1
|
Iyer KS, Dismuke Rodriguez KB, Lammert RM, Yirak JR, Saunders JM, Kavthe RD, Aue DH, Lipshutz BH. Rapid Aminations of Functionalized Aryl Fluorosulfates in Water. Angew Chem Int Ed Engl 2024; 63:e202411295. [PMID: 39034288 DOI: 10.1002/anie.202411295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Aryl fluorosulfates of varying complexities have been used in amination reactions in water using a new Pd oxidative addition complex (OAC-1) developed specifically to match the needs of the fine chemicals industry, not only in terms of functional group tolerance, but also reflecting time considerations associated with these important C-N couplings. Also especially noteworthy is that they replace both PFAS-related triflates and nonaflates, which are today out of favor due to recent government regulations. The new complex based on the BippyPhos ligand is used at low loadings and under aqueous micellar conditions. Moreover, it is easily prepared and stable to long term storage. DFT calculations on the OAC precatalyst compare well with the X-ray structure of the crystals with π-complexation to the aromatic system of the ligand and also confirm the NMR data showing a mixture of conformers in solution that differ from the X-ray structure in rotation of the phenyl and t-butyl ligand substituents. An extensive variety of coupling partners, including pharmaceutically relevant APIs, readily participate under mild and environmentally responsible reaction conditions.
Collapse
Affiliation(s)
- Karthik S Iyer
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | - Robert M Lammert
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Jordan R Yirak
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - John M Saunders
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Rahul D Kavthe
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Donald H Aue
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Qin GQ, Wang J, Cao XR, Chu XQ, Zhou X, Rao W, Zhai LX, Miao C, Shen ZL. Nickel-Catalyzed Reductive Amidation of Aryl Fluorosulfates with Isocyanates: Synthesis of Amides via C-O Bond Cleavage. J Org Chem 2024; 89:13735-13743. [PMID: 39213645 DOI: 10.1021/acs.joc.4c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
With the assistance of nickel as catalyst, 2,2'-bipyridine (bpy) as ligand, and manganese as reducing metal, the reductive amidation of isocyanates with readily accessible aryl fluorosulfates could be successfully accomplished. The reactions proceeded effectively via C-O bond activation in DMF at room temperature, enabling the facile synthesis of a range of structurally diverse amides in moderate to high yields with broad functionality compatibility. In addition, the synthetic usefulness of the method was further demonstrated by applying the reaction in scale-up synthesis and the late-stage functionalization of complex molecules with biological activities.
Collapse
Affiliation(s)
- Gan-Qi Qin
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiao Wang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Rong Cao
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li-Xin Zhai
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Kumar Villuri B, Desai UR. Synthesis and Reactivity of Masked Organic Sulfates. Chemistry 2024; 30:e202402268. [PMID: 39024030 DOI: 10.1002/chem.202402268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Nature offers a variety of structurally unique, sulfated endobiotics including sulfated glycosaminoglycans, sulfated tyrosine peptides, sulfated steroids/bile acids/catecholamines. Sulfated molecules display a large number of biological activities including antithrombotic, antimicrobial, anticancer, anti-inflammatory, and others, which arise from modulation of intracellular signaling and enhanced in vivo retention of certain hormones. These characteristics position sulfated molecules very favorably as drug-like agents. However, few have reached the clinic. Major hurdles exist in realizing sulfated molecules as drugs. This state-of-the-art has been transformed through recent works on the development of sulfate masking technologies for both alkyl (sulfated carbohydrates, sulfated steroids) and aryl (sTyr-bearing peptides/proteins, sulfated flavonoids) sulfates. This review compiles the literature on different strategies implemented for different types of sulfate groups. Starting from early efforts in protection of sulfate groups to the design of newer SuFEx, trichloroethyl, and gem-dimethyl-based protection technologies, this review presents the evolution and application of concepts in realizing highly diverse, sulfated molecules as candidate drugs and/or prodrugs. Overall, the newer strategies for sulfate masking and demasking are likely to greatly enhance the design and development of sulfated molecules as non-toxic drugs of the future.
Collapse
Affiliation(s)
- Bharath Kumar Villuri
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| |
Collapse
|
4
|
Ruto A, Seki H, Osaki K, Kaneno D, Hadano S, Watanabe S, Niko Y. Synthesis of 1,3-Dibromopyrene as Precursor of 1-, 3-, 6-, and 8-Substituted Long-Axially Symmetric Pyrene Derivatives. Chemistry 2024; 30:e202401152. [PMID: 38683696 DOI: 10.1002/chem.202401152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Pyrene derivatives bearing substituents at positions 1, 3, 6, and 8 find numerous applications, as exemplified by their use in lasers, sensors, and bioimaging probes. However, these derivatives typically have point-symmetric or short-axially symmetric structures, whereas long-axially symmetric derivatives remain underexplored because of the difficulty in obtaining their precursor, 1,3-dibromopyrene. To address this problem, we herein synthesized 1,3-dibromopyrene from 1-methoxypyrene in an overall yield (71 % over four steps) considerably exceeding those of existing methods. 1,3-Dibromopyrene was converted into 13OPA, a long-axially symmetric pyrene dye with electron-donor (alkoxy) groups at positions 1 and 3 and electron-acceptor (formyl) groups at positions 6 and 8. 13OPA exhibited photophysical properties distinct from those of its point-symmetric and short-axially symmetric isomers, featuring a broad and strongly redshifted absorption, strong fluorescence with reduced sensitivity to protic solvents, and small dipole moment change upon photoexcitation. The derivatization of 13OPA into a Schiff base and its functionalization via Lewis acid-base pairing were also demonstrated. Thus, our work expands the design scope of pyrene-based molecules, particularly those used as emitters.
Collapse
Affiliation(s)
- Asuka Ruto
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi, 780-8520, Japan
- TOSA Innovative Human Development Programs, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi, 780-8520, Japan
| | - Hitomi Seki
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi, 780-8520, Japan
| | - Katsuki Osaki
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi, 780-8520, Japan
| | - Daisuke Kaneno
- Department of Applied Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Shingo Hadano
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi, 780-8520, Japan
| | - Shigeru Watanabe
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi, 780-8520, Japan
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi, 780-8520, Japan
- TOSA Innovative Human Development Programs, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi, 780-8520, Japan
- Center for Photodynamic Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
5
|
Hansen T, Danková D, Bæk M, Grlaš L, Olsen CA. Sulfur(VI) Fluoride Exchange Chemistry in Solid-Phase Synthesis of Compound Arrays: Discovery of Histone Deacetylase Inhibitors. JACS AU 2024; 4:1854-1862. [PMID: 38818074 PMCID: PMC11134391 DOI: 10.1021/jacsau.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 06/01/2024]
Abstract
Multistep synthesis performed on solid support is a powerful means to generate small-molecule libraries for the discovery of chemical probes to dissect biological mechanisms as well as for drug discovery. Therefore, expansion of the collection of robust chemical transformations amenable to solid-phase synthesis is desirable for achieving chemically diverse libraries for biological testing. Here, we show that sulfur(VI) fluoride exchange (SuFEx) chemistry, exemplified by pairing phenols with aryl fluorosulfates, can be used for the solid-phase synthesis of biologically active compounds. As a case study, we designed and synthesized a library of 84 hydroxamic acid-containing small molecules, providing a rich source of inhibitors with diverse selectivity profiles across the human histone deacetylase enzyme family. Among other discoveries, we identified a scaffold that furnished inhibitors of HDAC11 with exquisite selectivity in vitro and a selective inhibitor of HDAC6 that was shown to affect the acetylation of α-tubulin over histone sites H3K18, H3K27, as well as SMC3 in cultured cells. Our results encourage the further use of SuFEx chemistry for the synthesis of diverse small-molecule libraries and provide insight for future design of selective HDAC inhibitors.
