1
|
Bishen SM, Adhikari M, Mishra H. Effect of concentration and wavelength of excitation on the photophysics of salicylate anion in acetonitrile and water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124994. [PMID: 39173317 DOI: 10.1016/j.saa.2024.124994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Sodium salicylate (NaSA) molecule exists as salicylate anion in acetonitrile (ACN) and water solvents, and exhibits large Stokes shifted fluorescence due to excited state intramolecular proton transfer (ESIPT), with decay times of ∼5 ns in ACN and ∼3.9 ns in water by 300 nm (absorption maxima) excitation. Previous studies report both ground and excited state enol-keto tautomerization in ACN, but only excited state tautomerization in water at 10-4 M. However, the current work explores the effect of concentration and excitation wavelengths on the photoinduced dynamics of ESIPT in the salicylate anion. On increasing the concentration of NaSA, no change in absorption spectra appears in both the solvents, and emission spectra of NaSA in water remain unaffected by changes in concentration or excitation wavelength, whereas, a slight red shift and decrease in FWHM appears in ACN. Time-domain fluorescence measurements show predominantly single-exponential decay throughout the emission profile by 300 nm excitation above the 10-5 M concentration in both the solvents, while by 375 nm excitation, multi-exponential fluorescence decay is observed at low concentrations, and as the concentration of NaSA increases, this decay behaviour tends to converge towards a single exponential decay. These results suggest that solute-solvent interactions stabilize the ground-state intermolecular hydrogen-bonded species at low concentrations, while higher concentrations weaken these interactions, leading to emission solely from the salicylate anion. Peak fit analysis of excitation spectra confirms enol-keto tautomerization in both the solvents, with the keto form being more stabilized in ACN. These findings underscore that in ACN, behaviour of NaSA is influenced by both concentration and excitation wavelength and contrary to previous reports, the keto form of the molecule is also present in water, though at a very low concentration and an increase in non-radiative transitions in water cause fluorescence quenching.
Collapse
Affiliation(s)
- Siddharth Mall Bishen
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Physics Section, MMV, Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | - Meena Adhikari
- Physics Section, MMV, Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | - Hirdyesh Mishra
- Physics Section, MMV, Department of Physics, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Singh A, Singh N, Jinugu ME, Thareja P, Bhatia D. Programmable soft DNA hydrogels stimulate cellular endocytic pathways and proliferation. BIOMATERIALS ADVANCES 2025; 166:214040. [PMID: 39293253 DOI: 10.1016/j.bioadv.2024.214040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Hydrogels are pivotal in tissue engineering, regenerative medicine, and drug delivery applications. Existing hydrogel platforms are not easily customizable and often lack precise programmability, making them less suited for 3D tissue culture and programming of cells. DNA molecules stand out among other promising biomaterials due to their unparalleled precision, programmability, and customization. In this study, we introduced a palette of novel cellular scaffolding platforms made of pure DNA-based hydrogel systems while improving the shortcomings of the existing platforms. We showed a quick and easy one step synthesis of DNA hydrogels using thermal annealing based on sequence specific hybridization strategy. We also demonstrated the formation of multi-armed branched supramolecular scaffolds with custom mechanical stiffness, porosity, and network density by increasing or decreasing the number of branching arms. These mechanically tuneable DNA hydrogels proved to be a suitable suitable platform for modulating the physiological processes of retinal pigment epithelial cells (RPE1). In-vitro studies showed dynamic changes at multiple levels, ranging from a change in morphology to protein expression patterns, enhanced membrane traffic, and proliferation. The soft DNA hydrogels explored here are mechanically compliant and pliable, thus excellently suited for applications in cellular programming and reprogramming. This research lays the groundwork for developing a DNA hydrogel system with a higher dynamic range of stiffness, which will open exciting avenues for tissue engineering and beyond.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Nihal Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Manasi Esther Jinugu
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Prachi Thareja
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India; Dr. Kiran C Patel Center for Sustainable Development (KPCSD), Indian Institute of Technology Gandhinagar, India
| | - Dhiraj Bhatia
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
3
|
Li H, Iyer KS, Bao L, Zhai J, Li JJ. Advances in the Development of Granular Microporous Injectable Hydrogels with Non-spherical Microgels and Their Applications in Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301597. [PMID: 37499268 DOI: 10.1002/adhm.202301597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Granular microporous hydrogels are emerging as effective biomaterial scaffolds for tissue engineering due to their improved characteristics compared to traditional nanoporous hydrogels, which better promote cell viability, cell migration, cellular/tissue infiltration, and tissue regeneration. Recent advances have resulted in the development of granular hydrogels made of non-spherical microgels, which compared to those made of spherical microgels have higher macroporosity, more stable mechanical properties, and better ability to guide the alignment and differentiation of cells in anisotropic tissue. The development of these hydrogels as an emerging research area is attracting increasing interest in regenerative medicine. This review first summarizes the fabrication techniques available for non-spherical microgels with different aspect-ratios. Then, it introduces the development of granular microporous hydrogels made of non-spherical microgels, their physicochemical characteristics, and their applications in tissue regeneration. The limitations and future outlook of research on microporous granular hydrogels are also critically discussed.
Collapse
Affiliation(s)
- Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Keerthi Subramanian Iyer
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Lei Bao
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
4
|
Jia B, Dong Z, Ren X, Niu M, Kong S, Wan X, Huang H. Hydrogels composite optimized for low resistance and loading-unloading hysteresis for flexible biosensors. J Colloid Interface Sci 2024; 671:516-528. [PMID: 38815387 DOI: 10.1016/j.jcis.2024.05.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
With the advancement of wearable and implantable medical devices, hydrogel flexible bioelectronic devices have attracted significant interest due to exhibiting tissue-like mechanical compliance, biocompatibility, and low electrical resistance. In this study, the development and comprehensive performance evaluation of poly(acrylic acid)/ N,N'-bis(acryloyl) cystamine/ 1-butyl-3-ethenylimidazol-1-ium:bromide (PAA/NB/IL) hydrogels designed for flexible sensor applications are introduced. Engineered through a combination of physical and chemical cross-linking strategies, these hydrogels exhibit strong mechanical properties, high biocompatibility, and effective sensing capabilities. At 95 % strain, the compressive modulus of PAA/NB/IL 100 reach up to 3.66 MPa, with the loading-unloading process showing no significant hysteresis loop, indicating strong mechanical stability and elasticity. An increase in the IL content was observed to enlarge the porosity of the hydrogels, thereby influencing their swelling behavior and sensing functionality. Biocompatibility assessments revealed that the hemolysis rate was below 5 %, ensuring their suitability for biomedical applications. Upon implantation in rats, a minimal acute inflammatory response was observed, comparable to that of the biocompatibility control poly(ethylene glycol) diacrylate (PEGDA). These results suggest that PAA/NB/IL hydrogels hold promise as biomaterials for biosensors, offering a balance of mechanical integrity, physiological compatibility, and sensing sensitivity, thereby facilitating advanced healthcare monitoring solutions.
Collapse
Affiliation(s)
- Ben Jia
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China; School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muwen Niu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuzhen Kong
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaopeng Wan
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China; School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
5
|
Parvin N, Kumar V, Joo SW, Mandal TK. Cutting-Edge Hydrogel Technologies in Tissue Engineering and Biosensing: An Updated Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4792. [PMID: 39410363 PMCID: PMC11477805 DOI: 10.3390/ma17194792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Hydrogels, known for their unique ability to retain large amounts of water, have emerged as pivotal materials in both tissue engineering and biosensing applications. This review provides an updated and comprehensive examination of cutting-edge hydrogel technologies and their multifaceted roles in these fields. Initially, the chemical composition and intrinsic properties of both natural and synthetic hydrogels are discussed, highlighting their biocompatibility and biodegradability. The manuscript then probes into innovative scaffold designs and fabrication techniques such as 3D printing, electrospinning, and self-assembly methods, emphasizing their applications in regenerating bone, cartilage, skin, and neural tissues. In the realm of biosensing, hydrogels' responsive nature is explored through their integration into optical, electrochemical, and piezoelectric sensors. These sensors are instrumental in medical diagnostics for glucose monitoring, pathogen detection, and biomarker identification, as well as in environmental and industrial applications like pollution and food quality monitoring. Furthermore, the review explores cross-disciplinary innovations, including the use of hydrogels in wearable devices, and hybrid systems, and their potential in personalized medicine. By addressing current challenges and future directions, this review aims to underscore the transformative impact of hydrogel technologies in advancing healthcare and industrial practices, thereby providing a vital resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
6
|
Berramdane K, Lucío MI, Ramírez MG, Navarro-Fuster V, Bañuls MJ, Maquieira Á, Morales-Vidal M, Beléndez A, Pascual I. Storage Optimization of Transmission Holographic Gratings in Photohydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48187-48202. [PMID: 39186609 PMCID: PMC11403569 DOI: 10.1021/acsami.4c06436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The development and optimization of holographic materials represent a great challenge today. These materials must be synthesized according to the characteristics that are desirable in photonic devices whose application is the object of investigation. In certain holographic sensors and biosensors, it is essential that the recording material be stable in liquid media. Furthermore, the holographic gratings stored in them must have temporal and structural stability, so that they can act as transducers of the analytical signal. Therefore, it is essential to optimize its storage in terms of the chemical composition of the material and the optical parameters of recording. This work focuses on the study of the storage optimization of unslanted transmission volume phase holograms in photohydrogels based on acrylamide and N,N'-methylenebis(acrylamide). Hydrogel matrices, also composed of acrylamide and N,N'-methylenebis(acrylamide), with different degrees of cross-linking were used and analyzed by scanning electron microscopy and UV-visible spectroscopy. The best results in terms of diffraction efficiency were reached for hydrogel matrices with an acrylamide/N,N'-methylenebis(acrylamide) molar ratio between 19.9 and 26. This relationship was also optimized in the incubator solution used to incorporate the components necessary for the formation of the holograms in the hydrogel matrices. The maximum diffraction efficiency, about 35%, was achieved when using an incubation solution with an acrylamide/N,N'-methylenebis(acrylamide) molar ratio of 4.35. The influence of the physical thickness of the hydrogel layers, the intensity, and the exposure time on the diffraction efficiency was also investigated and optimized. In addition, the behavior of the hologram was analyzed after a washing stage with PBST. A simple model that considered the effects of bending and attenuation of holographic gratings was proposed and used to obtain the optical parameters of the holograms.
