1
|
Feng L, Gao RY, Chen ZM, Qin SN, Cao YJ, Salminen K, Sun JJ, Wu SH. Cold-hot Janus electrochemical aptamer-based sensor for calibration-free determination of biomolecules. Biosens Bioelectron 2024; 264:116642. [PMID: 39126905 DOI: 10.1016/j.bios.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Real-time, high-frequency measurements of pharmaceuticals, metabolites, exogenous antigens, and other biomolecules in biological samples can provide critical information for health management and clinical diagnosis. Electrochemical aptamer-based (EAB) sensor is a promising analytical technique capable of achieving these goals. However, the issues of insufficient sensitivity, frequent calibration and lack of adapted portable electrochemical device limit its practical application in immediate detection. In response we have fabricated an on-chip-integrated, cold-hot Janus EAB (J-EAB) sensor based on the thermoelectric coolers (TECs). Attributed to the Peltier effect, the enhanced/suppressed current response can be generated simultaneously on cold/hot sides of the J-EAB sensor. The ratio of the current responses on the cold and hot sides was used as the detection signal, enabling rapid on-site, calibration-free determination of small molecules (procaine) as well as macromolecules (SARS-CoV-2 spike protein) in single step, with detection limits of 1 μM and 10 nM, respectively. We have further demonstrated that the J-EAB sensor is effective in improving the ease and usability of the actual detection process, and is expected to provide a universal, low-cost, fast and easy potential analytical tool for other clinically important biomarkers, drugs or pharmaceutical small molecules.
Collapse
Affiliation(s)
- Lei Feng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Run-Yu Gao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhi-Min Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Sai-Nan Qin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yi-Jie Cao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Kalle Salminen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jian-Jun Sun
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Shao-Hua Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Erdem A, Senturk H, Yildiz E, Maral M. Optimized aptamer-based next generation biosensor for the ultra-sensitive determination of SARS-CoV-2 S1 protein in saliva samples. Int J Biol Macromol 2024; 281:136233. [PMID: 39362419 DOI: 10.1016/j.ijbiomac.2024.136233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus, which rapidly spread worldwide and resulted in a pandemic. Efficient and sensitive detection techniques have been devised since the onset of the epidemic and continue to be improved at present. Due to the crucial role of the SARS-CoV-2 S1 protein in facilitating the virus's entry into cells, efforts in detection and treatment have primarily centered upon this protein. In this study, a rapid, ultrasensitive, disposable, easy-to-use, cost-effective next generation biosensor based on optimized aptamer (Optimer, OPT) was developed by using a disposable pencil graphite electrode (PGE) and applied for the impedimetric determination of SARS-CoV-2 S1 protein. The S1 protein interacted with the OPT in the solution phase and then immobilized onto the PGE surface. Subsequently, measurements using electrochemical impedance spectroscopy (EIS) were conducted in a solution containing a redox probe of 1 mM [Fe(CN)6]3-/4-. Under optimum conditions, the limit of detection (LOD) for the S1 protein in buffer medium at concentrations ranging from 101 to 106 ag/mL was calculated as 8.80 ag/mL (0.11 aM). The selectivity of the developed biosensor was studied against MERS-CoV-S1 protein (MERS) and Influenza Hemagglutinin antigen (HA). Furthermore, the application of the biosensor in artificial saliva medium is demonstrated. The LOD was also calculated in artificial saliva medium in the concentration range of 101-105 ag/mL and calculated as 2.01 ag/mL (0.025 aM). This medium was also used to assess the selectivity of optimized-aptamer based biosensor.
Collapse
Affiliation(s)
- Arzum Erdem
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100 Izmir, Türkiye.