Collapse
Affiliation(s)
| | | | | | - Linda Grlaš
- Center for Biopharmaceuticals
and Department of Drug Design and Pharmacology, Faculty of Health
and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals
and Department of Drug Design and Pharmacology, Faculty of Health
and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Chen X, Liang Y, Wang WW, Miao C, Chu XQ, Rao W, Xu H, Zhou X, Shen ZL. Palladium-Catalyzed Esterification of Aryl Fluorosulfates with Aryl Formates. Molecules 2024; 29:1991. [PMID: 38731482 PMCID: PMC11085239 DOI: 10.3390/molecules29091991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
An efficient palladium-catalyzed carbonylation of aryl fluorosulfates with aryl formates for the facile synthesis of esters was developed. The cross-coupling reactions proceeded effectively in the presence of a palladium catalyst, phosphine ligand, and triethylamine in DMF to produce the corresponding esters in moderate to good yields. Of note, functionalities or substituents, such as nitro, cyano, methoxycarbonyl, trifluoromethyl, methylsulfonyl, trifluoromethoxy, fluoro, chloro, bromo, methyl, methoxy, N,N-dimethyl, and [1,3]dioxolyl, were well-tolerated in the reactions, which could be kept for late-stage modification. The reactions employing readily available and relatively robust aryl fluorosulfates as coupling electrophiles could potentially serve as an attractive alternative to traditional cross-couplings with the use of aryl halides and pseudohalides as substrates.
Collapse
Affiliation(s)
- Xue Chen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Yuan Liang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Wen-Wen Wang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China;
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China;
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| |
Collapse
|
7
|
Bertram J, Neumaier F, Zlatopolskiy BD, Neumaier B. Desmethyl SuFEx-IT: SO 2F 2-Free Synthesis and Evaluation as a Fluorosulfurylating Agent. J Org Chem 2024; 89:3821-3833. [PMID: 38386004 PMCID: PMC10949248 DOI: 10.1021/acs.joc.3c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Access to SuFExable compounds was remarkably simplified by introduction of the solid FO2S-donor SuFEx-IT. However, the published process for preparation of this reagent relies on the use of sulfuryl fluoride (SO2F2), which is difficult to obtain and highly toxic. Herein, we disclose a simple protocol for SO2F2-free, hectogram-scale preparation of the analogous desmethyl SuFEx-IT from inexpensive starting materials. The reagent was prepared in a high (85%) total yield and without chromatographic purification steps. In addition, we demonstrate the utility of desmethyl SuFEx-IT by successful preparation of a series of fluorosulfates and sulfamoyl fluorides in high to excellent yields. As such, our work recognizes desmethyl SuFEx-IT as a valuable alternative to common FO2S-donors and enables cost-efficient access to substrates for SuFEx click chemistry.
Collapse
Affiliation(s)
- Jan Bertram
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52425, Germany
| | - Felix Neumaier
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52425, Germany
- Faculty
of Medicine and Cologne University Hospital, Institute of Radiochemistry
and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, Cologne 50937, Germany
| | - Boris D. Zlatopolskiy
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52425, Germany
- Faculty
of Medicine and Cologne University Hospital, Institute of Radiochemistry
and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, Cologne 50937, Germany
| | - Bernd Neumaier
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52425, Germany
- Faculty
of Medicine and Cologne University Hospital, Institute of Radiochemistry
and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, Cologne 50937, Germany
| |
Collapse
|
8
|
Cosgrove B, Grant EK, Bertrand S, Down KD, Somers DO, P Evans J, Tomkinson NCO, Barker MD. Covalent targeting of non-cysteine residues in PI4KIIIβ. RSC Chem Biol 2023; 4:1111-1122. [PMID: 38033723 PMCID: PMC10685791 DOI: 10.1039/d3cb00142c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
The synthesis and characterisation of fluorosulfate covalent inhibitors of the lipid kinase PI4KIIIβ is described. The conserved lysine residue located within the ATP binding site was targeted, and optimised compounds based upon reversible inhibitors with good activity and physicochemical profile showed strong reversible interactions and slow onset times for the covalent inhibition, resulting in an excellent selectivity profile for the lipid kinase target. X-Ray crystallography demonstrated a distal tyrosine residue could also be targeted using a fluorosulfate strategy. Combination of this knowledge showed that a dual covalent inhibitor could be developed which reveals potential in addressing the challenges associated with drug resistant mutations.
Collapse
Affiliation(s)
- Brett Cosgrove
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Emma K Grant
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | - Sophie Bertrand
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | - Kenneth D Down
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | - Don O Somers
- Structural and Biophysical Science, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | - John P Evans
- Screening, Profiling and Mechanistic Biology, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | | | - Michael D Barker
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| |
Collapse
|
9
|
Audet F, Donnard M, Panossian A, Bernier D, Pazenok S, Leroux FR. New Chemical Transformations Involving SO 2 F 2 -Mediated Alcohol Activation. CHEM REC 2023; 23:e202300107. [PMID: 37236146 DOI: 10.1002/tcr.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Sulfuryl fluoride is a gas produced on a multi-ton scale for its use as a fumigant. In the last decades, it has gained interest in organic synthesis as a reagent with unique properties in terms of stability and reactivity when compared to other sulfur-based reagents. Sulfuryl fluoride has not only been used for sulfur-fluoride exchange (SuFEx) chemistry but also encountered applications in classic organic synthesis as an efficient activator of both alcohols and phenols, forming a triflate surrogate, namely a fluorosulfonate. A long-standing industrial collaboration in our research group drove our work on the sulfuryl fluoride-mediated transformations that will be highlighted below. We will first describe recent works on metal-catalyzed transformations from aryl fluorosulfonates while emphasizing the one-pot processes from phenol derivatives. In a second section, nucleophilic substitution reactions on polyfluoroalkyl alcohols will be discussed and the value of polyfluoroalkyl fluorosulfonates in comparison to alternative triflate and halide reagents will be brought to light.
Collapse
Affiliation(s)
- Florian Audet
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| | - Morgan Donnard
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| | - Armen Panossian
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| | - David Bernier
- Bayer S.A.S., 14 impasse Pierre Baizet, 69263, Lyon, France
| | - Sergii Pazenok
- Bayer CropScience AG, Alfred Nobel Straße 50, 40789, Monheim, Germany
| | - Frédéric R Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| |
Collapse
|
10
|
Zeng D, Deng WP, Jiang X. Advances in the construction of diverse SuFEx linkers. Natl Sci Rev 2023; 10:nwad123. [PMID: 37441224 PMCID: PMC10335383 DOI: 10.1093/nsr/nwad123] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 07/15/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx), a new generation of click chemistry, was first presented by Sharpless, Dong and co-workers in 2014. Owing to the high stability and yet efficient reactivity of the SVI-F bond, SuFEx has found widespread applications in organic synthesis, materials science, chemical biology and drug discovery. A diverse collection of SuFEx linkers has emerged, involving gaseous SO2F2 and SOF4 hubs; SOF4-derived iminosulfur oxydifluorides; O-, N- and C-attached sulfonyl fluorides and sulfonimidoyl fluorides; and novel sulfondiimidoyl fluorides. This review summarizes the progress of these SuFEx connectors, with an emphasis on analysing the advantages and disadvantages of synthetic strategies of these connectors based on the SuFEx concept, and it is expected to be beneficial to researchers to rapidly and correctly understand this field, thus inspiring further development in SuFEx chemistry.
