1
|
Zhou J, Chen J, Li N, Gou F, Yang Z, Zeng M, Shao M. Covalent Organic Frameworks with Constrained Palladium Nanoclusters Lock the Enol-Keto Tautomerism Enhancing Hydrogen Peroxide Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409006. [PMID: 39588878 DOI: 10.1002/smll.202409006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/06/2024] [Indexed: 11/27/2024]
Abstract
The production of hydrogen peroxide from natural seawater is green and sustainable. However, the efficiency of photocatalytic hydrogen peroxide production is low due to the degradation and poisoning of photocatalysts by the abundant ions in natural seawater. Precisely controlling the structure of photocatalysts to enhance their corrosion resistance and minimize the impact of external particles is a challenging task. Here, a novel molecular engineering strategy is reported in which confined Pd nanoclusters locked keto structures to enhance photocatalytic hydrogen peroxide production. Both experimental and theoretical findings reveals that Pd nanoclusters, when confined within a keto structure, not only bolster the stability of the photocatalyst but also augment the efficiency of photogenerated charge carriers' separation and transport. This dual enhancement significantly boosts the photocatalytic performance for hydrogen peroxide synthesis. One of the photocatalysts, TAPT-2KtTb Pd COF, exhibits an impressive photocatalytic hydrogen peroxide production rate of 2676.3 µmol g-1 h-1, which is one of the highest values reported so far. Integral photocatalyzed H2O2 synthesis using confined Pd nanoclusters locked keto conformation COF provides a new insight for developing innovative photocatalysts for H2O2 synthesis.
Collapse
Affiliation(s)
- Jie Zhou
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Jinyang Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Na Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Faliang Gou
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Zhen Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Minfeng Zeng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Mingchao Shao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
2
|
Kenari M, Maiti S, Ling J, El-Shamy X, Bagga H, Addicoat MA, Milner PJ, Das A. Toward Pore Size-Selective Photoredox Catalysis Using Bifunctional Microporous 2D Triazine-Based Covalent Organic Frameworks. ACS OMEGA 2024; 9:49249-49258. [PMID: 39713692 PMCID: PMC11656359 DOI: 10.1021/acsomega.4c06171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
The design and synthesis of photoactive metal-free 2D materials for selective heterogeneous photoredox catalysis continue to be challenging due to issues related to nonrecyclability, and limited photo- and chemical stability. Herein, we report the photocatalytic properties of a triazine-based porous COF, TRIPTA, which is found to be capable of facilitating both SET (single electron transfer) for photocatalytic reductive debromination of phenacyl bromide in absence of oxygen and generation of reactive oxygen species (ROS) for benzylamine photo-oxidation in the presence of oxygen, respectively, under visible light irradiation. Inspired by the latter results, we further systematically investigated different-sized benzylamine substrates in this single-component reaction and compared the results with an analogous COF (Micro-COF-2) exhibiting a larger pore size. We observed a marked improvement in the conversion of larger-sized substrates with the latter COF, thereby demonstrating angstrom-level pore size-selective photocatalytic activity of COFs.
Collapse
Affiliation(s)
- Melika
Eshaghi Kenari
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Sayan Maiti
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Jianheng Ling
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Xena El-Shamy
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Hiren Bagga
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Matthew A. Addicoat
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United
Kingdom
| | - Phillip J. Milner
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Anindita Das
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
3
|
Guntermann R, Helminger D, Frey L, Zehetmaier PM, Wangnick C, Singh A, Xue T, Medina DD, Bein T. Tunable Isometric Donor-Acceptor Wurster-Type Covalent Organic Framework Photocathodes. Angew Chem Int Ed Engl 2024; 63:e202407166. [PMID: 39138128 DOI: 10.1002/anie.202407166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Covalent organic frameworks (COFs) offer remarkable versatility, combining ordered structures, high porosity, and tailorable functionalities in nanoscale reaction spaces. Herein, we report the synthesis of a series of isostructural, photoactive Wurster-type COFs achieved by manipulating the chemical and electronic nature of the Wurster aromatic amine building blocks. A series of donor-acceptor-donor (D-A-D) Wurster building block molecules was synthesized by incorporating heteroaromatic acceptors with varying strengths between triphenylamine donor groups. These tailored building blocks were integrated into a 2D COF scaffold, resulting in highly crystalline structures and similar morphologies across all COFs. Remarkably, this structural uniformity was also achieved in the synthesis of homogeneous and oriented thin films. Steady-state photoluminescence revealed a tunable red-shift in film emission exceeding 100 nm, demonstrating effective manipulation of their optical properties. Furthermore, photoelectrochemical (PEC) water splitting studies exhibited a doubled current density (8.1 μA cm-2 at 0.2 VRHE) for the COF with the strongest acceptor unit. These findings highlight the potential of Wurster D-A-D COFs in photoelectrochemical water splitting devices and pave the way for further exploration of chemical functionality-reactivity-property relationships in this promising class of photoactive materials.
Collapse
Affiliation(s)
- Roman Guntermann
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - David Helminger
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Laura Frey
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Peter M Zehetmaier
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Christian Wangnick
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Apeksha Singh
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Tianhao Xue
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Dana D Medina
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Thomas Bein
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| |
Collapse
|
4
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
5
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
6
|
Yang J, Chen Z, Zhang L, Zhang Q. Covalent Organic Frameworks for Photocatalytic Reduction of Carbon Dioxide: A Review. ACS NANO 2024; 18:21804-21835. [PMID: 39116003 DOI: 10.1021/acsnano.4c06783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Covalent organic frameworks (COFs) are crystalline networks with extended backbones cross-linked by covalent bonds. Due to the semiconductive properties and variable metal coordinating sites, along with the rapid development in linkage chemistry, the utilization of COFs in photocatalytic CO2RR has attracted many scientists' interests. In this Review, we summarize the latest research progress on variable COFs for photocatalytic CO2 reduction. In the first part, we present the development of COF linkages that have been used in CO2RR, and we discuss four mechanisms including COFs as intrinsic photocatalysts, COFs with photosensitive motifs as photocatalysts, metalated COF photocatalysts, and COFs with semiconductors as heterojunction photocatalysts. Then, we summarize the principles of structural designs including functional building units and stacking mode exchange. Finally, the outlook and challenges have been provided. This Review is intended to give some guidance on the design and synthesis of diverse COFs with different linkages, various structures, and divergent stacking modes for the efficient photoreduction of CO2.