| | - Huseyin Senturk
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Esma Yildiz
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Meltem Maral
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100 Izmir, Türkiye
| |
Collapse
|
3
|
Enebral-Romero E, García-Fernández D, Gutiérrez-Gálvez L, López-Diego D, Luna M, García-Martín A, Salagre E, Michel EG, Torres Í, Zamora F, García-Mendiola T, Lorenzo E. Bismuthene - Tetrahedral DNA nanobioconjugate for virus detection. Biosens Bioelectron 2024; 261:116500. [PMID: 38896979 DOI: 10.1016/j.bios.2024.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
In this work, we present an electrochemical sensor for fast, low-cost, and easy detection of the SARS-CoV-2 spike protein in infected patients. The sensor is based on a selected combination of nanomaterials with a specific purpose. A bioconjugate formed by Few-layer bismuthene nanosheets (FLB) and tetrahedral DNA nanostructures (TDNs) is immobilized on Carbon Screen-Printed Electrodes (CSPE). The TDNs contain on the top vertex an aptamer that specifically binds to the SARS-CoV-2 spike protein, and a thiol group at the three basal vertices to anchor to the FLB. The TDNs are also marked with a redox indicator, Azure A (AA), which allows the direct detection of SARS-CoV-2 spike protein through changes in the current intensity of its electrolysis before and after the biorecognition reaction. The developed sensor can detect SARS-CoV-2 spike protein with a detection limit of 1.74 fg mL-1 directly in nasopharyngeal swab human samples. Therefore, this study offers a new strategy for rapid virus detection since it is versatile enough for different viruses and pathogens.
Collapse
Affiliation(s)
- Estefanía Enebral-Romero
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain; Departamento de Química Analítica y Análisis Instrumental. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Daniel García-Fernández
- Departamento de Química Analítica y Análisis Instrumental. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David López-Diego
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760, Madrid, Spain
| | - Mónica Luna
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760, Madrid, Spain
| | - Adrián García-Martín
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autonoma de Madrid, Madrid, Spain; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena Salagre
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autonoma de Madrid, Madrid, Spain; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique G Michel
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autonoma de Madrid, Madrid, Spain; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Íñigo Torres
- Departamento de Química Inorgánica and Condensed Matter Physics Center (IFIMAC). Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem). Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Félix Zamora
- Departamento de Química Inorgánica and Condensed Matter Physics Center (IFIMAC). Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem). Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental. Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem). Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Encarnación Lorenzo
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain; Departamento de Química Analítica y Análisis Instrumental. Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem). Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Siu RHP, Jesky RG, Fan YJ, Au-Yeung CCH, Kinghorn AB, Chan KH, Hung IFN, Tanner JA. Aptamer-Mediated Electrochemical Detection of SARS-CoV-2 Nucleocapsid Protein in Saliva. BIOSENSORS 2024; 14:471. [PMID: 39451684 PMCID: PMC11505747 DOI: 10.3390/bios14100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Gold standard detection of SARS-CoV-2 by reverse transcription quantitative PCR (RT-qPCR) can achieve ultrasensitive viral detection down to a few RNA copies per sample. Yet, the lengthy detection and labor-intensive protocol limit its effectiveness in community screening. In view of this, a structural switching electrochemical aptamer-based biosensor (E-AB) targeting the SARS-CoV-2 nucleocapsid (N) protein was developed. Four N protein-targeting aptamers were characterized on an electrochemical cell configuration using square wave voltammetry (SWV). The sensor was investigated in an artificial saliva matrix optimizing the aptamer anchoring orientation, SWV interrogation frequency, and target incubation time. Rapid detection of the N protein was achieved within 5 min at a low nanomolar limit of detection (LOD) with high specificity. Specific N protein detection was also achieved in simulated positive saliva samples, demonstrating its feasibility for saliva-based rapid diagnosis. Further research will incorporate novel signal amplification strategies to improve sensitivity for early diagnosis.
Collapse
Affiliation(s)
- Ryan H. P. Siu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
| | - Robert G. Jesky
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
| | - Yu-Jing Fan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; (Y.-J.F.); (I.F.-N.H.)
| | - Cyrus C. H. Au-Yeung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
| | - Andrew B. Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
| | - Kwok-Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China;
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; (Y.-J.F.); (I.F.-N.H.)
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| |
Collapse
|
5
|
Gutiérrez-Gálvez L, El Hajioui-El Ghalbzouri H, Enebral-Romero E, Garrido M, Naranjo A, López-Diego D, Luna M, Pérez EM, García-Mendiola T, Lorenzo E. Rapid and simple viral protein detection by functionalized 2D MoS 2/graphene electrochemiluminescence aptasensor. Talanta 2024; 276:126293. [PMID: 38788383 DOI: 10.1016/j.talanta.2024.126293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
In this work we present the development of an electrochemiluminescence aptasensor based on electrografting molybdenum disulphide nanosheets functionalized with diazonium salt (MoS2-N2+) upon screen-printed electrodes of graphene (SPEs GPH) for viral proteins detection. In brief, this aptasensor consists of SPEs GPH electrografted with MoS2-N2+ and modified with a thiolated aptamer, which can specifically recognize the target protein analyte. In this case, we have used SARS-CoV-2 spike protein as model protein. Electrochemiluminescence detection was performed by using the [Ru(bpy)3]2+/TPRA (tripropylamine) system, which allows the specific detection of the SARS-CoV-2 spike protein easily and rapidly with a detection limit of 9.74 fg/mL and a linear range from 32.5 fg/mL to 50.0 pg/mL. Moreover, the applicability of the aptasensor has been confirmed by the detection of the protein directly in human saliva samples. Comparing our device with a traditional saliva antigen test, our aptasensor can detect the spike protein even when the saliva antigen test gives a negative result.