Collapse
Affiliation(s)
- Kheloud Berramdane
- I. U. Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, San Vicente del Raspeig 03690, Spain
| | - María Isabel Lucío
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, Valencia 46022, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - Manuel G Ramírez
- I. U. Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, San Vicente del Raspeig 03690, Spain
- Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, San Vicente del Raspeig 03690, Spain
| | - Víctor Navarro-Fuster
- Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, San Vicente del Raspeig 03690, Spain
| | - María-José Bañuls
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, Valencia 46022, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, Valencia 46022, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - Marta Morales-Vidal
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, San Vicente del Raspeig 03690, Spain
| | - Augusto Beléndez
- I. U. Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, San Vicente del Raspeig 03690, Spain
- Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, San Vicente del Raspeig 03690, Spain
| | - Inmaculada Pascual
- I. U. Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, San Vicente del Raspeig 03690, Spain
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, San Vicente del Raspeig 03690, Spain
| |
Collapse
|
7
|
Jana S, Wöll D. Moisture changes inside hydrogel particles during their drying process investigated with fluorescence lifetime imaging. Phys Chem Chem Phys 2024; 26:23250-23255. [PMID: 39192777 DOI: 10.1039/d4cp02684e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The properties of hydrogels and microgels, i.e. hydrogel particles, depend strongly on their water content. Based on our previously developed method to access the local water content in microgels, we performed fluorescence lifetime microscopy measurements at different stages of drying poly(N-isopropylacrylamide) (PNIPAM) microgels under ambient conditions. For this purpose, the red-emitting dye ATTO 655 was covalently attached to the microgels. Its emission is quenched by water molecules due to an energy transfer from the first excited state of the dye to a vibrational level of the water molecules. The quenching constant or, equivalently, the fluorescence lifetime, gives direct access to the local water concentration. We measured the fluorescence lifetime after spin-coating, reswelling and at different times of subsequent drying to follow the changes of water content during this process. We found that the microgels are not totally dry after spin coating, but drying them to their equilibrium moisture under ambient temperature and humidity conditions requires several hours. Additionally, we determined the moisture inside microgels in equilibrium at different air humidities. In summary, the method allows for a detailed investigation of the moisture inside hydrogels and gives straight-forward access to in situ and operando measurements of hydrogel systems.
Collapse
Affiliation(s)
- Sankar Jana
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| |
Collapse
|
8
|
Ara L, Sher M, Khan M, Rehman TU, Shah LA, Yoo HM. Dually-crosslinked ionic conductive hydrogels reinforced through biopolymer gellan gum for flexible sensors to monitor human activities. Int J Biol Macromol 2024; 276:133789. [PMID: 38992556 DOI: 10.1016/j.ijbiomac.2024.133789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Human-machine interactions, monitoring of health equipment, and gentle robots all depend considerably on flexible strain sensors. However, making strain sensors have better mechanical behavior and an extensive sensing range remains an urgent difficulty. In this study, poly acrylamide-co-butyl acrylate with gellan gum (poly(AAm-co-BA)@GG) hydrophobic association networks and intermolecular hydrogen bonding interactions are used to fabricate dual cross-linked hydrogels for wearable resistive-type strain sensors. This could be an acceptable way to minimize the limitations in hydrogels previously identified. The robust fracture strength (870 kPa) and exceptional stretchability (1297 %) of the hydrogel arise from the collaborative action of intermolecular hydrogen bonding and hydrophobic associations. It also demonstrates exceptional resilience to repeated cycles of uninterrupted stretching and relaxation, retaining its structural integrity. The response and restoration times are 110 and 120 ms respectively. Furthermore, a wide sensing range (0-900 %), notable sensitivity across various strain levels, and an impressive gauge factor (GF) of 31.51 with high durability were observed by the dual cross-linked (DC) hydrogel-based strain sensors. The measured conductivity of the hydrogel was 0.32 S/m which is due to the incorporation of NaCl. Therefore, the hydrogels can be tailored to function as wearable strain sensors that can detect subtle human gestures like speech patterns, distinguish between distinct words, and recognize vibrations of the larynx during drinking, as well as large joint motions like wrist, finger, and elbow. Furthermore, these hydrogels are capable of reliably distinguishing and reproducing various printed text. These findings imply that any electronic device that demands strain-sensing functionality might make use of these developed materials.
Collapse
Affiliation(s)
- Latafat Ara
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Sher
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Mansoor Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Tanzil Ur Rehman
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
| | - Hyeong-Min Yoo
- School of Mechanical Engineering, Korea University of Technology and Education (KOREATECH), Cheonan 31253, Republic of Korea
| |
Collapse
|
9
|
Khairallah T, Khoury LR. Aided Porous Medium Emulsification for Functional Hydrogel Microparticles Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311841. [PMID: 39091048 DOI: 10.1002/adma.202311841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/05/2024] [Indexed: 08/04/2024]
Abstract
Despite the substantial advancement in developing various hydrogel microparticle (HMP) synthesis methods, emulsification through porous medium to synthesize functional hybrid protein-polymer HMPs has yet to be addressed. Here, the aided porous medium emulsification for hydrogel microparticle synthesis (APME-HMS) system, an innovative approach drawing inspiration from porous medium emulsification is introduced. This method capitalizes on emulsifying immiscible phases within a 3D porous structure for optimal HMP production. Using the APME-HMS system, synthesized responsive bovine serum albumin (BSA) and polyethylene glycol diacrylate (PEGDA) HMPs of various sizes are successfully synthesized. Preserving protein structural integrity and functionality enable the formation of cytochrome c (cyt c) - PEGDA HMPs for hydrogen peroxide (H2O2) detection at various concentrations. The flexibility of the APME-HMS system is demonstrated by its ability to efficiently synthesize HMPs using low volumes (≈50 µL) and concentrations (100 µm) of proteins within minutes while preserving proteins' structural and functional properties. Additionally, the capability of the APME-HMS method to produce a diverse array of HMP types enriches the palette of HMP fabrication techniques, presenting it as a cost-effective, biocompatible, and scalable alternative for various biomedical applications, such as controlled drug delivery, 3D printing bio-inks, biosensing devices, with potential implications even in culinary applications.
Collapse
Affiliation(s)
- Tina Khairallah
- Department of Materials Science and Engineering, Technion Israel Institute of Technology, Haifa, 32000, Israel
| | - Luai R Khoury
- Department of Materials Science and Engineering, Technion Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
10
|
Xie F. Natural polymer starch-based materials for flexible electronic sensor development: A review of recent progress. Carbohydr Polym 2024; 337:122116. [PMID: 38710566 DOI: 10.1016/j.carbpol.2024.122116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
In response to the burgeoning interest in the development of highly conformable and resilient flexible electronic sensors capable of transducing diverse physical stimuli, this review investigates the pivotal role of natural polymers, specifically those derived from starch, in crafting sustainable and biocompatible sensing materials. Expounding on cutting-edge research, the exploration delves into innovative strategies employed to leverage the distinctive attributes of starch in conjunction with other polymers for the fabrication of advanced sensors. The comprehensive discussion encompasses a spectrum of starch-based materials, spanning all-starch-based gels to starch-based soft composites, meticulously scrutinizing their applications in constructing resistive, capacitive, piezoelectric, and triboelectric sensors. These intricately designed sensors exhibit proficiency in detecting an array of stimuli, including strain, temperature, humidity, liquids, and enzymes, thereby playing a pivotal role in the continuous and non-invasive monitoring of human body motions, physiological signals, and environmental conditions. The review highlights the intricate interplay between material properties, sensor design, and sensing performance, emphasizing the unique advantages conferred by starch-based materials, such as self-adhesiveness, self-healability, and re-processibility facilitated by dynamic bonding. In conclusion, the paper outlines current challenges and future research opportunities in this evolving field, offering valuable insights for prospective investigations.
Collapse
Affiliation(s)
- Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
11
|
Rahimnejad M, Jahangiri S, Zirak Hassan Kiadeh S, Rezvaninejad S, Ahmadi Z, Ahmadi S, Safarkhani M, Rabiee N. Stimuli-responsive biomaterials: smart avenue toward 4D bioprinting. Crit Rev Biotechnol 2024; 44:860-891. [PMID: 37442771 DOI: 10.1080/07388551.2023.2213398] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 07/15/2023]
Abstract
3D bioprinting is an advanced technology combining cells and bioactive molecules within a single bioscaffold; however, this scaffold cannot change, modify or grow in response to a dynamic implemented environment. Lately, a new era of smart polymers and hydrogels has emerged, which can add another dimension, e.g., time to 3D bioprinting, to address some of the current approaches' limitations. This concept is indicated as 4D bioprinting. This approach may assist in fabricating tissue-like structures with a configuration and function that mimic the natural tissue. These scaffolds can change and reform as the tissue are transformed with the potential of specific drug or biomolecules released for various biomedical applications, such as biosensing, wound healing, soft robotics, drug delivery, and tissue engineering, though 4D bioprinting is still in its early stages and more works are required to advance it. In this review article, the critical challenge in the field of 4D bioprinting and transformations from 3D bioprinting to 4D phases is reviewed. Also, the mechanistic aspects from the chemistry and material science point of view are discussed too.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montréal, Canada
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montréal, Canada
| | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, Canada
| | | | | | - Zarrin Ahmadi
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- School of Engineering, Macquarie University, Sydney, Australia
| |
Collapse
|
12
|
Rando G, Scalone E, Sfameni S, Plutino MR. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels 2024; 10:498. [PMID: 39195027 DOI: 10.3390/gels10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, many researchers have focused on designing hydrogels with specific functional groups that exhibit high affinity for various contaminants, such as heavy metals, organic pollutants, pathogens, or nutrients, or environmental parameters. Novel approaches, including cross-linking strategies and the use of nanomaterials, have been employed to enhance the structural integrity and performance of the desired hydrogels. The evolution of these hydrogels is further highlighted, with an emphasis on fine-tuning features, including water absorption capacity, environmental pollutant/factor sensing and selectivity, and recyclability. Furthermore, this review investigates the emerging topic of stimuli-responsive smart hydrogels, underscoring their potential in both sorption and detection of water pollutants. By critically assessing a wide range of studies, this review not only synthesizes existing knowledge, but also identifies advantages and limitations, and describes future research directions in the field of chemically engineered hydrogels for water purification and monitoring with a low environmental impact as an important resource for chemists and multidisciplinary researchers, leading to improvements in sustainable water management technology.
Collapse
Affiliation(s)
- Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Elisabetta Scalone
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| |
Collapse
|
13
|
Chen R, Wang P, Xie J, Tang Z, Fu J, Ning Y, Zhong Q, Wang D, Lei M, Mai H, Li H, Shi Z, Wang J, Cheng H. A multifunctional injectable, self-healing, and adhesive hydrogel-based wound dressing stimulated diabetic wound healing with combined reactive oxygen species scavenging, hyperglycemia reducing, and bacteria-killing abilities. J Nanobiotechnology 2024; 22:444. [PMID: 39068417 PMCID: PMC11283728 DOI: 10.1186/s12951-024-02687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The proficient handling of diabetic wounds, a rising issue coinciding with the global escalation of diabetes cases, poses significant clinical difficulties. A range of biofunctional dressings have been engineered and produced to expedite the healing process of diabetic wounds. This study proposes a multifunctional hydrogel dressing for diabetic wound healing, which is composed of Polyvinyl Alcohol (PVA) and N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-teramethylpropane-1, 3-diaminium (TSPBA), and a dual-drug loaded Gelatin methacryloyl (GM) microgel. The GM microgel is loaded with sodium fusidate (SF) and nanoliposomes (LP) that contain metformin hydrochloride (MH). Notably, adhesive and self-healing properties the hydrogel enhance their therapeutic potential and ease of application. In vitro assessments indicate that SF-infused hydrogel can eliminate more than 98% of bacteria within 24 h and maintain a sustained release over 15 days. Additionally, MH incorporated within the hydrogel has demonstrated effective glucose level regulation for a duration exceeding 15 days. The hydrogel demonstrates a sustained ability to neutralize ROS throughout the entire healing process, predominantly by electron donation and sequestration. This multifunctional hydrogel dressing, which integrated biological functions of efficient bactericidal activity against both MSSA and MRSA strains, blood glucose modulation, and control of active oxygen levels, has successfully promoted the healing of diabetic wounds in rats in 14 days. The hydrogel dressing exhibited significant effectiveness in facilitating the healing process of diabetic wounds, highlighting its considerable promise for clinical translation.
