1
|
Chee HL, M Y, Kim J, Koo JW, Luo P, Ramli MFH, Young JL, Wang F. Mechanical and Dimensional Stability of Gelatin-Based Hydrogels Through 3D Printing-Facilitated Confined Space Assembly. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39460703 DOI: 10.1021/acsami.4c15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Hydrogels have emerged as promising biomaterials for tissue regeneration; yet, their inherent swelling can cause deformation and reduced mechanical properties, posing challenges for practical applications in biomedical engineering. Traditional methods to reduce hydrogel swelling often involve complex synthesis procedures with limited flexibility. Inspired by nature's efficient designs, we present here the approach to improve hydrogel performance using 3D printing-assisted microstructure engineering. By utilizing polymerization-induced phase separation of hydrogel from copolymerization of gelatin methacrylate and hydroxyethyl methacrylate (poly(GelMA-co-HEMA)) in the confined space during vat photopolymerization (VPP) 3D printing, we replicate the cuttlebone-like microstructure of hydrogels with enhanced mechanical properties and swelling resistance. We demonstrate here a 4-fold increase in elastic modulus compared to bulk polymerization of poly(GelMA-co-HEMA), together with improved mechanical and dimensional stability. This method offers promising opportunities for practical biomedical and tissue engineering applications, overcoming previous limitations in the design and performance.
Collapse
Affiliation(s)
- Heng Li Chee
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Yashaaswini M
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jaedeok Kim
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jing Wen Koo
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Ping Luo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - M Faris H Ramli
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Jennifer L Young
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
2
|
Zhao Y, Chen C, Zhu Z, Zhang S, Ma X, Shen X, Zhang X, Sun Q, Bi H. Hofmeister effect driven dynamic-bond cross-linked dialdehyde xylan hydrogels with rapid response and robust mechanical properties for expanding stent. Int J Biol Macromol 2024; 280:135888. [PMID: 39313053 DOI: 10.1016/j.ijbiomac.2024.135888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
The biomedical field urgently needs for programmable stent materials with nontoxic, autonomous self-healing, injectability, and suitable mechanical strength, especially self-expanding characteristics. However, such materials are still lacking. Herein, based on gelatin and dialdehyde-functionalized xylan, we synthesized 3D-printable, autonomous, self-healing, and mechanically robust hydrogels with a reversible Schiff base crosslink network. The hydrogels exhibited excellent mechanical properties and automatic healing properties at room temperature. The solid mechanical properties originate from the Schiff base, hydrogen bonding interactions, and xylan nanoparticle reinforcement of the polymer networks. As a proof of concept, the Hofmeister effect enabled the hydrogel to contract in highly concentrated salt solutions. In contrast, the same hydrogel expanded and relaxed in dilute salt solutions (quick response within 10 s), showing ionic stimulus-response and excellent shape memory characteristics, which demonstrated that the prepared hydrogel could be used as self-expanding artificial vascular stents. In particular, good biocompatibility was confirmed by cytotoxicity and compatibility tests, and ex vivo arterial experiments further indicated the feasibility of these artificial vascular scaffolds (the expansion force reached 1.51 N). Combined with its ionic stimuli-responsive shape memory ability, the strong mechanical, self-healing, 3D-printable, and biocompatibility properties make this hydrogel a promising material for artificial stents in various biomedical applications.
Collapse
Affiliation(s)
- Yadan Zhao
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Chufan Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Zuochao Zhu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Simin Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Xiaofan Ma
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Xiaoping Shen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Xiaochun Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China.
| | - Hongjie Bi
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
3
|
Zhang X, Wang S, Chen X, Cui Z, Li X, Zhou Y, Wang H, Sun R, Wang Q. Bioinspired Flexible Kevlar/Hydrogel Composites with Antipuncture and Strain-Sensing Properties for Personal Protective Equipment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45473-45486. [PMID: 39148460 DOI: 10.1021/acsami.4c08659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Currently, multifunction has become an essential direction of personal protective equipment (PPE), but achieving the protective effect, flexibility, physiological comfort, and intelligent application of PPE simultaneously is still a challenge. Herein, inspired by the meso-structure of rhinoceros skin, a novel strategy is proposed by compounding an ammonium sulfate ((NH4)2SO4) solution soaked gelatin hydrogel with the high weight fraction and vertically interwoven Kevlar fibers to manufacture a flexible and wearable composite with enhanced puncture resistance and strain-sensing properties. After (NH4)2SO4 solution immersion, the hydrogel's tensile strength, toughness, and fracture strain were up to 3.77 MPa, 4.26 MJ/m3, and 305.19%, respectively, indicating superior mechanical properties. The Kevlar/hydrogel composites revealed excellent puncture resistance (quasi-static of 132.06 N and dynamic of 295.05 N), flexibility (138.13 mN/cm), and air and moisture permeability (17.83 mm/s and 2092.73 g m-2 day-1), demonstrating a favorable balance between the protective effect and wearing comfort even after 7 days of environmental exposure. Meanwhile, salt solution immersion endowed the composite with excellent strain-sensing properties at various bending angles (30-90°) and frequencies (0.25-1 Hz) and allowed it to monitor different human motions directly in real-time. The rhinoceros-skin-inspired Kevlar/hydrogel composites provide a simple and economical solution for antipuncture materials that combine high protective effects, a comfortable wearing experience, and good strain-sensing properties, promising multifunctional PPE in the future.