Collapse
Affiliation(s)
- Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Estefanía Enebral-Romero
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Marina Garrido
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Alicia Naranjo
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - David López-Diego
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760, Madrid, Spain
| | - Mónica Luna
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760, Madrid, Spain
| | - Emilio M Pérez
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
6
|
Xie Y, Huang DD, Xu LF, Wan T, Cao YJ, Salminen K, Sun JJ. Rapid nanomolar detection of cocaine in biofluids by electrochemical aptamer-based sensor with low-temperature effect for drugged driving screening. Mikrochim Acta 2024; 191:510. [PMID: 39103665 DOI: 10.1007/s00604-024-06599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Cocaine is one of the most abused illicit drugs, and its abuse damages the central nervous system and can even lead directly to death. Therefore, the development of simple, rapid and highly sensitive detection methods is crucial for the prevention and control of drug abuse, traffic accidents and crime. In this work, an electrochemical aptamer-based (EAB) sensor based on the low-temperature enhancement effect was developed for the direct determination of cocaine in bio-samples. The signal gain of the sensor at 10 °C was greatly improved compared to room temperature, owing to the improved affinity between the aptamer and the target. Additionally, the electroactive area of the gold electrode used to fabricate the EAB sensor was increased 20 times by a simple electrochemical roughening method. The porous electrode possesses more efficient electron transfer and better antifouling properties after roughening. These improvements enabled the sensor to achieve rapid detection of cocaine in complex bio-samples. The low detection limits (LOD) of cocaine in undiluted urine, 50% serum and 50% saliva were 70 nM, 30 nM and 10 nM, respectively, which are below the concentration threshold in drugged driving screening. The aptasensor was simple to construct and reusable, which offers potential for drugged driving screening in the real world.
Collapse
Affiliation(s)
- Yu Xie
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, 343009, China
| | - Da-Dong Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Ling-Feng Xu
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, 343009, China
| | - Ting Wan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yi-Jie Cao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Kalle Salminen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jian-Jun Sun
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
7
|
Ramya PR, Halder S, Nagamani K, Singh Chouhan R, Gandhi S. Disposable graphene-oxide screen-printed electrode integrated with portable device for detection of SARS-CoV-2 in clinical samples. Bioelectrochemistry 2024; 158:108722. [PMID: 38697015 DOI: 10.1016/j.bioelechem.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis is the need of the hour, as cases are persistently increasing, and new variants are constantly emerging. The ever-changing nature of the virus leading to multiple variants, has brought an imminent need for early, accurate and rapid detection methods. Herein, we have reported the design and fabrication of Screen-Printed Electrodes (SPEs) with graphene oxide (GO) as working electrode and modified with specific antibodies for SARS-CoV-2 Receptor Binding Domain (RBD). Flexibility of design, and portable nature has made SPEs the superior choice for electrochemical analysis. The developed immunosensor can detect RBD as low as 0.83 fM with long-term storage capacity. The fabricated SPEs immunosensor was tested using a miniaturized portable device and potentiostat on 100 patient nasopharyngeal samples and corroborated with RT-PCR data, displayed 94 % sensitivity. Additionally, the in-house developed polyclonal antibodies detected RBD antigen of the mutated Omicron variant of SARS-CoV-2 successfully. We have not observed any cross-reactivity/binding of the fabricated immunosensor with MERS (cross-reactive antigen) and Influenza A H1N1 (antigen sharing common symptoms). Hence, the developed SPEs sensor may be applied for bedside point-of-care diagnosis of SARS-CoV-2 using miniaturized portable device, in clinical samples.
