1
|
Lu Y, Zhang X, Song M, Xie H, Chen S, Zhou Y, Jia J, Tang H. Tetrazolium iridium complexes as potential antibacterial agents. RSC Adv 2025; 15:2329-2333. [PMID: 39867336 PMCID: PMC11756349 DOI: 10.1039/d4ra08525f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/12/2025] [Indexed: 01/28/2025] Open
Abstract
In this work, three iridium(iii) tetrazolato complexes have been used in antibacterial, biofilm removal and for other bioactivities for the first time. Notably, these iridium(iii) tetrazolato complexes with high antibacterial, especially, Ir-CF3TAZ showed the best antimicrobial activity and the most effective hemolytic performance, which may pave the way to explore the value of the complexes for clinical applications in the future.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University Nanjing 211166 Jiangsu P. R. China
- First School of Clinical Medicine, Nanjing Medical University Nanjing 211166 Jiangsu P. R. China
| | - Xiujuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University Nanjing 211166 Jiangsu P. R. China
| | - Minmin Song
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University Nanjing 211166 Jiangsu P. R. China
| | - Hua Xie
- Jintan Hospital Affiliated to Jiangsu University P. R. China
| | - Shuhua Chen
- Department of Critical Care Medicine, Changzhou Cancer Hospital Changzhou 213001 P. R. China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology Suzhou 215009 Jiangsu P. R. China
| | - Junli Jia
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University Nanjing 211166 Jiangsu P. R. China
| | - Huamin Tang
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University Nanjing 211166 Jiangsu P. R. China
- The Laboratory Centre for Basic Medicine Sciences, School of Basic Medical Sciences, Nanjing Medical University Nanjing 211166 Jiangsu P. R. China
| |
Collapse
|
2
|
Hileuskaya K, Kraskouski A, Ihnatsyeu-Kachan A, Saichuk A, Pinchuk S, Nikalaichuk V, Ladutska A, Kulikouskaya V, Neves MC, Freire MG, Kim S. New insights into chitosan-Ag nanocomposites synthesis: Physicochemical aspects of formation, structure-bioactivity relationship and mechanism of antioxidant activity. Int J Biol Macromol 2025; 300:140077. [PMID: 39842576 DOI: 10.1016/j.ijbiomac.2025.140077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Herein, a novel approach to the controlled formation of chitosan-Ag nanocomposites (NCs) with different structures and tunable chemical/biological properties was proposed. The chitosan-Ag NCs were obtained using hydrothermal synthesis and varying the concentrations of components. The hypothesis of chitosan-Ag NC synthesis using polysaccharide coils as a "microreactor" system was confirmed. A comparative analysis of the physicochemical characteristics of the NCs with single-core-shell and multi-core-shell structures was carried out, and the "structure-property" relationship was revealed. The obtained NCs exhibited excellent antiradical properties, comparable to the activity of phenolic acids: the IC50 values were 0.051, 0.022, and 0.019 mg/mL for CS7, CS5, and caffeic acid, respectively. A mechanism for the antiradical activity of chitosan-Ag NCs was discussed. The redox activity of the NCs was found to be 11.4 and 2.3 mg ABTS per 1 mg of Ag in CS5 and CS7, respectively. The proposed environmentally friendly one-pot, one-step synthesis of silver nanoparticles inside chitosan "microreactors" represents an innovative approach to designing hybrid materials with nanoscale control of desired structure and properties. These findings pave the way for further optimization of biopolymer‑silver nanostructures for various biomedical and industrial applications, including the design of a new type of hybrid catalysts such as nanozymes.
Collapse
Affiliation(s)
- Kseniya Hileuskaya
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus
| | - Aliaksandr Kraskouski
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus.
| | - Aliaksei Ihnatsyeu-Kachan
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Anastasiia Saichuk
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sergei Pinchuk
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus, Minsk, 27 Academicheskaya Str., Belarus
| | - Viktoryia Nikalaichuk
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus
| | - Alena Ladutska
- Institute of Microbiology of National Academy of Sciences of Belarus, Minsk, 2 Kuprevich str., Belarus
| | - Viktoryia Kulikouskaya
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus
| | - Márcia C Neves
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Sun R, Cui Y, Wu Y, Gao M, Xue S, Li R, Zboři R, Zhang C. Overcoming Nanosilver Resistance: Resensitizing Bacteria and Targeting Evolutionary Mechanisms. ACS NANO 2025; 19:1702-1712. [PMID: 39739341 DOI: 10.1021/acsnano.4c15607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The rapid spread of antimicrobial resistance poses a critical threat to global health and the environment. Antimicrobial nanomaterials, including silver nanoparticles (AgNPs), are being explored as innovative solutions; however, the emergence of nanoresistance challenges their effectiveness. Understanding resistance mechanisms is essential for developing antievolutionary strategies. AgNPs exhibit diverse resistance mechanisms, and our findings reveal a dynamic transition between these mechanisms: from flagellin-mediated AgNP precipitation (state I) to activation of the copper efflux pump (CusCFBA) system (state II). We designed targeted physicochemical interventions to counteract these mechanisms. Energy supply blocking was effective for state I, while for state II, neutralizing intracellular acidic pH significantly reduced resistance. These strategies reduced nanoresistance/tolerance by up to 10,000-fold. Additionally, resistance evolution can be completely halted by disrupting the energy supply using carbonyl cyanide 3-chlorophenylhydrazone and overactivating sigma E, one of the key envelope stress regulators that govern resistance transitions. Our findings provide practical strategies to overcome nanoresistance, offering a groundbreaking approach to enhance nanoantimicrobials' efficacy in medical therapies and combat resistance evolution.
Collapse
Affiliation(s)
- Rui Sun
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Yueting Cui
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Yining Wu
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shiyuan Xue
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 2172-15, Ostrava 70800, Czech Republic
| | - Radek Zboři
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 2172-15, Ostrava 70800, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511-8, Olomouc 77900, Czech Republic
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
4
|
Elashkar E, Alfaraj R, El-Borady OM, Amer MM, Algammal AM, El-Demerdash AS. Novel silver nanoparticle-based biomaterials for combating Klebsiella pneumoniae biofilms. Front Microbiol 2025; 15:1507274. [PMID: 39850135 PMCID: PMC11754292 DOI: 10.3389/fmicb.2024.1507274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/09/2024] [Indexed: 01/25/2025] Open
Abstract
Background Klebsiella pneumoniae is a significant nosocomial pathogen that has developed resistance to multiple antibiotics, often forming biofilms that enhance its virulence. This study investigated the efficacy of a novel nanoformulation, AgNPs@chitosan-NaF, in combating K. pneumoniae biofilms. Methods Antimicrobial susceptibility testing was performed to assess the antibiotic resistance profile of K. pneumoniae isolates. The antibiofilm activity of AgNPs@chitosan-NaF was evaluated using crystal violet staining and scanning electron microscopy. The underlying mechanisms of action were investigated through gene expression analysis. Results The majority of K. pneumoniae isolates exhibited high levels of multidrug resistance. AgNPs@chitosan-NaF demonstrated superior biofilm inhibition compared to AgNPs@chitosan, significantly reducing biofilm biomass and disrupting biofilm architecture at MICs ranging from 0.125 to 1 μg/mL. Mechanistic studies revealed that the nanoformulation downregulated the expression of key biofilm-associated genes, including treC, fimA, mrkA, and ecpA. While AgNPs@chitosan-NaF exhibited a concentration-dependent cytotoxic effect on both normal and cancer cell lines, minimal cytotoxicity was observed at concentrations below 31.25 μg/mL. Conclusion This study highlights the synergistic effect of silver nanoparticles, chitosan, and sodium fluoride in combating K. pneumoniae biofilms. The nanoformulation, AgNPs@chitosan-NaF, emerges as a promising therapeutic strategy to address the challenge of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Eslam Elashkar
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, Egypt
| | - Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ola M. El-Borady
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr ElSheikh, Egypt
| | - Mahmoud M. Amer
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, Egypt
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Azza S. El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center, Animal Health Research Institute, Zagazig, Egypt
| |
Collapse
|
5
|
Dai Y, Zhang Q, Gu R, Chen J, Ye P, Zhu H, Tang M, Nie X. Metal ion formulations for diabetic wound healing: Mechanisms and therapeutic potential. Int J Pharm 2024; 667:124889. [PMID: 39481815 DOI: 10.1016/j.ijpharm.2024.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Metals are vital in human physiology, which not only act as enzyme catalysts in the processes of superoxide dismutase and glucose phosphorylation, but also affect the redox process, osmotic adjustment, metabolism and neural signals. However, metal imbalances can lead to diseases such as diabetes, which is marked by chronic hyperglycemia and affects wound healing. The hyperglycemic milieu of diabetes impairs wound healing, posing significant challenges to patient quality of life. Wound healing encompasses a complex cascade of hemostasis, inflammation, proliferation, and remodeling phases, which are susceptible to disruption in hyperglycemic conditions. In recent decades, metals have emerged as critical facilitators of wound repair by enhancing antimicrobial properties (e.g., iron and silver), providing angiogenic stimulation (copper), promoting antioxidant activity and growth factor synthesis (zinc), and supporting wound closure (calcium and magnesium). Consequently, research has pivoted towards the development of metal ion-based therapeutics, including innovative formulations such as nano-hydrogels, nano-microneedle dressings, and microneedle patches. Prepared by combining macromolecular materials such as chitosan, hyaluronic acid and sodium alginate with metals, aiming at improving the management of diabetic wounds. This review delineates the roles of key metals in human physiology and evaluates the application of metal ions in diabetic wound management strategies.
Collapse
Affiliation(s)
- Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
6
|
Sathiyaseelan A, Lu Y, Ryu S, Zhang L, Wang MH. Synthesis of cytocompatible gum Arabic-encapsulated silver nitroprusside nanocomposites for inhibition of bacterial pathogens and food safety applications. ENVIRONMENTAL RESEARCH 2024; 263:120246. [PMID: 39481791 DOI: 10.1016/j.envres.2024.120246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Silver nitroprusside (AgN) exhibits significant antibacterial activity; however, its inherent toxicity poses a major concern. This study synthesized AgN with enhanced antibacterial properties while minimizing toxicity. Gum Arabic (GA), a natural polysaccharide widely utilized in food and biomedical applications owing to its exceptional cytocompatibility, was selected for encapsulating AgN to mitigate toxicity while preserving or enhancing its biological activity. The resulting composite material, GA-AgN nanocomposites (NCs), was systematically characterized using various analytical techniques. Transmission electron microscopy analysis revealed that GA-AgN NCs exhibited a rectangular morphology, with an average size of 230.13 ± 62.8 nm. The zeta potential of GA-AgN NCs was measured at -29.3 ± 0.70 mV. Furthermore, GA-AgN NCs demonstrated stability over diverse storage durations, incubation periods, and pH conditions by maintaining its size and surface charge. X-ray diffraction results indicated a reduction in the crystallinity of AgN when incorporated into the amorphous GA matrix, while Fourier-transform infrared spectroscopy analysis confirmed that the functional properties of both AgN and GA were preserved in the NCs. The release of Ag and Fe ions from the NCs was observed to be time- and pH-dependent. Importantly, the incorporation of GA did not compromise the antibacterial or antibiofilm efficacy of AgN against bacterial pathogens. Additionally, GA significantly mitigated the cytotoxic effects of AgN on NIH3T3 cells and red blood cells. Furthermore, GA-AgN NCs effectively extended the shelf-life of Salmonella enterica-infected green grapes. Thus, this study illustrates that GA-fabricated AgN NCs exhibit potential as an antibacterial agent in food preservation applications.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Suji Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Lina Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Li S, Mo K, Du C. Investigating the bacterial cleaning performance on Zr-BMG with LIPSS after ultrasonic vibration assisted cleaning. Proc Inst Mech Eng H 2024:9544119241303307. [PMID: 39663631 DOI: 10.1177/09544119241303307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
High-efficiency and high-quality sterilization technologies for medical materials can significantly reduce iatrogenic infection. This study investigates the synergistic effects of laser-induced periodic surface structures (LIPSS) and ultrasonic cleaning on the removal of bacteria from medical material surfaces. We specifically examined how ultrasonic parameters and structural defects in LIPSS impact the effectiveness of bacterial removal. As an emerging medical metal, Zr-BMG was chosen for the target material. Femtosecond laser processing was employed to create LIPSS with both complete linear arrays and discontinuous linear arrays structures featuring surface defects by adjusting the scanning overlap rate. A high-concentration solution of S. aureus was used for co-cultivation, resulting in a surface bacterial coverage rate exceeding 95%. The study analyzed the synergistic sterilization effect of microstructured surfaces through variations in ultrasonic cleaning power and duration. The results indicated that surfaces with microstructures demonstrated significantly improved bacterial removal following ultrasonic cleaning. The bacterial removal rate was found to be proportional to the ultrasonic vibrator power, and the surface with a LIPSS structure outperformed the discontinuous LIPSS surface in bacterial removal efficiency. Optimal results were achieved with the LIPSS surface after 30 min of cleaning at 100 W ultrasonic power. However, there was minimal difference in bacterial removal between 10 and 30 min at the same power level. This study aims to provide methodological insights and data support for the efficient and high-quality cleaning of medical metal surfaces.