Collapse
Affiliation(s)
- Xiaotong Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Shan Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Xuanyin Chen
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhongxue Cui
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Xue'er Li
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Yingying Zhou
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Honghong Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
- Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an, Shaanxi 710048, China
| | - Qiushi Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
- Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an, Shaanxi 710048, China
| |
Collapse
|
4
|
Cheng R, Zhang X, Li J, Zheng H, Zhang Q. Nanoporous, Ultrastiff, and Transparent Plastic-like Polymer Hydrogels Enabled by Hydrogen Bonding-Induced Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42783-42793. [PMID: 39087622 DOI: 10.1021/acsami.4c10382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Most natural supporting tissues possess both exceptional mechanical strength, a significant amount of water, and the anisotropic structure, as well as nanoscale assembly. These properties are essential for biological processes, but have been challenging to emulate in synthetic materials. In an effort to achieve simultaneous improvement of these trade-off features, a hydrogen bonding-induced self-assembly strategy was introduced to create nanoporous plastic-like polymer hydrogels. Multiple hydrogen bonding-mediated networks and nanoporous orientation structures endow transparent hydrogels with remarkable mechanical robustness. They exhibit Young's modulus of up to 223.7 MPa and a breaking strength of up to 10.3 MPa, which are superior to those of most common polymer hydrogels. The uniform porous nanostructures of hydrogen-bonded hydrogels contribute to a significantly larger specific surface area compared to conventional hydrogels. This allows for the retention of high mechanical properties in environments with a high water content of 70 wt %. A rubbery stage is observed during the heating process, which can reverse and reshape the manufacture of objects with various desired 2D or 3D shapes using techniques such as origami and kirigami. Finally, as a proof-of-concept, the outstanding mechanical properties of poly(MAA-co-AA-co-NVCL) hydrogel, combined with its high water content, make it suitable for applications such as smart temperature monitors, multilevel information anticounterfeiting, and artificial muscles.
Collapse
Affiliation(s)
- Ruidong Cheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuehui Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jie Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Zheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
5
|
Ugrinovic V, Markovic M, Bozic B, Panic V, Veljovic D. Physically Crosslinked Poly(methacrylic acid)/Gelatin Hydrogels with Excellent Fatigue Resistance and Shape Memory Properties. Gels 2024; 10:444. [PMID: 39057467 PMCID: PMC11276459 DOI: 10.3390/gels10070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels endure various dynamic stresses, demanding robust mechanical properties. Despite significant advancements, matching hydrogels' strength to biological tissues and plastics is often challenging without applying potentially harmful crosslinkers. Using hydrogen bonds as sacrificial bonds offers a promising strategy to produce tough, versatile hydrogels for biomedical and industrial applications. Poly(methacrylic acid) (PMA)/gelatin hydrogels were synthesized by thermally induced free-radical polymerization and crosslinked only by physical bonds, without adding any chemical crosslinker. The addition of gelatin increased the formation of hydrophobic domains in the structure of the hydrogels, which acted as permanent crosslinking points. The increase in PMA and gelatin contents generally led to a lower equilibrium water content (WC), higher thermal stability and better mechanical properties. The values of tensile strength and toughness reached up to 1.44 ± 0.17 MPa and 4.91 ± 0.51 MJ m-3, respectively, while the compressive modulus and strength reached up to 0.75 ± 0.06 MPa and 24.81 ± 5.85 MPa, respectively, with the WC being higher than 50 wt.%. The obtained values for compressive mechanical properties are comparable with super-strong hydrogels reported in the literature. In addition, hydrogels exhibited excellent fatigue resistance and biocompatibility, as well as great shape memory properties, which make them prominent candidates for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Vukasin Ugrinovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (V.P.)
| | - Maja Markovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (V.P.)
| | - Bojan Bozic
- Institute of Physiology and Biochemistry “Ivan Đaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Panic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (V.P.)