Collapse
Affiliation(s)
- Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Zihao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong, SAR 999077, China
| |
Collapse
|
7
|
Srivastava D, Mishra V, Mir SH, Dey J, Singh JK, Chandra M, Gopakumar TG. Large Area Film of Highly Crystalline, Cleavable, and Transferable Semi-Conducting 2D-Imine Covalent Organic Framework on Dielectric Glass Substrate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30485-30495. [PMID: 38815005 DOI: 10.1021/acsami.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Two dimensional (2D) imine-based covalent organic framework (COF), 2D-COF, is a newly emerging molecular 2D polymer with potential applications in thin film electronics, sensing, and catalysis. It is considered an ideal candidate due to its robust 2D nature and precise tunability of the electronic and functional properties. Herein, we report a scalable facile synthesis of 2D imine-COF with control over film thickness (ranging from 100 nm to a few monolayers) and film dimension reaching up to 2 cm on a dielectric (glass) substrate. Highly crystalline 2D imine polymer films are formed by maintaining a quasi-equilibrium (very slow, ∼15 h) in Schiff base condensation reaction between p-phenylenediamine (PDA) and benzene-1,3,5-tricarboxaldehyde (TCA) molecules. Free-standing thin and ultrathin films of imine-COF are obtained using sonication exfoliation of 2D-COF polymer. Insights into the microstructure of thin/ultrathin imine-COF are obtained using scanning and transmission electron microscopy (SEM and TEM) and atomic force microscopy (AFM), which shows high crystallinity and 2D layered structure in both thin and ultrathin films. The chemical nature of the 2D polymer was established using X-ray photoelectron spectroscopy (XPS). Optical band gap measurements also reveal a semiconducting gap. This is further established by electronic structure calculation using density functional theory (DFT), which reveals a semiconductor-like band structure with strong dispersion in bands near conduction and valence band edges. The structural characteristics (layered morphology and microscopic structure) of 2D imine-COF show significant potential for its application in thin film device fabrication. In addition, the electronic structure shows strong dispersion in the frontier bands, making it a potential semiconducting material for charge carrier transportation in electronic devices.
Collapse
Affiliation(s)
- Diksha Srivastava
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vipin Mishra
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Showkat H Mir
- Department of Physics, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir
| | - Jyotirban Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Thiruvancheril G Gopakumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
8
|
Guntermann R, Frey L, Biewald A, Hartschuh A, Clark T, Bein T, Medina DD. Regioisomerism in Thienothiophene-Based Covalent Organic Frameworks─A Tool for Band-Gap Engineering. J Am Chem Soc 2024; 146:15869-15878. [PMID: 38830115 DOI: 10.1021/jacs.4c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The craft of tuning optical properties is well-established for crystalline inorganic and hybrid solids. However, a far greater challenge is to tune the optical properties of organic materials systematically by design. We now introduce a synthesis concept that enables us to alter the optical properties of crystalline covalent organic frameworks (COFs) systematically using isomeric structures of thienothiophene-based building blocks (T23/32T) combined with a variety of tetratopic aromatic amines, e.g., the Wurster moiety (W-NH2). This concept is demonstrated for the synthesis of COFs in bulk and film forms and provides highly crystalline and porous isomeric COFs featuring predesigned photophysical properties. The band gap of the framework can be tuned continuously and precisely by chemically doping the pristine W23TT COF with its related constitutional isomer building block. Density-functional theory investigations of COF model compounds indicate that the extent of π-conjugation is among the key characteristics enabling the band-gap engineering.
Collapse
Affiliation(s)
- Roman Guntermann
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), Munich 81377, Germany
| | - Laura Frey
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), Munich 81377, Germany
| | - Alexander Biewald
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), Munich 81377, Germany
| | - Achim Hartschuh
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), Munich 81377, Germany
| | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry & Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Naegelsbachstraße 25, Erlangen 91052, Germany
| | - Thomas Bein
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), Munich 81377, Germany
| | - Dana D Medina
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), Munich 81377, Germany
| |
Collapse
|
9
|
Chakraborty J, Chatterjee A, Molkens K, Nath I, Arenas Esteban D, Bourda L, Watson G, Liu C, Van Thourhout D, Bals S, Geiregat P, Van der Voort P. Decoding Excimer Formation in Covalent-Organic Frameworks Induced by Morphology and Ring Torsion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314056. [PMID: 38618981 DOI: 10.1002/adma.202314056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Indexed: 04/16/2024]
Abstract
A thorough and quantitative understanding of the fate of excitons in covalent-organic frameworks (COFs) after photoexcitation is essential for their augmented optoelectronic and photocatalytic applications via precise structure tuning. The synthesis of a library of COFs having identical chemical backbone with impeded conjugation, but varied morphology and surface topography to study the effect of these physical properties on the photophysics of the materials is herein reported. The variation of crystallite size and surface topography substantified different aggregation pattern in the COFs, which leads to disparities in their photoexcitation and relaxation properties. Depending on aggregation, an inverse correlation between bulk luminescence decay time and exciton binding energy of the materials is perceived. Further transient absorption spectroscopic analysis confirms the presence of highly localized, immobile, Frenkel excitons (of diameter 0.3-0.5 nm) via an absence of annihilation at high density, most likely induced by structural torsion of the COF skeletons, which in turn preferentially relaxes via long-lived (nanosecond to microsecond) excimer formation (in femtosecond scale) over direct emission. These insights underpin the importance of structural and topological design of COFs for their targeted use in photocatalysis.