Collapse
Affiliation(s)
- Rong Chen
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Pinkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiajun Xie
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zinan Tang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinlang Fu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanhong Ning
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiang Zhong
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ding Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mingyuan Lei
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huaming Mai
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hao Li
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhanjun Shi
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jian Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hao Cheng
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Gola A, Pietrańczyk R, Musiał W. Synthesis and Physicochemical Properties of Thermally Sensitive Polymeric Derivatives of N-vinylcaprolactam. Polymers (Basel) 2024; 16:1917. [PMID: 39000772 PMCID: PMC11244384 DOI: 10.3390/polym16131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Six derivatives of poly-N-vinylcaprolactam (PNVCL) P1-P6 were synthesized via surfactant-free precipitation polymerization (SFPP) at 70 °C, with potassium persulfate (KPS) as the initiator. P5 and P6 were synthesized using the cross-linker N,N'-Methylenebisacrylamide (MBA). The conductivity was measured to monitor the polymerization process. The hydrodynamic diameters (HDs) and polydispersity indexes (PDIs) of aqueous dispersions of P1-P6 were determined using dynamic light scattering (DLS) and zeta potential (ZP) using electrophoretic mobilities. At 18 °C for P1-P6, the HDs (nm) were 428.32 ± 81.30 and PDI 0.31 ± 0.19, 528.60 ± 84.70 (PDI 0.42 ± 0,04), 425.96 ± 115.42 (PDI 0.56 ± 0.08), 440.34 ± 106.40 (PDI 0.52 ± 0.09), 198.39 ± 225.35 (PDI 0.40 ± 0.19), and 1201.52 ± 1318.05 (PDI 0.71 ± 0.30), the and ZPs were (mV) 0.90 ± 3.23, -4.46 ± 1.22, -6.44 ± 1.82, 0.22 ± 0.48, 0.18 ± 0.79, and -0.02 ± 0.39 for P1-P6, respectively. The lower critical solution temperature ranged from 27 to 29 °C. The polymers were characterized using the ATR-FTIR method. The study concluded that the physicochemical properties of the product were significantly affected by the initial reaction parameters. Polymers P1-P4 and P6 have potential for use as drug carriers for skin applications.
Collapse
Affiliation(s)
| | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.G.); (R.P.)
| |
Collapse
|
15
|
Zhang Z, Li K, Li Y, Zhang Q, Wang H, Hou C. Dual-Function Wearable Hydrogel Optical Fiber for Monitoring Posture and Sweat pH. ACS Sens 2024; 9:3413-3422. [PMID: 38887933 DOI: 10.1021/acssensors.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In recent years, wearable devices have been widely used for human health monitoring. Such monitoring predominantly relies on the principles of optics and electronics. However, electronic detection is susceptible to electromagnetic interference, and traditional optical fiber detection is limited in functionality and unable to simultaneously detect both physical and chemical signals. Hence, a wearable, embedded asymmetric color-blocked optical fiber sensor based on a hydrogel has been developed. Its sensing principle is grounded in the total internal reflection within the optical fiber. The method for posture sensing involves changes in the light path due to fiber bending with color blocks providing wavelength-selective modulation by absorption changes. Sweat pH sensing is facilitated by variations in fluorescence intensity triggered by sweat-induced conformational changes in Rhodamine B. With just one fiber, it achieves both physical and chemical signal detection. Fabricated using a molding technique, this fiber boasts excellent biocompatibility and can accurately discern single and multiple bending points, with a recognition range of 0-90° for a single segment, a detection limit of 0.02 mm-1 and a sweat pH sensing linear regression R2 of 0.993, alongside great light propagation properties (-0.6 dB·cm-1). With its extensive capabilities, it holds promise for applications in medical monitoring.
Collapse
Affiliation(s)
- Zhihui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
16
|
Patra P, Upadhyay TK, Alshammari N, Saeed M, Kesari KK. Alginate-Chitosan Biodegradable and Biocompatible Based Hydrogel for Breast Cancer Immunotherapy and Diagnosis: A Comprehensive Review. ACS APPLIED BIO MATERIALS 2024; 7:3515-3534. [PMID: 38787337 PMCID: PMC11190989 DOI: 10.1021/acsabm.3c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 05/25/2024]
Abstract
Breast cancer is the most common type of cancer and the second leading cause of cancer-related mortality in females. There are many side effects due to chemotherapy and traditional surgery, like fatigue, loss of appetite, skin irritation, and drug resistance to cancer cells. Immunotherapy has become a hopeful approach toward cancer treatment, generating long-lasting immune responses in malignant tumor patients. Recently, hydrogel has received more attention toward cancer therapy due to its specific characteristics, such as decreased toxicity, fewer side effects, and better biocompatibility drug delivery to the particular tumor location. Researchers globally reported various investigations on hydrogel research for tumor diagnosis. The hydrogel-based multilayer platform with controlled nanostructure has received more attention for its antitumor effect. Chitosan and alginate play a leading role in the formation of the cross-link in a hydrogel. Also, they help in the stability of the hydrogel. This review discusses the properties, preparation, biocompatibility, and bioavailability of various research and clinical approaches of the multipolymer hydrogel made of alginate and chitosan for breast cancer treatment. With a focus on cases of breast cancer and the recovery rate, there is a need to find out the role of hydrogel in drug delivery for breast cancer treatment.
Collapse
Affiliation(s)
- Pratikshya Patra
- Department
of Biotechnology, Parul Institute of Applied Sciences and Animal Cell
Culture and Immunobiochemistry Lab, Research and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Tarun Kumar Upadhyay
- Department
of Biotechnology, Parul Institute of Applied Sciences and Animal Cell
Culture and Immunobiochemistry Lab, Research and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Nawaf Alshammari
- Department
of Biology, College of Science, University
of Hail, Hail 53962, Saudi Arabia
| | - Mohd Saeed
- Department
of Biology, College of Science, University
of Hail, Hail 53962, Saudi Arabia
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo FI-00076, Finland
- Centre
of Research Impact and Outcome, Chitkara
University, Rajpura 140417, Punjab, India
| |
Collapse
|
17
|
Feng A, Shi Y, Onggowarsito C, Zhang XS, Mao S, Johir MAH, Fu Q, Nghiem LD. Structure-Property Relationships of Hydrogel-based Atmospheric Water Harvesting Systems. CHEMSUSCHEM 2024; 17:e202301905. [PMID: 38268017 DOI: 10.1002/cssc.202301905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Atmospheric water harvesting (AWH) is considered one of the promising technologies to alleviate the uneven-distribution of water resources and water scarcity in arid regions of the world. Hydrogel-based AWH materials are currently attracting increasing attention due to their low cost, high energy efficiency and simple preparation. However, there is a knowledge gap in the screening of hydrogel-based AWH materials in terms of structure-property relationships, which may increase the cost of trial and error in research and fabrication. In this study, we synthesised a variety of hydrogel-based AWH materials, characterized their physochemcial properties visualized the electrostatic potential of polymer chains, and ultimately established the structure-property-application relationships of polymeric AWH materials. Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) hydrogel is able to achieve an excellent water adsorption capacity of 0.62 g g-1 and a high water desorption efficiency of more than 90 % in relatively low-moderate humidity environments, which is regarded as one of the polymer materials with potential for future AWH applications.
Collapse
Affiliation(s)
- An Feng
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Yihan Shi
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Casey Onggowarsito
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Xin Stella Zhang
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Shudi Mao
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Muhammed A H Johir
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Qiang Fu
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Long D Nghiem
- Centre of Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
18
|
Lin X, Yan H, Zhao L, Duan N, Wang Z, Wu S. Hydrogel-integrated sensors for food safety and quality monitoring: Fabrication strategies and emerging applications. Crit Rev Food Sci Nutr 2024; 64:6395-6414. [PMID: 36660935 DOI: 10.1080/10408398.2023.2168619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Food safety is a global issue in public hygiene. The accurate, sensitive, and on-site detection of various food contaminants performs significant implications. However, traditional methods suffer from the time-consuming and professional operation, restricting their on-site application. Hydrogels with the merits of highly porous structure, high biocompatibility, good shape-adaptability, and stimuli-responsiveness offer a promising biomaterial to design sensors for ensuring food safety. This review describes the emerging applications of hydrogel-based sensors in food safety inspection in recent years. In particular, this study elaborates on their fabrication strategies and unique sensing mechanisms depending on whether the hydrogel is stimuli-responsive or not. Stimuli-responsive hydrogels can be integrated with various functional ligands for sensitive and convenient detection via signal amplification and transduction; while non-stimuli-responsive hydrogels are mainly used as solid-state encapsulating carriers for signal probe, nanomaterial, or cell and as conductive media. In addition, their existing challenges, future perspectives, and application prospects are discussed. These practices greatly enrich the application scenarios and improve the detection performance of hydrogel-based sensors in food safety detection.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Han Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lehan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Jiao S, Yang X, Zheng X, Pei Y, Liu J, Tang K. Effects of charge state of nano-chitin on the properties of polyvinyl alcohol composite hydrogel. Carbohydr Polym 2024; 330:121776. [PMID: 38368092 DOI: 10.1016/j.carbpol.2024.121776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/25/2023] [Accepted: 01/01/2024] [Indexed: 02/19/2024]
Abstract
The present work investigates the effects of nano-chitin with different charge, obtained by acid hydrolysis and TEMPO oxidation, on the structure and properties of borax crosslinked polyvinyl alcohol (PVA) hydrogels. In detail, nano-chitin prepared by acid hydrolysis (ACh) is positively charged (+28.8 mV). The electrostatic attraction between ACh and borax ions leads to a maximum tensile stress of composite hydrogel (ACh/PB), 54.25 KPa, 17 times of the borax crosslinked PVA (PB). In contrast, nano-chitin prepared by TEMPO-oxidation (TCh) shows negative charge (-59.0 mV). Due to the electrostatic repulsion with borax ions, the maximum tensile stress of composite hydrogel (TCh/PB) is only 9.25 KPa, a very limit reinforcing effect. However, TCh/PB showed better self-healing efficiency (96.0 %) as well as ionic conductivity (1.25 × 10-5 S/m). The present work shows that the charge state of the nano-chitin exerts great influence on the interaction with the crosslinking agent borax, therefore, affects the structure and properties of the final PVA composite hydrogels. The results could provide important information about making full use of nano-chitin as a reinforcement by adjusting its surface charge state.