| | - Djordje Veljovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Chen J, Shi H, Gong M, Chen H, Teng L, Xu P, Wang Y, Hu Z, Zeng Z. β-Lactoglobulin-based aerogels: Facile preparation and sustainable removal of organic contaminants from water. Int J Biol Macromol 2024; 272:132856. [PMID: 38834118 DOI: 10.1016/j.ijbiomac.2024.132856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Economically and efficiently removing organic pollutants from water is still a challenge in wastewater treatment. Utilizing environmentally friendly and readily available protein-based natural polymers to develop aerogels with effective removal performance and sustainable regeneration capability is a promising strategy for adsorbent design. Here, a robust and cost-effective method using inexpensive β-lactoglobulin (BLG) as raw material was proposed to fabricate BLG-based aerogels. Firstly, photocurable BLG-based polymers were synthesized by grafting glycidyl methacrylate. Then, a cross-linking reaction, including photo-crosslinking and salting-out treatment, was applied to prepared BLG-based hydrogels. Finally, the BLG-based aerogels with high porosity and ultralight weight were obtained after freeze-drying. The outcomes revealed that the biocompatible BLG-based aerogels exhibited effective removal performance for a variety of organic pollutants under perfectly quiescent conditions, and could be regenerated and reused many times via a simple and rapid process of acid washing and centrifugation. Overall, this work not only demonstrates that BLG-based aerogels are promising adsorbents for water purification but also provides a potential way for the sustainable utilization of BLG.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China.
| | - Huanhuan Shi
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China
| | - Min Gong
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China
| | - Hong Chen
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China
| | - Lijing Teng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China
| | - Pu Xu
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China
| | - Yun Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China.
| | - Zuquan Hu
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China.
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China.
| |
Collapse
|
7
|
Jiang Y, Ng ELL, Han DX, Yan Y, Chan SY, Wang J, Chan BQY. Self-Healing Polymeric Materials and Composites for Additive Manufacturing. Polymers (Basel) 2023; 15:4206. [PMID: 37959886 PMCID: PMC10649664 DOI: 10.3390/polym15214206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Self-healing polymers have received widespread attention due to their ability to repair damage autonomously and increase material stability, reliability, and economy. However, the processability of self-healing materials has yet to be studied, limiting the application of rich self-healing mechanisms. Additive manufacturing effectively improves the shortcomings of conventional processing while increasing production speed, accuracy, and complexity, offering great promise for self-healing polymer applications. This article summarizes the current self-healing mechanisms of self-healing polymers and their corresponding additive manufacturing methods, and provides an outlook on future developments in the field.
Collapse
Affiliation(s)
- Yixue Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Evelyn Ling Ling Ng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Danielle Xinyun Han
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Yinjia Yan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - John Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
8
|
Xu X, Eatmon YL, Christie KSS, McGaughey AL, Guillomaitre N, Datta SS, Ren ZJ, Arnold C, Priestley RD. Tough and Recyclable Phase-Separated Supramolecular Gels via a Dehydration-Hydration Cycle. JACS AU 2023; 3:2772-2779. [PMID: 37885595 PMCID: PMC10598558 DOI: 10.1021/jacsau.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Hydrogels are compelling materials for emerging applications including soft robotics and autonomous sensing. Mechanical stability over an extensive range of environmental conditions and considerations of sustainability, both environmentally benign processing and end-of-life use, are enduring challenges. To make progress on these challenges, we designed a dehydration-hydration approach to transform soft and weak hydrogels into tough and recyclable supramolecular phase-separated gels (PSGs) using water as the only solvent. The dehydration-hydration approach led to phase separation and the formation of domains consisting of strong polymer-polymer interactions that are critical for forming PSGs. The phase-separated segments acted as robust, physical cross-links to strengthen PSGs, which exhibited enhanced toughness and stretchability in its fully swollen state. PSGs are not prone to overswelling or severe shrinkage in wet conditions and show environmental tolerance in harsh conditions, e.g., solutions with pH between 1 and 14. Finally, we demonstrate the use of PSGs as strain sensors in air and aqueous environments.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Yannick L. Eatmon
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Kofi S. S. Christie
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Allyson L. McGaughey
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Néhémie Guillomaitre
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Sujit S. Datta
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Zhiyong Jason Ren
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Craig Arnold
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Rodney D. Priestley
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Princeton
Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
9
|
Pruksawan S, Lin Z, Lee YL, Chee HL, Wang F. 4D-Printed Hydrogel Actuators through Diffusion-Path Architecture Design. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46388-46399. [PMID: 37738306 DOI: 10.1021/acsami.3c10112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Recently, smart hydrogels have garnered considerable attention as biomedical devices, and several approaches have been introduced for their fabrication, including the incorporation of stimulus-responsive additives, utilization of molecular imprinting techniques, and application of multilayered hydrogels. However, the nonuniform properties resulting from these approaches limit the practical applications of hydrogels by causing inconsistent performance and behavior. In this study, we propose a novel approach to manipulating the swelling kinetics of hydrogels by engineering their diffusion-path architecture. By simply adjusting the diffusion path length within the hydrogel, we achieved a significant change in swelling kinetics. This approach enables precise control over the diffusion and transport processes within the hydrogel, resulting in enhanced swelling kinetics when reducing the diffusion path length. Furthermore, by strategically designing the diffusion-path architecture of a 3D-printed hydrogel specimen, we can fabricate smart hydrogel actuators that exhibit reversible shape transformations during swelling and deswelling through a nonequilibrium differential swelling. The proposed approach eliminates the need to modify the spatial properties of hydrogel structures such as cross-linking density, polymer, or additive compositions, thereby achieving uniform properties throughout the hydrogel and creating new possibilities for the development of advanced 4D-printed biomedical devices.