Collapse
Affiliation(s)
- Jeet Chakraborty
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Amrita Chatterjee
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Korneel Molkens
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- NOLIMITS, Center for Non-Linear Microscopy and Spectroscopy, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- Photonics Research Group, Department of Information Technology, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium
| | - Ipsita Nath
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Daniel Arenas Esteban
- EMAT-Electron Microscopy for Materials Science, Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Laurens Bourda
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Geert Watson
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Chunhui Liu
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281S3, Ghent, 9000, Belgium
| | - Dries Van Thourhout
- NOLIMITS, Center for Non-Linear Microscopy and Spectroscopy, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- Photonics Research Group, Department of Information Technology, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium
| | - Sara Bals
- Photonics Research Group, Department of Information Technology, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- NOLIMITS, Center for Non-Linear Microscopy and Spectroscopy, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Pascal Van der Voort
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| |
Collapse
|
10
|
Zhang X, Zhou C, Shi S, Jing X, Zheng Z, Yuan W. Mechanism insight into double S-scheme heterojunctions and atomic vacancies with tunable band structures for notably enhanced light-driven enrofloxacin decomposition. J Colloid Interface Sci 2024; 662:614-626. [PMID: 38367579 DOI: 10.1016/j.jcis.2024.02.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Building narrow band gap semiconductors and fast separation of photogenerated electron-hole (e--h+) structures are of great significance for photocatalytic process. In this contribution, the CeO2-x/C3-yN4/Ce(CO3)(OH) double S-scheme heterojunctions with atomic vacancies tunable band gap (2.54 eV) have been designed and fabricated as a boost photocatalyst for enrofloxacin (ENR) photodegradation. Compared with the control samples, the experimental results indicate that the typical sample (CeO2-x/C3-yN4/Ce(CO3)(OH)-2) achieves the highest ENR photodegradation efficiency (93.6 %) in 240 min under a pH of 6, and the possible photodegradation pathways are also proposed. The superior performance is ascribed to the CeO2-x/C3-yN4/Ce(CO3)(OH) double S-scheme heterojunctions for selective recombination of photogenerated electrons with weak-reduction ability in conduction band (CB) of CeO2-x, C3-yN4 and the photogenerated holes with weak-oxidation nature in valance band (VB) of C3-yN4, Ce(CO3)(OH), which increase the retention rate of photogenerated electrons in CB of Ce(CO3)(OH) and photogenerated holes in VB of CeO2-x to degrade ENR. This is the first systematic study of CeO2-x/C3-yN4/Ce(CO3)(OH) double S-scheme heterojunctions for ENR photodegradation.
Collapse
Affiliation(s)
- Xingyu Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Chenliang Zhou
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Shaoyuan Shi
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, People's Republic of China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xuequan Jing
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhi Zheng
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wenjing Yuan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China; School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, People's Republic of China.
| |
Collapse
|
11
|
Zhao Y, Li L, Zang J, Young DJ, Ren ZG, Li HY, Yu L, Bian GQ, Li HX. Modulating β-Keto-enamine-Based Covalent Organic Frameworks for Photocatalytic Atom-Transfer Radical Addition Reaction. Chemistry 2024; 30:e202400377. [PMID: 38403857 DOI: 10.1002/chem.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The atom-transfer radical addition (ATRA) reaction simultaneously forges carbon-carbon and carbon-halogen bonds. However, frequently-used photosensitizers such as precious transition metal complexes, or organic dyes have limitations in terms of their potential toxicity and recyclability. Three β-ketoenamine-linked covalent organic frameworks (COFs) from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamines with variable transient photocurrent and photocatalytic activity have been prepared. A COF bearing electron-deficient Cl atoms displayed the highest photocatalytic activity toward the ATRA reaction of polyhalogenated alkanes to give halogenated olefins under visible light at room temperature. This heterogeneous photocatalyst exhibited good functional group tolerance and could be recycled without significant loss of activity.
Collapse
Affiliation(s)
- Yuting Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiyuan Zang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - David J Young
- Glasgow College, UESTC, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hai-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guo-Qing Bian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
12
|
Zhang R, Yang ZD, Yang Y, Zhang FM, Zhang G. Understanding Photocatalytic Overall Water Splitting of β-Ketoamine COFs through the N-C Site Synergistic Mechanism. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38038242 DOI: 10.1021/acsami.3c14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Overcoming the sluggish reaction kinetics of the oxygen evolution reaction (OER) is a determining factor for the practical application of photocatalysts for overall water splitting. Two-dimensional covalent organic frameworks (2D-COFs) offer an ideal platform for catalyst design in the field of overall water splitting for their exceptional chemical tunability and high efficiency of light capture. In this work, four β-ketoamine 2D-COFs, consisting of 1,3,5-triformylphloroglucinol (Tp) groups and different linkers with pyridine segments, were constructed and optimized. By means of first-principles calculations, the band structures, free energy changes of photocatalytic hydrogen evolution reaction (HER) and OER, and charge density distributions were calculated and investigated systemically to discuss the visible-light response, overall water splitting activities on active sites, and the characteristic of charge transfer and separation. The protonated pyridine N derived from the double-H2O closed-ring H-bond adsorption model could efficiently induce N-C sites' synergistic effect between pyridine N and its ortho-position C to minimize the OER energy barrier and to enhance the charge transfer and separation. A N-C site synergistic mechanism has been proposed to provide a comprehensive explanation for the experimental results and a new strategy to design novel 2D-COF photocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Rui Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Zhao-Di Yang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Yan Yang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Guiling Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| |
Collapse
|
13
|
Wu S, Li C, Wang Y, Zhuang Y, Pan Y, Wen N, Wang S, Zhang Z, Ding Z, Yuan R, Dai W, Fu X, Long J. The Keto-Switched Photocatalysis of Reconstructed Covalent Organic Frameworks for Efficient Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202309026. [PMID: 37460792 DOI: 10.1002/anie.202309026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
The keto-switched photocatalysis of covalent organic frameworks (COFs) for efficient H2 evolution was reported for the first time by engineering, at a molecular level, the local structure and component of the skeletal building blocks. A series of imine-linked BT-COFs were synthesized by the Schiff-base reaction of 1, 3, 5-benzenetrialdehyde with diamines to demonstrate the structural reconstruction of enol to keto configurations by alkaline catalysis. The keto groups of the skeletal building blocks served as active injectors, where hot π-electrons were provided to Pt nanoparticles (NPs) across a polyvinylpyrrolidone (PVP) insulting layer. The characterization results, together with density functional theory calculations, indicated clearly that the formation of keto-injectors not only made the conduction band level more negative, but also led to an inhomogeneous charge distribution in the donor-acceptor molecular building blocks to form a strong intramolecular built-in electric field. As a result, visible-light photocatalysis of TP-COFs-1 with one keto group in the skeletal building blocks was successfully enabled and achieved an impressive H2 evolution rate as high as 0.96 mmol g-1 h-1 . Also, the photocatalytic H2 evolution rates of the reconstructed BT-COFs-2 and -3 with two and three keto-injectors were significantly enhanced by alkaline post-treatment.