Collapse
Affiliation(s)
- Songlin Li
- Chenzhou Vocational Technical College, ChenZhou, Hunan, China
| | - Kekang Mo
- Guangdong Academy of Science, Guangzhou, Guangdong, China
| | - Cezhi Du
- Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong university of technology, Guangzhou, China
| |
Collapse
|
8
|
Krychowiak-Maśnicka M, Wojciechowska WP, Bogaj K, Bielicka-Giełdoń A, Czechowska E, Ziąbka M, Narajczyk M, Kawiak A, Mazur T, Szafranek B, Królicka A. The Substantial Role of Cell and Nanoparticle Surface Properties in the Antibacterial Potential of Spherical Silver Nanoparticles. Nanotechnol Sci Appl 2024; 17:227-246. [PMID: 39659544 PMCID: PMC11630726 DOI: 10.2147/nsa.s489407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Although it is well known that the size, shape, and surface chemistry affect the biological potential of silver nanoparticles (AgNPs), the published studies that have considered the influence of AgNP surface on antibacterial activity have not provided conclusive results. This is the first study whose objective was to determine the significance of the surface net charge of AgNPs on their antibacterial potential, attraction to bacterial cells, and cell envelope disruption, considering differences in bacterial surface properties. Methods We evaluated five commercial AgNP colloids with identical size and shape but different surface ligands. We thoroughly characterized their physicochemical properties, including the zeta potential, hydrodynamic diameter, and polydispersity index, and determined the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC), along with silver absorption into bacterial cells. Moreover, we investigated structural changes in bacteria treated with AgNPs by using a crystal violet assay and electron microscopy. Results The zeta potential of AgNPs ranged from -47.6 to +68.5 mV, with a hydrodynamic diameter of 29-87 nm and a polydispersity index of 0.349-0.863. Bacterial susceptibility varied significantly (0.5 ≤ MIC ≤ 256 µg Ag/mL; 1 ≤ MBC ≤ 256 µg Ag/mL); we found the lowest susceptibility in bacteria with a cell wall or a polysaccharide capsule. The most active AgNPs (0.5 ≤ MIC ≤ 32 µg Ag/mL; 2 ≤ MBC ≤ 64 µg Ag/mL) had a moderate surface charge (-21.5 and +14.9 mV). The antibacterial potential was unrelated to ion dissolution or cell envelope disruption, and bacterial cells absorbed less of the most active AgNPs (1.75-7.65%). Conclusion Contrary to previous reports, we found that a moderate surface charge is crucial for the antibacterial activity of AgNPs, and that a significant attraction of the nanoparticle to the cell surface reduces the antibacterial potential of AgNPs. These findings challenge the existing views on AgNP antibacterial mechanisms and interactions with bacterial cells.
Collapse
Affiliation(s)
- Marta Krychowiak-Maśnicka
- University of Gdansk, Intercollegiate Faculty of Biotechnology, Laboratory of Biologically Active Compounds, Gdansk, Poland
| | - Weronika Paulina Wojciechowska
- University of Gdansk, Intercollegiate Faculty of Biotechnology, Laboratory of Biologically Active Compounds, Gdansk, Poland
| | - Karolina Bogaj
- University of Gdansk, Intercollegiate Faculty of Biotechnology, Laboratory of Biologically Active Compounds, Gdansk, Poland
| | | | - Ewa Czechowska
- University of Gdansk, Intercollegiate Faculty of Biotechnology, Laboratory of Experimental and Translational Immunology, Gdansk, Poland
| | - Magdalena Ziąbka
- AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, Krakow, Poland
| | - Magdalena Narajczyk
- University of Gdansk, Faculty of Biology, Bioimaging Laboratory, Gdansk, Poland
| | - Anna Kawiak
- University of Gdansk, Intercollegiate Faculty of Biotechnology, Laboratory of Plant Protection and Biotechnology, Gdansk, Poland
| | - Tomasz Mazur
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Krakow, Poland
| | | | - Aleksandra Królicka
- University of Gdansk, Intercollegiate Faculty of Biotechnology, Laboratory of Biologically Active Compounds, Gdansk, Poland
| |
Collapse
|
9
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
10
|
Faghani G, Azarniya A. Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon 2024; 10:e39611. [PMID: 39524817 PMCID: PMC11550055 DOI: 10.1016/j.heliyon.2024.e39611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The growing need for developing reliable and efficient wound dressings has led to recent progress in designing novel materials and formulations for different kinds of wounds caused by traumas, burns, surgeries, and diabetes. In cases of extreme urgency, accelerating wound recovery is of high importance to prevent persistent infection and biofilm formation. The application of nanotechnology in this domain resulted in the creation of distinct nanoplatforms for highly advanced wound-healing therapeutic approaches. Recently developed nanomaterials have been used as antibacterial agents or drug carriers to control wound infection. In the present review, the authors aim to review the recently published research on the effects of incorporating emerging nanomaterials into novel wound dressings and investigate their distinct roles in the wound healing process. It was determined that the metallic nanoparticles (NPs) exhibit antimicrobial and regenerative properties, metal oxide NPs regulate inflammation and promote tissue regeneration, MXene NPs enhance cell adhesion and proliferation, while metal-organic frameworks (MOFs) offer controlled drug delivery capabilities. Further research is required to fully understand the mechanisms and optimize the applications of these NPs in wound healing.
Collapse
Affiliation(s)
- Gholamreza Faghani
- Department of Mechanical Engineering, Khatam-Ol-Anbia (PBU) University, Tehran, Iran
| | - Amir Azarniya
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Che H, Xu J, Wu D, Chen S, Liu C, Zhao C, Peng K. Reactive oxygen species-responsive polydopamine-PtCuTe nanoparticle-loaded microneedle system for promoting the healing of infected skin wounds. J Control Release 2024; 376:999-1013. [PMID: 39505217 DOI: 10.1016/j.jconrel.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Nanozymes, known for their high efficiency in scavenging reactive oxygen species (ROS), have received significant attention in promoting the healing of infected wounds. Herein, we reported a novel multifunctional PDA-PtCuTe nanozyme with excellent ROS scavenging, antibacterial, pro-angiogenic, anti-inflammatory, and immune regulatory properties. It was loaded onto microneedles (PTPP-MN) for treating infected wounds. In vitro experiments demonstrated its ability to scavenge ROS and exhibit antioxidant properties. Compared to PT-MN (11.03 ± 3.37 %) and PTP-MN (42.30 ± 2.60 %), the ROS scavenging rate of PTPP-MN reached 63.63 ± 4.42 %. The microneedle exhibits good biocompatibility, stimulating fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, it effectively eliminates ROS and provides antioxidant effects while inhibiting the viability of S. aureus and E. coli. Animal experiments showed that the PTPP-MN group achieved near-complete re-epithelialization by the third day compared to other groups. Histological observations revealed that the PTPP-MN group exhibited enhanced granulation tissue formation, epithelial regeneration, and angiogenesis. After PTPP-MN treatment, the local immune response shifted from a pro-inflammatory state to a pro-regenerative state. Our results indicate that PTPP-MN holds great promise for infected wound healing with reduced scar formation.
Collapse
Affiliation(s)
- Hongfan Che
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Junzhi Xu
- Orthopedic Department of The Third People's Hospital of Jingdezhen, Jiangxi, 333000, China
| | - Dong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Siliang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chengkang Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chongbao Zhao
- Imaging Department to the People's Hospital of Feng Xin Jiangxi, 330700, China
| | - Kun Peng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
12
|
Ahmed Amin S, Dawood MEA, Mahmoud M, Bassiouny DM, Moustafa MMA, Abd El Ghany K. Innovative synthesis and molecular modeling of actinomycetes-derived silver nanoparticles for biomedical applications. Microb Pathog 2024; 196:106990. [PMID: 39362288 DOI: 10.1016/j.micpath.2024.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The rising demand for innovative antimicrobial solutions has shifted focus towards silver nanoparticles (AgNPs), especially those produced through eco-friendly methods. This study introduces a novel approach utilizing actinomycetes strains-Streptomyces albus, Micromonospora maris, and Arthrobacter crystallopoietes-to biosynthesize AgNPs with remarkable antibacterial properties. Through molecular characterization, we identified unique features of these nanoparticles, and computational modeling suggested significant ion-ligand interactions with proteins 6REV and 3K07. Our research highlights the promise of these biogenically synthesized nanoparticles in advancing biomedical applications. Actinomycetes were sourced and screened for their ability to produce metallic nanoparticles, revealing that among 35 samples, only six showed this capability. Notably, Streptomyces albus strain smmdk14 (OR685674), Micromonospora maris strain smmdk13 (OR685672), and Arthrobacter crystallopoietes strain smmdk12 (OR685674) were identified as effective silver nanoparticle producers. The synthesized nanoparticles demonstrated potent antibacterial activity against common pathogens including E. coli, Pseudomonas aeruginosa, Klebsiella spp., Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter spp. The data obtained from color change observation, UV-visible spectrophotometry, Zeta potential, FTIR spectroscopy, and transmission electron microscopy (TEM) characterized AgNPs potentiality. The nanoparticles were spherical, with sizes ranging from 6.46 nm to 24.7 nm. Optimization of production conditions, comparison of antimicrobial effects with antibiotics, evaluation of potential toxicity, and assessment of wound-healing capabilities were also conducted. The biosynthesized AgNPs exhibited superior antibacterial properties compared to traditional antibiotics and significantly accelerated wound healing by approximately 66.4 % in fibroblast cell cultures. Additionally, computational analysis predicted interactions between various metal ions and specific amino acid residues in proteins 6REV and 3K07. Overall, this study demonstrates the successful creation of AgNPs with notable antibacterial and wound-healing properties, underscoring their potential for medical applications.