Collapse
Affiliation(s)
- Sirawit Pruksawan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Zehuang Lin
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117575, Republic of Singapore
| | - Yock Leng Lee
- Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Heng Li Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
10
|
Cui Z, Liu C, Fang S, Xu J, Zhao Z, Fang J, Shen Z, Cong Z, Niu J. Bio-Inspired Conductive Hydrogels with High Toughness and Ultra-Stability as Wearable Human-Machine Interfaces for all Climates. Macromol Rapid Commun 2023; 44:e2300324. [PMID: 37462222 DOI: 10.1002/marc.202300324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
Drawing inspiration from Salicornia, a plant with the remarkable ability to thrive in harsh environments, a conductive hydrogel with high toughness and ultra-stability is reported. Specifically, the strategy of pre-cross-linking followed by secondary soaking in saturated salt solutions is introduced to prepare the PAAM-alginate conductive hydrogel with dual cross-linked dual network structure. It allows the alginate network to achieve complete cross-linking, fully leveraging the structural advantages of the PAAM-alginate conductive hydrogel. The highest tensile strength of the obtained conductive hydrogel is 697.3 kPa and the fracture energy can reach 69.59 kJ m-2 , significantly higher than human cartilage and natural rubbers. Specially, by introducing saturated salt solutions within the hydrogel, the colligative properties endow the PAAM-alginate conductive hydrogel with excellent water retention and anti-freezing properties. The prepared conductive hydrogels can work stably in an ambient environment for more than 7 days and still maintain good mechanical behavior and ionic conductivity at -50 °C. Benefiting from the excellent comprehensive performance of conductive hydrogels, wearable human-machine interfaces that can withstand large joint movements and are adapted for extreme environments are prepared to achieve precise control of robots and prostheses, respectively.
Collapse
Affiliation(s)
- Zeyu Cui
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Chen Liu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Shiqiang Fang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Junbin Xu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhi Zhao
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jiaquan Fang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Zehao Shen
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Zhenhua Cong
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian Niu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
11
|
Yang MR, Cheng YT, Tsai HC, Darge HF, Huang CC, Lin SY. Hofmeister effect-based soaking strategy for gelatin hydrogels with adjustable gelation temperature, mechanical properties, and ionic conductivity. BIOMATERIALS ADVANCES 2023; 152:213504. [PMID: 37331244 DOI: 10.1016/j.bioadv.2023.213504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/19/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
As a natural polymer with good biocompatibility, gelatin hydrogel has been widely used in the field of biomedical science for a long time. However, the lack of suitable gelation temperature and mechanical properties often limit the clinical applicability in diverse and complex environments. Here, we proposed a strategy based on the Hofmeister effect that gelatin hydrogels were soaked in the appropriate concentration of sodium sulfate solution, and the change in molecular chain interactions mainly guided by kosmotropic ions resulted in a comprehensive adjustment of multiple properties. A series of gelatin hydrogels treated with different concentrations of the salt solution gave rise to microstructural changes, which brought a decrease in the number and size of pores, a wide range of gelation temperature from 32 °C to 46 °C, a stress enhancement of about 40 times stronger to 0.8345 MPa, a strain increase of about 7 times higher to 238.05 %, and a certain degree of electrical conductivity to be utilized for versatile applications. In this regard, for example, we prepared microneedles and obtained a remarkable compression (punctuation) strength of 0.661 N/needle, which was 55 times greater than those of untreated ones. Overall, by integrating various characterizations and suggesting the corresponding mechanism behind the phenomenon, this method provides a simpler and more convenient performance control procedure. This allowed us to easily modulate the properties of the hydrogel as per the intended purpose, revealing its vast potential applications such as smart sensors, electronic skin, and drug delivery.