Collapse
Affiliation(s)
- Shuhong Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Chao Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Ying Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yan Zhuang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yi Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Na Wen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Shuo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zhenxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wenxin Dai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
14
|
Cheng X, Palma B, Zhao H, Zhang H, Wang J, Chen Z, Hu J. Photoreforming for Lignin Upgrading: A Critical Review. CHEMSUSCHEM 2023:e202300675. [PMID: 37455297 DOI: 10.1002/cssc.202300675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Photoreforming of lignocellulosic biomass to simultaneously produce gas fuels and value-added chemicals has gradually emerged as a promising strategy to alleviate the fossil fuels crisis. Compared to cellulose and hemicellulose, the exploitation and utilization of lignin via photoreforming are still at the early and more exciting stages. This Review systematically summarizes the latest progress on the photoreforming of lignin-derived model components and "real" lignin, aiming to provide insights for lignin photocatalytic valorization from fundamental to industrial applications. Considering the complexity of lignin physicochemical properties, related analytic methods are also introduced to characterize lignin photocatalytic conversion and product distribution. We finally put forward the challenges and perspective of lignin photoreforming, hoping to provide some guidance to valorize biomass into value-added chemicals and fuels via a mild photoreforming process in the future.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Bruna Palma
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Wang S, Wu X, Fang J, Zhang F, Liu Y, Liu H, He Y, Luo M, Li R. Direct Z-Scheme Polymer/Polymer Double-Shell Hollow Nanostructures for Efficient NADH Regeneration and Biocatalytic Artificial Photosynthesis under Visible Light. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Song Wang
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xiewen Wu
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Jing Fang
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Feng Zhang
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Yanli Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Hongbo Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yu He
- Zigong Advanced Carbon Materials Industrial Technology Research Institute, Zigong, Sichuan 643000, P. R. China
| | - Min Luo
- Zigong Advanced Carbon Materials Industrial Technology Research Institute, Zigong, Sichuan 643000, P. R. China
| | - Run Li
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
16
|
Wang J, Zhu W, Meng F, Bai G, Zhang Q, Lan X. Integrating Dual-Metal Sites into Covalent Organic Frameworks for Enhanced Photocatalytic CO 2 Reduction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Wanbo Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Fanyu Meng
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
17
|
Jeon JP, Kim YJ, Joo SH, Noh HJ, Kwak SK, Baek JB. Benzotrithiophene-based Covalent Organic Framework Photocatalysts with Controlled Conjugation of Building Blocks for Charge Stabilization. Angew Chem Int Ed Engl 2023; 62:e202217416. [PMID: 36545845 DOI: 10.1002/anie.202217416] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Covalent organic frameworks have recently shown high potential for photocatalytic hydrogen production. However, their structure-property-activity relationship has not been sufficiently explored to identify a research direction for structural design. Herein, we report the design and synthesis of four benzotrithiophene (BTT)-based covalent organic frameworks (COFs) with different conjugations of building units, and their photocatalytic activity for hydrogen production. All four BTT-COFs had slipped parallel stacking patterns with high crystallinity and specific surface areas. The change in the degree of conjugation was found to rationally tune the rate of photocatalytic hydrogen evolution. Based on the experimental and calculation results, the tunable photocatalytic performance could be mainly attributed to the electron affinity and charge trapping of the electron accepting units. This study provides important insights for designing covalent organic frameworks for efficient photocatalysts.
Collapse
Affiliation(s)
- Jong-Pil Jeon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Yu Jin Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Se Hun Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
18
|
Dautzenberg E, Li G, de Smet LC. Aromatic Amine-Functionalized Covalent Organic Frameworks (COFs) for CO 2/N 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5118-5127. [PMID: 36648205 PMCID: PMC9906623 DOI: 10.1021/acsami.2c17672] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
CO2 is a prominent example for an exhaust gas, and it is known for its high impact on global warming. Therefore, carbon capture from CO2 emissions of industrial processes is increasingly important to halt and prevent the disruptive consequences of global warming. Covalent organic frameworks (COFs) as porous nanomaterials have been shown to selectively adsorb CO2 in high quantities and with high CO2/N2 selectivity. Interactions with amines are recognized to selectively adsorb CO2 and help capture it from exhaust emissions. Herein, a novel COF (Me3TFB-(NH2)2BD), which was not accessible via a direct condensation reaction, was synthetized by dynamic linker exchange starting with Me3TFB-BD. Despite the linker exchange, the porosity of the COF was largely maintained, resulting in a high BET surface area of 1624 ± 89 m2/g. The CO2 and N2 adsorption isotherms at 273 and 295 K were studied to determine the performance in carbon capture at flue gas conditions. Me3TFB-(NH2)2BD adsorbs 1.12 ± 0.26 and 0.72 ± 0.07 mmol/g of CO2 at 1 bar and 273 and 295 K, respectively. The COF shows a high CO2/N2 IAST selectivity under flue gas conditions (273 K:83 ± 11, 295 K: 47 ± 11). The interaction of the aromatic amine groups with CO2 is based on physisorption, which is expected to make the regeneration of the material energy efficient.