Collapse
Affiliation(s)
- Safia Ahmed Amin
- Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt.
| | - Mohamed E A Dawood
- Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt.
| | - Mohamed Mahmoud
- Biophysics Department, Faculty of Science, Cairo University, Egypt.
| | - Dina M Bassiouny
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Egypt.
| | - Mahmoud M A Moustafa
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Moshtohor, Benha University, 13736, Egypt.
| | | |
Collapse
|
13
|
Maniah K, Olyan Al-Otibi F, Mohamed S, Said BA, Ragab AbdelGawwad M, Taha Yassin M. Synergistic antibacterial activity of biogenic AgNPs with antibiotics against multidrug resistant bacterial strains. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2024; 36:103461. [DOI: 10.1016/j.jksus.2024.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Swain S, Bej S, Bishoyi AK, Jali BR, Padhy RN. Biosynthesis and characterisations of silver nanoparticles with filamentous cyanobacterium Lyngbya sp. with in vitro antibacterial properties against MDR pathogenic bacteria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9123-9133. [PMID: 38896273 DOI: 10.1007/s00210-024-03235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
This study describes phycocompounds of the non-N2-fixing filamentous cyanobacterium Lyngbya sp., which has potential bio-reducing and stabilizing heavy metal-accumulating properties for synthesizing silver nanoparticles (AgNPs), whose formation was confirmed by the colour change of the Lyngbya sp.-AgNP solution from pale green to deep brown. The reduction of 'Lyngbya sp.-AgNPs', called Lsp-AgNPs, was proved by UV-visible photo-spectrometry analysis with an obtained peak value at 426 nm. Lsp-AgNPs were characterised by analytical techniques, XRD, FESEM, DLS and FTIR. The XRD analysis with 5-70 theta was obtained at 2ϴ angles ranging from 38.79º with intensity, indicating the crystal structure of Lsp-AgNPs. The FESEM analysis indicated the area size at 20-50 µm; in the DLS analysis, the peak at 400 d nm indicated the size and distribution of Lsp-AgNPs. In FTIR analysis, the peaks were obtained at wavenumbers 3338, 1639, and 542 cm-1, which indicated the presence of N-H, -OH and C=O functional groups in Lsp-AgNPs. Those had in vitro antibacterial activities against Gram-negative Escherichia coli (MTCC 443) and Pseudomonas aeruginosa (MTCC 1688) and Gram-positive Staphylococcus aureus (MTCC 7443) bacterial strains with zone of inhibitions (ZOI) of 16, 12 and 14 mm, respectively, with comparing the antibiotic gentamycin as a positive control, as was monitored with agar-well diffusion method. Furthermore, the MIC value was 50 mg/ml, and MBC values of 65 mg/ml of Lsp-AgNPs were effective against those bacteria. Thus, Lsp-AgNPs had potential antibacterial activities against MDR pathogenic S. aureus, E. coli and P. aeruginosa. In conclusion, MDR pathogenic bacteria could be controlled as prodrugs in the future.
Collapse
Affiliation(s)
- Surendra Swain
- Central Research Laboratory, Institute of Medical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Shuvasree Bej
- Central Research Laboratory, Institute of Medical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Ajit Kumar Bishoyi
- Department of Clinical Hematology, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
15
|
Singh AK, Itkor P, Lee M, Saenjaiban A, Lee YS. Synergistic Integration of Carbon Quantum Dots in Biopolymer Matrices: An Overview of Current Advancements in Antioxidant and Antimicrobial Active Packaging. Molecules 2024; 29:5138. [PMID: 39519777 PMCID: PMC11547712 DOI: 10.3390/molecules29215138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Approximately one-third of the world's food production, i.e., 1.43 billion tons, is wasted annually, resulting in economic losses of nearly USD 940 billion and undermining food system sustainability. This waste depletes resources, contributes to greenhouse gas emissions, and negatively affects food security and prices. Although traditional packaging preserves food quality, it cannot satisfy the demands of extended shelf life, safety, and sustainability. Consequently, active packaging using biopolymer matrices containing antioxidants and antimicrobials is a promising solution. This review examines the current advancements in the integration of carbon quantum dots (CQDs) into biopolymer-based active packaging, focusing on their antioxidant and antimicrobial properties. CQDs provide unique advantages over traditional nanoparticles and natural compounds, including high biocompatibility, tunable surface functionality, and environmental sustainability. This review explores the mechanisms through which CQDs impart antioxidant and antimicrobial activities, their synthesis methods, and their functionalization to optimize the efficacy of biopolymer matrices. Recent studies have highlighted that CQD-enhanced biopolymers maintain biodegradability with enhanced antioxidant and antimicrobial functions. Additionally, potential challenges, such as toxicity, regulatory considerations, and scalability are discussed, offering insights into future research directions and industrial applications. This review demonstrates the potential of CQD-incorporated biopolymer matrices to transform active packaging, aligning with sustainability goals and advancing food preservation technologies.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Department of Packaging & Logistics, Yonsei University, Wonju 26393, Republic of Korea; (A.K.S.); (P.I.); (M.L.)
| | - Pontree Itkor
- Department of Packaging & Logistics, Yonsei University, Wonju 26393, Republic of Korea; (A.K.S.); (P.I.); (M.L.)
| | - Myungho Lee
- Department of Packaging & Logistics, Yonsei University, Wonju 26393, Republic of Korea; (A.K.S.); (P.I.); (M.L.)
| | - Aphisit Saenjaiban
- Doctor of Philosophy Program in Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Youn Suk Lee
- Department of Packaging & Logistics, Yonsei University, Wonju 26393, Republic of Korea; (A.K.S.); (P.I.); (M.L.)
| |
Collapse
|
16
|
Khatun MA, Sultana F, Saha I, Karmakar P, Gazi HAR, Islam MM, Show B, Mukhopadhyay S. Lentil Extract-Mediated Ag QD Synthesis: Predilection for Albumin Protein Interaction, Antibacterial Activity, and Its Cytotoxicity for Wi-38 and PC-3 Cell Lines. ACS APPLIED BIO MATERIALS 2024; 7:6568-6582. [PMID: 39259615 DOI: 10.1021/acsabm.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Recent focus has been directed toward semiconductor nanocrystals owing to their unique physicochemical properties. Nevertheless, the synthesis and characterization of quantum dots (QDs) pose considerable challenges, limiting our understanding of their interactions within a biological environment. This research offers valuable insights into the environmentally friendly production of silver quantum dots (Ag QDs) using lentil extract and clarifies their distinct physicochemical characteristics, previously unexplored to our knowledge. These findings pave the path for potential practical applications. The investigation of the phytochemical-assisted Ag QDs' affinity for BSA demonstrated modest interactions, as shown by the enthalpy and entropy changes as well as the associated Gibbs free energy during their association. Steady-state and time-resolved fluorescence spectroscopy further demonstrated a transient effect involving dynamic quenching, predominantly driven by Forster resonance energy transfer. Additionally, the study highlights the potential broad-spectrum antibacterial activity of Ag QDs (<5 nm, a zeta potential of -3.04 mV), exhibiting a remarkable MIC value of 1 μg/mL against Gram-negative bacteria (E. coli) and 1.65 μg/mL against Gram-positive bacteria (S. aureus). They can readily enter cells and tissues due to their minuscule size and the right chemical environment. They cause intracellular pathway disruption, which leads to cell death. This outcome emphasizes the distinctive biocompatibility of the green-synthesized Ag QDs, which has been confirmed by their MTT assay-based cytotoxicity against the PC-3 and Wi-38 cell lines.
Collapse
Affiliation(s)
- Mst Arjina Khatun
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Farhin Sultana
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Ishita Saha
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Parimal Karmakar
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Harun Al Rasid Gazi
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700160, India
| | - Md Maidul Islam
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700160, India
| | - Bibhutibhushan Show
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Subrata Mukhopadhyay
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| |
Collapse
|
17
|
Szymczak M, Golec P. Long-Term Effectiveness of Engineered T7 Phages Armed with Silver Nanoparticles Against Escherichia coli Biofilm. Int J Nanomedicine 2024; 19:10097-10105. [PMID: 39381027 PMCID: PMC11460280 DOI: 10.2147/ijn.s479960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The escalating threat of antibiotic-resistant bacteria, particularly those forming biofilm structures, underscores the urgent need for alternative treatment strategies. Bacteriophages have emerged as promising agents for combating bacterial infections, especially those associated with biofilm formation. However, the efficacy of phage therapy can be limited by the development of bacterial resistance and biofilm regrowth. Interestingly, phages could be combined with other agents, such as metal nanoparticles, to enhance their antibacterial effectiveness. Since the therapeutic strategy of using phages and metal nanoparticles has been developed relatively recently, evaluating its efficacy under various conditions is essential, with a particular focus on the duration of activity. This study tested the hypothesis that a novel approach to combating bacterial biofilms, based on phages armed with silver nanoparticles (AgNPs), would exhibit enhanced activity over an extended period after application. In this work, we investigated the potential of engineered T7 phages armed with AgNPs for eradicating Escherichia coli biofilm. We demonstrated that such biomaterial exhibits sustained antimicrobial activity even after prolonged exposure. Compared to phages alone or AgNPs alone, the biomaterial significantly enhances biofilm eradication, particularly after 48 hours of treatment. These findings highlight the potential of synergistic phage-nanoparticle strategies for combatting biofilm-associated infections.
Collapse
Affiliation(s)
- Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Hou T, Sana SS, Jeyavani J, Li H, Boya VKN, Vaseeharan B, Kim SC, Zhang Z. Biomedical applications of chitosan-coated phytogenic silver nanoparticles: An alternative drug to foodborne pathogens. Int J Biol Macromol 2024; 280:135590. [PMID: 39276903 DOI: 10.1016/j.ijbiomac.2024.135590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/05/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) was performed using crude rosmarinic acid (RA) from plants as a reducing agent and coated with chitosan biopolymer. The prepared particles were characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). A surface plasmon resonance peak at 430 nm indicates the emergence of AgNPs. XRD showed that the AgNPs were crystalline with an average crystalline size of 30 nm and TEM studies revelad that AgNPs were spherical without aggregation. The prepared CS-AgNPs exhibited good bactericidal properties against foodborne pathogens, such as Escherichia coli, Pseudomonas aeruginosa, and Vibrio parahaemolyticus. In particular, 100 μg/mL CS-AgNPs inhibited the growth of the selected bacteria and controlled their biofilm-forming ability. Band-aid cloth assay confirmed that the CS-AgNPs could be used in the medical field to prevent bacterial infections. The prepared CS-AgNPs increased the survival rate of Artemia species and exhibited antioxidant activity in conjunction with bactericidal properties against selected foodborne pathogens.
Collapse
Affiliation(s)
- Tianyu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeyaraj Jeyavani
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Huizhen Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Vijaya Kumar Naidu Boya
- Department of Material Science and Nanotechnology, Yogi Vemana University, Kadapa 516005, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Zhijun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China.
| |
Collapse
|
19
|
Karnwal A, Sharma V, Kumar G, Jassim AY, Dohroo A, Sivanesan I. Transforming Medicine with Nanobiotechnology: Nanocarriers and Their Biomedical Applications. Pharmaceutics 2024; 16:1114. [PMID: 39339152 PMCID: PMC11435024 DOI: 10.3390/pharmaceutics16091114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Nanobiotechnology, at the intersection of nanotechnology and biology, represents a burgeoning field poised to revolutionize medicine through the use of advanced nanocarriers. These nanocarriers, endowed with distinctive physiobiological attributes, are instrumental in diverse therapeutic domains including drug delivery for microbial infections, cancer treatment, tissue engineering, immunotherapy, and gene therapy. Despite the transformative potential, several challenges hinder their efficacy, such as limited drug capacity, suboptimal targeting, and poor solubility. This review delves into the latest advancements in nanocarrier technologies, examining their properties, associated limitations, and the innovative solutions developed to address these issues. It highlights promising nanocarrier systems like nanocomposites, micelles, hydrogels, microneedles, and artificial cells that employ advanced conjugation techniques, sustained and stimulus-responsive release mechanisms, and enhanced solubility. By exploring these novel structures and their contributions to overcoming existing barriers, the article emphasizes the vital role of interdisciplinary research in advancing nanobiotechnology. This field offers unparalleled opportunities for precise and effective therapeutic delivery, underscoring its potential to reshape healthcare through personalized, targeted treatments and improved drug performance.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (A.K.); (G.K.)