Collapse
Affiliation(s)
- Meng-Ru Yang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Ting Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chun-Chiang Huang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan.
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu, Taiwan.
| |
Collapse
|
12
|
Fu Z, Zhang Y, Geng X, Chi K, Liu C, Song C, Cai G, Chen X, Hong Q. Optimization strategies of mesenchymal stem cell-based therapy for acute kidney injury. Stem Cell Res Ther 2023; 14:116. [PMID: 37122024 PMCID: PMC10150535 DOI: 10.1186/s13287-023-03351-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Considering the high prevalence and the lack of targeted pharmacological management of acute kidney injury (AKI), the search for new therapeutic approaches for it is in urgent demand. Mesenchymal stem cells (MSCs) have been increasingly recognized as a promising candidate for the treatment of AKI. However, clinical translation of MSCs-based therapies is hindered due to the poor retention and survival rates as well as the impaired paracrine ability of MSCs post-delivery. To address these issues, a series of strategies including local administration, three-dimensional culture, and preconditioning have been applied. Owing to the emergence and development of these novel biotechnologies, the effectiveness of MSCs in experimental AKI models is greatly improved. Here, we summarize the different approaches suggested to optimize the efficacy of MSCs therapy, aiming at promoting the therapeutic effects of MSCs on AKI patients.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Beidaihe Rehabilitation and Recuperation Center, Chinese People's Liberation Army Joint Logistics Support Force, Qinhuangdao, China
| | - Kun Chi
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengcheng Song
- Department of Nephrology, Beijing Electric Power Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| |
Collapse
|
13
|
Cao G, Zhao L, Ji X, Peng Y, Yu M, Wang X, Li X, Ran F. "Salting out" in Hofmeister Effect Enhancing Mechanical and Electrochemical Performance of Amide-based Hydrogel Electrolytes for Flexible Zinc-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207610. [PMID: 37026666 DOI: 10.1002/smll.202207610] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/20/2023] [Indexed: 06/19/2023]
Abstract
With the development of flexible and wearable electronic devices, it is a new challenge for polymer hydrogel electrolytes to combine high mechanical flexibility and electrochemical performance into one membrane. In general, the high content of water in hydrogel electrolyte membranes always leads to poor mechanical strength, and limits their applications in flexible energy storage devices. In this work, based on the "salting out" phenomenon in Hofmeister effect, a kind of gelatin-based hydrogel electrolyte membrane is fabricated with high mechanical strength and ionic conductivity by soaking pre-gelated gelatin hydrogel in 2 m ZnSO4 aqueous. Among various gelatin-based electrolyte membranes, the gelatin-ZnSO4 electrolyte membrane delivers the "salting out" property of Hofmeister effect, which improves both the mechanical strength and electrochemical performance of gelatin-based electrolyte membranes. The breaking strength reaches 1.5 MPa. When applied to supercapacitors and zinc-ion batteries, it can sustain over 7500 and 9300 cycles for repeated charging and discharging processes. This study provides a very simple and universal method to prepare polymer hydrogel electrolytes with high strength, toughness, and stability, and its applications in flexible energy storage devices provide a new idea for the construction of secure and stable flexible and wearable electronic devices.
Collapse
Affiliation(s)
- Guanghua Cao
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Lei Zhao
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xiwei Ji
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Yuanyou Peng
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Meimei Yu
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xiangya Wang
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xiangye Li
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
14
|
Lyu J, Zhou Q, Wang H, Xiao Q, Qiang Z, Li X, Wen J, Ye C, Zhu M. Mechanically Strong, Freeze-Resistant, and Ionically Conductive Organohydrogels for Flexible Strain Sensors and Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206591. [PMID: 36658775 PMCID: PMC10037987 DOI: 10.1002/advs.202206591] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Conductive hydrogels as promising material candidates for soft electronics have been rapidly developed in recent years. However, the low ionic conductivity, limited mechanical properties, and insufficient freeze-resistance greatly limit their applications for flexible and wearable electronics. Herein, aramid nanofiber (ANF)-reinforced poly(vinyl alcohol) (PVA) organohydrogels containing dimethyl sulfoxide (DMSO)/H2 O mixed solvents with outstanding freeze-resistance are fabricated through solution casting and 3D printing methods. The organohydrogels show both high tensile strength and toughness due to the synergistic effect of ANFs and DMSO in the system, which promotes PVA crystallization and intermolecular hydrogen bonding interactions between PVA molecules as well as ANFs and PVA, confirmed by a suite of characterization and molecular dynamics simulations. The organohydrogels also exhibit ultrahigh ionic conductivity, ranging from 1.1 to 34.3 S m-1 at -50 to 60 °C. Building on these excellent material properties, the organohydrogel-based strain sensors and solid-state zinc-air batteries (ZABs) are fabricated, which have a broad working temperature range. Particularly, the ZABs not only exhibit high specific capacity (262 mAh g-1 ) with ultra-long cycling life (355 cycles, 118 h) even at -30 °C, but also can work properly under various deformation states, manifesting their great potential applications in soft robotics and wearable electronics.