Collapse
Affiliation(s)
- Daming Zeng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | | | |
Collapse
|
11
|
Huang H, Jones LH. Covalent drug discovery using sulfur(VI) fluoride exchange warheads. Expert Opin Drug Discov 2023:1-11. [PMID: 37243622 DOI: 10.1080/17460441.2023.2218642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Covalent drug discovery has traditionally focused on targeting cysteine, but the amino acid is often absent in protein binding sites. This review makes the case to move beyond cysteine labeling using sulfur (VI) fluoride exchange (SuFEx) chemistry to expand the druggable proteome. AREAS COVERED Recent advances in SuFEx medicinal chemistry and chemical biology are described, which have enabled the development of covalent chemical probes that site-selectively engage amino acid residues (including tyrosine, lysine, histidine, serine, and threonine) in binding pockets. Areas covered include chemoproteomic mapping of the targetable proteome, structure-based design of covalent inhibitors and molecular glues, metabolic stability profiling, and synthetic methodologies that have expedited the delivery of SuFEx modulators. EXPERT OPINION Despite recent innovations in SuFEx medicinal chemistry, focused preclinical research is required to ensure the field moves from early chemical probe discovery to the delivery of transformational covalent drug candidates. The authors believe that covalent drug candidates designed to engage residues beyond cysteine using sulfonyl exchange warheads will likely enter clinical trials in the coming years.
Collapse
Affiliation(s)
- Huang Huang
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Pedersen S, Batista GMF, Henriksen ML, Hammershøj HC, Hopmann KH, Skrydstrup T. Lignocellulose Conversion via Catalytic Transformations Yields Methoxyterephthalic Acid Directly from Sawdust. JACS AU 2023; 3:1221-1229. [PMID: 37124285 PMCID: PMC10131214 DOI: 10.1021/jacsau.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Poly(ethylene terephthalate) polyester represents the most common class of thermoplastic polymers widely used in the textile, bottling, and packaging industries. Terephthalic acid and ethylene glycol, both of petrochemical origin, are polymerized to yield the polyester. However, an earlier report suggests that polymerization of methoxyterephthalic acid with ethylene glycol provides a methoxy-polyester with similar properties. Currently, there are no established biobased synthetic routes toward the methoxyterephthalic acid monomer. Here, we show a viable route to the dicarboxylic acid from various tree species involving three catalytic steps. We demonstrate that sawdust can be converted to valuable aryl nitrile intermediates through hydrogenolysis, followed by an efficient fluorosulfation-catalytic cyanation sequence (>90%) and then converted to methoxyterephthalic acid by hydrolysis and oxidation. A preliminary polymerization result indicates a methoxy-polyester with acceptable thermal properties.
Collapse
Affiliation(s)
- Simon
S. Pedersen
- Carbon
Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience
Center, Department of Chemistry, Aarhus
University; Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Gabriel M. F. Batista
- Carbon
Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience
Center, Department of Chemistry, Aarhus
University; Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Martin L. Henriksen
- Department
of Biological and Chemical Engineering, Aarhus University; Aabogade
40, 8200 Aarhus
N, Denmark
| | - Hans Christian
D. Hammershøj
- Carbon
Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience
Center, Department of Chemistry, Aarhus
University; Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kathrin H. Hopmann
- Department
of Chemistry, UiT - The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Troels Skrydstrup
- Carbon
Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience
Center, Department of Chemistry, Aarhus
University; Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Kim MP, Cho H, Kayal S, Jeon MH, Seo JK, Son J, Jeong J, Hong SY, Chun JH. Direct 18F-Fluorosulfurylation of Phenols and Amines Using an [ 18F]FSO 2+ Transfer Agent Generated In Situ. J Org Chem 2023; 88:6263-6273. [PMID: 37032486 DOI: 10.1021/acs.joc.3c00512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
We report the direct radiofluorosulfurylation method for the synthesis of 18F-labeled fluorosulfuryl derivatives from phenols and amines using an [18F]FSO2+ transfer agent generated in situ. Nucleophilic radiofluorination is achieved even in a hydrous organic medium, obviating the need for azeotropic drying and the use of cryptands. This unprecedented, operationally simple isotopic functionalization facilitates the reliable production of potential radiotracers for positron emission tomography, rendering facile access to SuFEx radiochemistry.
Collapse
Affiliation(s)
- Min Pyeong Kim
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hojin Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Swatilekha Kayal
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Ho Jeon
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeongmin Son
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jinsil Jeong
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung You Hong
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Carneiro SN, Khasnavis SR, Lee J, Butler TW, Majmudar JD, Am Ende CW, Ball ND. Sulfur(VI) fluorides as tools in biomolecular and medicinal chemistry. Org Biomol Chem 2023; 21:1356-1372. [PMID: 36662157 PMCID: PMC9929716 DOI: 10.1039/d2ob01891h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Recent advances in the synthesis of sulfur(VI)-fluorides has enabled incredible growth in their application in biomolecular chemistry. This review aims to serve as a primer highlighting synthetic strategies toward a diversity of S(VI) fluorides and their application in chemical biology, bioconjugation, and medicinal chemistry.
Collapse
Affiliation(s)
- Sabrina N Carneiro
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Samuel R Khasnavis
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Jisun Lee
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Todd W Butler
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Jaimeen D Majmudar
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | | | - Nicholas D Ball
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| |
Collapse
|
15
|
Yassine H, Weber C, Brugger N, Wöllenstein J, Schmitt K. Towards a Miniaturized Photoacoustic Detector for the Infrared Spectroscopic Analysis of SO 2F 2 and Refrigerants. SENSORS (BASEL, SWITZERLAND) 2022; 23:180. [PMID: 36616778 PMCID: PMC9824166 DOI: 10.3390/s23010180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Sulfuryl fluoride (SO2F2) is a toxic and potent greenhouse gas that is currently widely used as a fumigant insecticide in houses, food, and shipping containers. Though it poses a major hazard to humans, its detection is still carried out manually and only on a random basis. In this paper, we present a two-chamber photoacoustic approach for continuous SO2F2 sensing. Because of the high toxicity of SO2F2, the concept is to use a non-toxic substituent gas with similar absorption characteristics in the photoacoustic detector chamber, i.e., to measure SO2F2 indirectly. The refrigerants R227ea, R125, R134a, and propene were identified as possible substituents using a Fourier-transform infrared (FTIR) spectroscopic analysis. The resulting infrared spectra were used to simulate the sensitivity of the substituents of a photoacoustic sensor to SO2F2 in different concentration ranges and at different optical path lengths. The simulations showed that R227ea has the highest sensitivity to SO2F2 among the substituents and is therefore a promising substituent detector gas. Simulations concerning the possible cross-sensitivity of the photoacoustic detectors to H2O and CO2 were also performed. These results are the first step towards the development of a miniaturized, sensitive, and cost-effective photoacoustic sensor system for SO2F2.