Collapse
Affiliation(s)
- P R Ramya
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sayanti Halder
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India
| | - K Nagamani
- Department of Microbiology, Gandhi Medical College, Gandhi Hospital, Hyderabad 500025, Telangana, India
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
8
|
Whitehouse WL, Lo LHY, Kinghorn AB, Shiu SCC, Tanner JA. Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless, and Single-Step Nanomolar Detection of C-Reactive Protein. ACS APPLIED BIO MATERIALS 2024; 7:3721-3730. [PMID: 38485932 DOI: 10.1021/acsabm.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome. Currently, clinical turn-around times for established CRP detection methods take between 30 min to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers, functionalized onto inexpensive, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 min. The aptasensor limit of detection spans approximately 20-60 nM in 50% human serum with dynamic response windows spanning 1-200 or 1-500 nM (R = 0.97/R = 0.98 respectively). The sensor is stable for at least 1 week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of structure-switching electrochemical aptamer-based sensors (SS-EABs) for reagentless, voltammetric CRP detection. We hope this study inspires further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for broader use by the public.
Collapse
Affiliation(s)
- William L Whitehouse
- Advanced Biomedical Instrumentation Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Louisa H Y Lo
- Advanced Biomedical Instrumentation Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Simon C C Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Zhu M, Liu Y, Wang M, Liu T, Chu Z, Jin W. Facile construction of nanocubic Mn 3[Fe(CN) 6] 2@Pt based electrochemical DNA sensors for ultrafast precise determination of SARS-CoV-2. Bioelectrochemistry 2024; 156:108598. [PMID: 37992612 DOI: 10.1016/j.bioelechem.2023.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023]
Abstract
Owing to the high mortality and strong infection ability of COVID-19, the early rapid diagnosis is essential to reduce the risk of severe symptoms and the loss of lung function. In clinic, the commonly used detection methods, including the computed tomography (CT) and reverse transcription-polymerase chain reaction (RT-PCR), are often time-consuming with bulky instruments, which normally require more than one hour to report the results. To shorten the analytical period for testing the COVID-19 virus (SARS-CoV-2), we proposed an ultrafast and ultrasensitive DNA sensors to achieve an accurate determination of the DNA sequence by the RNA reverse transcription (rtDNA) of the SARS-CoV-2. A nanocubic architecture of the MnFe@Pt crystals was constructed to integrate both electrocatalysis and conductivity to greatly improve the biosensing performance. After the immobilization of a specific capture and report DNA on above nanocomposite, the rtDNA can be rapidly caught to the DNA sensor to form a double-helix structure, thus generating the current signal change. Within only 10 min, the as-prepared DNA sensors exhibited ultralow detection limit (1 × 10-20 M) and wide linear detection range, together with an outstanding selectivity among various interfering substances.
Collapse
Affiliation(s)
- Mengjiao Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Meiyue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
10
|
Kny E, Hasler R, Luczak W, Knoll W, Szunerits S, Kleber C. State of the art and future research directions of materials science applied to electrochemical biosensor developments. Anal Bioanal Chem 2024; 416:2247-2259. [PMID: 38006442 DOI: 10.1007/s00216-023-05054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Centralized laboratories in which analytical processes are automated to enable the analysis of large numbers of samples at relatively low cost are used for analytical testing throughout the world. However, healthcare is changing, partly due to the general recognition that care needs to be more patient-centered and putting the patient at the center of action. One way to achieve this goal is to consider point-of-care testing (PoC) devices as alternative analytical concepts. This requires miniaturization of current analytical concepts and the use of cost-effective diagnostic tools with appropriate sensitivity and specificity. Electrochemical sensors are ideally adapted as they provide robust, low-cost, and miniaturized solutions for the detection of variable analytes, yet lack the high sensitivity comparable to more classical diagnosis approaches. Advances in nanotechnology have opened up a plethora of different nanomaterials to be applied as electrode and/or sensing materials in electrochemical biosensors. The choice of materials significantly influences the sensor's sensitivity, selectivity, and overall performance. A critical review of the state of the art with respect to the development of the utilized materials (between 2019 and 2023) and where the field is heading to are the focus of this article.