Collapse
Affiliation(s)
- Jiayu Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Qingya Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Qi Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Zhe Qiang
- School of Polymer Science and EngineeringThe University of Southern MississippiHattiesburgMS39406USA
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
15
|
Sun W, Wang J, He M. Anisotropic cellulose nanocrystal composite hydrogel for multiple responses and information encryption. Carbohydr Polym 2023; 303:120446. [PMID: 36657839 DOI: 10.1016/j.carbpol.2022.120446] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Anisotropic composites based on well-ordered cellulose nanocrystals (CNCs) have received increasing attention due to their fascinating optical properties. In this study, we fabricated a multi-functional hydrogel with nematic organization of CNC by soaking a pre-stretched polyvinyl alcohol (PVA)/CNC cyrogel in Na2SO4, CaCl2 solution and DI water in sequence. The crystalline domains, water content and transmittance of the hydrogel are regulated via the Hofmeister effect and hydrophobic interactions, which makes the birefringence of the hydrogel observable by interference colors. The aligned CNC not only enhance the mechanical strength of hydrogel, but also endow it with stimuli-responsive ability to the varying environment such as ion strength (0 to 5 M NaCl solution) and external forces (pressure of 0 to 248 kPa). Moreover, the patterned hydrogels are successfully fabricated by the method of local solvent displacement. Due to the low light transmission, the pattern can be encrypted and only be observed between crossed polarizers. These optical properties made the hydrogel a promising candidate for environmental monitoring and anti-counterfeit material.
Collapse
Affiliation(s)
- Wen Sun
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Ming He
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
16
|
Dynamic modulation and epoxy functionalization of protein-mediated enoate ester-based hybrid cryogels. Int J Biol Macromol 2022; 223:1158-1179. [PMID: 36375674 DOI: 10.1016/j.ijbiomac.2022.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
The current work is focused on the preparation of protein-mediated poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) copolymer as a self-template for in situ synthesis of hybrid gels. Gelatin, collagen, biotin, and l-arginine were used to create hybrid materials with adjustable swelling and elastic properties. Hybrid cryogels tended to swell more than hybrid hydrogels due to their porous nature. Collaged-doped cryogels had the highest swelling, whereas gelatin-doped hybrids showed enhanced elastic modulus. All hybrid gels exhibited pH-sensitive swelling to controlled release applications depending on the degree of protonation of NH2 and COOH groups in the side chains. At low pH conditions, hybrid cryogels exhibited a higher swelling tendency compared to hydrogels. Ion-stimulus-response of hybrid gels was studied to evaluate the effect of salt concentration and features of ambient ions on swelling. Depending on the polyelectrolytic or polyampholytic nature, the extent of swelling in NaCl and KCl solutions varied according to the charge distribution in the network chains. Hybrid gels showed excellent adsorption performance for methyl orange by the presence of epoxy, hydroxyl groups, amino and carboxyl groups providing sufficient active sites. Adsorption capacity of hybrid cryogels is higher than that of hydrogels. The removal rate 97/%, reached an equilibrium state in a short period, suggested that collagen-doped hybrid cryogels have a potential application to remove dyestuff from wastewater. In relation to the decrease of methyl orange concentration in solution, adsorption process followed pseudo-second-order kinetic model. Avrami model has provided a better experimental-calculated fit and adsorption thermodynamics analysis indicated that the adsorption was a spontaneous process with a negative standard free energy. The characteristic findings from this research will provide insights into the design and application of enoate-ester and protein-based combinations in the food, biomedical and cosmetic fields.
