistry; University of Belgrade; Vojvode Stepe 450 11221 Belgrade Serbia
| | - Milena Simic
- Faculty of Pharmacy; Department of Organic Chemistry; University of Belgrade; Vojvode Stepe 450 11221 Belgrade Serbia
| | - Milos Jovanovic
- Faculty of Pharmacy; Department of Organic Chemistry; University of Belgrade; Vojvode Stepe 450 11221 Belgrade Serbia
| | - Gordana Tasic
- Faculty of Pharmacy; Department of Organic Chemistry; University of Belgrade; Vojvode Stepe 450 11221 Belgrade Serbia
| | - Marija Djordjic Crnogorac
- Department of Organic Chemistry; Institute of Oncology and Radiology of Serbia; Pasterova 14 11000 Belgrade Serbia
| | - Zeljko Zizak
- Department of Organic Chemistry; Institute of Oncology and Radiology of Serbia; Pasterova 14 11000 Belgrade Serbia
| | - Vladimir Savic
- Faculty of Pharmacy; Department of Organic Chemistry; University of Belgrade; Vojvode Stepe 450 11221 Belgrade Serbia
| |
Collapse
|
35
|
Sakamoto K, Nagai M, Ebe Y, Yorimitsu H, Nishimura T. Iridium-Catalyzed Direct Hydroarylation of Glycals via C–H Activation: Ligand-Controlled Stereoselective Synthesis of α- and β-C-Glycosyl Arenes. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04686] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kana Sakamoto
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Masaki Nagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yusuke Ebe
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takahiro Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
36
|
Zhou PX, Shi S, Wang J, Zhang Y, Li C, Ge C. Palladium/copper-catalyzed decarbonylative heteroarylation of amides via C–N bond activation. Org Chem Front 2019. [DOI: 10.1039/c9qo00106a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel strategy for the synthesis of 2-arylated oxazole derivatives via palladium/copper-catalyzed decarbonylative heteroarylation of amides via C–N bond activation by ground-state destabilization is reported.
Collapse
Affiliation(s)
- Ping-Xin Zhou
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Shuai Shi
- School of Foreign Language
- Xinxiang Medical University
- Xinxiang
- China
| | - Jia Wang
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Yalei Zhang
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Changzheng Li
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Chunpo Ge
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| |
Collapse
|
37
|
Shelke YG, Yashmeen A, Gholap AVA, Gharpure SJ, Kapdi AR. Homogeneous Catalysis: A Powerful Technology for the Modification of Important Biomolecules. Chem Asian J 2018; 13:2991-3013. [PMID: 30063286 DOI: 10.1002/asia.201801020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/29/2018] [Indexed: 12/17/2022]
Abstract
Homogeneous catalysis plays an important and ubiquitous role in the synthesis of simple and complex molecules, including drug compounds, natural products, and agrochemicals. In recent years, the wide-reaching importance of homogeneous catalysis has made it an indispensable tool for the modification of biomolecules, such as carbohydrates (sugars), amino acids, peptides, nucleosides, nucleotides, and steroids. Such a synthetic strategy offers several advantages, which have led to the development of new molecules of biological relevance at a rapid rate relative to the number of available synthetic methods. Given the powerful nature of homogeneous catalysis in effecting these synthetic transformations, this Focus Review has been compiled to highlight these important developments.
Collapse
Affiliation(s)
- Yogesh G Shelke
- Department of Chemistry, Indian Institute of Technology, Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Afsana Yashmeen
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Aniket V A Gholap
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology, Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| |
Collapse
|
38
|
Liao H, Ma J, Yao H, Liu XW. Recent progress of C-glycosylation methods in the total synthesis of natural products and pharmaceuticals. Org Biomol Chem 2018; 16:1791-1806. [DOI: 10.1039/c8ob00032h] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
C-Glycosylation has found widespread use in the synthesis of biomedically important natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Hongze Liao
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Science
- Nanyang Technological University
- Singapore 637371
| | - Jimei Ma
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan
- China
| | - Hui Yao
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Science
- Nanyang Technological University
- Singapore 637371
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Science
- Nanyang Technological University
- Singapore 637371
| |
Collapse
|
39
|
Shi WM, Li XH, Liang C, Mo DL. Base-Free Selective O
-Arylation and Sequential [3,3]-Rearrangement of Amidoximes with Diaryliodonium Salts: Synthesis of 2-Substituted Benzoxazoles. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Wei-Min Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Xiao-Hua Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| |
Collapse
|
40
|
Affiliation(s)
- You Yang
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Biao Yu
- State
Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|