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (A.K.); (G.K.)
| | - Amar Yasser Jassim
- Department of Marine Vertebrate, Marine Science Center, University of Basrah, Basrah 61004, Iraq;
| | - Aradhana Dohroo
- School of Agricultural Sciences, Baddi University of Emerging Sciences and Technologies, Baddi 173405, India;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
20
|
Dam P, Shaw S, Mondal R, Chakraborty J, Bhattacharjee T, Sen IK, Manna S, Sadat A, Suin S, Sarkar H, Ertas YN, Mandal AK. Multifunctional silver nanoparticle embedded eri silk cocoon scaffolds against burn wounds-associated infection. RSC Adv 2024; 14:26723-26737. [PMID: 39184008 PMCID: PMC11342674 DOI: 10.1039/d4ra05029k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Antimicrobial wound dressings offer enhanced efficacy compared to conventional dressing platforms by limiting bacterial infections, expediting the healing process, and creating a barrier against additional wound contamination. The use of silk derived from silkworm cocoons in wound healing applications is attributed to its exceptional characteristics. Compared to mulberry silk, sericin from non-mulberry cocoons has higher water exchange mobility and moisture retention. Eri, a non-mulberry silkworm, is an unexplored source of silk with an eco-friendly nature of production where the natural life cycle of silkworms is not disrupted, and no moths are sacrificed. This work reports on an eri silk cocoon-based scaffold decorated with silver nanoparticles as a wound dressing material effective against burn-wound-associated multiple-drug-resistant bacteria. The UV-vis spectroscopy showed maximum absorbance at 448 nm due to the surface plasmon resonance of silver nanoparticles. FT-IR spectra exhibited the functional groups in the eri silk proteins accountable for the reduction of Ag+ to Ag0 in the scaffold. SEM-EDX analysis revealed the presence of elemental silver, and XRD analysis confirmed their particle size of 5.66-8.82 nm. The wound dressing platform showed excellent thermal stability and hydrophobicity, fulfilling the criteria of a standard waterproof dressing material, and anticipating the prevention of bacterial biofilm formation in chronic wounds. The scaffold was found to be effective against both Staphylococcus aureus (MTCC 87) and Pseudomonas aeruginosa (MTCC 1688) multiple-drug-resistant pathogens. Electron microscopy revealed the bacterial cell damage, suggesting its bactericidal property. The results further revealed that the scaffold was both hemocompatible and cytocompatible, suggesting its potential application in chronic wounds such as burns. As an outcome, this study presents a straightforward, cost-effective, and sustainable way of developing a multifunctional wound dressing platform, suggesting its significant therapeutic potential in clinical and biomedical sectors and facile commercialization.
Collapse
Affiliation(s)
- Paulami Dam
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| | - Shubhajit Shaw
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| | - Rittick Mondal
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| | - Joydeep Chakraborty
- Department of Microbiology, Cell Biology and Bacteriology Laboratory, Raiganj University North Dinajpur 733134 India
| | - Trinankur Bhattacharjee
- Department of Conservation Biology, Durgapur Government College Jawahar Lal Nehru Road, Amarabati Colony Durgapur West Bengal 713214 India
| | - Ipsita Kumar Sen
- Department of Chemistry, Government General Degree College Salboni, Paschim Medinipur 721516 West Bengal India
| | - Sanjeet Manna
- Central Instrumentation Facility, Odisha University of Agriculture and Technology Bhubaneswar 751003 Odisha India
| | - Abdul Sadat
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| | - Supratim Suin
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College Rahara Kolkata 700118 India
| | - Hironmoy Sarkar
- Department of Microbiology, Cell Biology and Bacteriology Laboratory, Raiganj University North Dinajpur 733134 India
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University Kayseri 38039 Turkey
- Department of Biomedical Engineering, Erciyes University Kayseri 38039 Turkey
- Department of Technical Sciences, Western Caspian University Baku AZ1001 Azerbaijan
| | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| |
Collapse
|
21
|
Nocchetti M, Pietrella D, Antognelli C, Di Michele A, Russo C, Giulivi E, Ambrogi V. Alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites. Int J Pharm 2024; 661:124393. [PMID: 38942183 DOI: 10.1016/j.ijpharm.2024.124393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This paper focuses on the preparation and characterization of antibacterial alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites for tissue engineering. Microparticles were prepared by cross-linking a silver@composite sodium alginate dispersion with CaCl2. This method showed a very good silver efficiency loading and the presence of silver chloride nanoparticles was detected. Silver free microparticles, containing hydroxyapatite functionalized calcium carbonates and neat alginate microparticles were prepared as well. All microparticles were characterized for water absorption and for in vitro bioactivity by immersion in simulated body fluid (SBF). Finally, antimicrobial and antibiofilm activities as well as cytotoxicity were evaluated. Microparticles containing silver@composites exhibited good antimicrobial and antibiofilm activities against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Candida albicans, but exerted a certain cytotoxicity against the tested cell models (fibroblasts and osteoblasts). Microparticles containing hydroxyapatite functionalized calcium carbonates were found to be always less cytotoxic, also in comparison to neat alginate microparticles, proving that the presence of the inorganic matrices exerts a protective effect on microparticle cytotoxicity.
Collapse
Affiliation(s)
- Morena Nocchetti
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06123, Italy
| | - Donatella Pietrella
- Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia 06129, Italy
| | - Cinzia Antognelli
- Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia 06129, Italy
| | | | - Carla Russo
- Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia 06129, Italy
| | - Elisa Giulivi
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06123, Italy
| | - Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06123, Italy.
| |
Collapse
|
22
|
Barman S, Dey R, Ghosh S, Mukherjee R, Mukherjee S, Haldar J. Amino Acid-Conjugated Polymer-Silver Bromide Nanocomposites for Eradicating Polymicrobial Biofilms and Treating Burn Wound Infections. ACS Infect Dis 2024; 10:2999-3012. [PMID: 39082818 DOI: 10.1021/acsinfecdis.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The rise in antimicrobial resistance, the increasing occurrence of bacterial, and fungal infections, and the challenges posed by polymicrobial biofilms necessitate the exploration of innovative therapeutic strategies. Silver-based antimicrobials have garnered attention for their broad-spectrum activity and multimodal mechanisms of action. However, their effectiveness against single-species or polymicrobial biofilms remains limited. In this study, we present the fabrication of polymer-silver bromide nanocomposites using amino acid conjugated polymers (ACPs) through a green and water-based in situ technique. The nanocomposite architecture facilitated prolonged and controlled release of the active components. Remarkably, the nanocomposites exhibited broad-spectrum activity against multidrug-resistant (MDR) human pathogenic bacteria (MIC = 2-16 μg/mL) and fungi (MIC = 1-8 μg/mL), while displaying no detectable toxicity to human erythrocytes (HC50 > 1024 μg/mL). In contrast to existing antimicrobials and silver-based therapies, the nanocomposite effectively eradicated bacterial, fungal, and polymicrobial biofilms, and prevented the development of microbial resistance due to their membrane-active properties. Furthermore, the lead polymer-silver bromide nanocomposite demonstrated a 99% reduction in the drug-resistant Pseudomonas aeruginosa burden in a murine model of burn wound infection, along with excellent in vivo biocompatibility.
Collapse
Affiliation(s)
- Swagatam Barman
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Rajib Dey
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| |
Collapse
|
23
|
Hancharova M, Halicka-Stępień K, Dupla A, Lesiak A, Sołoducho J, Cabaj J. Antimicrobial activity of metal-based nanoparticles: a mini-review. Biometals 2024; 37:773-801. [PMID: 38286956 DOI: 10.1007/s10534-023-00573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
The resistance of pathogenic microorganisms to antibiotics is one of the main problems of world health. Of particular concern are multidrug-resistant (MDR) bacteria. Infections caused by these microorganisms affect the appearance of acute or chronic diseases. In this regard, modern technologies, such as nanomaterials (NMs), especially promising nanoparticles (NPs), can possess antimicrobial properties or improve the effectiveness and delivery of known antibiotics. Their diversity and characteristics, combined with surface functionalization, enable multivalent interactions with microbial biomolecules. This article presents an overview of the most current research on replacing antibiotics with NPs, including the prospects and risks involved.
Collapse
Affiliation(s)
- Marharyta Hancharova
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kinga Halicka-Stępień
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Aleksandra Dupla
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna Lesiak
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
- Laboratoire de Chimie, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - Jadwiga Sołoducho
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
24
|
Giannakopoulos K, Lasithiotakis M, Karakasis C, Gini M, Gardelis S, Karakasiliotis I, Mouti N, Xesfyngi Y, Manolis GK, Georgoutsou-Spyridonos M, Dimitriou M, Eleftheriadis K. Spark Discharge Aerosol-Generated Copper-Based Nanoparticles: Structural & Optical Properties; Application on the Antiviral (SARS-CoV-2) and Antibacterial Improvement of Face Masks. Chempluschem 2024; 89:e202400194. [PMID: 38646973 DOI: 10.1002/cplu.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Nanoparticle formation by Spark Discharge Aerosol Generation offers low-cost fabrication of nanoparticles, without the use of chemicals or vacuum. It produces aerosol particles of a few nanometers in size with high purity. In this work, copper-based -CuO (tenorite) and Cu- nanoparticles are produced, characterized and used to modify face mask air filters, achieving the introduction of antibacterial and antiviral properties. A range of characterization techniques have been employed, down to the atomic level. The majority of the particles are CuO (of a few nanometers in size that agglomerate to form aggregates), the remainder being a small number of larger Cu particles. The particles were deposited on various substrates, mainly fiber filters in order to study them and use them as biocidal agents. On face masks, their antibacterial activity against Escherichia coli (E.coli) results in a 100 % decrease in bacteria cell viability. Their antiviral activity on face masks results in a 90 % reduction of the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) viability, 15 minutes post the application of the virus stock solution. This highlights the effectiveness of this approach, its simplicity, its low cost and its excellent environmental credentials.
Collapse
Affiliation(s)
- Konstantinos Giannakopoulos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| | | | - Charalampos Karakasis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, GR-15784, Athens, Greece
| | - Maria Gini
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| | - Spyros Gardelis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, GR-15784, Athens, Greece
| | - Ioannis Karakasiliotis
- Department of Medicine, Democritus University of Thrace, GR-68100, Alexandroupoli, Greece
| | - Nafsika Mouti
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| | - Yvonni Xesfyngi
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| | - Georgios K Manolis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| | - Maria Georgoutsou-Spyridonos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| | - Marios Dimitriou
- Department of Medicine, Democritus University of Thrace, GR-68100, Alexandroupoli, Greece
| | - Kostas Eleftheriadis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| |
Collapse
|
25
|
Pires AJ, Pereira G, Fangueiro D, Bexiga R, Oliveira M. When the solution becomes the problem: a review on antimicrobial resistance in dairy cattle. Future Microbiol 2024; 19:903-929. [PMID: 38661710 PMCID: PMC11290761 DOI: 10.2217/fmb-2023-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Antibiotics' action, once a 'magic bullet', is now hindered by widespread microbial resistance, creating a global antimicrobial resistance (AMR) crisis. A primary driver of AMR is the selective pressure from antimicrobial use. Between 2000 and 2015, antibiotic consumption increased by 65%, reaching 34.8 billion tons, 73% of which was used in animals. In the dairy cattle sector, antibiotics are crucial for treating diseases like mastitis, posing risks to humans, animals and potentially leading to environmental contamination. To address AMR, strategies like selective dry cow therapy, alternative treatments (nanoparticles, phages) and waste management innovations are emerging. However, most solutions are in development, emphasizing the urgent need for further research to tackle AMR in dairy farms.