Collapse
Affiliation(s)
- Ellen Dautzenberg
- Laboratory
of Organic Chemistry, Wageningen University
and Research, Stippeneng 4, 6708WEWageningen, The Netherlands
| | - Guanna Li
- Laboratory
of Organic Chemistry, Wageningen University
and Research, Stippeneng 4, 6708WEWageningen, The Netherlands
- Biobased
Chemistry and Technology, Wageningen University
and Research, Bornse Weilanden 9, 6708WGWageningen, The
Netherlands
| | - Louis C.P.M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University
and Research, Stippeneng 4, 6708WEWageningen, The Netherlands
| |
Collapse
|
19
|
Wu C, Xing Z, Yang S, Li Z, Zhou W. Nanoreactors for photocatalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Co-immobilization of laccase and PEG modified COFs into Cu doped gel beads to achieve synergistic effect of photocatalysis and enzymatic catalysis for pollutants removal. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Gong YN, Guan X, Jiang HL. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Hu H, Tao Y, Wang D, Li C, Jiang Q, Shi Y, Wang J, Qin J, Zhou S, Kong Y. Rational modification of hydroxy-functionalized covalent organic frameworks for enhanced photocatalytic hydrogen peroxide evolution. J Colloid Interface Sci 2023; 629:750-762. [PMID: 36193619 DOI: 10.1016/j.jcis.2022.09.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Covalent organic frameworks (COFs), a class of flexibly tunable crystalline materials, have fascinating potential in photocatalytic hydrogen peroxide (H2O2) evolution under visible light irradiation. However, achieving efficient catalytic activity by tuning the composition of COFs and the linkages of building blocks is still a challenge. Herein, four imine-linked COFs with different numbers of hydroxy-functionalized are constructed to unveil the latent structure-activity relationship between the reversibility of bonding in supramolecular chemistry and the photocatalytic H2O2 performance. As the optimized material, TAPT-HTA-COF (1H-COF) containing single hydroxy group in aldehyde node exhibits a highest ordered structure and conjugation degree along and across the plane in the extended frameworks originating from the flexibly reversible iminol-to-ketoenamine tautomerism than others, which broadens the visible light absorption and accelerates the dissociation of photogenerated carriers in 1H-COF. These merits ensure that 1H-COF has the highest H2O2 yield (44.5 μmol L-1) and O2 two-electron reduction pathway among the four COFs under visible light irradiation (λ > 420 nm, 10 vol% isopropanol aqueous solution). At the same time, the long-range ordered framework of 1H-COF is well preserved during the photocatalytic H2O2 evolution process assisted by the proton-induced tautomerization. This work facilitates the design and development of COF-based photocatalysts in the evolution of H2O2.
Collapse
Affiliation(s)
- Hao Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yinglong Tao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Di Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Changlai Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Qichao Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yuexin Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jinping Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Shijian Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Yan Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
23
|
Dautzenberg E, Lam M, Nikolaeva T, Franssen WMJ, van Lagen B, Gerrits-Benneheij IPAM, Kosinov N, Li G, de Smet LCPM. Tuning UV Absorption in Imine-Linked Covalent Organic Frameworks via Methylation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:21338-21347. [PMID: 36582486 PMCID: PMC9791660 DOI: 10.1021/acs.jpcc.2c04586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Covalent organic frameworks (COFs) are porous materials with high surface areas, making them interesting for a large variety of applications including energy storage, gas separation, photocatalysis, and chemical sensing. Structural variation plays an important role in tuning COF properties. Next to the type of the building block core, bonding directionality, and linking chemistry, substitution of building blocks provides another level of synthetic control. Thorough characterization and comparison of various substitution patterns is relevant for the molecular engineering of COFs via rational design. To this end, we have systematically synthesized and characterized multiple combinations of several methylated and non-methylated building blocks to obtain a series of imine-based COFs. This includes the experimental assignment of the COF structure by solid-state NMR. By comparing the properties of all COFs, the following trends were found: (1) upon methylation of the aldehyde nodes, COFs show increased Brunauer-Emmett-Teller surface areas, reduced pore collapse, blue-shifted absorbance spectra, and ∼0.2 eV increases in their optical band gaps. (2) COFs with dimethylated amine linkers show a lower porosity. (3) In tetramethylated amine linkers, the COF porosity even further decreases, the absorbance spectra are clearly red-shifted, and smaller optical band gaps are obtained. Our study shows that methyl substitution patterns on COF building blocks are a handle to control the UV absorbance of the resulting frameworks.
Collapse
Affiliation(s)
- Ellen Dautzenberg
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WEWageningen, The Netherlands
| | - Milena Lam
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WEWageningen, The Netherlands
| | - Tatiana Nikolaeva
- MAGNEtic
Resonance Research FacilitY-MAGNEFY, Wageningen
University, Stippeneng
4, 6708 WEWageningen, The Netherlands
| | - Wouter M. J. Franssen
- Laboratory
of Biophysics, Wageningen University, Stippeneng 4, 6708 WEWageningen, The Netherlands
| | - Barend van Lagen
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WEWageningen, The Netherlands
| | | | - Nikolay Kosinov
- Laboratory
of Inorganic Materials and Catalysis, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Guanna Li
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WEWageningen, The Netherlands
- Biobased
Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708 WGWageningen, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WEWageningen, The Netherlands
| |
Collapse
|
24
|
Han X, Zhao F, Shang Q, Zhao J, Zhong X, Zhang J. Effect of Nitrogen Atom Introduction on the Photocatalytic Hydrogen Evolution Activity of Covalent Triazine Frameworks: Experimental and Theoretical Study. CHEMSUSCHEM 2022; 15:e202200828. [PMID: 35869028 DOI: 10.1002/cssc.202200828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The construction of high-performance photocatalyst has always been explored. Covalent organic frameworks (COFs), especially keto-amine-linked COFs, have many advantages, such as adjustable bandgaps, π-π stacking structure, excellent response ability to visible light, high specific surface area, high mobility of carrier carriers, good physical and chemical stability, and so on, showing strong potential applications in photocatalytic solar energy conversion and hydrogen production. Two analogous covalent triazine frameworks (CTFs), T3H-CTF and T3N-CTF, have been synthesized via Schiff-base condensation reactions between 2,4,6-trihydroxybenzene-1,3,5-tricarbalehyde (MOP) and the corresponding triazine-based aromatic amines under solvothermal condition. For T3N-CTF, the peripheral aromatic linker to the central triazine unit was the pyridine unit, instead of the benzene unit in the T3H-CTF unit. T3N-CTF had a hydrogen production rate (HPR) of 6485.05 μmol g-1 h-1 , much higher than that of T3H-CTF (2028.06 μmol g-1 h-1 ). Accordingly, T3N-CTF had a much higher apparent quantum yield (AQY) of 12.2 % than that of T3H-CTF (4.12 %) at 405 nm. The experimental and theoretical results showed that the extended light absorption range, enlarged surface area, and enhanced separation and transportation efficiencies of charge carriers of T3N-CTF compared with T3H-CTF were uniformly induced by the introduction of peripheral nitrogen atoms into the skeleton of former CTF, which eventually boosted the visible-light induced hydrogen evolution reaction (HER). The work suggests a new method for enhancing the intrinsic HER activity by modulating the electronic features of the conjugated COFs by the introduction of pyridinic N atoms.