Collapse
Affiliation(s)
- Hassan Yassine
- Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Christian Weber
- Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- Fraunhofer Institute for Physical Measurement Techniques IPM, 79110 Freiburg, Germany
| | - Nicolas Brugger
- Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Jürgen Wöllenstein
- Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- Fraunhofer Institute for Physical Measurement Techniques IPM, 79110 Freiburg, Germany
| | - Katrin Schmitt
- Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- Fraunhofer Institute for Physical Measurement Techniques IPM, 79110 Freiburg, Germany
| |
Collapse
|
16
|
Passia MT, Demaerel J, Amer MM, Drichel A, Zimmer S, Bolm C. Acid-Mediated Imidazole-to-Fluorine Exchange for the Synthesis of Sulfonyl and Sulfonimidoyl Fluorides. Org Lett 2022; 24:8802-8805. [PMID: 36417547 DOI: 10.1021/acs.orglett.2c03546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sulfur(VI) fluoride motifs are important entities in organic chemistry. Typically, their syntheses involve the corresponding chlorides, which are often difficult to prepare and characterized by a poor storability due to the inherently weak S-Cl bond. Here, a single-step procedure for the preparation of sulfur(VI) fluorides starting from sulfonyl imidazoles as stable S(VI) reservoirs is described. By using a simple combination of AcOH and potassium bifluoride (KF2H), an imidazole-to-fluorine exchange furnishes a variety of sulfonyl, sulfonimidoyl, sulfoxyl, and sulfamoyl fluorides in good to excellent yields.
Collapse
Affiliation(s)
- Marco T Passia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Joachim Demaerel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.,Molecular Design and Synthesis, Dept. of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001 Leuven, Belgium
| | - Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.,Egyptian Petroleum Research Institute, Nasr City 11727 Cairo Egypt
| | - Alwin Drichel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Stefanie Zimmer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
17
|
Halder P, Talukdar V, Iqubal A, Das P. Palladium-Catalyzed Aminocarbonylation of Isoquinolines Utilizing Chloroform-COware Chemistry. J Org Chem 2022; 87:13965-13979. [PMID: 36217780 DOI: 10.1021/acs.joc.2c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The carbonyl group forms an integral part of several drug molecules and materials; hence, synthesis of carbonylated compounds remains an intriguing area of research for synthetic and medicinal chemists. Handling toxic CO gas has several limitations; thus, using safe and effective techniques for in or ex situ generation of carbon monoxide from nontoxic and cheap precursors is highly desirable. Among several precursors that have been explored for the generation of CO gas, chloroform can prove to be a promising CO surrogate due to its cost-effectiveness and ready availability. However, the one-pot chloroform-based carbonylation reaction requires strong basic conditions for hydrolysis of chloroform that may affect functional group tolerability of substrates and scale-up reactions. These limitations can be overcome by a two-chamber reactor (COware) that can be utilized for ex situ CO generation through hydrolysis of chloroform in one chamber and facilitating safe carbonylation reactions in another chamber under mild conditions. The versatility of this "Chloroform-COware" technique is explored through palladium-catalyzed aminocarbonylation of medicinally relevant heterocyclic cores, viz., isoquinoline and quinoline.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Ashif Iqubal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| |
Collapse
|
18
|
Chao Y, Krishna A, Subramaniam M, Liang D, Pujari SP, Sue AC, Li G, Miloserdov FM, Zuilhof H. Sulfur-Phenolate Exchange: SuFEx-Derived Dynamic Covalent Reactions and Degradation of SuFEx Polymers. Angew Chem Int Ed Engl 2022; 61:e202207456. [PMID: 35819248 PMCID: PMC9540147 DOI: 10.1002/anie.202207456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/15/2022]
Abstract
The products of the SuFEx reaction between sulfonimidoyl fluorides and phenols, sulfonimidates, are shown to display dynamic covalent chemistry with other phenols. This reaction was shown to be enantiospecific, finished in minutes at room temperature in high yields, and useful for both asymmetric synthesis and sustainable polymer production. Its wide scope further extends the usefulness of SuFEx and related click chemistries.
Collapse
Affiliation(s)
- Yang Chao
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
| | - Akash Krishna
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
| | - Muthusamy Subramaniam
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | - Dong‐Dong Liang
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Sidharam P. Pujari
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | | | - Guanna Li
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Biobased Chemistry and TechnologyWageningen UniversityBornse Weilanden 96708WGWageningenThe Netherlands
| | - Fedor M. Miloserdov
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | - Han Zuilhof
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Department of Chemical and Materials EngineeringFaculty of EngineeringKing Abdulaziz University21589JeddahSaudi Arabia
| |
Collapse
|
19
|
Chao Y, Krishna A, Subramaniam M, Liang D, Pujari SP, Sue AC, Li G, Miloserdov FM, Zuilhof H. Sulfur–Phenolate Exchange: SuFEx‐Derived Dynamic Covalent Reactions and Degradation of SuFEx Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Chao
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Akash Krishna
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Muthusamy Subramaniam
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Dong‐Dong Liang
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Sidharam P. Pujari
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | | | - Guanna Li
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Biobased Chemistry and Technology Wageningen University Bornse Weilanden 9 6708WG Wageningen The Netherlands
| | - Fedor M. Miloserdov
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Han Zuilhof
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Department of Chemical and Materials Engineering Faculty of Engineering King Abdulaziz University 21589 Jeddah Saudi Arabia
| |
Collapse
|
20
|
Chrominski M, Ziemkiewicz K, Kowalska J, Jemielity J. Introducing SuFNucs: Sulfamoyl-Fluoride-Functionalized Nucleosides That Undergo Sulfur Fluoride Exchange Reaction. Org Lett 2022; 24:4977-4981. [PMID: 35771144 PMCID: PMC9295159 DOI: 10.1021/acs.orglett.2c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The reaction between
ribonucleosides and ex situ generated sulfonyl
fluoride has been developed. The reaction takes place at the −NH2 groups of nucleobases, and the resulting nucleosides are
equipped with a sulfamoyl fluoride moiety, dubbed SuFNucs. These species
undergo a selective sulfur fluoride exchange (SuFEx) reaction with
various amines, leading to sulfamide-functionalized derivatives of
adenosine, guanosine, and cytidine (SulfamNucs). The scope and examples
of further SuFNucs fuctionalization leading to nucleotides, oligonucleotides,
and peptide–nucleoside conjugates are presented.
Collapse
Affiliation(s)
- Mikołaj Chrominski
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Kamil Ziemkiewicz
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
21
|
Gedde OR, Bonde A, Golbækdal PI, Skrydstrup T. Pd-Catalyzed Difluoromethylations of Aryl Boronic Acids, Halides, and Pseudohalides with ICF 2 H Generated ex Situ. Chemistry 2022; 28:e202200997. [PMID: 35388933 PMCID: PMC9321866 DOI: 10.1002/chem.202200997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
An expedient ex-situ generation of difluoroiodomethane (DFIM) and its immediate use in a Pd-catalyzed difluoromethylation of aryl boronic acids and ester derivatives in a two-chamber reactor is reported. Heating a solution of bromodifluoroacetic acid with sodium iodide in sulfolane proved to be effective for the generation of near stoichiometric amounts of DFIM for the ensuing catalytic coupling step. A two-step difluoromethylation of aryl (pseudo)halides with tetrahydroxydiboron as a low-cost reducing agent, both promoted by Pd catalysis, proved effective to install this fluorine-containing C1 group onto several pharmaceutically relevant molecules. Finally, the method proved adaptable to deuterium incorporation by simply adding D2 O to the DFIM-generating chamber.