Collapse
Affiliation(s)
- Ana José Pires
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Gonçalo Pereira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - David Fangueiro
- LEAF Research Center, Terra Associate Laboratory, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ricardo Bexiga
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Manuela Oliveira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
- cE3c—Centre for Ecology, Evolution & Environmental Changes & CHANGE—Global Change & Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
26
|
Devi R, Singh G, Singh A, Singh J, Kaur N, Singh N. Silver and Copper Nanoparticle-Loaded Self-Assembled Pseudo-Peptide Thiourea-Based Organic-Inorganic Hybrid Gel with Antibacterial and Superhydrophobic Properties for Antifouling Surfaces. ACS APPLIED BIO MATERIALS 2024; 7:4162-4174. [PMID: 38769764 DOI: 10.1021/acsabm.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The escalating threat of antimicrobial resistance has become a global health crisis. Therefore, there is a rising momentum in developing biomaterials with self-sanitizing capabilities and inherent antibacterial properties. Despite their promising antimicrobial properties, metal nanoparticles (MNPs) have several disadvantages, including increased toxicity as the particle size decreases, leading to oxidative stress and DNA damage that need consideration. One solution is surface functionalization with biocompatible organic ligands, which can improve nanoparticle dispersibility, reduce aggregation, and enable targeted delivery to microbial cells. The existing research predominantly concentrates on the advancement of peptide-based hydrogels for coating materials to prevent bacterial infection, with limited exploration of developing surface coatings using organogels. Herein, we have synthesized organogel-based coatings doped with MNPs that can offer superior hydrophobicity, oleophobicity, and high stability that are not easily achievable with hydrogels. The self-assembled gels displayed distinct morphologies, as revealed by scanning electron microscopy and atomic force microscopy. The cross-linked matrix helps in the controlled and sustained release of MNPs at the site of bacterial infection. The synthesized self-assembled gel@MNPs exhibited excellent antibacterial properties against harmful bacteria such as Escherichia coli and Staphylococcus aureus and reduced bacterial viability up to 95% within 4 h. Cytotoxicity testing against metazoan cells demonstrated that the gels doped with MNPs were nontoxic (IC50 > 100 μM) to mammalian cells. Furthermore, in this study, we coated the organogel@MNPs on cotton fabric and tested it against Gram +ve and Gram -ve bacteria. Additionally, the developed cotton fabric exhibited superhydrophobic properties and developed a barrier that limits the interaction between bacteria and the surface, making it difficult for bacteria to adhere and colonize, which holds potential as a valuable resource for self-cleaning coatings.
Collapse
Affiliation(s)
- Renu Devi
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Anoop Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Jagdish Singh
- Bioprocess Technology Laboratory, Department of Biotechnology, Mata Gujri College Fatehgarh Sahib, Fatehgarh Sahib, Punjab 140406, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University Chandigarh, Chandigarh 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
27
|
Vanlalveni C, Ralte V, Zohmingliana H, Das S, Anal JMH, Lallianrawna S, Rokhum SL. A review of microbes mediated biosynthesis of silver nanoparticles and their enhanced antimicrobial activities. Heliyon 2024; 10:e32333. [PMID: 38947433 PMCID: PMC11214502 DOI: 10.1016/j.heliyon.2024.e32333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
In recent decades, biosynthesis of metal and (or) metal oxide nanoparticles using microbes is accepted as one of the most sustainable, cost-effective, robust, and green processes as it does not encompass the usage of largely hazardous chemicals. Accordingly, numerous simple, inexpensive, and environmentally friendly approaches for the biosynthesis of silver nanoparticles (AgNPs) were reported using microbes avoiding conventional (chemical) methods. This comprehensive review detailed an advance made in recent years in the microbes-mediated biosynthesis of AgNPs and evaluation of their antimicrobial activities covering the literature from 2015-till date. It also aimed at elaborating the possible effect of the different phytochemicals, their concentrations, extraction temperature, extraction solvent, pH, reaction time, reaction temperature, and concentration of precursor on the shape, size, and stability of the synthesized AgNPs. In addition, while trying to understand the antimicrobial activities against targeted pathogenic microbes the probable mechanism of the interaction of produced AgNPs with the cell wall of targeted microbes that led to the cell's reputed and death have also been detailed. Lastly, this review detailed the shape and size-dependent antimicrobial activities of the microbes-mediated AgNPs and their enhanced antimicrobial activities by synergetic interaction with known commercially available antibiotic drugs.
Collapse
Affiliation(s)
- Chhangte Vanlalveni
- Department of Botany, Mizoram University, Tanhril, Aizawl, Mizoram 796001, India
| | - Vanlalhruaii Ralte
- Department of Botany, Pachhunga University College, Aizawl, 796001, Mizoram, India
| | - Hlawncheu Zohmingliana
- Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, India
| | - Shikhasmita Das
- Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, India
| | - Jasha Momo H. Anal
- Natural Products and Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Samuel Lallianrawna
- Department of Chemistry, Govt. Zirtiri Residential Science College, Aizawl, 796001, Mizoram, India
| | | |
Collapse
|
28
|
Ullah I, Khan SS, Ahmad W, Liu L, Rady A, Aldahmash B, Yu C, Wang Y. Silver incorporated SeTe nanoparticles with enhanced photothermal and photodynamic properties for synergistic effects on anti-bacterial activity and wound healing. RSC Adv 2024; 14:18871-18878. [PMID: 38873544 PMCID: PMC11167613 DOI: 10.1039/d4ra01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Bacteria invade the host's immune system, thereby inducing serious infections. Current treatments for bacterial infections mostly rely on single modalities, which cannot completely inhibit bacteria. This study evaluates the therapeutic potential of SeTe-Ag NPs, designed with excellent photo responsiveness, with a particular focus on their dual-action antibacterial effect and wound healing properties. SeTe-Ag NPs exhibited promising synergistic antibacterial effects due to their superior photothermal and photodynamic properties. The investigation records substantial zones of inhibition of bacteria, demonstrating potent antibacterial effect. Furthermore, upon the irradiation of near-infrared (NIR) light, SeTe-Ag NPs exhibit remarkable antibiofilm and wound-healing capabilities. Overall, this study shows the applications of NIR-active SeTe-Ag NPs, which serve as a versatile platform for biomedical applications.
Collapse
Affiliation(s)
- Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Waqar Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Yushu Wang
- School of Pharmaceutical Sciences, Southern Medical University No. 1023, South Shatai Road Guangzhou 510515 P. R. China
| |
Collapse
|
29
|
Hossain SI, Bajrami D, Altun N, Izzi M, Calvano CD, Sportelli MC, Gentile L, Picca RA, Gonzalez P, Mizaikoff B, Cioffi N. Development of super nanoantimicrobials combining AgCl, tetracycline and benzalkonium chloride. DISCOVER NANO 2024; 19:100. [PMID: 38861141 PMCID: PMC11166621 DOI: 10.1186/s11671-024-04043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
In this work, we demonstrate that a simple argentometric titration is a scalable, fast, green and robust approach for producing AgCl/antibiotic hybrid antimicrobial materials. We titrated AgNO3 into tetracycline hydrochloride (TCH) aqueous solution, thus forming AgCl/TCH in a one-step procedure. Furthermore, we investigated the one-pot synthesis of triply synergistic super-nanoantimicrobials, combining an inorganic source of Ag+ ions (AgCl), a disinfecting agent (benzyl-dimethyl-hexadecyl-ammonium chloride, BAC) and a molecular antibiotic (tetracycline hydrochloride, TCH). Conventional antimicrobial tests, industrial biofilm detection protocols, and in situ IR-ATR microbial biofilm monitoring, have been adapted to understand the performance of the synthesized super-nanoantimicrobial. The resulting hybrid AgCl/BAC/TCH nanoantimicrobials are found to be synergistically active in eradicating Salmonella enterica and Lentilactobacillus parabuchneri bacteria and biofilms. This study paves the way for the development of a new class of super-efficient nanoantimicrobials that combine relatively low amounts of multiple active species into a single (nano)formulation, thus preventing the development of antimicrobial resistance towards a single active principle.
Collapse
Affiliation(s)
- Syed Imdadul Hossain
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Diellza Bajrami
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Nazan Altun
- ASINCAR (Research Association of Meat Industries of Principado de Asturias), 33180, Noreña, Spain
| | - Margherita Izzi
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Cosima Damiana Calvano
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Luigi Gentile
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Pelayo Gonzalez
- ASINCAR (Research Association of Meat Industries of Principado de Asturias), 33180, Noreña, Spain
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany.
- Hahn-Schickard, Sedanstrasse 14, 89077, Ulm, Germany.
| | - Nicola Cioffi
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy.
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
30
|
Argenziano R, Viggiano S, Laezza A, Scalia AC, Aprea P, Bochicchio B, Pepe A, Panzella L, Cochis A, Rimondini L, Napolitano A. Highly Cytocompatible Polylactic Acid Based Electrospun Microfibers Loaded with Silver Nanoparticles Generated onto Chestnut Shell Lignin for Targeted Antibacterial Activity and Antioxidant Action. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28230-28244. [PMID: 38775439 DOI: 10.1021/acsami.4c05761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Electrospun (e-spun) fibers are generally regarded as powerful tools for cell growth in tissue regeneration applications, and the possibility of imparting functional properties to these materials represents an increasingly pursued goal. We report herein the preparation of hybrid materials in which an e-spun d,l-polylactic acid matrix, to which chitosan or crystalline nanocellulose was added to improve hydrophilicity, was loaded with different amounts of silver(0) nanoparticles (AgNP) generated onto chestnut shell lignin (CSL) (AgNP@CSL). A solvent-free mechanochemical method was used for efficient (85% of the theoretical value by XRD analysis) Ag(0) production from the reduction of AgNO3 by lignin. For comparison, e-spun fibers containing CSL alone were also prepared. SEM and TEM analyses confirmed the presence of AgNP@CSL (average size 30 nm) on the fibers. Different chemical assays indicated that the AgNP@CSL containing fibers exhibited marked antioxidant properties (EC50 1.6 ± 0.1 mg/mL, DPPH assay), although they were halved with respect to those of the CSL containing fibers, as expected because of the efficient silver ion reduction. All the fibers showed high cytocompatibility toward human mesenchymal stem cells (hMSCs) representative of the self-healing process, and their antibacterial properties were tested against the pathogens Escherichia coli (E. coli), Staphylococcus epidermidis, and Pseudomonas aeruginosa. Finally, competitive surface colonization as simulated by cocultures of hMSC and E. coli showed that AgNP@CSL loaded fibers offered the cells a targeted protection from infection, thus well balancing cytocompatibility and antibacterial properties.