Collapse
Affiliation(s)
- Shuhao Jiao
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China
| | - Xuefei Yang
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China.
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China
| | - Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China.
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China
| |
Collapse
|
20
|
Yuhara K, Tanaka K. The Photosalient Effect and Thermochromic Luminescence Based on o-Carborane-Assisted π-Stacking in the Crystalline State. Angew Chem Int Ed Engl 2024; 63:e202319712. [PMID: 38339862 DOI: 10.1002/anie.202319712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Herein, we report the unique multiple-stimuli responsiveness of anthracene-tethered o-carborane derivatives. We designed and synthesized anthracene derivatives with different substitution positions and numbers of the o-carborane units. Two compounds had characteristic crystal structures involving the columnar π-stacking structures of the anthracene units. From the analysis of crystalline-state structure-property relationships, it was revealed that the crystals exhibited the photosalient effect accompanied by photochemical [4+4] cycloaddition reactions and temperature-dependent photophysical dual-emission properties including excimer emission of anthracene. Those properties were considered as non-radiative and radiative deactivation pathways through the excimer formation in the excited state and the formation of excimer species was facilitated by the π-stacking structure of anthracene units. Moreover, we found unusual temperature dependency on the occurrence of the photosalient effect. According to the data from variable temperature X-ray crystallography, a strong correlation between lattice shrinkage and strain accumulation is suggested.
Collapse
Affiliation(s)
- Kazuhiro Yuhara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
21
|
Lee JH, Cho K, Kim JK. Age of Flexible Electronics: Emerging Trends in Soft Multifunctional Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310505. [PMID: 38258951 DOI: 10.1002/adma.202310505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/27/2023] [Indexed: 01/24/2024]
Abstract
With the commercialization of first-generation flexible mobiles and displays in the late 2010s, humanity has stepped into the age of flexible electronics. Inevitably, soft multifunctional sensors, as essential components of next-generation flexible electronics, have attracted tremendous research interest like never before. This review is dedicated to offering an overview of the latest emerging trends in soft multifunctional sensors and their accordant future research and development (R&D) directions for the coming decade. First, key characteristics and the predominant target stimuli for soft multifunctional sensors are highlighted. Second, important selection criteria for soft multifunctional sensors are introduced. Next, emerging materials/structures and trends for soft multifunctional sensors are identified. Specifically, the future R&D directions of these sensors are envisaged based on their emerging trends, namely i) decoupling of multiple stimuli, ii) data processing, iii) skin conformability, and iv) energy sources. Finally, the challenges and potential opportunities for these sensors in future are discussed, offering new insights into prospects in the fast-emerging technology.
Collapse
Affiliation(s)
- Jeng-Hun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Jang-Kyo Kim
- Department of Mechanical Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
22
|
Fu H, Wang B, Li J, Cao D, Zhang W, Xu J, Li J, Zeng J, Gao W, Chen K. Ultra-strong, nonfreezing, and flexible strain sensors enabled by biomass-based hydrogels through triple dynamic bond design. MATERIALS HORIZONS 2024; 11:1588-1596. [PMID: 38270542 DOI: 10.1039/d3mh02008h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Biomass-based hydrogels have displayed excellent potential in flexible strain sensors due to their adequacy, biocompatibility, nontoxic and degradability. Nevertheless, their inferior mechanical properties, particularly at cryogenic temperatures, impeded their extensive utilization. Herein, we reported a rationally designed strain sensor fabricated from a gelatin and cellulose-derived hydrogel with superior mechanical robustness, cryogenic endurance, and flexibility, owing to a triple dynamic bond strategy (TDBS), namely the synergistic reinforcement among potent hydrogen bonds, imine bonds, and sodium bonds. Beyond conventional sacrificing bonds consisting of hydrogen bonds, dynamic covalent bonds and coordinate bonds, synergetic triple dynamic bonds dominated by strong hydrogen bonds and assisted by imine and sodium bonds with higher strength can dissipate more mechanical energy endowing the hydrogel with 38-fold enhancement in tensile strength (6.4 MPa) and 39-fold improvement in toughness (2.9 MPa). We further demonstrated that this hydrogel can work as a robust and biodegradable strain sensor exhibiting remarkable flexibility, broad detection range, considerable sensitivity and excellent sensing stability. Furthermore, owing to the improved nonfreezing performance achieved from incorporating sodium salts, the sensor delivered outstanding sensing properties under subzero conditions such as -20 and -4 °C. It is anticipated that the TDBS can create diverse high-performance soft-electronics for broad applications in human-machine interfaces, energy and healthcare.
Collapse
Affiliation(s)
- Haocheng Fu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Daxian Cao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Wei Zhang
- Shandong Sun Holdings Group, No. 1 Youyi Road, Yanzhou District, Jining 272100, China.
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jun Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
23
|
Li L, Wang L, Zhang L. Therapeutic Potential of Natural Compounds from Herbs and Nutraceuticals in Alleviating Neurological Disorders: Targeting the Wnt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2411-2433. [PMID: 38284360 DOI: 10.1021/acs.jafc.3c07536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
As an important signaling pathway in multicellular eukaryotes, the Wnt signaling pathway participates in a variety of physiological processes. Recent studies have confirmed that the Wnt signaling pathway plays an important role in neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. The regulation of Wnt signaling by natural compounds in herbal medicines and nutraceuticals has emerged as a potential strategy for the development of new drugs for neurological disorders. Purpose: The aim of this review is to evaluate the latest research results on the efficacy of natural compounds derived from herbs and nutraceuticals in the prevention and treatment of neurological disorders by regulating the Wnt pathway in vivo and in vitro. A manual and electronic search was performed for English articles available from PubMed, Web of Science, and ScienceDirect from the January 2010 to February 2023. Keywords used for the search engines were "natural products,″ "plant derived products,″ "Wnt+ clinical trials,″ and "Wnt+,″ and/or paired with "natural products″/″plant derived products", and "neurological disorders." A total of 22 articles were enrolled in this review, and a variety of natural compounds from herbal medicine and nutritional foods have been shown to exert therapeutic effects on neurological disorders through the Wnt pathway, including curcumin, resveratrol, and querctrin, etc. These natural products possess antioxidant, anti-inflammatory, and angiogenic properties, confer neurovascular unit and blood-brain barrier integrity protection, and affect neural stem cell differentiation, synaptic formation, and neurogenesis, to play a therapeutic role in neurological disorders. In various in vivo and in vitro studies and clinical trials, these natural compounds have been shown to be safe and tolerable with few adverse effects. Natural compounds may serve a therapeutic role in neurological disorders by regulating the Wnt pathway. This summary of the research progress of natural compounds targeting the Wnt pathway may provide new insights for the treatment of neurological disorders and potential targets for the development of new drugs.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning PR China
| |
Collapse
|
24
|
Abirami G, Alexpandi R, Jayaprakash E, Roshni PS, Ravi AV. Pyrogallol loaded chitosan-based polymeric hydrogel for controlling Acinetobacter baumannii wound infections: Synthesis, characterization, and topical application. Int J Biol Macromol 2024; 259:129161. [PMID: 38181925 DOI: 10.1016/j.ijbiomac.2023.129161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Antibacterial hydrogels have emerged as a promising approach for wound healing, owing to their ability to integrate antibacterial agents into the hydrogel matrix. Benefiting from its remarkable antibacterial and wound-healing attributes, pyrogallol has been introduced into chitosan-gelatin for the inaugural development of an innovative antibacterial polymeric hydrogel tailored for applications in wound healing. Hence, we observed the effectiveness of pyrogallol in inhibiting the growth of A. baumannii, disrupting mature biofilms, and showcasing robust antioxidant activity both in vitro and in vivo. In addition, pyrogallol promoted the migration of human epidermal keratinocytes and exhibited wound healing activity in zebrafish. These findings suggest that pyrogallol holds promise as a therapeutic agent for wound healing. Interestingly, the pyrogallol-loaded chitosan-gelatin (Pyro-CG) hydrogel exhibited enhanced mechanical strength, stability, controlled drug release, biodegradability, antibacterial activity, and biocompatibility. In vivo results established that Pyro-CG hydrogel promotes wound closure and re-epithelialization in A. baumannii-induced wounds in molly fish. Therefore, the prepared Pyro-CG polymeric hydrogel stands poised as a potent and promising agent for wound healing with antibacterial properties. This holds considerable promise for the development of effective therapeutic interventions to address the increasing menace of A. baumannii-induced wound infections.
Collapse
Affiliation(s)
- Gurusamy Abirami
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Rajaiah Alexpandi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India; The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Erusappan Jayaprakash
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Prithiviraj Swasthikka Roshni
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India.
| |
Collapse
|
25
|
Kumar M, Sharma V. Shape Memory Effect of Four-Dimensional Printed Polylactic Acid-Based Scaffold with Nature-Inspired Structure. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:10-23. [PMID: 38389686 PMCID: PMC10880677 DOI: 10.1089/3dp.2022.0269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The four-dimensional (4D) printing is an evolving technology that has immense scope in various fields of science and technology owing to ever-challenging needs of human. It is an innovative upgradation of 3D printing procedure, which instills smart capabilities into materials such that they respond to external stimulus. This article aims to investigate the feasibility of 4D printing of polylactic acid (PLA)-based composite scaffolds fabricated by incorporating four different nature-inspired architectures (honeycomb, giant water lily, spiderweb, and nautilus shell). The composites were developed by adding 1, 3, and 5 wt.% of Calcium Phosphate (CaP) into PLA. Various thermomechanical tests were accomplished to evaluate the properties of developed material. Furthermore, the shape memory characteristics of these scaffolds were examined using thermally controlled conditions. The characterization tests displayed favorable outcomes in terms of thermal stability and hydrophilic nature of the PLA and PLA/CaP composite materials. It was found that the honeycomb structure showed the best shape memory and mechanical behavior among the four designs. Furthermore, the introduction of CaP was found to enhance mechanical strength and shape memory property, whereas the surface integrity was adversely affected. This study can play a vital role in developing self-fitting high-shape recovery biomedical scaffolds for bone-repair applications.