Collapse
Affiliation(s)
- Erich Kny
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Roger Hasler
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Wiktor Luczak
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Wolfgang Knoll
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Sabine Szunerits
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Christoph Kleber
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria.
| |
Collapse
|
11
|
Kazancı F, Kılıç MS, Uru ŞK, Aydın RST. A novel nanoliposome model platform mimicking SARS-CoV-2 as a bioreceptor to dissect the amperometric response in biosensor applications. Int J Biol Macromol 2024; 264:130530. [PMID: 38437936 DOI: 10.1016/j.ijbiomac.2024.130530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
In this study, we proposed to investigate the response of an electrochemical-based immunosensor via nanoliposomes carrying the SARS-CoV-2 Spike-S1 protein. In this regard, we prepared RNA encapsulated nanoliposome functionalized with a specific SARS-CoV-2 Spike-S1 protein as a SARS-CoV-2 model. Then, this new nanoliposome mimicking SARS-CoV-2 was used as the bio-recognizing agent of an immunosensor developed to detect the SARS-CoV-2 within the scope of the study. The working electrode of the immunosensor was coated with chitosan polymer, decorated with SARS-CoV-2 Spike antibody, to achieve antibody-antigen matching on the electrode surface. SARS-CoV-2 mimicking nanoliposomes at various concentrations was used to achieve an amperometric response and the analytical parameters of the sensor were calculated from the relationship between the immunosensor's current values depending on the number of these matches with regard to varying antigen concentrations. Linear measurement range, LOD and measurement sensitivity were calculated as 53 pM-8 nM, 3.79 pM and 55.47 μA nM-1 cm-2, respectively. The standard deviation of the same measurements in the developed immunosensor was 0.33 %.
Collapse
Affiliation(s)
- Füsun Kazancı
- Department of Nanotechnology Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey
| | - M Samet Kılıç
- Department of Biomedical Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey
| | - Şeyda Korkut Uru
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey
| | - R Seda Tığlı Aydın
- Department of Nanotechnology Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey; Department of Biomedical Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey.
| |
Collapse
|
12
|
Hasler R, Fenoy GE, Götz A, Montes-García V, Valentini C, Qiu Z, Kleber C, Samorì P, Müllen K, Knoll W. "Clickable" graphene nanoribbons for biosensor interfaces. NANOSCALE HORIZONS 2024; 9:598-608. [PMID: 38385442 PMCID: PMC10962640 DOI: 10.1039/d3nh00590a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
We report on the synthesis of "clickable" graphene nanoribbons (GNRs) and their application as a versatile interface for electrochemical biosensors. GNRs are successfully deposited on gold-coated working electrodes and serve as a platform for the covalent anchoring of a bioreceptor (i.e., a DNA aptamer), enabling selective and sensitive detection of Interleukin 6 (IL6). Moreover, when applied as the intermediate linker on reduced graphene oxide (rGO)-based field-effect transistors (FETs), the GNRs provide improved robustness compared to conventional aromatic bi-functional linker molecules. GNRs enable an orthogonal and covalent attachment of a recognition unit with a considerably higher probe density than previously established methods. Interestingly, we demonstrate that GNRs introduce photoluminescence (PL) when applied to rGO-based FETs, paving the way toward the simultaneous optical and electronic probing of the attached biointerface.
Collapse
Affiliation(s)
- Roger Hasler
- AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria.
| | - Gonzalo E Fenoy
- AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| | - Alicia Götz
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Verónica Montes-García
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Cataldo Valentini
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, 8 allée Gaspard Monge, 67000 Strasbourg, France
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Zijie Qiu
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Christoph Kleber
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria.
| | - Paolo Samorì
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria.
| |
Collapse
|
13
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|
14
|
Nazari-Vanani R, Negahdary M. Recent advances in electrochemical aptasensors and genosensors for the detection of pathogens. ENVIRONMENTAL RESEARCH 2024; 243:117850. [PMID: 38081349 DOI: 10.1016/j.envres.2023.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
In recent years, pathogenic microorganisms have caused significant mortality rates and antibiotic resistance and triggered exorbitant healthcare costs. These pathogens often have high transmission rates within human populations. Rapid diagnosis is crucial in controlling and reducing the spread of pathogenic infections. The diagnostic methods currently used against individuals infected with these pathogens include relying on outward symptoms, immunological-based and, some biomolecular ones, which mainly have limitations such as diagnostic errors, time-consuming processes, and high-cost platforms. Electrochemical aptasensors and genosensors have emerged as promising diagnostic tools for rapid, accurate, and cost-effective pathogen detection. These bio-electrochemical platforms have been optimized for diagnostic purposes by incorporating advanced materials (mainly nanomaterials), biomolecular technologies, and innovative designs. This review classifies electrochemical aptasensors and genosensors developed between 2021 and 2023 based on their use of different nanomaterials, such as gold-based, carbon-based, and others that employed other innovative assemblies without the use of nanomaterials. Inspecting the diagnostic features of various sensing platforms against pathogenic analytes can identify research gaps and open new avenues for exploration.