Collapse
Affiliation(s)
- Rita Argenziano
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
- Department of Agricultural Sciences, University of Naples "Federico II", Portici (NA), Naples 80055, Italy
| | - Sara Viggiano
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Antonio Laezza
- Department of Science, University of Basilicata, Potenza 85100, Italy
| | - Alessandro Calogero Scalia
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, Novara 28100, Italy
| | - Paolo Aprea
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples"Federico II", Naples 80125, Italy
| | | | - Antonietta Pepe
- Department of Science, University of Basilicata, Potenza 85100, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, Novara 28100, Italy
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, Novara 28100, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
| |
Collapse
|
31
|
Ahmad S, Xu Q, Tariq M, Song M, Liu C, Yan H. Assessing the Potential of Aconitum Laeve Extract for Biogenic Silver and Gold Nanoparticle Synthesis and Their Biological and Catalytic Applications. Molecules 2024; 29:2640. [PMID: 38893515 PMCID: PMC11173888 DOI: 10.3390/molecules29112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The adoption of green chemistry protocols in nanoparticle (NP) synthesis has exhibited substantial potential and is presently a central focus in research for generating versatile NPs applicable across a broad spectrum of applications. In this scientific contribution, we, for the first time, examined the ability of Aconitum Laeve (A. Laeve) crude extract to synthesize silver and gold nanoparticles (AgNPs@AL; AuNP@AL) and explored their potential applications in biological activities and the catalytic degradation of environmental pollutants. The synthesized NPs exhibited a distinctive surface plasmon resonance pattern, a spherical morphology with approximate sizes of 5-10 nm (TEM imaging), a crystalline architecture (XRD analysis), and potential functional groups identified by FTIR spectroscopy. The antibacterial activity was demonstrated by inhibition zones that measured 16 and 14 mm for the AgNPs@AL and AuNP@AL at a concentration of 80 µg/mL against Staphylococcus aureus and 14 and 12 mm against Escherichia coli, respectively. The antioxidant potential of the synthesized NPs was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-Oxide (PTIO), and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. Our findings suggest that the AuNP@AL effectively countered the tested radicals considerably, displaying IC50 values of 115.9, 103.54, and 180.85 µg/mL against DPPH, PTIO, and ABTS, respectively. In contrast, the AgNPs@AL showed IC50 values of 144.9, 116.36, and 95.39 µg/mL against the respective radicals. In addition, both the NPs presented significant effectiveness in the photocatalytic degradation of methylene blue and rhodamine B. The overall observations indicate that A. Laeve possesses a robust capability to synthesize spherical nanoparticles, exhibiting excellent dispersion and showcasing potential applications in both biological activities and environmental remediation.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.A.); (M.S.); (C.L.)
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.A.); (M.S.); (C.L.)
| | - Muhammad Tariq
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Meijie Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.A.); (M.S.); (C.L.)
| | - Chao Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.A.); (M.S.); (C.L.)
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.A.); (M.S.); (C.L.)
| |
Collapse
|
32
|
Ozdal OG. Green synthesis of Ag, Se, and Ag 2Se nanoparticles by Pseudomonas aeruginosa: characterization and their biological and photocatalytic applications. Folia Microbiol (Praha) 2024; 69:625-638. [PMID: 37917276 DOI: 10.1007/s12223-023-01100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Nanoparticles have drawn significant interest in a range of applications, ranging from biomedical to environmental sciences, due to their distinctive physicochemical characteristics. In this study, it was reported that simple biological production of Ag, Se, and bimetallic Ag2Se nanoparticles (NPs) with Pseudomonas aeruginosa is a promising, low-cost, and environmentally friendly method. For the first time in the scientific literature, Ag2Se nanoparticles have been generated via green bacterial biosynthesis. UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and EDX were used to characterize the produced NPs. Biosynthesized NPs were examined for antibacterial, antibiofilm, and photocatalytic properties, and it was determined that the effects of NPs were dose dependent. The biosynthesized AgNPs, SeNPs, and Ag2Se NPs showed anti-microbial activity against Escherichia coli and Staphylococcus aureus. Minimal inhibitory concentrations (MICs) of E. coli and S. aureus were between 150 and 250 µg/mL. The NPs showed antibiofilm activity against E. coli and S. aureus at sub-MIC levels and reduced biofilm formation by at least 80% at a concentration of 200 µg/mL of each NPs. To photocatalyze the breakdown of Congo red, Ag, Se, and Ag2Se NPs were utilized, and their photocatalytic activity was tested at various concentrations and intervals. A minor decrease of photocatalytic degradation was detected throughout the NPs reuse operation (five cycles). Based on the encouraging findings, the synthesized NPs demonstrated antibacterial, antibiofilm, and photocatalytic properties, suggesting that they might be used in pharmaceutical, medical, environmental, and other applications.
Collapse
Affiliation(s)
- Ozlem Gur Ozdal
- Department of Biology, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
- Koprukoy Anatolian High School, Erzurum, Turkey.
| |
Collapse
|
33
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
34
|
Esarev IV, Karge B, Zeng H, Lippmann P, Jones PG, Schrey H, Brönstrup M, Ott I. Silver Organometallics that are Highly Potent Thioredoxin and Glutathione Reductase Inhibitors: Exploring the Correlations of Solution Chemistry with the Strong Antibacterial Effects. ACS Infect Dis 2024; 10:1753-1766. [PMID: 38606463 PMCID: PMC11091889 DOI: 10.1021/acsinfecdis.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
The antibacterial activity of silver species is well-established; however, their mechanism of action has not been adequately explored. Furthermore, issues of low-molecular silver compounds with cytotoxicity, stability, and solubility hamper their progress to drug leads. We have investigated silver N-heterocyclic carbene (NHC) halido complexes [(NHC)AgX, X = Cl, Br, and I] as a promising new type of antibacterial silver organometallics. Spectroscopic studies and conductometry established a higher stability for the complexes with iodide ligands, and nephelometry indicated that the complexes could be administered in solutions with physiological chloride levels. The complexes showed a broad spectrum of strong activity against pathogenic Gram-negative bacteria. However, there was no significant activity against Gram-positive strains. Further studies clarified that tryptone and yeast extract, as components of the culture media, were responsible for this lack of activity. The reduction of biofilm formation and a strong inhibition of both glutathione and thioredoxin reductases with IC50 values in the nanomolar range were confirmed for selected compounds. In addition to their improved physicochemical properties, the compounds with iodide ligands did not display cytotoxic effects, unlike the other silver complexes. In summary, silver NHC complexes with iodide secondary ligands represent a useful scaffold for nontoxic silver organometallics with improved physicochemical properties and a distinct mechanism of action that is based on inhibition of thioredoxin and glutathione reductases.
Collapse
Affiliation(s)
- Igor V. Esarev
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Bianka Karge
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Haoxuan Zeng
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig,
Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Petra Lippmann
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Peter G. Jones
- Institute
of Inorganic and Analytical Chemistry, Technische
Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Hedda Schrey
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig,
Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Mark Brönstrup
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Ingo Ott
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
35
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
36
|
Li H, Xu H. Mechanisms of bacterial resistance to environmental silver and antimicrobial strategies for silver: A review. ENVIRONMENTAL RESEARCH 2024; 248:118313. [PMID: 38280527 DOI: 10.1016/j.envres.2024.118313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
The good antimicrobial properties of silver make it widely used in food, medicine, and environmental applications. However, the release and accumulation of silver-based antimicrobial agents in the environment is increasing with the extensive use of silver-based antimicrobials, and the prevalence of silver-resistant bacteria is increasing. To prevent the emergence of superbugs, it is necessary to exercise rational and strict control over drug use. The mechanism of bacterial resistance to silver has not been fully elucidated, and this article provides a review of the progress of research on the mechanism of bacterial resistance to silver. The results indicate that bacterial resistance to silver can occur through inducing silver particles aggregation and Ag+ reduction, inhibiting silver contact with and entry into cells, efflux of silver particles and Ag+ in cells, and activation of damage repair mechanisms. We propose that the bacterial mechanism of silver resistance involves a combination of interrelated systems. Finally, we discuss how this information can be used to develop the next generation of silver-based antimicrobials and antimicrobial therapies. And some antimicrobial strategies are proposed such as the "Trojan Horse" - camouflage, using efflux pump inhibitors to reduce silver efflux, working with "minesweeper", immobilization of silver particles.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
37
|
Miškovská A, Michailidu J, Kolouchová IJ, Barone L, Gornati R, Montali A, Tettamanti G, Berini F, Marinelli F, Masák J, Čejková A, Maťátková O. Biological activity of silver nanoparticles synthesized using viticultural waste. Microb Pathog 2024; 190:106613. [PMID: 38484919 DOI: 10.1016/j.micpath.2024.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
This research paper presents a novel approach to the green synthesis of silver nanoparticles (AgNPs) using viticultural waste, allowing to obtain NP dispersions with distinct properties and morphologies (monodisperse and polydisperse AgNPs, referred to as mAgNPs and pAgNPs) and to compare their biological activities. Our synthesis method utilized the ethanolic extract of Vitis vinifera pruning residues, resulting in the production of mAgNPs and pAgNPs with average sizes of 12 ± 5 nm and 19 ± 14 nm, respectively. Both these AgNPs preparations demonstrated an exceptional stability in terms of size distribution, which was maintained for one year. Antimicrobial testing revealed that both types of AgNPs inhibited either the growth of planktonic cells or the metabolic activity of biofilm sessile cells in Gram-negative bacteria and yeasts. No comparable activity was found towards Gram-positives. Overall, pAgNPs exhibited a higher antimicrobial efficacy compared to their monodisperse counterparts, suggesting that their size and shape may provide a broader spectrum of interactions with target cells. Both AgNP preparations showed no cytotoxicity towards a human keratinocyte cell line. Furthermore, in vivo tests using a silkworm animal model indicated the biocompatibility of the phytosynthesized AgNPs, as they had no adverse effects on insect larvae viability. These findings emphasize the potential of targeted AgNPs synthesized from viticultural waste as environmentally friendly antimicrobial agents with minimal impact on higher organisms.
Collapse
Affiliation(s)
- Anna Miškovská
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic.
| | - Jana Michailidu
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | | | - Ludovica Barone
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Alena Čejková
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| |
Collapse
|
38
|
Szymczak M, Pankowski JA, Kwiatek A, Grygorcewicz B, Karczewska-Golec J, Sadowska K, Golec P. An effective antibiofilm strategy based on bacteriophages armed with silver nanoparticles. Sci Rep 2024; 14:9088. [PMID: 38643290 PMCID: PMC11032367 DOI: 10.1038/s41598-024-59866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
The emerging antibiotic resistance in pathogenic bacteria is a key problem in modern medicine that has led to a search for novel therapeutic strategies. A potential approach for managing such bacteria involves the use of their natural killers, namely lytic bacteriophages. Another effective method involves the use of metal nanoparticles with antimicrobial properties. However, the use of lytic phages armed with nanoparticles as an effective antimicrobial strategy, particularly with respect to biofilms, remains unexplored. Here, we show that T7 phages armed with silver nanoparticles exhibit greater efficacy in terms of controlling bacterial biofilm, compared with phages or nanoparticles alone. We initially identified a novel silver nanoparticle-binding peptide, then constructed T7 phages that successfully displayed the peptide on the outer surface of the viral head. These recombinant, AgNP-binding phages could effectively eradicate bacterial biofilm, even when used at low concentrations. Additionally, when used at concentrations that could eradicate bacterial biofilm, T7 phages armed with silver nanoparticles were not toxic to eukaryotic cells. Our results show that the novel combination of lytic phages with phage-bound silver nanoparticles is an effective, synergistic and safe strategy for the treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Mateusz Szymczak
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jarosław A Pankowski
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bartłomiej Grygorcewicz
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Joanna Karczewska-Golec
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
39
|
Zhu H, Lin M, Li Y, Duan K, Hu J, Chen C, Yu Z, Lee BH. LSPR sensing for in situ monitoring the Ag dissolution of Au@Ag core-shell nanoparticles in biological environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123885. [PMID: 38245969 DOI: 10.1016/j.saa.2024.123885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Silver nanoparticles (AgNPs) are extensively used as an antibacterial agent, and monitoring the dissolution behavior of AgNPs in native biological environments is critical in both optimizing their performance and regulating their safety. However, current assessment methods rely on sophisticated analytical tools that are off-site and time-consuming with potential underestimations, due to complicated sample preparation. Although localized surface plasmon resonance (LSPR) sensing offers a facile method for the detection of AgNP dissolution, it is limited by low sensitivity and poor nanoparticle stability in native biological environments. Herein, we constructed a highly sensitive and stable LSPR sensor using gold-silver core-shell nanoparticles (Au@AgNPs), in combination with polymeric stabilizing agents, for the direct measurement of the Ag shell dissolution in native biological media. The high sensitivity was attributed to the acute and large LSPR shift generated by bimetallic nanoparticles. The sensor was used for the real-time monitoring of the Ag dissolution of Au@AgNPs during their co-culture with both bacteria and fibroblast cells. The media pH was found to dominate the Ag dissolution process, where Au@AgNPs exhibited bactericidal effects in the bacteria environment with relatively low pH, but they showed little toxicity towards fibroblast cells at pH 7.4. The minimum inhibition concentration of Au@AgNPs for bacterial growth was found similar to that of AgNO3 in terms of released Ag amount. Thus, stabilized Au@AgNPs not only allow the in-situ monitoring of Ag dissolution via LSPR sensing but also constitute an effective antibacterial agent with controlled toxicity, holding great potential for future biomedical and healthcare applications.