Collapse
Affiliation(s)
- Oliver R. Gedde
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Andreas Bonde
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Peter I. Golbækdal
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| |
Collapse
|
22
|
Walter N, Bertram J, Drewes B, Bahutski V, Timmer M, Schütz MB, Krämer F, Neumaier F, Endepols H, Neumaier B, Zlatopolskiy BD. Convenient PET-tracer production via SuFEx 18F-fluorination of nanomolar precursor amounts. Eur J Med Chem 2022; 237:114383. [DOI: 10.1016/j.ejmech.2022.114383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/31/2022]
|
23
|
Bai X, Huang L, Zhou P, Xi H, Hu J, Zuo Z, Feng H. Selectivity Controlled Hydroamination of Alkynes to Sulfonyl Fluoride Hubs: Development and Application. J Org Chem 2022; 87:4998-5004. [PMID: 35316042 DOI: 10.1021/acs.joc.1c03082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A hydroamination of unactivated alkynes and lithium bis(fluorosulfonyl)imide (LiN(SO2F)2) is described under mild conditions, affording a single regioisomer of the sulfonyl fluorides. This method features broad functional group compatibility and delivers the target vinyl fluorosulfonimides in good to excellent yields. Moreover, gram-scale hydroamination of terminal and internal alkynes is achieved. Further transformations exploiting the reactivity of the vinyl fluorosulfonimide are subsequently developed for the synthesis of fluorosulfates and diphenyl sulfate.
Collapse
Affiliation(s)
- Xueying Bai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Pengyu Zhou
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hui Xi
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research, Zhengzhou 450001, China
| | - Junduo Hu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
24
|
Rodygin KS, Lotsman KA, Erokhin KS, Korabelnikova VA, Ananikov VP. Thermal Mapping of Self-Promoted Calcium Carbide Reactions for Performing Energy-Economic Processes. Int J Mol Sci 2022; 23:ijms23052763. [PMID: 35269903 PMCID: PMC8911359 DOI: 10.3390/ijms23052763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The syntheses of various chemical compounds require heating. The intrinsic release of heat in exothermic processes is a valuable heat source that is not effectively used in many reactions. In this work, we assessed the released heat during the hydrolysis of an energy-rich compound, calcium carbide, and explored the possibility of its usage. Temperature profiles of carbide hydrolysis were recorded, and it was found that the heat release depended on the cosolvent and water/solvent ratio. Thus, the release of heat can be controlled and adjusted. To monitor the released heat, a special tube-in-tube reactor was assembled using joining part 3D-printed with nylon. The thermal effect of the reaction was estimated using a thermoimaging IR monitor. It was found that the kinetics of heat release are different when using mixtures of water with different solvents, and the maximum achievable temperature depends on the type of solvent and the amount of water and carbide. The possibility of using the heat released during carbide hydrolysis to initiate a chemical reaction was tested using a hydrothiolation reaction—the nucleophilic addition of thiols to acetylene. In a model experiment, the yield of the desired product with the use of heat from carbide hydrolysis was 89%, compared to 30% in this intrinsic heating, which was neglected.
Collapse
Affiliation(s)
- Konstantin S. Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, 198504 Saint Petersburg, Russia; (K.S.R.); (K.A.L.)
| | - Kristina A. Lotsman
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, 198504 Saint Petersburg, Russia; (K.S.R.); (K.A.L.)
| | - Kirill S. Erokhin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia; (K.S.E.); (V.A.K.)
| | - Viktoria A. Korabelnikova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia; (K.S.E.); (V.A.K.)
| | - Valentine P. Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, 198504 Saint Petersburg, Russia; (K.S.R.); (K.A.L.)
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia; (K.S.E.); (V.A.K.)
- Correspondence:
| |
Collapse
|
25
|
Li BY, Voets L, Van Lommel R, Hoppenbrouwers F, Alonso M, Verhelst SHL, De Borggraeve WM, Demaerel J. SuFEx-enabled, chemoselective synthesis of triflates, triflamides and triflimidates. Chem Sci 2022; 13:2270-2279. [PMID: 35310484 PMCID: PMC8864708 DOI: 10.1039/d1sc06267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Sulfur(vi) Fluoride Exchange (SuFEx) chemistry has emerged as a next-generation click reaction, designed to assemble functional molecules quickly and modularly. Here, we report the ex situ generation of trifluoromethanesulfonyl fluoride (CF3SO2F) gas in a two chamber system, and its use as a new SuFEx handle to efficiently synthesize triflates and triflamides. This broadly tolerated protocol lends itself to peptide modification or to telescoping into coupling reactions. Moreover, redesigning the SVI-F connector with a S[double bond, length as m-dash]O → S[double bond, length as m-dash]NR replacement furnished the analogous triflimidoyl fluorides as SuFEx electrophiles, which were engaged in the synthesis of rarely reported triflimidate esters. Notably, experiments showed H2O to be the key towards achieving chemoselective trifluoromethanesulfonation of phenols vs. amine groups, a phenomenon best explained-using ab initio metadynamics simulations-by a hydrogen bonded termolecular transition state for the CF3SO2F triflylation of amines.
Collapse
Affiliation(s)
- Bing-Yu Li
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Lauren Voets
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Ruben Van Lommel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Fien Hoppenbrouwers
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven O&N I bis, Herestraat 49, box 901 3000 Leuven Belgium
- Leibniz Institute for Analytical Sciences ISAS e.V., Otto-Hahn-Str. 6b 44227 Dortmund Germany
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Joachim Demaerel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven O&N I bis, Herestraat 49, box 901 3000 Leuven Belgium
| |
Collapse
|
26
|
Tetramethylammonium Fluoride: Fundamental Properties and Applications in C-F Bond-Forming Reactions and as a Base. Catalysts 2022. [DOI: 10.3390/catal12020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleophilic ionic sources of fluoride are essential reagents in the synthetic toolbox to access high added-value fluorinated building blocks unattainable by other means. In this review, we provide a concise description and rationale of the outstanding features of one of these reagents, tetramethylammonium fluoride (TMAF), as well as disclosing the different methods for its preparation, and how its physicochemical properties and solvation effects in different solvents are intimately associated with its reactivity. Furthermore, herein we also comprehensively describe its historic and recent utilization, up to December 2021, in C-F bond-forming reactions with special emphasis on nucleophilic aromatic substitution fluorinations with a potential sustainable application in industrial settings, as well as its use as a base capable of rendering unprecedented transformations.
Collapse
|
27
|
Lee C, Thomson BJ, Sammis GM. Rapid and column-free syntheses of acyl fluorides and peptides using ex situ generated thionyl fluoride. Chem Sci 2021; 13:188-194. [PMID: 35059166 PMCID: PMC8694322 DOI: 10.1039/d1sc05316g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2021] [Indexed: 01/28/2023] Open
Abstract
Thionyl fluoride (SOF2) was first isolated in 1896, but there have been less than 10 subsequent reports of its use as a reagent for organic synthesis. This is partly due to a lack of facile, lab-scale methods for its generation. Herein we report a novel protocol for the ex situ generation of SOF2 and subsequent demonstration of its ability to access both aliphatic and aromatic acyl fluorides in 55-98% isolated yields under mild conditions and short reaction times. We further demonstrate its aptitude in amino acid couplings, with a one-pot, column-free strategy that affords the corresponding dipeptides in 65-97% isolated yields with minimal to no epimerization. The broad scope allows for a wide range of protecting groups and both natural and unnatural amino acids. Finally, we demonstrated that this new method can be used in sequential liquid phase peptide synthesis (LPPS) to afford tri-, tetra-, penta-, and decapeptides in 14-88% yields without the need for column chromatography. We also demonstrated that this new method is amenable to solid phase peptide synthesis (SPPS), affording di- and pentapeptides in 80-98% yields.