Collapse
Affiliation(s)
- Razieh Nazari-Vanani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
15
|
Rabiee N, Ahmadi S, Rahimizadeh K, Chen S, Veedu RN. Metallic nanostructure-based aptasensors for robust detection of proteins. NANOSCALE ADVANCES 2024; 6:747-776. [PMID: 38298588 PMCID: PMC10825927 DOI: 10.1039/d3na00765k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 02/02/2024]
Abstract
There is a significant need for fast, cost-effective, and highly sensitive protein target detection, particularly in the fields of food, environmental monitoring, and healthcare. The integration of high-affinity aptamers with metal-based nanomaterials has played a crucial role in advancing the development of innovative aptasensors tailored for the precise detection of specific proteins. Aptamers offer several advantages over commonly used molecular recognition methods, such as antibodies. Recently, a variety of metal-based aptasensors have been established. These metallic nanomaterials encompass noble metal nanoparticles, metal oxides, metal-carbon nanotubes, carbon quantum dots, graphene-conjugated metallic nanostructures, as well as their nanocomposites, metal-organic frameworks (MOFs), and MXenes. In general, these materials provide enhanced sensitivity through signal amplification and transduction mechanisms. This review primarily focuses on the advancement of aptasensors based on metallic materials for the highly sensitive detection of protein targets, including enzymes and growth factors. Additionally, it sheds light on the challenges encountered in this field and outlines future prospects. We firmly believe that this review will offer a comprehensive overview and fresh insights into metallic nanomaterials-based aptasensors and their capabilities, paving the way for the development of innovative point-of-care (POC) diagnostic devices.
Collapse
Affiliation(s)
- Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| |
Collapse
|
16
|
Kim YJ, Min J. Advances in nanobiosensors during the COVID-19 pandemic and future perspectives for the post-COVID era. NANO CONVERGENCE 2024; 11:3. [PMID: 38206526 PMCID: PMC10784265 DOI: 10.1186/s40580-023-00410-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The unprecedented threat of the highly contagious virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes exponentially increased infections of coronavirus disease 2019 (COVID-19), highlights the weak spots of the current diagnostic toolbox. In the midst of catastrophe, nanobiosensors offer a new opportunity as an alternative tool to fill a gap among molecular tests, rapid antigen tests, and serological tests. Nanobiosensors surpass the potential of antigen tests because of their enhanced sensitivity, thus enabling us to see antigens as stable and easy-to-access targets. During the first three years of the COVID-19 pandemic, a substantial number of studies have reported nanobiosensors for the detection of SARS-CoV-2 antigens. The number of articles on nanobiosensors and SARS-CoV-2 exceeds the amount of nanobiosensor research on detecting previous infectious diseases, from influenza to SARS-CoV and MERS-CoV. This unprecedented publishing pace also implies the significance of SARS-CoV-2 and the present pandemic. In this review, 158 studies reporting nanobiosensors for detecting SARS-CoV-2 antigens are collected to discuss the current challenges of nanobiosensors using the criteria of point-of-care (POC) diagnostics along with COVID-specific issues. These advances and lessons during the pandemic pave the way for preparing for the post-COVID era and potential upcoming infectious diseases.