Collapse
|
17
|
Abraham B, Agredo P, Mensah SG, Nilsson BL. Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15494-15505. [PMID: 36473193 PMCID: PMC9776537 DOI: 10.1021/acs.langmuir.2c01394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Supramolecular hydrogels have emerged as a class of promising biomaterials for applications such as drug delivery and tissue engineering. Self-assembling peptides have been well studied for such applications, but low molecular weight (LMW) amino acid-derived gelators have attracted interest as low-cost alternatives with similar emergent properties. Fluorenylmethyloxycarbonyl-phenylalanine (Fmoc-Phe) is one such privileged motif often chosen due to its inherent self-assembly potential. Previously, we developed cationic Fmoc-Phe-DAP gelators that assemble into hydrogel networks in aqueous NaCl solutions of sufficient ionic strength. The chloride anions in these solutions screen the cationic charge of the gelators to enable self-assembly to occur. Herein, we report the effects of varying the anions of sodium salts on the gelation potential, nanoscale morphology, and hydrogel viscoelastic properties of Fmoc-Phe-DAP and two of its fluorinated derivatives, Fmoc-3F-Phe-DAP and Fmoc-F5-Phe-DAP. It was observed that both the anion identity and gelator structure had a significant impact on the self-assembly and gelation properties of these derivatives. Changing the anion identity resulted in significant polymorphism of the nanoscale morphology of the assembled states that was dependent on the chemical structure of the gelator. The emergent viscoelastic character of the hydrogel networks was also found to be reliant on the anion identity and gelator structure. These results demonstrate the complex interplay between the gelator and environment that have a profound and often unpredictable impact on both self-assembly properties and emergent viscoelasticity in supramolecular hydrogels formed by LMW compounds. This work also illustrates the current lack of understanding that limits the rational design of potential biomaterials that will be in contact with complex biological fluids and provides motivation for additional research to correlate the chemical structure of LMW gelators with the structure and emergent properties of the resulting supramolecular assemblies as a function of environment.
Collapse
Affiliation(s)
- Brittany
L. Abraham
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Pamela Agredo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Samantha G. Mensah
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Bradley L. Nilsson
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- Materials
Science Program, University of Rochester, Rochester, New York 14627-0166, United States
| |
Collapse
|
18
|
Zeng C, Wu P, Guo J, Zhao N, Ke C, Liu G, Zhou F, Liu W. Synergy of Hofmeister effect and ligand crosslinking enabled the facile fabrication of super-strong, pre-stretching-enhanced gelatin-based hydrogels. SOFT MATTER 2022; 18:8675-8686. [PMID: 36349798 DOI: 10.1039/d2sm01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogels are becoming increasingly popular in biomedical and soft machine manufacturing, but their practical application is limited by poor mechanical properties. In recent years, Hofmeister effect-enhanced gelatin hydrogels have become popular. However, the synergy of the Hofmeister effect using other toughening methods is still less investigated. We have fabricated an ultra-high strength gelatin-based hydrogel by introducing ligand cross-linking and hydrogen bonds. Unlike conventional double-network hydrogels, the dense physical cross-linking involving sacrificial bonds gives the hydrogel excellent fatigue resistance and self-recovery properties. The enhancement of mechanical properties by the Hofmeister effect is attributed to the disruption of the hydration shell of the gelatin molecular chains, which leads to stronger interactions between the molecular chains. The mechanical properties of the hydrogels are adjustable over a wide range by varying the concentration of the soaked (NH4)2SO4 solution. The fixation of the gelatin molecular chain orientation by the Hofmeister effect and the reorganization of the coordination bonds allow the hydrogels to be self-reinforced by pre-stretching. At the same time, the modulus contraction of hydrogels in high-concentration salt solutions, and relaxation and swelling in dilute solutions exhibit ionic stimulation responses and shape recovery capability, and hybrid hydrogels have great potential as bio-actuators.
Collapse
Affiliation(s)
- Cheng Zeng
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Pengxi Wu
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Jinglun Guo
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Nan Zhao
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Cheng Ke
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Guoqiang Liu
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Liu
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
19
|
Zhang CW, Zou W, Yu HC, Hao XP, Li G, Li T, Yang W, Wu ZL, Zheng Q. Manta Ray Inspired Soft Robot Fish with Tough Hydrogels as Structural Elements. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52430-52439. [PMID: 36351752 DOI: 10.1021/acsami.2c17009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The design of soft robots capable of navigation underwater has received tremendous research interest due to the robots' versatile applications in marine explorations. Inspired by marine animals such as jellyfish, scientists have developed various soft robotic fishes by using elastomers as the major material. However, elastomers have a hydrophobic network without embedded water, which is different from the gel-state body of the prototypes and results in high contrast to the surrounding environment and thus poor acoustic stealth. Here, we demonstrate a manta ray-inspired soft robot fish with tailored swimming motions by using tough and stiff hydrogels as the structural elements, as well as a dielectric elastomer as the actuating unit. The switching between actuated and relaxed states of this unit under wired power leads to the flapping of the pectoral fins and swimming of the gel fish. This robot fish has good stability and swims with a fast speed (∼10 cm/s) in freshwater and seawater over a wide temperature range (4-50 °C). The high water content (i.e., ∼70 wt %) of the robot fish affords good optical and acoustic stealth properties under water. The excellent mechanical properties of the gels also enable easy integration of other functional units/systems with the robot fish. As proof-of-concept examples, a temperature sensing system and a soft gripper are assembled, allowing the robot fish to monitor the local temperature, raise warning signals by lighting, and grab and transport an object on demand. Such a robot fish should find applications in environmental detection and execution tasks under water. This work should also be informative for the design of other soft actuators and robots with tough hydrogels as the building blocks.