Collapse
Affiliation(s)
- Mohit Kumar
- Additive and Subtractive Manufacturing Lab, Department of Mechanical and Industrial Engineering, IIT Roorkee, Roorkee, India
| | - Varun Sharma
- Additive and Subtractive Manufacturing Lab, Department of Mechanical and Industrial Engineering, IIT Roorkee, Roorkee, India
| |
Collapse
|
26
|
Li H, Dai C, Hu Y. Hydrogels for Chemical Sensing and Biosensing. Macromol Rapid Commun 2024; 45:e2300474. [PMID: 37776170 DOI: 10.1002/marc.202300474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/22/2023] [Indexed: 10/01/2023]
Abstract
The development and synthesis of hydrogels for chemical and biosensing are of great value. Hydrogels can be tailored to its own physical structure, chemical properties, biocompatibility, and sensitivity to external stimuli when being used in a specific environment. Herein, hydrogels and their applications in chemical and biosensing are mainly covered. In particular, it is focused on the manner in which hydrogels serve as sensing materials to a specific analyte. Different types of responsive hydrogels are hence introduced and summarized. Researchers can modify different chemical groups on the skeleton of the hydrogels, which make them as good chemical and biosensing materials. Hydrogels have great application potential for chemical and biosensing in the biomedical field and some emerging fields, such as wearable devices.
Collapse
Affiliation(s)
- Haizheng Li
- Department of Materials Science and Engineering, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Chunai Dai
- Department of Materials Science and Engineering, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yuandu Hu
- Department of Materials Science and Engineering, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
- Department of Physics, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
27
|
Alkahtani ME, Elbadawi M, Chapman CAR, Green RA, Gaisford S, Orlu M, Basit AW. Electroactive Polymers for On-Demand Drug Release. Adv Healthc Mater 2024; 13:e2301759. [PMID: 37861058 PMCID: PMC11469020 DOI: 10.1002/adhm.202301759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/16/2023] [Indexed: 10/21/2023]
Abstract
Conductive materials have played a significant role in advancing society into the digital era. Such materials are able to harness the power of electricity and are used to control many aspects of daily life. Conductive polymers (CPs) are an emerging group of polymers that possess metal-like conductivity yet retain desirable polymeric features, such as processability, mechanical properties, and biodegradability. Upon receiving an electrical stimulus, CPs can be tailored to achieve a number of responses, such as harvesting energy and stimulating tissue growth. The recent FDA approval of a CP-based material for a medical device has invigorated their research in healthcare. In drug delivery, CPs can act as electrical switches, drug release is achieved at a flick of a switch, thereby providing unprecedented control over drug release. In this review, recent developments in CP as electroactive polymers for voltage-stimuli responsive drug delivery systems are evaluated. The review demonstrates the distinct drug release profiles achieved by electroactive formulations, and both the precision and ease of stimuli response. This level of dynamism promises to yield "smart medicines" and warrants further research. The review concludes by providing an outlook on electroactive formulations in drug delivery and highlighting their integral roles in healthcare IoT.
Collapse
Affiliation(s)
- Manal E. Alkahtani
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
- Department of PharmaceuticsCollege of PharmacyPrince Sattam bin Abdulaziz UniversityAlkharj11942Saudi Arabia
| | - Moe Elbadawi
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Christopher A. R. Chapman
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
- Centre for Bioengineering, School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Rylie A. Green
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Simon Gaisford
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Mine Orlu
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Abdul W. Basit
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| |
Collapse
|
28
|
Ko B, Jeon N, Kim J, Kang H, Seong J, Yun S, Badloe T, Rho J. Hydrogels for active photonics. MICROSYSTEMS & NANOENGINEERING 2024; 10:1. [PMID: 38169527 PMCID: PMC10757998 DOI: 10.1038/s41378-023-00609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Conventional photonic devices exhibit static optical properties that are design-dependent, including the material's refractive index and geometrical parameters. However, they still possess attractive optical responses for applications and are already exploited in devices across various fields. Hydrogel photonics has emerged as a promising solution in the field of active photonics by providing primarily deformable geometric parameters in response to external stimuli. Over the past few years, various studies have been undertaken to attain stimuli-responsive photonic devices with tunable optical properties. Herein, we focus on the recent advancements in hydrogel-based photonics and micro/nanofabrication techniques for hydrogels. In particular, fabrication techniques for hydrogel photonic devices are categorized into film growth, photolithography (PL), electron-beam lithography (EBL), and nanoimprint lithography (NIL). Furthermore, we provide insights into future directions and prospects for deformable hydrogel photonics, along with their potential practical applications.
Collapse
Affiliation(s)
- Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Suhyeon Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Trevon Badloe
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673 Republic of Korea
| |
Collapse
|
29
|
Lim S, Kim JA, Chun YH, Lee HJ. Hyaluronic acid hydrogel for controlled release of heterobifunctional photocleavable linker-modified epidermal growth factor in wound healing. Int J Biol Macromol 2023; 253:126603. [PMID: 37652341 DOI: 10.1016/j.ijbiomac.2023.126603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Peptide and protein drugs, such as epidermal growth factor (EGF), face challenges related to stability and bioavailability. Recently, hydrogels have emerged as promising carriers for these drugs. This study focuses on a light-responsive hydrogel-based drug delivery system for the controlled release of EGF in wound healing. A photocleavable (PC) linker was designed to bind EGF to the hydrogel matrix, enabling UV light-triggered release of EGF. Hydrogels have evolved from drug reservoirs to controlled release systems, and the o-nitrobenzyl-based PC linkers offer selective cleavage under UV irradiation. We used a thiol-ene crosslinked hyaluronic acid (HA) hydrogel matrix modified with the PC-linked EGF. The release of EGF from the HA hydrogel under UV irradiation was evaluated, along with in vitro and in vivo experiments to assess the controlled effect of EGF on wound healing. Our results indicate that the successful development of a light-responsive hydrogel-based system for precise temporal release of EGF enhances the therapeutic potential in wound healing. This study highlights the importance of incorporating stimulus-responsive functionalities into hydrogel-based drug delivery systems to optimize protein drugs in clinical applications.
Collapse
Affiliation(s)
- Saebin Lim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Ji An Kim
- Department of Pediatrics, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Yoon Hong Chun
- Department of Pediatrics, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea.
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
30
|
Li Y, Zhang H, Qi Y, You C. Recent Studies and Applications of Hydrogel-Based Biosensors in Food Safety. Foods 2023; 12:4405. [PMID: 38137209 PMCID: PMC10742584 DOI: 10.3390/foods12244405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Food safety has increasingly become a human health issue that concerns all countries in the world. Some substances in food that can pose a significant threat to human health include, but are not limited to, pesticides, biotoxins, antibiotics, pathogenic bacteria, food quality indicators, heavy metals, and illegal additives. The traditional methods of food contaminant detection have practical limitations or analytical defects, restricting their on-site application. Hydrogels with the merits of a large surface area, highly porous structure, good shape-adaptability, excellent biocompatibility, and mechanical stability have been widely studied in the field of food safety sensing. The classification, response mechanism, and recent application of hydrogel-based biosensors in food safety are reviewed in this paper. Furthermore, the challenges and future trends of hydrogel biosensors are also discussed.
Collapse
Affiliation(s)
- Yuzhen Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Hongfa Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
| | - Yan Qi
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
| |
Collapse
|
31
|
Sánchez F, Gutiérrez M, Douhal A. Taking Advantage of a Luminescent ESIPT-Based Zr-MOF for Fluorochromic Detection of Multiple External Stimuli: Acid and Base Vapors, Mechanical Compression, and Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56587-56599. [PMID: 37983009 DOI: 10.1021/acsami.3c14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Luminescent materials responsive to external stimuli have captivated great attention owing to their potential implementation in noninvasive photonic sensors. Luminescent metal-organic frameworks (LMOFs), a type of porous crystalline material, have emerged as one of the most promising candidates for these applications. Moreover, LMOFs constructed with organic linkers that undergo excited-state intramolecular proton-transfer (ESIPT) reactions are particularly relevant since changes in the surrounding environment induce modifications in their emission properties. Herein, an ESIPT-based LMOF, UiO-66-(OH)2, has been synthesized, spectroscopically and photodynamically characterized, and tested for detecting multiple external stimuli. First, the spectroscopic and photodynamic characterization of the organic linker (2,5-dihydroxyterephthalic acid (DHT)) and the UiO-66-(OH)2 MOF demonstrates that the emission properties are mainly governed by the enol → keto tautomerization, occurring in the organic linker via the ESIPT reaction. Afterward, the UiO-66-(OH)2 MOF proves for the first time to be a promising candidate to detect vapors of acid (HCl) and base (Et3N) toxic chemicals, changes in the mechanical compression (exercised pressure), and changes in the temperature. These results shed light on the potential of ESIPT-based LMOFs to be implemented in the development of advanced optical materials and luminescent sensors.
Collapse
Affiliation(s)
- Francisco Sánchez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| |
Collapse
|
32
|
Fang K, Wan Y, Wei J, Chen T. Hydrogel-Based Sensors for Human-Machine Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16975-16985. [PMID: 37994525 DOI: 10.1021/acs.langmuir.3c02444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
In the past decades, remarkable progress has been made in the field of human-machine interaction. The need for accurate sensing devices with satisfactory user experiences has propelled the development of flexible, stretchable, biocompatible, and imperceptible hydrogel-based interfaces. These innovative interfaces facilitate direct interactions between humans and machines while receiving detected input signals from sensors and giving output commands to controllers, thus motivating accurate real-time responsiveness. This Perspective discusses the sensing mechanisms for the two categories of hydrogel-based sensors and summarizes the recent progress in the development of different representations of human-machine interactions, including intelligent identification, information secrecy, interactive control, and virtual reality and augmented reality technologies. The advantages of hydrogel-based systems over conventionally used rigid electrical components are explicitly discussed. The conclusion provides a perspective on current challenges and outlines a future roadmap for the realization of state-of-the-art hydrogel-based smart systems.
Collapse
Affiliation(s)
- Kecheng Fang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yan Wan
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junjie Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
33
|
Abdullah BA, Basyigit B, Karaaslan M. Drying Technique Providing Maximum Benefits on Hydrogelling Ability of Avocado Seed Protein: Spray Drying. Foods 2023; 12:4219. [PMID: 38231597 DOI: 10.3390/foods12234219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
The current study focused on creating natural hydrogels consisting of mixtures of avocado seed proteins dried with different techniques and locust bean gum. Proteins were extracted from avocado seed by alkali and isoelectric precipitation methods. Avocado seed proteins were dried by five different drying methods, namely ambient drying, oven drying, vacuum drying, freeze drying, and spray drying. FT-IR spectra were used to analyze the chemical structure of proteins dried using various techniques. Additionally, hydrogel models were constructed in the presence of avocado seed proteins and locust bean gum to clarify the effect of drying techniques on their hydrogelling ability. The impact of drying techniques on the functional behavior of hydrogels was notable. The maximum water holding capacity values were detected in the hydrogel system containing spray-dried proteins (93.79%), followed by freeze-dried (86.83%), vacuum-dried (76.17%), oven-dried (72.29%), and ambient-dried (64.8%) counterparts. The swelling ratio was 34.10, 33.51, 23.05, 18.93, and 14.39% for gels in the presence of freeze-dried, spray-dried, vacuum-dried, oven-dried, and ambient-dried proteins, respectively. Additionally, the desirable values for the amount of protein leaking from the systems prepared using spray-dried (7.99%) and freeze-dried (12.14%) proteins were obtained compared to others (ambient-dried: 24.03%; oven-dried: 17.69%; vacuum-dried: 19.10%). Superior results in terms of textural properties were achieved in hydrogel models containing spray-dried and freeze-dried proteins. In general, hydrogel models exhibited elastic behavior rather than viscous properties; however, the magnitudes of elasticity varied. Furthermore, the success of gels containing hydrogel models containing spray-dried protein and locust bean gum in the bioactive compound delivery system was obvious compared with protein ones alone.