Collapse
Affiliation(s)
- Cayo Lee
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Brodie J Thomson
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
28
|
Boston GMR, Philipp HM, Butenschön H. Fluorosulfonylferrocene, (Trifluoromethylsulfonyl)ferrocene and New Ferrocenyl Sulfonates: Directed
ortho
Lithiation and New Anionic Thia‐Fries Rearrangements at Ferrocene. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Geanne M. R. Boston
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Hendrik M. Philipp
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Holger Butenschön
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
29
|
|
30
|
Sun H, Ahrens A, Kristensen SK, Gausas L, Donslund BS, Skrydstrup T. Practical Gas Cylinder-Free Preparations of Important Transition Metal-Based Precatalysts Requiring Gaseous Reagents. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hongwei Sun
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Alexander Ahrens
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Steffan K. Kristensen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Laurynas Gausas
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Bjarke S. Donslund
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Troels Skrydstrup
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
31
|
Jeon MH, Kwon YD, Kim MP, Torres GB, Seo JK, Son J, Ryu YH, Hong SY, Chun JH. Late-Stage 18F/ 19F Isotopic Exchange for the Synthesis of 18F-Labeled Sulfamoyl Fluorides. Org Lett 2021; 23:2766-2771. [PMID: 33725454 DOI: 10.1021/acs.orglett.1c00671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synthesis of sulfamoyl [18F]fluorides has been a challenging topic owing to the inefficient nucleophilic radiofluorination of sulfamoyl derivatives. Herein, we report an 18F/19F isotopic exchange approach to synthesize various sulfamoyl [18F]fluorides, otherwise inaccessible via direct synthesis from amines, with high radiochemical yields up to 97% (30 examples). This late-stage labeling protocol offers an efficient route to yield functionalized molecules by diversifying the chemical library possessing sulfamoyl functionalities through nucleophilic 18F incorporation within nitrogen-containing sulfur(VI) frameworks.
Collapse
Affiliation(s)
- Min Ho Jeon
- Department of Chemistry and Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Min Pyeong Kim
- Department of Chemistry and Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gianluca Bartolini Torres
- Department of Chemistry and Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan 44919, Republic of Korea
| | - Jeongmin Son
- Department of Nuclear Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Sung You Hong
- Department of Chemistry and Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
32
|
Epifanov M, Mo JY, Dubois R, Yu H, Sammis GM. One-Pot Deoxygenation and Substitution of Alcohols Mediated by Sulfuryl Fluoride. J Org Chem 2021; 86:3768-3777. [PMID: 33567820 DOI: 10.1021/acs.joc.0c02557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sulfuryl fluoride is a valuable reagent for the one-pot activation and derivatization of aliphatic alcohols, but the highly reactive alkyl fluorosulfate intermediates limit both the types of reactions that can be accessed as well as the scope. Herein, we report the SO2F2-mediated alcohol substitution and deoxygenation method that relies on the conversion of fluorosulfates to alkyl halide intermediates. This strategy allows the expansion of SO2F2-mediated one-pot processes to include radical reactions, where the alkyl halides can also be exploited in the one-pot deoxygenation of primary alcohols under mild conditions (52-95% yield). This strategy can also enhance the scope of substitutions to nucleophiles that are previously incompatible with one-pot SO2F2-mediated alcohol activation and enables substitution of primary and secondary alcohols in 54-95% yield. Chiral secondary alcohols undergo a highly stereospecific (90-98% ee) double nucleophilic displacement with an overall retention of configuration.
Collapse
Affiliation(s)
- Maxim Epifanov
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jia Yi Mo
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Rudy Dubois
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hao Yu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
33
|
See YY, Morales-Colón MT, Bland DC, Sanford MS. Development of S NAr Nucleophilic Fluorination: A Fruitful Academia-Industry Collaboration. Acc Chem Res 2020; 53:2372-2383. [PMID: 32969213 DOI: 10.1021/acs.accounts.0c00471] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The identification of reliable, general, and high yielding methods for the formation of C(sp2)-fluorine bonds remains a major challenge for synthetic organic chemists. A very common approach involves nucleophilic aromatic fluorination (SNAr fluorination) reactions of aryl chlorides or nitroarenes. Despite being known for more than a century, traditional SNAr fluorination reactions suffer from significant limitations, particularly on a process scale. These include the high cost of common reagents [e.g., cesium fluoride (CsF)], a requirement for elevated temperatures and long reaction times, poor functional group tolerance, and the need for rigorous exclusion of water. This Account summarizes our collaboration with Corteva Agriscience (previously Dow Agrosciences) to address many of these challenges. This collaboration has provided a platform for fundamental scientific advances involving the development of new methods, reagents, and substrates for mild and high yielding nucleophilic fluorination reactions.Our early studies established that the combination of potassium fluoride (KF) and superstoichiometric tetrabutylammonium chloride (Bu4NCl) serves as a cost-effective alternative to CsF for the SNAr fluorination of chloropicolinate substrates. However, these reactions still require elevated temperatures (>130 °C) and afford moderate yields due to competing decomposition of the substrate and product. The need for high temperature is largely due to slow reaction rates resulting from the low concentration of the active fluorinating reagent [anhydrous tetrabutylammonium fluoride (Bu4NF)] under these conditions. To address this issue, we developed several strategies for generating high concentration solutions of anhydrous tetraalkylammonium fluoride in situ by combining fluorine-containing electrophiles (e.g., hexafluorobenzene, acyl fluorides, sulfonyl fluorides) with tetraalkylammonium nucleophiles (R4NCN or R4NOR). These systems enable SNAr fluorination under unusually mild conditions, affording nearly quantitative yield with chloropicolinate substrates at room temperature. However, the high cost of the electrophiles and the generation of large quantities of byproducts in the R4NF-forming step render this approach unsuitable for process scale applications. As an alternative, we next explored anhydrous tetramethylammonium fluoride (Me4NF) for these transformations. This highly reactive fluoride source can be synthesized directly from inexpensive KF and Me4NCl and then dried by heating under vacuum. Unlike Bu4NF, it is not susceptible to Hofmann elimination. As such, anhydrous Me4NF is stable and isolable, as well as highly effective for the room temperature SNAr fluorination of chloropicolinates and other electron deficient substrates.The studies with anhydrous R4NF drew our attention to another challenge associated with traditional SNAr fluorination reactions: their limitation to substrates bearing resonance electron-withdrawing groups. We hypothesized that this challenge could be addressed by circumventing the Meisenheimer intermediate, a canonical mechanistic feature of SNAr fluorination. By designing reactions that involve an alternative concerted delivery of the fluoride to the ipso C(sp2) center, we developed a deoxyfluorination of arylfluorosulfonates using anhydrous Me4NF. This reaction exhibits a broad scope with respect to the aryl electrophile, with substrates bearing both electron-withdrawing (CN, ester, CF3, Cl) and moderately electron donating (phenyl, alkyl) substituents participating in deoxyfluorination. These deoxyfluorination conditions were also expanded to nonaromatic substrates, including aldehydes and benzylic/aliphatic alcohols.This Account concludes by delineating several ongoing challenges and opportunities in this fast-moving field. For instance, one important future direction will be to address the high moisture sensitivity of these transformations. In addition, the application of these new reagents and methods in the synthesis of pharmaceuticals, agrochemicals, and PET imaging agents will continue to test the versatility and functional group compatibility of these methods.