Collapse
Affiliation(s)
- Hu Zhu
- Maoming People's Hospital, 101 Weimin Road, Maoming, Guangdong 525000, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Mian Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yang Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Kairui Duan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Jiajun Hu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Chunbo Chen
- Maoming People's Hospital, 101 Weimin Road, Maoming, Guangdong 525000, China.
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Bae Hoon Lee
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| |
Collapse
|
40
|
Taghavi Fardood S, Moradnia F, Yekke Zare F, Heidarzadeh S, Azad Majedi M, Ramazani A, Sillanpää M, Nguyen K. Green synthesis and characterization of α-Mn 2O 3 nanoparticles for antibacterial activity and efficient visible-light photocatalysis. Sci Rep 2024; 14:6755. [PMID: 38514667 PMCID: PMC10958050 DOI: 10.1038/s41598-024-56666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
In this study, green synthesis, characterizations, photocatalytic performance, and antibacterial applications of α-Mn2O3 nanoparticles are reported. The synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscope (TEM), Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Brunauer Emmett Teller (BET), Electrochemical Impedance Spectroscopy (EIS), Photoluminescence (PL), and Differential reflectance spectroscopy (DRS) analysis. The investigation verified that the α-Mn2O3 nanoparticles possessed a cubic structure, with a crystallite size of 23 nm. The SEM and TEM techniques were used to study the nanoscale morphology of α- Mn2O3 nanoparticles, which were found to be spherical with a size of 30 nm. Moreover, the surface area was obtained as 149.9 m2 g-1 utilizing BET analysis, and the band gap was determined to be 1.98 eV by DRS analysis. The photocatalysis performance of the α-Mn2O3 NPs was evaluated for degrading Eriochrome Black T (EBT) dye under visible light and degradation efficiency was 96% in 90 min. The photodegradation mechanism of EBT dye was clarified with the use of radical scavenger agents, and the degradation pathway was confirmed through Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. Additionally, the produced nanoparticles could be extracted from the solution and continued to exhibit photocatalysis even after five repeated runs under the same optimal conditions. Also, the antibacterial activity of green synthesized α-Mn2O3 nanoparticles was investigated by using the broth microdilution method towards Enterococcus faecalis ATCC 29212 (Gram-positive), Staphylococcus aureus ATCC 29213 (Gram-positive), Salmonella typhimurium ATCC 14028 (Gram-negative), Klebsiella pneumoniae ATCC 7881 (Gram-negative), Escherichia coli ATCC 25922 (Gram-negative), Proteus mirabilis ATCC 7002 (Gram-negative), and Pseudomonas aeruginosa ATCC 27853 (Gram-negative) bacterial strains.
Collapse
Affiliation(s)
| | - Farzaneh Moradnia
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Fateme Yekke Zare
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Siamak Heidarzadeh
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Azad Majedi
- Department of Anesthesiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- Adnan Kassar School of Business, Lebanese American University, Beirut, Lebanon
- Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand, 248007, India
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
- Department of Civil Engineering, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ky Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
41
|
Qu Y, Zou Y, Wang G, Zhang Y, Yu Q. Disruption of Communication: Recent Advances in Antibiofilm Materials with Anti-Quorum Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13353-13383. [PMID: 38462699 DOI: 10.1021/acsami.4c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Biofilm contamination presents a significant threat to public health, the food industry, and aquatic/marine-related applications. In recent decades, although various methods have emerged to combat biofilm contamination, the intricate and persistent nature of biofilms makes complete eradication challenging. Therefore, innovative alternative solutions are imperative for addressing biofilm formation. Instead of solely focusing on the eradication of mature biofilms, strategically advantageous measures involve the delay or prevention of biofilm formation on surfaces. Quorum sensing, a communication system enabling bacteria to coordinate their behavior based on population density, plays a pivotal role in biofilm formation for numerous microbial species. Materials possessing antibiofilm properties that target quorum sensing have gained considerable attention for their potential to prevent biofilm formation. This Review consolidates recent research progress on the utilization of materials with antiquorum sensing properties for combating biofilm formation. These materials can be categorized into three distinct types: (i) antibiofilm nanomaterials, (ii) antibiofilm surfaces, and (iii) antibiofilm hydrogels with antiquorum sensing capabilities. Finally, the Review concludes with a brief discussion of current challenges and outlines potential avenues for future research.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
42
|
Kheirmand-Parizi M, Doll-Nikutta K, Gaikwad A, Denis H, Stiesch M. Effectiveness of strontium/silver-based titanium surface coatings in improving antibacterial and osteogenic implant characteristics: a systematic review of in-vitro studies. Front Bioeng Biotechnol 2024; 12:1346426. [PMID: 38486866 PMCID: PMC10937591 DOI: 10.3389/fbioe.2024.1346426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction: Due to the high incidence of implant failures, dual functionalization of titanium surfaces with antibacterial and osteogenic agents, like silver (Ag) and strontium (Sr), has gained significant attention in recent years. However, so far, the combined antibacterial and osteoinductive effectiveness of Ag/Sr-based titanium surface coatings has only been analyzed in individual studies. Methods: This systematic review aims to evaluate the existing scientific literature regarding the PICOS question "Does dual incorporation of strontium/silver enhances the osteogenic and anti-bacterial characteristics of Ti surfaces in vitro?". As a result of a web-based search adhering to the PRISMA Guidelines using three electronic databases (PubMed, Scopus, and Web of Science) until March 31, 2023, a total of 69 publications were identified as potentially relevant and 17 of which were considered appropriate for inclusion into this review. Results and Discussion: In all included publications, the use of Sr/Ag combination showed enhanced osteogenic and antibacterial effects, either alone or in combination with other agents. Moreover, the combination of Sr and Ag shows potential to synergistically enhance these effects. Nevertheless, further studies need to validate these findings under clinically more relevant conditions and evaluate the mechanism of antimicrobial and osteogenic activity of Sr/Ag combination.
Collapse
Affiliation(s)
- Marjan Kheirmand-Parizi
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Katharina Doll-Nikutta
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Amit Gaikwad
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Hannah Denis
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
43
|
Heine N, Doll-Nikutta K, Stein F, Jakobi J, Ingendoh-Tsakmakidis A, Rehbock C, Winkel A, Barcikowski S, Stiesch M. Anti-biofilm properties of laser-synthesized, ultrapure silver-gold-alloy nanoparticles against Staphylococcus aureus. Sci Rep 2024; 14:3405. [PMID: 38336925 PMCID: PMC10858226 DOI: 10.1038/s41598-024-53782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Staphylococcus aureus biofilm-associated infections are a common complication in modern medicine. Due to inherent resilience of biofilms to antibiotics and the rising number of antibiotic-resistant bacterial strains, new treatment options are required. For this purpose, ultrapure, spherical silver-gold-alloy nanoparticles with homogenous elemental distribution were synthesized by laser ablation in liquids and analyzed for their antibacterial activity on different stages of S. aureus biofilm formation as well as for different viability parameters. First, the effect of nanoparticles against planktonic bacteria was tested with metabolic activity measurements. Next, nanoparticles were incubated with differently matured S. aureus biofilms, which were then analyzed by metabolic activity measurements and three dimensional live/dead fluorescent staining to determine biofilm volume and membrane integrity. It could be shown that AgAu NPs exhibit antibacterial properties against planktonic bacteria but also against early-stage and even mature biofilms, with a complete diffusion through the biofilm matrix. Furthermore, AgAu NPs primarily targeted metabolic activity, to a smaller extend membrane integrity, but not the biofilm volume. Additional molecular analyses using qRT-PCR confirmed the influence on different metabolic pathways, like glycolysis, stress response and biofilm formation. As this shows clear similarities to the mechanism of pure silver ions, the results strengthen silver ions to be the major antibacterial agent of the synthesized nanoparticles. In summary, the results of this study provide initial evidence of promising anti-biofilm characteristics of silver-gold-alloy nanoparticles and support the importance of further translation-oriented analyses in the future.
Collapse
Affiliation(s)
- Nils Heine
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany.
| | - Katharina Doll-Nikutta
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Frederic Stein
- Technical Chemistry I, University of Duisburg Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Jurij Jakobi
- Technical Chemistry I, University of Duisburg Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Alexandra Ingendoh-Tsakmakidis
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Christoph Rehbock
- Technical Chemistry I, University of Duisburg Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany.
| |
Collapse
|
44
|
Li J, Wan K, Zhu T, Zheng Y, Chen Z, Feng Q, Du Z. Fibrous Conductive Metallogels with Hybrid Electron/Ion Networks for Boosted Extreme Sensitivity and High Linearity Strain Sensor. Macromol Rapid Commun 2024; 45:e2300568. [PMID: 37956305 DOI: 10.1002/marc.202300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Indexed: 11/15/2023]
Abstract
Fibrous strain sensing materials with both high sensitivity and high linearity are of significant importance for wearable sensors, yet they still face great challenges. Herein, a photo-spun reaction encapsulation strategy is proposed for the continuous fabrication of fibrous strain sensor materials (AMGF) with a core-sheath structure. Metallogels (MOGs) formed by bacterial cellulose (BC) nanofibers and Ag nanoparticles (AgNPs), and thermoplastic elastomers (TPE) are employed as the core and sheath, respectively. The in situ ultraviolet light reduction of Ag+ ensured AgNPs to maintain the interconnections between the BC nanofibers and form electron conductive networks (0.31 S m-1 ). Under applied strain, the BC nanofibers experience separation, bringing AMGF a high sensitivity (gauge factor 4.36). The concentration of free ions in the MOGs uniformly varies with applied deformation, endowing AMGF with high linearity and a goodness-of-fit of 0.98. The sheath TPE provided AMGF sensor with stable working life (>10 000 s). Furthermore, the AMGF sensors are demonstrated to monitor complex deformations of the dummy joints in real-time as a wearable sensor. Therefore, the fibrous hybrid conductive network fibers fabricated via the photo-spun reaction encapsulation strategy provide a new route for addressing the challenge of achieving both high sensitivity and high linearity.