Collapse
Affiliation(s)
- Bakhtiyar Azad Abdullah
- Department of Biology, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region-F.R., Iraq
- Food Engineering Department, Engineering Faculty, Harran University, Sanliurfa 63000, Turkey
| | - Bulent Basyigit
- Food Engineering Department, Engineering Faculty, Harran University, Sanliurfa 63000, Turkey
| | - Mehmet Karaaslan
- Food Engineering Department, Engineering Faculty, Harran University, Sanliurfa 63000, Turkey
| |
Collapse
|
34
|
Agarwal V, Varshney N, Singh S, Kumar N, Chakraborty A, Sharma B, Jha HC, Sarma TK. Cobalt-Adenosine Monophosphate Supramolecular Hydrogel with pH-Responsive Multi-Nanozymatic Activity. ACS APPLIED BIO MATERIALS 2023; 6:5018-5029. [PMID: 37914190 DOI: 10.1021/acsabm.3c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Self-assembled metal-ion cross-linked multifunctional hydrogels are gaining a lot of attention in the fields of biomedical and biocatalysis. Herein, we report a heat-triggered metallogel that was spontaneously formed by the self-assembly of adenosine 5'-monophosphate (AMP) and cobalt chloride, accompanied by a color transition depicting an octahedral to tetrahedral transition at high temperature. The hydrogel shows excellent stability in a wide pH window from 1 to 12. The metallogel is being exploited as a multienzyme mimic, exhibiting pH-responsive catalase and peroxidase activity. Whereas catalase mimicking activity was demonstrated by the hydrogel under neutral and basic conditions, it shows peroxidase mimicking activity in an acidic medium. The multifunctionality of the synthesized metallogel was further demonstrated by phenoxazinone synthase-like activities. Owing to its catalase-mimicking activity, the metallogel could effectively reduce the oxidative stress produced in cells due to excess hydrogen peroxide by degrading H2O2 to O2 and H2O under physiological conditions. The biocompatible metallogel could prevent cell apoptosis by scavenging reactive oxygen species. A green and simple synthetic strategy utilizing commonly available biomolecules makes this metallogel highly attractive for catalytic and biomedical applications.
Collapse
Affiliation(s)
- Vidhi Agarwal
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Surbhi Singh
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Nitin Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Amrita Chakraborty
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Bhagwati Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Tridib K Sarma
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
35
|
Dashtian K, Binabaji F, Zare-Dorabei R. Enhancing On-Skin Analysis: A Microfluidic Device and Smartphone Imaging Module for Real-Time Quantitative Detection of Multianalytes in Sweat. Anal Chem 2023; 95:16315-16326. [PMID: 37897415 DOI: 10.1021/acs.analchem.3c03516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Wearable sweat sensors present exciting opportunities for advancing personal health monitoring and noninvasive biomarker measurements. However, existing sensors often fall short in accurate detection of low analyte volumes and concentrations and lack multimodal sensing capabilities. Herein, we present a highly portable four-channel microfluidic device capable of conducting simultaneous sweat sampling and fluorometric sensing of potential biomarkers, such as l-Tyr, l-Trp, Crt, and NH4+, specifically designed for kidney disease monitoring. Our microfluidic device seamlessly integrates with smartphones, facilitating easy data retrieval and analysis. The core of the sensing array is a novel fluorometric solid-state mechanism utilizing carbon polymer dots derived from dopamine, catechol, and o-phenylenediamine monomers embedded in gelatin hydrogels. The sensors exhibit exceptional performance, offering linear ranges of 5-275, 6-170, 4-220, and 5-170 μM, with impressively low detection limits of 1.5, 1.2, 1.3, and 1.4 μM for l-Tyr, l-Trp, Crt, and NH4+, respectively. Through meticulous optimization of operational variables, comprising the temperature, sample volume, and assay time, we achieved the best performance of the device. Furthermore, the sensors exhibited remarkable selectivity, effectively distinguishing between biologically similar species and other potential biological compounds found in sweat. Our evaluation also extended to monitoring kidney diseases in patients and healthy individuals, showcasing the device's utility in world scenarios. Promising results showcase the potential of low-cost, multidiagnostic microfluidic sensor arrays, especially with synthetic skin integration, for enhanced disease detection and healthcare outcomes.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fatemeh Binabaji
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
36
|
Botti S, Bonfigli F, D’Amato R, Rodesi J, Santonicola MG. Colorimetric Sensors Based on Poly(acrylic Acid)/TiO 2 Nanocomposite Hydrogels for Monitoring UV Radiation Exposure. Gels 2023; 9:797. [PMID: 37888370 PMCID: PMC10606633 DOI: 10.3390/gels9100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
In recent years, there has been an open debate on proper sun exposure to reduce the risk of developing skin cancer. The mainly encountered issue is that general guidelines for UV radiation exposure could not be effective for all skin types. The implementation of customized guidelines requires a method by which to measure the UV dose as a result of daily exposure to sunlight, ideally with an inexpensive, easy-to-read sensor. In this work, we present the characterization of nanocomposite hydrogel materials acting as colorimetric sensors upon exposure to UV light. The sensor was prepared using a poly(acrylic acid) (PAA) hydrogel matrix in which TiO2 nanoparticles and methylene blue (MB) were integrated. Raman mapping was used to determine the network structure of the hydrogel and its water distribution. The TiO2 nanoparticles dispersed in the PAA matrix maintain their photoactivity and catalyze a reaction by which methylene blue is converted into leuko-methylene. The conversion causes a discoloration effect that is visible to the naked eye and can therefore be used as an indicator of UV radiation exposure. Moreover, it was possible to tune the discoloration rate to the limit exposure of each skin type, simply by changing the ratio of titanium dioxide to dye. We obtained a response time ranging from 30 min to 1.5 h. Future work will be dedicated to the possibility of scaling up this range and to improve the sensor wearability; however, our study paves the way to the realisation of sensors suitable for public use, which could help us find a solution to the challenge of balancing sufficient UV exposure to prevent Vitamin D deficiency with excessive UV exposure that could ultimately cause skin cancer.
Collapse
Affiliation(s)
- Sabina Botti
- Fusion and Technologies for Nuclear Safety and Security Department, Photonics Micro- and Nano-Structures Laboratory, ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Italy; (F.B.); (R.D.)
| | - Francesca Bonfigli
- Fusion and Technologies for Nuclear Safety and Security Department, Photonics Micro- and Nano-Structures Laboratory, ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Italy; (F.B.); (R.D.)
| | - Rosaria D’Amato
- Fusion and Technologies for Nuclear Safety and Security Department, Photonics Micro- and Nano-Structures Laboratory, ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Italy; (F.B.); (R.D.)
| | - Jasmine Rodesi
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| | - Maria Gabriella Santonicola
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| |
Collapse
|
37
|
Salem KS, Kasera NK, Rahman MA, Jameel H, Habibi Y, Eichhorn SJ, French AD, Pal L, Lucia LA. Comparison and assessment of methods for cellulose crystallinity determination. Chem Soc Rev 2023; 52:6417-6446. [PMID: 37591800 DOI: 10.1039/d2cs00569g] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The degree of crystallinity in cellulose significantly affects the physical, mechanical, and chemical properties of cellulosic materials, their processing, and their final application. Measuring the crystalline structures of cellulose is a challenging task due to inadequate consistency among the variety of analytical techniques available and the lack of absolute crystalline and amorphous standards. Our article reviews the primary methods for estimating the crystallinity of cellulose, namely, X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Raman and Fourier-transform infrared (FTIR) spectroscopy, sum-frequency generation vibrational spectroscopy (SFG), as well as differential scanning calorimetry (DSC), and evolving biochemical methods using cellulose binding molecules (CBMs). The techniques are compared to better interrogate not only the requirements of each method, but also their differences, synergies, and limitations. The article highlights fundamental principles to guide the general community to initiate studies of the crystallinity of cellulosic materials.
Collapse
Affiliation(s)
- Khandoker Samaher Salem
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh.
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA.
| | - Nitesh Kumar Kasera
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh.
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA
| | - Md Ashiqur Rahman
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh.
- National Institute of Textile Engineering and Research, University of Dhaka, Dhaka-1000, Bangladesh
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA.
| | - Youssef Habibi
- Sustainable Materials Research Center (SUSMAT-RC), University Mohamed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK
| | - Alfred D French
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center USDA ARS SRRC, New Orleans, LA 70124, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA.
| | - Lucian A Lucia
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA.
- Department of Chemistry, North Carolina State University, Raleigh, CD 27695-8204, USA
- State Key Laboratory of Biobased Materials & Green Papermaking, Qilu University of Technology/Shandong Academy of Sciences, Jinan, 250353, P. R. China
| |
Collapse
|
38
|
Liu S, Qu H, Mao Y, Yao L, Dong B, Zheng L. Ce(IV)-coordinated organogel-based assay for on-site monitoring of propyl gallate with turn-on fluorescence signal. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132001. [PMID: 37429188 DOI: 10.1016/j.jhazmat.2023.132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Propyl gallate (PG) is a commonly used synthetic phenolic antioxidant in foodstuffs and industrial products. Due to the potential health risk of PG, rapid and on-site detection in food and environment samples are important to guarantee human health. Herein, we demonstrated rapid monitoring of PG by a fluorescence turn-on strategy based on a specific fluorogenic reaction between PG and polyethyleneimine (PEI). Specifically, Ce4+ with oxidase-mimicking activity oxidized PG to its oxides, which then reacted with PEI through the Michael addition to generate the fluorescent compound. The proposed fluorogenic reaction had good specificity for PG, which could distinguish PG from other phenolic antioxidants and interferences. Furthermore, portable and low-cost organogel test kits were prepared using poly(ethylene glycol) diacrylate for quantitative and on-site detection of PG via a smartphone-based sensing platform. The organogel-based assay detection limit was 1.0 μg mL-1 with recoveries ranging from 80.2% to 106.2% in edible oils and surface water. Suitability of the developed assay was also validated by high-performance liquid chromatography. Our study provides an effective fluorescent approach to rapid, specific, and convenient monitoring of PG, which is useful for diminishing the risk of PG exposure.