Collapse
Affiliation(s)
- Chuan Wei Zhang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weifeng Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Hai Chao Yu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xing Peng Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guorui Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Tiefeng Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Wei Yang
- Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Zheng G, Gao W, Li X, Wu Z, Cao LA, Feng E, Yang Z. A κ-Carrageenan-Containing Organohydrogel with Adjustable Transmittance for an Antifreezing, Nondrying, and Solvent-Resistant Strain Sensor. Biomacromolecules 2022; 23:4872-4882. [DOI: 10.1021/acs.biomac.2c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guangchao Zheng
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| | - Wei Gao
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| | - Xue Li
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| | - Zhiqiang Wu
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| | - Lin-An Cao
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| | - Enke Feng
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| | - Zhiming Yang
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| |
Collapse
|
21
|
Wong JHM, Tan RPT, Chang JJ, Chan BQY, Zhao X, Cheng JJW, Yu Y, Boo YJ, Lin Q, Ow V, Su X, Lim JYC, Loh XJ, Xue K. Injectable Hybrid-Crosslinked Hydrogels as Fatigue-Resistant and Shape-Stable Skin Depots. Biomacromolecules 2022; 23:3698-3712. [PMID: 35998618 DOI: 10.1021/acs.biomac.2c00574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Injectable hydrogels have gained considerable attention, but they are typically mechanically weak and subject to repeated physiological stresses in the body. Herein, we prepared polyurethane diacrylate (EPC-DA) hydrogels, which are injectable and can be photocrosslinked into fatigue-resistant implants. The mechanical properties can be tuned by changing photocrosslinking conditions, and the hybrid-crosslinked EPC-DA hydrogels exhibited high stability and sustained release properties. In contrast to common injectable hydrogels, EPC-DA hydrogels exhibited excellent antifatigue properties with >90% recovery during cyclic compression tests and showed shape stability after application of force and immersion in an aqueous buffer for 35 days. The EPC-DA hydrogel formed a shape-stable hydrogel depot in an ex vivo porcine skin model, with establishment of a temporary soft gel before in situ fixing by UV crosslinking. Hybrid crosslinking using injectable polymeric micelles or nanoparticles may be a general strategy for producing hydrogel implants resistant to physiological stresses.
Collapse
Affiliation(s)
- Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Rebekah Pei Ting Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Jun Jie Chang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Xinxin Zhao
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jayce Jian Wei Cheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Valerie Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Xinyi Su
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.,School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue, #01-30 General Office, Block N4.1, Singapore 639798, Singapore
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| |
Collapse
|
22
|
Pruksawan S, Chee HL, Wang Z, Luo P, Chong YT, Thitsartarn W, Wang F. Toughened Hydrogels for 3D Printing of Soft Auxetic Structures. Chem Asian J 2022; 17:e202200677. [PMID: 35950549 DOI: 10.1002/asia.202200677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Indexed: 11/06/2022]
Abstract
Materials with negative Poisson's ratio have attracted considerable attention and offered high potential applications as biomedical devices due to their ability to expand in every direction when stretched. Although negative Poisson's ratio has been obtained in various base materials such as metals and polymers, there are very limited works on hydrogels due to their intrinsic brittleness. Herein, we report the use of methacrylated cellulose nanocrystals (CNCMAs) as a macro-cross-linking agent in poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels for 3D printing of auxetic structures. Our developed CNCMA-pHEMA hydrogels exhibit significant improvements in mechanical properties, which is attributed to the coexistence of multiple chemical and physical interactions between the pHEMA and CNCMAs. Structures printed by using CNCMA-pHEMA hydrogels show auxetic behavior with greatly enhanced toughness and stretchability compared to the hydrogel with a traditional cross-linking agent. Such strong and tough auxetic hydrogels would contribute toward establishing advanced flexible implantable devices such as biodegradable oesophageal self-expandable stents.
Collapse
Affiliation(s)
| | - Heng Li Chee
- Institute of Materials Research and Engineering, PMC, SINGAPORE
| | - Zizhen Wang
- National University of Singapore - Kent Ridge Campus: National University of Singapore, bioengineering, SINGAPORE
| | - Ping Luo
- Institute of Materials Research and Engineering, AMC, SINGAPORE
| | - Yi Ting Chong
- Institute of Materials Research and Engineering, PMC, SINGAPORE
| | | | - FuKe Wang
- Institute of Materiasl Research and Engineering, 3 Research Link, 117602, Singapore, SINGAPORE
| |
Collapse
|