Collapse
Affiliation(s)
- Jifeng Li
- Anhui Province Joint Key Laboratory of Cold Insulation Fiber and Clothing, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, P. R. China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Kening Wan
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Tianyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yong Zheng
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Ziyin Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Qichun Feng
- Anhui Province Joint Key Laboratory of Cold Insulation Fiber and Clothing, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Zhaofang Du
- Anhui Province Joint Key Laboratory of Cold Insulation Fiber and Clothing, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, P. R. China
| |
Collapse
|
45
|
Ozhava D, Winkler P, Mao Y. Enhancing antimicrobial activity and reducing cytotoxicity of silver nanoparticles through gelatin nanoparticles. Nanomedicine (Lond) 2024; 19:199-211. [PMID: 38271055 DOI: 10.2217/nnm-2023-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Aim: To develop a novel stabilizing agent for silver nanoparticles (AgNPs) with the aim of enhancing its antibacterial efficacy against wound associated pathogens while mitigating their cytotoxic effect on human cells. Materials & methods: In this study, monodispersed gelatin nanoparticles were synthesized to stabilize AgNPs. The stability, antibacterial activity and biocompatibility of the gelatin-stabilized AgNPs (Gel-AgNPs) were compared with citrate-stabilized AgNPs (citrate-AgNPs) or silver ions. Results & conclusion: Gelatin-stabilized AgNPs showed significantly better antibacterial activities compared with citrate-stabilized AgNPs against both Gram-positive and Gram-negative bacteria. These Gel-AgNPs showed significantly lower cytotoxicity to human dermal fibroblasts compared with Ag+. These findings provided the first evidence substantiating a novel functionality of gelatin nanoparticles in both stabilizing and enhancing the activity of AgNPs.
Collapse
Affiliation(s)
- Derya Ozhava
- Department of Chemistry & Chemical Biology, Laboratory for Biomaterials Research, Rutgers University, 145 Bevier Rd, Piscataway, NJ 08854, USA
- Department of Chemistry & Chemical Processing Technologies, Cumra Vocational School, Selcuk University, Konya, 42130, Türkiye
| | - Petras Winkler
- Department of Chemistry & Chemical Biology, Laboratory for Biomaterials Research, Rutgers University, 145 Bevier Rd, Piscataway, NJ 08854, USA
| | - Yong Mao
- Department of Chemistry & Chemical Biology, Laboratory for Biomaterials Research, Rutgers University, 145 Bevier Rd, Piscataway, NJ 08854, USA
| |
Collapse
|
46
|
Savvidou MG, Kontari E, Kalantzi S, Mamma D. Green Synthesis of Silver Nanoparticles Using the Cell-Free Supernatant of Haematococcus pluvialis Culture. MATERIALS (BASEL, SWITZERLAND) 2023; 17:187. [PMID: 38204044 PMCID: PMC10779655 DOI: 10.3390/ma17010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
The green synthesis of silver nanoparticles (AgNPs) using the cell-free supernatant of a Haematococcus pluvialis culture (CFS) was implemented in the current study, under illumination conditions. The reduction of Ag+ to AgNPs by the CFS could be described by a pseudo-first-order kinetic equation at the temperature range tested. A high reaction rate during synthesis and stable AgNPs were obtained at 45 °C, while an alkaline pH (pH = 11.0) and a AgNO3 aqueous solution to CFS ratio of 90:10 (v/v) proved to be the most effective conditions in AgNPs synthesis. A metal precursor (AgNO3) at the concentration range tested (1-5 mM) was the limited reactant in the synthesis process. The synthesis of AgNPs was accomplished under static and agitated conditions. Continuous stirring enhanced the rate of reaction but induced aggregation at prolonged incubation times. Zeta potential and polydispersity index measurements indicated stable AgNPs and the majority of AgNPs formation occurred in the monodisperse phase. The X-ray diffraction (XRD) pattern revealed the face-centered cubic structure of the formed AgNPs, while TEM analysis revealed that the AgNPs were of a quasi-spherical shape with a size from 30 to 50 nm. The long-term stability of the AgNPs could be achieved in darkness and at 4 °C. In addition, the synthesized nanoparticles showed antibacterial activity against Escherichia coli.
Collapse
Affiliation(s)
- Maria G. Savvidou
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Str, 15780 Athens, Greece or (M.G.S.); (E.K.); (S.K.)
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Evgenia Kontari
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Str, 15780 Athens, Greece or (M.G.S.); (E.K.); (S.K.)
| | - Styliani Kalantzi
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Str, 15780 Athens, Greece or (M.G.S.); (E.K.); (S.K.)
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Str, 15780 Athens, Greece or (M.G.S.); (E.K.); (S.K.)
| |
Collapse
|
47
|
Liu B, Liu D, Chen T, Wang X, Xiang H, Wang G, Cai R. iTRAQ-based quantitative proteomic analysis of the antibacterial mechanism of silver nanoparticles against multidrug-resistant Streptococcus suis. Front Microbiol 2023; 14:1293363. [PMID: 38033593 PMCID: PMC10684948 DOI: 10.3389/fmicb.2023.1293363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Background The increase in antibiotic resistance of bacteria has become a major concern in clinical treatment. Silver nanoparticles (AgNPs) have significant antibacterial effects against Streptococcus suis. Therefore, this study aimed to investigate the antibacterial activity and mechanism of action of AgNPs against multidrug-resistant S. suis. Methods The effect of AgNPs on the morphology of multidrug-resistant S. suis was observed using scanning electron microscopy (SEM). Differentially expressed proteins were analyzed by iTRAQ quantitative proteomics, and the production of reactive oxygen species (ROS) was assayed by H2DCF-DA staining. Results SEM showed that AgNPs disrupted the normal morphology of multidrug-resistant S. suis and the integrity of the biofilm structure. Quantitative proteomic analysis revealed that a large number of cell wall synthesis-related proteins, such as penicillin-binding protein and some cell cycle proteins, such as the cell division protein FtsZ and chromosomal replication initiator protein DnaA, were downregulated after treatment with 25 μg/mL AgNPs. Significant changes were also observed in the expression of the antioxidant enzymes glutathione reductase, alkyl hydroperoxides-like protein, α/β superfamily hydrolases/acyltransferases, and glutathione disulfide reductases. ROS production in S. suis positively correlated with AgNP concentration. Conclusion The potential antibacterial mechanism of AgNPs may involve disrupting the normal morphology of bacteria by inhibiting the synthesis of cell wall peptidoglycans and inhibiting the growth of bacteria by inhibiting the cell division protein FtsZ and Chromosomal replication initiator protein DnaA. High oxidative stress may be a significant cause of bacterial death. The potential mechanism by which AgNPs inhibit S. suis biofilm formation may involve affecting bacterial adhesion and interfering with the quorum sensing system.
Collapse
Affiliation(s)
- Baoling Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dingyu Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Tianbao Chen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Xiaohu Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Hua Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Gang Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Rujian Cai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
48
|
Rothpan M, Chandra Teja Dadi N, McKay G, Tanzer M, Nguyen D, Hart A, Tabrizian M. Titanium-Dioxide-Nanoparticle-Embedded Polyelectrolyte Multilayer as an Osteoconductive and Antimicrobial Surface Coating. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7026. [PMID: 37959623 PMCID: PMC10649639 DOI: 10.3390/ma16217026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Bioactive surface coatings have retained the attention of researchers and physicians due to their versatility and range of applications in orthopedics, particularly in infection prevention. Antibacterial metal nanoparticles (mNPs) are a promising therapeutic, with vast application opportunities on orthopedic implants. The current research aimed to construct a polyelectrolyte multilayer on a highly porous titanium implant using alternating thin film coatings of chitosan and alginate via the layer-by-layer (LbL) self-assembly technique, along with the incorporation of silver nanoparticles (AgNPs) or titanium dioxide nanoparticles (TiO2NPs), for antibacterial and osteoconductive activity. These mNPs were characterized for their physicochemical properties using quartz crystal microgravimetry with a dissipation system, nanoparticle tracking analysis, scanning electron microscopy, and atomic force microscopy. Their cytotoxicity and osteogenic differentiation capabilities were assessed using AlamarBlue and alkaline phosphatase (ALP) activity assays, respectively. The antibiofilm efficacy of the mNPs was tested against Staphylococcus aureus. The LbL polyelectrolyte coating was successfully applied to the porous titanium substrate. A dose-dependent relationship between nanoparticle concentration and ALP as well as antibacterial effects was observed. TiO2NP samples were also less cytotoxic than their AgNP counterparts, although similarly antimicrobial. Together, these data serve as a proof-of-concept for a novel coating approach for orthopedic implants with antimicrobial and osteoconductive properties.
Collapse
Affiliation(s)
- Matthew Rothpan
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B6, Canada;
| | - Nitin Chandra Teja Dadi
- Jo Miller Orthopaedic Research Laboratory, Division of Orthopaedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada; (N.C.T.D.); (M.T.)
| | - Geoffrey McKay
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (G.M.); (D.N.)
| | - Michael Tanzer
- Jo Miller Orthopaedic Research Laboratory, Division of Orthopaedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada; (N.C.T.D.); (M.T.)
| | - Dao Nguyen
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (G.M.); (D.N.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A OG4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Adam Hart
- Jo Miller Orthopaedic Research Laboratory, Division of Orthopaedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada; (N.C.T.D.); (M.T.)
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B6, Canada;
- Faculty of Dentistry and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
49
|
Ali S, Chen X, Ahmad S, Shah W, Shafique M, Chaubey P, Mustafa G, Alrashidi A, Alharthi S. Advancements and challenges in phytochemical-mediated silver nanoparticles for food packaging: Recent review (2021–2023). Trends Food Sci Technol 2023; 141:104197. [DOI: 10.1016/j.tifs.2023.104197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
50
|
Yang G, Fan R, Yang J, Yi L, Chen S, Wan W. Magnesium/gallic acid bioMOFs laden carbonized mushroom aerogel effectively heals biofilm-infected skin wounds. Biomaterials 2023; 302:122347. [PMID: 37827053 DOI: 10.1016/j.biomaterials.2023.122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Biofilm-infected acute skin wounds are still one of the significant challenges that need to be solved urgently in wound healing. Herein, we reported a magnesium/gallic acid bio-MOFs laden carbonized mushroom aerogel (QMOFs-PCMA) combined with photothermal therapy for eradicating biofilms in skin wounds. The design of bioMOFs is mainly responsible for regulating immunity. In vitro, it exhibited ROS clearance and antioxidant ability. In vivo, it could regulate local immune responses from pro-inflammatory status to pro-regenerative status, resulting in decreased inflammatory cytokines expression and increased anti-inflammatory cytokines expression. The carbonized mushroom aerogel is mainly responsible for photothermal therapy (PTT), and the polydopamine and bioMOFs could enhance the photothermal conversion efficiency and stability of carbonized aerogels. The carbonized aerogel in combination with PTT could eradicate S. aureus biofilm in both in vitro and in vivo studies and clear E. coli biofilms in vitro studies. The biofilm clearance and improved inflammatory responses laid a good foundation for wound healing, resulting in the granulation tissue formation, re-epithelialization, and angiogenesis significantly enhanced in the QMOFs-PCMA + NIR group. Our results indicate that the QMOFs-PCMA combined with photothermal therapy may provide a promising treatment for biofilm-infected skin wounds.
Collapse
Affiliation(s)
- Ganghua Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Ruyi Fan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Jianqiu Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Lei Yi
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shixuan Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China.
| | - Wenbing Wan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|