Collapse
Affiliation(s)
- Xiao Han
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Fei Zhao
- College of Chemistry and Chemical Engineering, Taishan University, Taian, 271000, P. R. China
| | - Qianqian Shang
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Jinsheng Zhao
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Xiujuan Zhong
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Junhong Zhang
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| |
Collapse
|
25
|
“All-in-one” covalent organic framework for photocatalytic CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Fard PT, Albert SK, Ko J, Lee S, Park SJ, Kim J. Spatial Organization of Photocatalysts and Enzymes on Janus-Type DNA Nanosheets for Efficient CO 2 Conversion. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pegah Tavakoli Fard
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| | - Shine K. Albert
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| | - Jein Ko
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| | - Sohyun Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| | - Jinheung Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
27
|
Afrin S, Khan MW, Haque E, Ren B, Ou JZ. Recent advances in the tuning of the organic framework materials - The selections of ligands, reaction conditions, and post-synthesis approaches. J Colloid Interface Sci 2022; 623:378-404. [PMID: 35594596 DOI: 10.1016/j.jcis.2022.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022]
Abstract
Organic framework materials, particularly metal-organic frameworks (MOFs), graphene-organic frameworks (GOFs), and covalent organic frameworks (COFs), have led to the revolution across fields including catalysts, sensors, gas capture, and biology mainly owing to their ultra-high surface area-to-volume ratio, on-demand tunable crystal structures, and unique surface properties. While the wet chemistry routes have been the predominant synthesis approach, the crystal phase, morphological parameters, and physicochemical properties of organic framework materials are largely affected by various synthesis parameters and precursors. In this work, we specifically review the influences of synthesis parameters towards crystal structures and chemical compositions of organic framework materials, including selected ligand types and lengths, reaction temperature/solvent/reactant compositions, as well as post-synthesis modification approaches. More importantly, the subsequent impacts on the general electronic, mechanical, surface chemical, and thermal properties as well as the consequent variation in performances towards catalytic, desalination, gas sensing, and gas storage applications are critically discussed. Finally, the current challenges and prospects of organic framework materials are provided.
Collapse
Affiliation(s)
- Sanjida Afrin
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | | | - Enamul Haque
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Baiyu Ren
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
28
|
Lan X, Wang J, Li Q, Wang A, Zhang Y, Yang X, Bai G. Acetylene/Vinylene-Bridged π-Conjugated Covalent Triazine Polymers for Photocatalytic Aerobic Oxidation Reactions under Visible Light Irradiation. CHEMSUSCHEM 2022; 15:e202102455. [PMID: 34962075 DOI: 10.1002/cssc.202102455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Solar-driven photocatalytic chemical transformation provides a sustainable strategy to produce valuable feedstock, but designing photocatalysts with high efficiency remains challenging. Herein, two acetylene- or vinylene-bridged π-conjugated covalent triazine polymers, A-CTP-DPA and V-CTP-DPE, were successfully fabricated toward metal-free photocatalytic oxidation under visible light irradiation. Compared to the one without acetylene or vinylene bridge, both resulting polymers exhibited superior activity in photocatalytic selective oxidation of sulfides and oxidative coupling of amines; in particular, A-CTP-DPA delivered an optimal photocatalytic performance. The superior activity was attributed to the broadened spectral response range, effective separation, rapid transportation of photogenerated charge carriers, and abundant active sites for photogenerated electrons due to the existence of the acetylene bridge in the framework. This work highlights the potential of acetylene and vinylene bridges in tuning catalytic efficiency of organic semiconductors, providing a guideline for the design of efficient photocatalysts.
Collapse
Affiliation(s)
- Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Qing Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Aiqing Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Yize Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Xianheng Yang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| |
Collapse
|
29
|
Yadav SN, Kumar B, Yadav RK, Singh P, Gupta SK, Singh S, Singh C, Chaubey S, Singh AP. Synthesis of highly efficient selenium oxide hybridized g-C3N4 photocatalyst for NADH/NADPH regeneration to facilitate solar-to-chemical reaction. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An inexpensive graphitic carbon nitrite (g-C3N4) photocatalyst was hybridized with selenium oxide (SeO2) photocatalyst by a monolayer-dispersed technique. After hybridization of g-C3N4 with SeO2, the NADH/NADPH regeneration efficiency of SeO2 photocatalyst was enhanced under solar light illumination was observed. The photocatalytic activity of SeO2/g-C3N4 photocatalyst under solar light illumination was enhanced by 3-fold higher than g-C3N4 photocatalyst, the solar light photocatalytic activity was produced and the photo-decomposition of SeO2 photocatalyst was completely stifled after hybridized SeO2 photocatalyst by g-C3N4 photocatalyst. The improvement in performance and photo-decomposition inhibition under solar light illumination was persuaded by efficiency separation of photo-persuaded holes from SeO2 to the valence bond (V.B.)/highest occupied molecular orbital (HOMO) of g-C3N4 under solar light illumination, the electron jumped from the V.B. to the conduction band (C.B.)/lowest unoccupied molecular orbital (LUMO) of g-C3N4 could directly insert into the C.B. of SeO2 photocatalyst, synthesized SeO2/g-C3N4 photocatalyst is highly active for NADH/NADPH regeneration under solar light.