Collapse
Affiliation(s)
- Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Baolei Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
39
|
Jiang D, Zheng M, Ma X, Zhang Y, Jiang S, Li J, Zhang C, Liu K, Li L. Rhodamine-Anchored Polyacrylamide Hydrogel for Fluorescent Naked-Eye Sensing of Fe 3. Molecules 2023; 28:6572. [PMID: 37764348 PMCID: PMC10537437 DOI: 10.3390/molecules28186572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
A fluorescent and colorimetric poly (acrylamide)-based copolymer probe P(AAm-co-RBNCH) has been designed via free radical polymerization of a commercial acrylamide monomer with a rhodamine-functionalized monomer RBNCH. Metal ion selectivity of RBNCH was investigated by fluorescence and colorimetric spectrophotometry. Upon addition of Fe3+, a visual color change from colorless to red and a large fluorescence enhancement were observed for the ring-opening of the rhodamine spirolactam mechanism. The monomer gives a sensitive method for quantitatively detecting Fe3+ in the linear range of 100-200 μM, with a limit of detection as low as 27 nM and exhibiting high selectivity for Fe3+ over 12 other metal ions. The hydrogel sensor was characterized by FTIR, and the effects of RBNCH amount on gel content and swelling properties were explored. According to the recipe of 1.0 mol% RBNCH to the total monomers, the fabricated hydrogel sensor displayed a good swelling property and reversibility performance and has potential for application in the imaging of Fe3+ level in industrial wastewater.
Collapse
Affiliation(s)
- Dandan Jiang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.J.); (M.Z.); (Y.Z.); (J.L.)
| | - Minghao Zheng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.J.); (M.Z.); (Y.Z.); (J.L.)
| | - Xiaofan Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (X.M.); (S.J.)
| | - Yingzhen Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.J.); (M.Z.); (Y.Z.); (J.L.)
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (X.M.); (S.J.)
| | - Juanhua Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.J.); (M.Z.); (Y.Z.); (J.L.)
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Kunming Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.J.); (M.Z.); (Y.Z.); (J.L.)
| | - Liqing Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.J.); (M.Z.); (Y.Z.); (J.L.)
| |
Collapse
|
40
|
Zezza P, Lucío MI, Naydenova I, Bañuls MJ, Maquieira Á. Holographic Recording of Unslanted Volume Transmission Gratings in Acrylamide/Propargyl Acrylate Hydrogel Layers: Towards Nucleic Acids Biosensing. Gels 2023; 9:710. [PMID: 37754391 PMCID: PMC10528564 DOI: 10.3390/gels9090710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
The role of volume hydrogel holographic gratings as optical transducers in sensor devices for point-of-care applications is increasing due to their ability to be functionalized for achieving enhanced selectivity. The first step in the development of these transducers is the optimization of the holographic recording process. The optimization aims at achieving gratings with reproducible diffraction efficiency, which remains stable after reiterative washings, typically required when working with analytes of a biological nature or several step tests. The recording process of volume phase transmission gratings within Acrylamide/Propargyl Acrylate hydrogel layers reported in this work was successfully performed, and the obtained diffraction gratings were optically characterized. Unslanted volume transmission gratings were recorded in the hydrogel layers diffraction efficiencies; up to 80% were achieved. Additionally, the recorded gratings demonstrated stability in water after multiple washing steps. The hydrogels, after functionalization with oligonucleotide probes, yields a specific hybridization response, recognizing the complementary strand as demonstrated by fluorescence. Analyte-sensitive hydrogel layers with holographic structures are a promising candidate for the next generation of in vitro diagnostic tests.
Collapse
Affiliation(s)
- Paola Zezza
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (P.Z.); (M.I.L.); (Á.M.)
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Center Campus, Central Quad, Grangegorman Lower, D07 ADY7 Dublin, Ireland;
- Centre for Industrial and Engineering Optics, Technological University Dublin, 13 Camden Row, D08 CKP1 Dublin, Ireland
| | - María Isabel Lucío
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (P.Z.); (M.I.L.); (Á.M.)
| | - Izabela Naydenova
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Center Campus, Central Quad, Grangegorman Lower, D07 ADY7 Dublin, Ireland;
- Centre for Industrial and Engineering Optics, Technological University Dublin, 13 Camden Row, D08 CKP1 Dublin, Ireland
| | - María-José Bañuls
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (P.Z.); (M.I.L.); (Á.M.)
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (P.Z.); (M.I.L.); (Á.M.)
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
41
|
Naik K, Singh P, Yadav M, Srivastava SK, Tripathi S, Ranjan R, Dhar P, Verma AK, Chaudhary S, Parmar AS. 3D printable, injectable amyloid-based composite hydrogel of bovine serum albumin and aloe vera for rapid diabetic wound healing. J Mater Chem B 2023; 11:8142-8158. [PMID: 37431285 DOI: 10.1039/d3tb01151h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Protein-based biomaterials, particularly amyloids, have sparked considerable scientific interest in recent years due to their exceptional mechanical strength, excellent biocompatibility and bioactivity. In this work, we have synthesized a novel amyloid-based composite hydrogel consisting of bovine serum albumin (BSA) and aloe vera (AV) gel to utilize the medicinal properties of the AV gel and circumvent its mechanical frangibility. The synthesized composite hydrogel demonstrated an excellent porous structure, self-fluorescence, non-toxicity, and controlled rheological properties. Moreover, this hydrogel possesses inherent antioxidant and antibacterial properties, which accelerate the rapid healing of wounds. The in vitro wound healing capabilities of the synthesized composite hydrogel were evaluated using 3T3 fibroblast cells. Moreover, the efficacy of the hydrogel in accelerating chronic wound healing via collagen crosslinking was investigated through in vivo experiments using a diabetic mouse skin model. The findings indicate that the composite hydrogel, when applied, promotes wound healing by inducing collagen deposition and upregulating the expression of vascular endothelial growth factor (VEGF) and its receptors. We also demonstrate the feasibility of the 3D printing of the BSA-AV hydrogel, which can be tailored to treat various types of wound. The 3D printed hydrogel exhibits excellent shape fidelity and mechanical properties that can be utilized for personalized treatment and rapid chronic wound healing. Taken together, the BSA-AV hydrogel has great potential as a bio-ink in tissue engineering as a dermal substitute for customizable skin regeneration.
Collapse
Affiliation(s)
- Kaustubh Naik
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Priyanka Singh
- Nanobiotech Lab, Kirorimal College, University of Delhi, 110007, Delhi, India.
| | - Monika Yadav
- Nanobiotech Lab, Kirorimal College, University of Delhi, 110007, Delhi, India.
| | - Saurabh Kr Srivastava
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Shikha Tripathi
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Rahul Ranjan
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Anita Kamra Verma
- Nanobiotech Lab, Kirorimal College, University of Delhi, 110007, Delhi, India.
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, 160012, India.
| | - Avanish Singh Parmar
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
- Centre for Biomaterials and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
42
|
Idil N, Aslıyüce S, Perçin I, Mattiasson B. Recent Advances in Optical Sensing for the Detection of Microbial Contaminants. MICROMACHINES 2023; 14:1668. [PMID: 37763831 PMCID: PMC10536746 DOI: 10.3390/mi14091668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023]
Abstract
Microbial contaminants are responsible for several infectious diseases, and they have been introduced as important potential food- and water-borne risk factors. They become a global burden due to their health and safety threats. In addition, their tendency to undergo mutations that result in antimicrobial resistance makes them difficult to treat. In this respect, rapid and reliable detection of microbial contaminants carries great significance, and this research area is explored as a rich subject within a dynamic state. Optical sensing serving as analytical devices enables simple usage, low-cost, rapid, and sensitive detection with the advantage of their miniaturization. From the point of view of microbial contaminants, on-site detection plays a crucial role, and portable, easy-applicable, and effective point-of-care (POC) devices offer high specificity and sensitivity. They serve as advanced on-site detection tools and are pioneers in next-generation sensing platforms. In this review, recent trends and advances in optical sensing to detect microbial contaminants were mainly discussed. The most innovative and popular optical sensing approaches were highlighted, and different optical sensing methodologies were explained by emphasizing their advantages and limitations. Consequently, the challenges and future perspectives were considered.
Collapse
Affiliation(s)
- Neslihan Idil
- Department of Biology, Biotechnology Division, Hacettepe University, Ankara 06800, Turkey;
| | - Sevgi Aslıyüce
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara 06800, Turkey;
| | - Işık Perçin
- Department of Biology, Molecular Biology Division, Hacettepe University, Ankara 06800, Turkey;
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, 22100 Lund, Sweden
- Indienz AB, Annebergs Gård, 26873 Billeberga, Sweden
| |
Collapse
|
43
|
Elango J, Zamora-Ledezma C, Alexis F, Wu W, Maté-Sánchez de Val JE. Protein Adsorption, Calcium-Binding Ability, and Biocompatibility of Silver Nanoparticle-Loaded Polyvinyl Alcohol (PVA) Hydrogels Using Bone Marrow-Derived Mesenchymal Stem Cells. Pharmaceutics 2023; 15:1843. [PMID: 37514030 PMCID: PMC10384843 DOI: 10.3390/pharmaceutics15071843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Several approaches have evolved to facilitate the exploration of hydrogel systems in biomedical research. In this sense, poly(vinyl alcohol) (PVA) has been widely used in hydrogel (HG) fabrication for several therapeutic applications. The biological properties of PVA hydrogels (PVA-HGs) are highly dependent on their interaction with protein receptors and extracellular matrix (mainly calcium) deposition, for which there is not enough evidence from existing research yet. Thus, for the first time, the functional properties, like protein and mineral interactions, related to the proliferation of mesenchymal stem cells (MSCs) by silver nanoparticle (AgNP)-loaded PVA hydrogels (AgNPs-PVA-HGs) were investigated in the present study. The UV absorption spectrum and TEM microscopic results showed a maximum absorbance of synthesized AgNPs at 409 nm, with an average particle size of 14.5 ± 2.5 nm, respectively. The functional properties, such as the calcium-binding and the protein adsorption of PVA-HG, were accelerated by incorporating AgNPs; however, the swelling properties of the HGs were reduced by AgNPs, which might be due to the masking of the free functional groups (hydroxyl groups of PVA) by AgNPs. SEM images showed the presence of AgNPs with a more porous structure in the HGs. The proliferative effect of MSCs increased over culture time from day 1 to day 7, and the cell proliferative effect was upregulated by HGs with more pronounced AgNPs-PVA-HG. In addition, both HGs did not produce any significant cytotoxicity in the MSCs. The histological (bright light and H&E staining) and fluorescence microscopic images showed the presence of a cytoskeleton and the fibrillar structure of the MSCs, and the cells adhered more firmly to all HGs. More fibrillar bipolar and dense fibrillar structures were seen in the day 1 and day 7 cultures, respectively. Interestingly, the MSCs cultured on AgNPs-PVA-HG produced extracellular matrix deposition on day 7. Accordingly, the present results proved the biocompatibility of AgNPs-PVA-HG as a suitable system for culturing mammalian stem cells for regenerative tissue applications.