Collapse
Affiliation(s)
- Yi Yang See
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - María T. Morales-Colón
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Douglas C. Bland
- Product and Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
34
|
Gurjar J, Fokin VV. Sulfuryl Fluoride Mediated Synthesis of Amides and Amidines from Ketoximes via Beckmann Rearrangement. Chemistry 2020; 26:10402-10405. [PMID: 31997464 DOI: 10.1002/chem.201905358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Indexed: 12/26/2022]
Abstract
A metal-free and redox-neutral method for Beckmann rearrangement employing inexpensive and readily available SO2 F2 gas is described. The reported transformation proceeds at ambient temperature and is compatible with a wide range of sterically and electronically diverse aromatic, heteroaromatic, aliphatic and lignin-like oximes providing amides in good to excellent yields. The reaction proceeds through the formation of an imidoyl fluoride intermediate that can also be used for the synthesis of amidines.
Collapse
Affiliation(s)
- Jitendra Gurjar
- University of Southern California, The Bridge@USC and Loker Hydrocarbon Research Institute, 1002 Childs Way, Los Angeles, CA, 90089-3502, USA
| | - Valery V Fokin
- University of Southern California, The Bridge@USC and Loker Hydrocarbon Research Institute, 1002 Childs Way, Los Angeles, CA, 90089-3502, USA
| |
Collapse
|
35
|
Foth PJ, Malig TC, Yu H, Bolduc TG, Hein JE, Sammis GM. Halide-Accelerated Acyl Fluoride Formation Using Sulfuryl Fluoride. Org Lett 2020; 22:6682-6686. [PMID: 32806146 DOI: 10.1021/acs.orglett.0c02566] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, we report a new one-pot sequential method for SO2F2-mediated nucleophilic acyl substitution reactions starting from carboxylic acids. A mechanistic study revealed that SO2F2-mediated acid activation proceeds via the anhydride, which is then converted to the corresponding acyl fluoride. Tetrabutylammonium chloride or bromide accelerate the formation of acyl fluoride. Optimized halide-accelerated conditions were used to synthesize acyl fluorides in 30-80% yields, and esters, amides, and thioesters in 72-96% yields without reoptimization for each nucleophile.
Collapse
Affiliation(s)
- Paul J Foth
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Thomas C Malig
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hao Yu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Trevor G Bolduc
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Jason E Hein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
36
|
Kulow RW, Wu JW, Kim C, Michaudel Q. Synthesis of unsymmetrical sulfamides and polysulfamides via SuFEx click chemistry. Chem Sci 2020; 11:7807-7812. [PMID: 34094153 PMCID: PMC8163303 DOI: 10.1039/d0sc03606d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As hydrogen-bond donors and acceptors, N,N'-disubstituted sulfamides have been used in a range of applications from medicinal chemistry to anion-binding catalysis. However, compared to ureas or thioureas, the utilization of this unique moiety remains marginal, in part because of a lack of general synthetic methods to access unsymmetrical sulfamides. Specifically, polysulfamides are a virtually unknown type of polymer despite their potential utility in non-covalent dynamic networks, an intense area of research in materials science. We report herein a practical and efficient process to prepare unsymmetrical sulfamides via Sulfur(vi)-Fluoride Exchange (SuFEx) click chemistry. This process was then applied to synthesize polysulfamides. Thermal analysis showed that this family of polymers possess high thermal stability and tunable glass transition temperatures. Finally, hydrolysis studies indicated that aromatic polysulfamides could be recycled back to their constituting monomers at the end of their life cycle.
Collapse
Affiliation(s)
- Ryan W Kulow
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Jiun Wei Wu
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Cheoljae Kim
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Quentin Michaudel
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
37
|
Kwon YD, Jeon MH, Park NK, Seo JK, Son J, Ryu YH, Hong SY, Chun JH. Synthesis of 18F-Labeled Aryl Fluorosulfates via Nucleophilic Radiofluorination. Org Lett 2020; 22:5511-5516. [PMID: 32589035 DOI: 10.1021/acs.orglett.0c01868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfuryl fluoride gas is a key reagent for SO2F transfer. However, conventional SO2F transfer reactions have limited 18F-radiochemistry translation, due to the inaccessibility of gaseous [18F]SO2F2. Herein, we report the first SO2F2-free synthesis of aryl [18F]fluorosulfates from both phenolic and isolated aryl imidazylate precursors with cyclotron-produced 18F-. The radiochemical yields ranged from moderate to good with excellent functional group tolerance. The reliability of our approach was validated by the automated radiosynthesis of 4-acetamidophenyl [18F]fluorosulfate.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Min Ho Jeon
- Department of Chemistry, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Nam Kyu Park
- Department of Chemistry, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan 44919, Republic of Korea
| | - Jeongmin Son
- Department of Nuclear Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Sung You Hong
- Department of Chemistry, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
38
|
Ravn AK, Johansen MB, Skrydstrup T. Controlled Release of Reactive Gases: A Tale of Taming Carbon Monoxide. Chempluschem 2020; 85:1529-1533. [PMID: 32510185 DOI: 10.1002/cplu.202000319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Indexed: 12/19/2022]
Abstract
This Personal Account describes the development of air-stable and solid precursors for on-demand release of carbon monoxide. In combination with the development of a two-chamber reactor, COware®, CO liberation can be achieved under safe working conditions, as well as allowing transition metal-mediated carbonylations with stoichiometric carbon monoxide. Particularly appealing is the adaptability of this chemical technology for the preparation of carbon isotope labeled bioactive compounds.
Collapse
Affiliation(s)
- Anne K Ravn
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Martin B Johansen
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.,Department of Engineering, Aarhus University, Åbogade 40, 8200, Aarhus N, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
39
|
Johansen MB, Gedde OR, Mayer TS, Skrydstrup T. Access to Aryl and Heteroaryl Trifluoromethyl Ketones from Aryl Bromides and Fluorosulfates with Stoichiometric CO. Org Lett 2020; 22:4068-4072. [PMID: 32391697 DOI: 10.1021/acs.orglett.0c01117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We report a sequential one-pot preparation of aromatic trifluoromethyl ketones starting from readily accessible aryl bromides and fluorosulfates, the latter easily prepared from the corresponding phenols. The methodology utilizes low pressure carbon monoxide generated ex situ from COgen to generate Weinreb amides as reactive intermediates that undergo monotrifluoromethylation affording the corresponding aromatic trifluoromethyl ketones (TFMKs) in good yields. The stoichiometric use of CO enables the possibility for accessing 13C-isotopically labeled TFMK by switching to the use of 13COgen.
Collapse
Affiliation(s)
- Martin B Johansen
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.,Department of Engineering, Aarhus University, Åbogade 40, DK-8200 Aarhus N, Denmark
| | - Oliver R Gedde
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Thea S Mayer
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
40
|
Mahapatra S, Woroch CP, Butler TW, Carneiro SN, Kwan SC, Khasnavis SR, Gu J, Dutra JK, Vetelino BC, Bellenger J, Am Ende CW, Ball ND. SuFEx Activation with Ca(NTf 2) 2: A Unified Strategy to Access Sulfamides, Sulfamates, and Sulfonamides from S(VI) Fluorides. Org Lett 2020; 22:4389-4394. [PMID: 32459499 PMCID: PMC7294807 DOI: 10.1021/acs.orglett.0c01397] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method to activate sulfamoyl fluorides, fluorosulfates, and sulfonyl fluorides with calcium triflimide and DABCO for SuFEx with amines is described. The reaction was applied to a diverse set of sulfamides, sulfamates, and sulfonamides at room temperature under mild conditions. Additionally, we highlight this transformation to parallel medicinal chemistry to generate a broad array of nitrogen-based S(VI) compounds.