Collapse
Affiliation(s)
- Young Jun Kim
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
17
|
Pang S, Yu H, Zhang Y, Jiao Y, Zheng Z, Wang M, Zhang H, Liu A. Bioscreening specific peptide-expressing phage and its application in sensitive dual-mode immunoassay of SARS-CoV-2 spike antigen. Talanta 2024; 266:125093. [PMID: 37611368 DOI: 10.1016/j.talanta.2023.125093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Biorecognition components with high affinity and selectivity are vital in bioassay to diagnose and treat epidemic disease. Herein a phage display strategy of combining single-amplification-panning with non-amplification-panning was developed, by which a phage displaying cyclic heptapeptide ACLDWLFNSC (peptide J4) with good affinity and specificity to SARS-CoV-2 spike protein (SP) was identified. Molecular docking suggests that peptide J4 binds to S2 subunit by hydrogen bonding and hydrophobic interaction. Then the J4-phage was used as the capture antibody to establish phage-based chemiluminescence immunoassay (CLIA) and electrochemical impedance spectroscopy (EIS) analytical systems. The as-proposed dual-modal immunoassay platform exhibited good sensitivity and reliability in SARS-CoV-2 SP and pseudovirus assay. The limit of detection for SARS-CoV-2 SP by EIS immunoassay is 0.152 pg/mL, which is dramatically lower than that of 42 pg/mL for J4-phage based CLIA. Further, low to 40 transducing units (TU)/mL, 10 TU/mL SARS-CoV-2 pseudoviruses can be detected by the proposed J4-phage based CLIA and electrochemical immunosensor, respectively. Therefore, the as-developed dual mode immunoassays are potential methods to detect SARS-CoV-2. It is also expected to explore various phages with specific peptides to different targets for bioanalysis.
Collapse
Affiliation(s)
- Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Haipeng Yu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Yaru Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Yiming Jiao
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Zongmei Zheng
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China; Qingdao Hightop Biotech Co., Ltd, 369 Hedong Road, Hi-tech Industrial Development Zone, Qingdao, 266112, China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Haohan Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China.
| |
Collapse
|
18
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
19
|
Lee M, Shin S, Kim S, Park N. Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules 2023; 28:7327. [PMID: 37959747 PMCID: PMC10647268 DOI: 10.3390/molecules28217327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aptamers have been spotlighted as promising bio-recognition elements because they can be tailored to specific target molecules, bind to targets with a high affinity and specificity, and are easy to chemically synthesize and introduce functional groups to. In particular, fluorescent aptasensors are widely used in biological applications to diagnose diseases as well as prevent diseases by detecting cancer cells, viruses, and various biomarkers including nucleic acids and proteins as well as biotoxins and bacteria from food because they have the advantages of a high sensitivity, selectivity, rapidity, a simple detection process, and a low price. We introduce screening methods for isolating aptamers with q high specificity and summarize the sequences and affinities of the aptamers in a table. This review focuses on aptamer-based fluorescence detection sensors for biological applications, from fluorescent probes to mechanisms of action and signal amplification strategies.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Seonhye Shin
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Nokyoung Park
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| |
Collapse
|
20
|
Sensitive detection of SARS-CoV-2 spike protein based on electrochemical impedance spectroscopy of Fe 3O 4@SiO 2–Au/GCE biosensor. ADVANCED SENSOR AND ENERGY MATERIALS 2023; 2:100067. [PMCID: PMC10212796 DOI: 10.1016/j.asems.2023.100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 02/25/2024]
Abstract
Highly contagious COVID-19 disease is caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which poses a serious threat to global public health. Therefore, the development of a fast and reliable method for the detection of SARS-CoV-2 is an urgent research need. The Fe3O4@SiO2–Au is enriched with a variety of functional groups, which can be used to fabricate a sensitive electrochemical biosensor by biofunctionalization with angiotensin-converting enzyme 2 (ACE2). Accordingly, we developed a novel electrochemical sensor by chemically modifying a glassy carbon electrode (GCE) with Fe3O4@SiO2–Au nanocomposites (hereafter Fe3O4@SiO2–Au/GCE) for the rapid detection of S-protein spiked SARS-CoV-2 by electrochemical impedance spectroscopy (EIS). The new electrochemical sensor has a low limit detection (viz., 4.78 pg/mL) and a wide linear dynamic range (viz., 0.1 ng/mL to 10 μg/mL) for detecting the EIS response signal of S-protein. The robust Fe3O4@SiO2–Au/GCE biosensor has high selectivity, stability, and reproducibility for the detection of S-protein with good recovery of saliva samples.