Collapse
Affiliation(s)
- Shesh Nath Yadav
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Brijesh Kumar
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Rajesh K. Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Pooja Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Sarvesh Kumar Gupta
- Nanoionics and Energy Storage Laboratory (NanoESL), Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur U.P., India
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Chandani Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Surabhi Chaubey
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Atul P. Singh
- Department of Chemistry, Chandigarh University, Mohali, India
| |
Collapse
|
30
|
Liu S, Su Q, Qi W, Luo K, Sun X, Ren H, Wu Q. Highly hydrophilic covalent organic frameworks as efficient and reusable photocatalysts for oxidative coupling of amines in aqueous solution. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00167e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Highly hydrophilic 2D-COFs, TFB-XX-DMTH, have been successfully constructed by a three-component in situ assembly strategy and exhibited superior photocatalytic performance in oxidative coupling reactions of benzylamines in aqueous solution.
Collapse
Affiliation(s)
- Shufang Liu
- College of chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Qing Su
- College of chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Wei Qi
- College of chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Kexin Luo
- College of chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaoman Sun
- College of chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hao Ren
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Qiaolin Wu
- College of chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
31
|
Liang X, Tian Y, Yuan Y, Kim Y. Ionic Covalent Organic Frameworks for Energy Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105647. [PMID: 34626010 DOI: 10.1002/adma.202105647] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) are a class of porous crystalline materials whose facile preparation, functionality, and modularity have led to their becoming powerful platforms for the development of molecular devices in many fields of (bio)engineering, such as energy storage, environmental remediation, drug delivery, and catalysis. In particular, ionic COFs (iCOFs) are highly useful for constructing energy devices, as their ionic functional groups can transport ions efficiently, and the nonlabile and highly ordered all-covalent pore structures of their backbones provide ideal pathways for long-term ionic transport under harsh electrochemical conditions. Here, current research progress on the use of iCOFs for energy devices, specifically lithium-based batteries and fuel cells, is reviewed in terms of iCOF backbone-design strategies, synthetic approaches, properties, engineering techniques, and applications. iCOFs are categorized as anionic COFs or cationic COFs, and how each of these types of iCOFs transport lithium ions, protons, or hydroxides is illustrated. Finally, the current challenges to and future opportunities for the utilization of iCOFs in energy devices are described. This review will therefore serve as a useful reference on state-of-the-art iCOF design and application strategies focusing on energy devices.
Collapse
Affiliation(s)
- Xiaoguang Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ye Tian
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
32
|
Covalent-organic frameworks with keto-enol tautomerism for efficient photocatalytic oxidative coupling of amines to imines under visible light. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1088-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Liu K, Chen D, Zhang S, Su P, Huang Y. Enhancing the Charge Carrier Transfer of ZnFe 2O 4/C/TiO 2 Hollow Nanosphere Photocatalyst via Contact Interface Engineering. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kuiliang Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Daoming Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Siqi Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
34
|
Shangguan W, Zhao H, Dai JQ, Cai J, Yan C. First-Principles Study of Hydrogen Storage of Sc-Modified Semiconductor Covalent Organic Framework-1. ACS OMEGA 2021; 6:21985-21993. [PMID: 34497893 PMCID: PMC8412926 DOI: 10.1021/acsomega.1c02452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
At present, the development of new carbon-based nanoporous materials with semiconductor properties and high hydrogen storage capacity has become a research hotspot in the field of hydrogen storage and hydrogen supply. Here, we pioneered the study of the hydrogen storage capacity of a scandium (Sc) atom-modified semiconductor covalent organic framework-1 (COF-1) layer. It was found that the hydrogen storage capacity of the COF-1 structure was significantly enhanced after the modification of the Sc atom. We found that each Sc atom of the modified COF-1 structure can stably adsorb up to four H2 molecules, and the average adsorption energy of the four hydrogen molecules is -0.284 eV/H2. Six Sc atoms are stably adsorbed most bilaterally on the cell of the COF-1 unit, which can adsorb 24 H2 molecules in total. In addition, we have further studied the adsorption and desorption behaviors of H2 molecules on the 6Sc-COF-1 surface at 300 and 400 K, respectively. It can be found that each Sc atom of the COF-1 unit cell can stably adsorb three H2 molecules with a hydrogen storage performance of 5.23 wt % at 300 K, which is higher than those of lithium-modified phosphorene (4.4 wt %) and lithium-substituted BHNH sheets (3.16 wt %). At 400 K, all of the adsorbed H2 molecules are released. This confirms the excellent reversibility of 6Sc-COF-1 in hydrogen storage performance. This research has great significance in the application of fuel cells, surpassing traditional hydrogen storage materials.
Collapse
|
35
|
Sun Y, Li W, Wang Z, Shi J, Jiang Z. General framework for enzyme-photo-coupled catalytic system toward carbon dioxide conversion. Curr Opin Biotechnol 2021; 73:67-73. [PMID: 34333444 DOI: 10.1016/j.copbio.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022]
Abstract
High emission of carbon dioxide (CO2) has aroused global concern due to the 'greenhouse effect'. The conversion of CO2 to valuable chemicals/materials is an indispensable route toward 'carbon neutrality'. Enzyme-photo-coupled catalytic systems (EPCCSs), integrating synthetic library of semiconductor photocatalyst and natural database of enzyme, have emerged as a green and powerful platform toward CO2 conversion. Herein, we discuss the recent progress in design and application of EPCCSs for CO2 conversion from the perspective of pathway engineering, reaction engineering and system engineering. We firstly summarize the explored pathways of EPCCSs for converting CO2 to C1 and C2+ products. Secondly, we discuss the matching of kinetics between photocatalytic and enzymatic reactions in EPCCSs. Thirdly, we unveil the complex interplay between photocatalytic and enzymatic modules, and further demonstrate the strategy of compartmentalization to eliminate the negative interactions. Lastly, we conclude with the perspective on the opportunities and challenges of EPCCSs for CO2 conversion.
Collapse
Affiliation(s)
- Yiying Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Wenping Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Zhuo Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, PR China.