Collapse
Affiliation(s)
- Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Frank Alexis
- Departmento de Ingenería Química, Colegio de Ciencias y Ingenierias, Universidad San Francisco de Quito (Ecuador), Campus Cumbayá, Diego de Robles s/n, Quito 170901, Ecuador
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - José Eduardo Maté-Sánchez de Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
44
|
Xu J, Hsu SH. Self-healing hydrogel as an injectable implant: translation in brain diseases. J Biomed Sci 2023; 30:43. [PMID: 37340481 DOI: 10.1186/s12929-023-00939-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Tissue engineering biomaterials are aimed to mimic natural tissue and promote new tissue formation for the treatment of impaired or diseased tissues. Highly porous biomaterial scaffolds are often used to carry cells or drugs to regenerate tissue-like structures. Meanwhile, self-healing hydrogel as a category of smart soft hydrogel with the ability to automatically repair its own structure after damage has been developed for various applications through designs of dynamic crosslinking networks. Due to flexibility, biocompatibility, and ease of functionalization, self-healing hydrogel has great potential in regenerative medicine, especially in restoring the structure and function of impaired neural tissue. Recent researchers have developed self-healing hydrogel as drug/cell carriers or tissue support matrices for targeted injection via minimally invasive surgery, which has become a promising strategy in treating brain diseases. In this review, the development history of self-healing hydrogel for biomedical applications and the design strategies according to different crosslinking (gel formation) mechanisms are summarized. The current therapeutic progress of self-healing hydrogels for brain diseases is described as well, with an emphasis on the potential therapeutic applications validated by in vivo experiments. The most recent aspect as well as the design rationale of self-healing hydrogel for different brain diseases is also addressed.
Collapse
Affiliation(s)
- Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 106319, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 106319, Taiwan, Republic of China.
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli, 350401, Taiwan, Republic of China.
| |
Collapse
|
45
|
Basyigit B. Designing Nanoliposome-in-Natural Hydrogel Hybrid System for Controllable Release of Essential Oil in Gastrointestinal Tract: A Novel Vehicle. Foods 2023; 12:foods12112242. [PMID: 37297484 DOI: 10.3390/foods12112242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, thyme essential oil (essential oil to total lipid: 14.23, 20, 25, and 33.33%)-burdened nanoliposomes with/without maltodextrin solution were infused with natural hydrogels fabricated using equal volumes (1:1, v/v) of pea protein (30%) and gum Arabic (1.5%) solutions. The production process of the solutions infused with gels was verified using FTIR spectroscopy. In comparison to the nanoliposome solution (NL1) containing soybean lecithin and essential oil, the addition of maltodextrin (molar ratio of lecithin to maltodextrin: 0.80, 0.40, and 0.20 for NL2, NL3, and NL4, respectively) to these solutions led to a remarkable shift in particle size (487.10-664.40 nm), negative zeta potential (23.50-38.30 mV), and encapsulation efficiency (56.25-67.62%) values. Distortions in the three-dimensional structure of the hydrogel (H2) constructed in the presence of free (uncoated) essential oil were obvious in the photographs when compared to the control (H1) consisting of a pea protein-gum Arabic matrix. Additionally, the incorporation of NL1 caused visible deformations in the gel (HNL1). Porous surfaces were dominant in H1 and the hydrogels (HNL2, HNL3, and HNL4) containing NL2, NL3, and NL4 in the SEM images. The most convenient values for functional behaviors were found in H1 and HNL4, followed by HNL3, HNL2, HNL1, and H2. This hierarchical order was also valid for mechanical properties. The prominent hydrogels in terms of essential oil delivery throughout the simulated gastrointestinal tract were HNL2, HNL3, and HNL4. To sum up, findings showed the necessity of mediators such as maltodextrin in the establishment of such systems.
Collapse
Affiliation(s)
- Bulent Basyigit
- Food Engineering Department, Engineering Faculty, Harran University, 63000 Sanliurfa, Turkey
| |
Collapse
|
46
|
Sharma R, Malviya R, Singh S, Prajapati B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023; 9:gels9050430. [PMID: 37233021 DOI: 10.3390/gels9050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
47
|
Zhu Y, Haghniaz R, Hartel MC, Mou L, Tian X, Garrido PR, Wu Z, Hao T, Guan S, Ahadian S, Kim HJ, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing. ACS Biomater Sci Eng 2023; 9:2048-2069. [PMID: 34784170 PMCID: PMC10823919 DOI: 10.1021/acsbiomaterials.1c00741] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired new materials and novel designs for next-generation wearable devices. Hydrogels are being intensively investigated for their versatile functions in wearable devices due to their superior softness, biocompatibility, and rapid stimulus response. This review focuses on recent strategies for developing bioinspired hydrogel wearable devices that can accommodate mechanical strain and integrate seamlessly with biological systems. We will provide an overview of different types of bioinspired hydrogels tailored for wearable devices. Next, we will discuss the recent progress of bioinspired hydrogel wearable devices such as electronic skin and smart contact lenses. Also, we will comprehensively summarize biosignal readout methods for hydrogel wearable devices as well as advances in powering and wireless data transmission technologies. Finally, current challenges facing these wearable devices are discussed, and future directions are proposed.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Lei Mou
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Xinyu Tian
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pamela Rosario Garrido
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Electric and Electronic Engineering, Technological Institute of Merida, Merida, Yucatan 97118, Mexico
| | - Zhuohong Wu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Taige Hao
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Shenghan Guan
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
48
|
Zhan W, Zhang Q, Zhang C, Yang Z, Peng N, Jiang Z, Liu M, Zhang X. Carboxymethylcellulose reinforced, double-network hydrogel-based strain sensor with superior sensing stability for long-term monitoring. Int J Biol Macromol 2023; 241:124536. [PMID: 37085065 DOI: 10.1016/j.ijbiomac.2023.124536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Hydrogel-based strain sensors have garnered significant attention for their potential for human health monitoring. However, its practical application has been hindered by water loss, freezing, and structural impairment during long-term motion monitoring. Here, a strain sensor based on double-network (DN) hydrogel of polyacrylamide (PAAm)/carboxymethylcellulose (CMC) was developed in a ternary solvent system of lithium chloride (LiCl)/ethylene glycol (EG)/H2O through a facile one-pot radical polymerization strategy. The incorporation of EG effectively mitigated the hydration of lithium salts by generating stable ion clusters with Li+ and stronger hydrogen bonds within the polymer matrix. The sensor demonstrated excellent mechanical properties, including a stretchability of 1858 %, toughness of 1.80 MJ/m3, and recoverability of 102 %. Furthermore, the LiCl/EG/H2O ternary system resulted in high conductivity, excellent anti-freezing performance, and superior sensing stability. In addition, the sensor exhibited remarkable sensitivity, enabling the monitoring of human movements ranging from subtle to significant deformations, including throat motion and bending of the elbow, wrist, finger, and lower limb. This study presents a viable approach for constructing hydrogel-based strain sensors with exceptional sensing stability for long-term tracking of human motions.
Collapse
Affiliation(s)
- Wang Zhan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Qi Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Cuiling Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Zihao Yang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 7100049, Shaanxi, PR China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 7100049, Shaanxi, PR China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 7100049, Shaanxi, PR China.
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China.
| |
Collapse
|
49
|
Hahn L, Zorn T, Kehrein J, Kielholz T, Ziegler AL, Forster S, Sochor B, Lisitsyna ES, Durandin NA, Laaksonen T, Aseyev V, Sotriffer C, Saalwächter K, Windbergs M, Pöppler AC, Luxenhofer R. Unraveling an Alternative Mechanism in Polymer Self-Assemblies: An Order-Order Transition with Unusual Molecular Interactions between Hydrophilic and Hydrophobic Polymer Blocks. ACS NANO 2023; 17:6932-6942. [PMID: 36972400 PMCID: PMC10100562 DOI: 10.1021/acsnano.3c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Polymer self-assembly leading to cooling-induced hydrogel formation is relatively rare for synthetic polymers and typically relies on H-bonding between repeat units. Here, we describe a non-H-bonding mechanism for a cooling-induced reversible order-order (sphere-to-worm) transition and related thermogelation of solutions of polymer self-assemblies. A multitude of complementary analytical tools allowed us to reveal that a significant fraction of the hydrophobic and hydrophilic repeat units of the underlying block copolymer is in close proximity in the gel state. This unusual interaction between hydrophilic and hydrophobic blocks reduces the mobility of the hydrophilic block significantly by condensing the hydrophilic block onto the hydrophobic micelle core, thereby affecting the micelle packing parameter. This triggers the order-order transition from well-defined spherical micelles to long worm-like micelles, which ultimately results in the inverse thermogelation. Molecular dynamics modeling indicates that this unexpected condensation of the hydrophilic corona onto the hydrophobic core is due to particular interactions between amide groups in the hydrophilic repeat units and phenyl rings in the hydrophobic ones. Consequently, changes in the structure of the hydrophilic blocks affecting the strength of the interaction could be used to control macromolecular self-assembly, thus allowing for the tuning of gel characteristics such as strength, persistence, and gelation kinetics. We believe that this mechanism might be a relevant interaction pattern for other polymeric materials as well as their interaction in and with biological environments. For example, controlling the gel characteristics could be considered important for applications in drug delivery or biofabrication.
Collapse
Affiliation(s)
- Lukas Hahn
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa Zorn
- Center
for Nanosystems Chemistry & Institute of Organic Chemistry, Department
of Chemistry and Pharmacy, Julius-Maximilians-University
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Josef Kehrein
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Kielholz
- Institute
of Pharmaceutical Technology and Buchmann Institute for Molecular
Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Anna-Lena Ziegler
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Stefan Forster
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Benedikt Sochor
- Chair for
X-Ray Microscopy, Julius-Maximilians-University
Würzburg, Josef-Martin-Weg
63, 97074 Würzburg, Germany
| | - Ekaterina S. Lisitsyna
- Faculty
of Engineering and Natural Science, Tampere
University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Nikita A. Durandin
- Faculty
of Engineering and Natural Science, Tampere
University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Timo Laaksonen
- Faculty
of Engineering and Natural Science, Tampere
University, Korkeakoulunkatu 8, 33720 Tampere, Finland
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Vladimir Aseyev
- Soft
Matter Chemistry, Department of Chemistry, Helsinki Institute of Sustainability
Science, Faculty of Science, University
of Helsinki, 00014 Helsinki, Finland
| | - Christoph Sotriffer
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kay Saalwächter
- Institute
of Physics-NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Maike Windbergs
- Institute
of Pharmaceutical Technology and Buchmann Institute for Molecular
Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Ann-Christin Pöppler
- Center
for Nanosystems Chemistry & Institute of Organic Chemistry, Department
of Chemistry and Pharmacy, Julius-Maximilians-University
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Robert Luxenhofer
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Soft
Matter Chemistry, Department of Chemistry, Helsinki Institute of Sustainability
Science, Faculty of Science, University
of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
50
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Citation(s) in RCA: 249] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|