Collapse
Affiliation(s)
- Subham Mahapatra
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cristian P Woroch
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Todd W Butler
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sabrina N Carneiro
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Sabrina C Kwan
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Samuel R Khasnavis
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Junha Gu
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Jason K Dutra
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Beth C Vetelino
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Justin Bellenger
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher W Am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Nicholas D Ball
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| |
Collapse
|
41
|
Barber T, Argent SP, Ball LT. Expanding Ligand Space: Preparation, Characterization, and Synthetic Applications of Air-Stable, Odorless Di-tert-alkylphosphine Surrogates. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Barber
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham NG7 2TU, U.K
| | - Stephen P. Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Liam T. Ball
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham NG7 2TU, U.K
| |
Collapse
|
42
|
Liang DD, Streefkerk DE, Jordaan D, Wagemakers J, Baggerman J, Zuilhof H. Silicon-Free SuFEx Reactions of Sulfonimidoyl Fluorides: Scope, Enantioselectivity, and Mechanism. Angew Chem Int Ed Engl 2020; 59:7494-7500. [PMID: 32157791 PMCID: PMC7216998 DOI: 10.1002/anie.201915519] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/30/2020] [Indexed: 12/20/2022]
Abstract
SuFEx reactions, in which an S−F moiety reacts with a silyl‐protected phenol, have been developed as powerful click reactions. In the current paper we open up the potential of SuFEx reactions as enantioselective reactions, analyze the role of Si and outline the mechanism of this reaction. As a result, fast, high‐yielding, “Si‐free” and enantiospecific SuFEx reactions of sulfonimidoyl fluorides have been developed, and their mechanism shown, by both experimental and theoretical methods, to yield chiral products.
Collapse
Affiliation(s)
- Dong-Dong Liang
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dieuwertje E Streefkerk
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Daan Jordaan
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Jorden Wagemakers
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Jacob Baggerman
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.,School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Liang D, Streefkerk DE, Jordaan D, Wagemakers J, Baggerman J, Zuilhof H. Silicon‐Free SuFEx Reactions of Sulfonimidoyl Fluorides: Scope, Enantioselectivity, and Mechanism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dong‐Dong Liang
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Dieuwertje E. Streefkerk
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Daan Jordaan
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Jorden Wagemakers
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Jacob Baggerman
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Han Zuilhof
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- School of Pharmaceutical Science and TechnologyTianjin University 92 Weijin Road Tianjin China
- Department of Chemical and Materials EngineeringFaculty of EngineeringKing Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
44
|
Mendel M, Kalvet I, Hupperich D, Magnin G, Schoenebeck F. Site-Selective, Modular Diversification of Polyhalogenated Aryl Fluorosulfates (ArOSO 2 F) Enabled by an Air-Stable Pd I Dimer. Angew Chem Int Ed Engl 2020; 59:2115-2119. [PMID: 31733009 PMCID: PMC7003813 DOI: 10.1002/anie.201911465] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/18/2019] [Indexed: 01/14/2023]
Abstract
Since 2014, the interest in aryl fluorosulfates (ArOSO2 F) as well as their implementation in powerful applications has continuously grown. In this context, the enabling capability of ArOSO2 F will strongly depend on the substitution pattern of the arene, which ultimately dictates its overall function as drug candidate, material, or bio-linker. This report showcases the modular, substrate-independent, and fully predictable, selective functionalization of polysubstituted arenes bearing C-OSO2 F, C-Br, and C-Cl sites, which makes it possible to diversify the arene in the presence of OSO2 F or utilize OSO2 F as a triflate surrogate. Sequential and triply selective arylations and alkylations were realized within minutes at room temperature, using a single and air-stable PdI dimer.
Collapse
Affiliation(s)
- Marvin Mendel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Indrek Kalvet
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Daniel Hupperich
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Guillaume Magnin
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
45
|
Demaerel J, Veryser C, De Borggraeve WM. Ex situ gas generation for lab scale organic synthesis. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00497a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review discusses recent examples of ex situ generated gaseous reagents, and their use in organic synthesis.
Collapse
Affiliation(s)
- Joachim Demaerel
- Molecular Design and Synthesis
- Department of Chemistry
- 3001 Leuven
- Belgium
| | - Cedrick Veryser
- Molecular Design and Synthesis
- Department of Chemistry
- 3001 Leuven
- Belgium
| | | |
Collapse
|
46
|
Mendel M, Kalvet I, Hupperich D, Magnin G, Schoenebeck F. Chemoselektive, modulare Diversifikation polyhalogenierter Arylfluorosulfate (ArOSO
2
F), ermöglicht durch ein luftstabiles Pd
I
‐Dimer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marvin Mendel
- Institut für Organische ChemieRWTH Aachen Landoltweg 1 52074 Aachen Deutschland
| | - Indrek Kalvet
- Institut für Organische ChemieRWTH Aachen Landoltweg 1 52074 Aachen Deutschland
| | - Daniel Hupperich
- Institut für Organische ChemieRWTH Aachen Landoltweg 1 52074 Aachen Deutschland
| | - Guillaume Magnin
- Institut für Organische ChemieRWTH Aachen Landoltweg 1 52074 Aachen Deutschland
| | | |
Collapse
|
47
|
Zhang S, Xiong H, Lu F, Ma F, Gu Y, Ma P, Xu H, Yang G. Synthesis of N-Acyl Sulfamates from Fluorosulfonates and Potassium Trimethylsilyloxyl Imidates. J Org Chem 2019; 84:15380-15388. [DOI: 10.1021/acs.joc.9b02394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Bieliu̅nas V, De Borggraeve WM. Introduction of Aryl Fluorosulfates into the Realm of Catellani Reaction Substrates. J Org Chem 2019; 84:15706-15717. [DOI: 10.1021/acs.joc.9b02352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Vidmantas Bieliu̅nas
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Wim M. De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| |
Collapse
|
49
|
SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc Natl Acad Sci U S A 2019; 116:18808-18814. [PMID: 31484779 DOI: 10.1073/pnas.1909972116] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx) has emerged as the new generation of click chemistry. We report here a SuFEx-enabled, agnostic approach for the discovery and optimization of covalent inhibitors of human neutrophil elastase (hNE). Evaluation of our ever-growing collection of SuFExable compounds toward various biological assays unexpectedly revealed a selective and covalent hNE inhibitor: benzene-1,2-disulfonyl fluoride. Synthetic derivatization of the initial hit led to a more potent agent, 2-(fluorosulfonyl)phenyl fluorosulfate with IC50 0.24 μM and greater than 833-fold selectivity over the homologous neutrophil serine protease, cathepsin G. The optimized, yet simple benzenoid probe only modified active hNE and not its denatured form.
Collapse
|
50
|
Lekkala R, Lekkala R, Moku B, Rakesh KP, Qin HL. SO 2F 2-mediated transformation of 2'-hydroxyacetophenones to benzo-oxetes. Beilstein J Org Chem 2019; 15:976-980. [PMID: 31164935 PMCID: PMC6541378 DOI: 10.3762/bjoc.15.95] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 11/23/2022] Open
Abstract
A catalyst-free novel and efficient methodology for the challenging synthesis of benzo-oxetes from 2'-hydroxyacetophenones mediated by sulfuryl fluoride (SO2F2) gas has been realized. The combination of 2'-hydroxyacetophenones and SO2F2 furnishes synthetically challenging benzo-oxetanes in moderate to excellent yields. The highlight of this work is the design and synthesis of strained four-membered oxete rings.
Collapse
Affiliation(s)
- Revathi Lekkala
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Ravindar Lekkala
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - K P Rakesh
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|