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, PR China.
| |
Collapse
|
36
|
Gupta SK, Gupta AK, Yadav RK, Singh A, Yadav BC. Highly Efficient S-g-CN/Mo-368 Catalyst for Synergistically NADH Regeneration Under Solar Light. Photochem Photobiol 2021; 98:160-168. [PMID: 34233032 DOI: 10.1111/php.13484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
Sulfur-doped graphitic carbon nitride (S-g-CN) has gained significant attention in recent years. Sulfur-doped graphitic carbon nitride (S-g-CN) is a promising metal-free photocatalyst because of its band orientation, natural abundance and groundwork. Improved photocatalytic activity of S-g-CN material for solar chemical production persists a hot yet challenging problem. Herein, we provide an adaptable method for the synthesis of S-g-CN nanocomposite decorated with the moiety of giant polyoxometalate (S-g-CN/Mo-368) that subsequently showed highly efficient photocatalytic activity. The as-synthesized S-g-CN/Mo-368 as a recyclable artificial photocatalyst revealed excellent activity for solar chemical production, that is nicotinamide adenine dinucleotide (NADH) regeneration under visible light. The immobilized Mo-368 on the S-g-CN surface increased the visible light adsorption capacity of the S-g-CN/Mo-368 photocatalyst. The visible light absorption activity, morphology, element compositions, particle size and zeta potential of S-g-CN powder and S-g-CN/Mo-368 were thoroughly investigated. From the application point of view, S-g-CN/Mo-368 was applied to determine the solar chemical production (i.e. NADH regeneration) under visible light with a higher yield% of about ~ 94.85%.
Collapse
Affiliation(s)
- Sarvesh Kumar Gupta
- Nanoionics and Energy Storage Laboratory (NanoESL), Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur (U. P.), India
| | - Abhishek Kumar Gupta
- Nanoionics and Energy Storage Laboratory (NanoESL), Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur (U. P.), India
| | - Rajesh Kumar Yadav
- Department of Chemical and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur (U. P.), India
| | - Ajeet Singh
- Department of Physics, School of Physical & Decision Sciences, Nanomaterials and Sensors Research Laboratory, Babasaheb Bhimrao Ambedkar University, Lucknow (U.P), India
| | - Bal Chandra Yadav
- Department of Physics, School of Physical & Decision Sciences, Nanomaterials and Sensors Research Laboratory, Babasaheb Bhimrao Ambedkar University, Lucknow (U.P), India
| |
Collapse
|
37
|
Sahoo S, Teixeira IF, Naik A, Heske J, Cruz D, Antonietti M, Savateev A, Kühne TD. Photocatalytic Water Splitting Reaction Catalyzed by Ion-Exchanged Salts of Potassium Poly(heptazine imide) 2D Materials. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:13749-13758. [PMID: 34239658 PMCID: PMC8256424 DOI: 10.1021/acs.jpcc.1c03947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Potassium poly (heptazine imide) (K-PHI), a crystalline two-dimensional carbon-nitride material, is an active photocatalyst for water splitting. The potassium ions in K-PHI can be exchanged with other ions to change the properties of the material and eventually to design the catalysts. We report here the electronic structures of several ion-exchanged salts of K-PHI (K, H, Au, Ru, and Mg) and their feasibility as water splitting photocatalysts, which were determined by density functional theory (DFT) calculations. The DFT results are complemented by experiments where the performances in the photocatalytic hydrogen evolution reaction (HER) were recorded. We show that due to its narrow band gap, Ru-PHI is not a suitable photocatalyst. The water oxidation potentials are straddled between the band edge potentials of H-PHI, Au-PHI, and Mg-PHI; thus, these are active photocatalysts for both the oxygen and hydrogen evolution reactions, whereas K-PHI is active only for the HER. The experimental data show that these are active HER photocatalysts, in agreement with the DFT results. Furthermore, Mg-PHI has shown remarkable performance in the HER, with a rate of 539 μmol/(h·g) and a quantum efficiency of 7.14% at 410 nm light irradiation, which could be due to activation of the water molecule upon adsorption, as predicted by our DFT calculations.
Collapse
Affiliation(s)
- Sudhir
K. Sahoo
- Dynamics
of Condensed Mater and Center for Sustainable System Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Ivo F. Teixeira
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
- Department
of Chemistry, Federal University of São
Carlo, 13565-905 São Carlos, SP, Brazil
| | - Aakash Naik
- Dynamics
of Condensed Mater and Center for Sustainable System Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Julian Heske
- Dynamics
of Condensed Mater and Center for Sustainable System Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Daniel Cruz
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Heterogeneous Reactions, Max Planck Institute
for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Aleksandr Savateev
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Thomas D. Kühne
- Dynamics
of Condensed Mater and Center for Sustainable System Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
- Paderborn
Center for Parallel Computing and Institute for Lightweight Design, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| |
Collapse
|
38
|
Yang S, Li X, Qin Y, Cheng Y, Fan W, Lang X, Zheng L, Cao Q. Modulating the Stacking Model of Covalent Organic Framework Isomers with Different Generation Efficiencies of Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29471-29481. [PMID: 34152718 DOI: 10.1021/acsami.1c03170] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of a facile synthesis and controllable layer stacking approach for covalent organic frameworks (COFs) is an important issue for modulating their properties and realizing their application diversity. Herein, three COF isomers with different stacking models (eclipsed AA, staggered AB, and ABC stacking) were obtained by modulating the reaction temperature and solvent medium. Experimental and theoretical calculations show that the ABC stacking isomer obtained at room temperature is the kinetic product, while the AA stacking isomer prepared by the solvothermal method is a thermodynamic product. Owing to the tautomerism involved in the reaction process, these isomers possess different ratios of enol and keto forms. Thus, they exhibit different generation efficiencies of Type I and Type II reactive oxygen species (ROS). The ABC stacking isomers could be employed as metal-free heterogeneous photocatalysts for visible-light-induced oxidation of amines to imines, owing to the highest generation efficiency of Type I ROS.
Collapse
Affiliation(s)
- Shaoxiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, 650091 Kunming, China
| | - Xia Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Qin
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, 650091 Kunming, China
| | - Yi Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, 650091 Kunming, China
| | - Wenwen Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, 650091 Kunming, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Liyan Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, 650091 Kunming, China
| | - Qiue Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, 650091 Kunming, China
| |
Collapse
|