Collapse
|
21
|
Hartati YW, Devi MJ, Irkham, Zulqaidah S, Noviyanti AR, Rochani S, Topkaya SN, Einaga Y. Electrochemical investigation of hydroxyapatite-lanthanum strontium cobalt ferrite composites (HA-LSCF) for SARS-CoV-2 aptasensors. RSC Adv 2023; 13:20209-20216. [PMID: 37416913 PMCID: PMC10321058 DOI: 10.1039/d3ra01531a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
The hydroxyapatite-lanthanum strontium cobalt ferrite (HA-LSCF) composite showed a good response on a screen-printed carbon electrode (SPCE) electrochemical aptasensor to detect SARS-CoV-2. SPCE/HA-LSCF with a thiolated aptamer has a strong affinity for the SARS-CoV-2 spike RBD protein. This occurs due to the binding of -SH to the HA-positive region. In the presence of LSCF, which is conductive, an increase in electron transfer from the redox system [Fe(CN)6]3-/4- occurs. The interaction of the aptamer with the RBD protein can be observed based on the decrease in the electron transfer process. As a result, the developed biosensor is highly sensitive to the SARS-CoV-2 spike RBD protein with a linear range of 0.125 to 2.0 ng mL-1, a detection limit of 0.012 ng mL-1, and a quantification limit of 0.040 ng mL-1. The analytical application of the aptasensor demonstrates its feasibility in the analysis of saliva or swab samples.
Collapse
Affiliation(s)
- Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Melania Janisha Devi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Salsha Zulqaidah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Siti Rochani
- Mining Technology Research Center, National Research and Innovation Agency Indonesia
| | | | - Yasuaki Einaga
- Department of Chemistry, Keio University 3-14-1 Hiyoshi Yokohama 223-8522 Japan
| |
Collapse
|
22
|
Papi M, De Spirito M, Palmieri V. Nanotechnology in the COVID-19 era: Carbon-based nanomaterials as a promising solution. CARBON 2023; 210:118058. [PMID: 37151958 PMCID: PMC10148660 DOI: 10.1016/j.carbon.2023.118058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has led to collaboration between nanotechnology scientists, industry stakeholders, and clinicians to develop solutions for diagnostics, prevention, and treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Nanomaterials, including carbon-based materials (CBM) such as graphene and carbon nanotubes, have been studied for their potential in viral research. CBM unique effects on microorganisms, immune interaction, and sensitivity in diagnostics have made them a promising subject of SARS-CoV-2 research. This review discusses the interaction of CBM with SARS-CoV-2 and their applicability, including CBM physical and chemical properties, the known interactions between CBM and viral components, and the proposed prevention, treatment, and diagnostics uses.
Collapse
Affiliation(s)
- Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| |
Collapse
|
23
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
24
|
Yang LF, Ling M, Kacherovsky N, Pun SH. Aptamers 101: aptamer discovery and in vitro applications in biosensors and separations. Chem Sci 2023; 14:4961-4978. [PMID: 37206388 PMCID: PMC10189874 DOI: 10.1039/d3sc00439b] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Aptamers are single-stranded nucleic acids that bind and recognize targets much like antibodies. Recently, aptamers have garnered increased interest due to their unique properties, including inexpensive production, simple chemical modification, and long-term stability. At the same time, aptamers possess similar binding affinity and specificity as their protein counterpart. In this review, we discuss the aptamer discovery process as well as aptamer applications to biosensors and separations. In the discovery section, we describe the major steps of the library selection process for aptamers, called systematic evolution of ligands by exponential enrichment (SELEX). We highlight common approaches and emerging strategies in SELEX, from starting library selection to aptamer-target binding characterization. In the applications section, we first evaluate recently developed aptamer biosensors for SARS-CoV-2 virus detection, including electrochemical aptamer-based sensors and lateral flow assays. Then we discuss aptamer-based separations for partitioning different molecules or cell types, especially for purifying T cell subsets for therapeutic applications. Overall, aptamers are promising biomolecular tools and the aptamer field is primed for expansion in biosensing and cell separation.
Collapse
Affiliation(s)
- Lucy F Yang
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Melissa Ling
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Nataly Kacherovsky
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| |
Collapse
|
25
|
Karuppaiah G, Vashist A, Nair M, Veerapandian M, Manickam P. Emerging trends in point-of-care biosensing strategies for molecular architectures and antibodies of SARS-CoV-2. BIOSENSORS & BIOELECTRONICS: X 2023; 13:100324. [PMID: 36844889 PMCID: PMC9941073 DOI: 10.1016/j.biosx.2023.100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
COVID-19, a highly contagious viral infection caused by the occurrence of severe acute respiratory syndrome coronavirus (SARS-CoV-2), has turned out to be a viral pandemic then ravaged many countries worldwide. In the recent years, point-of-care (POC) biosensors combined with state-of-the-art bioreceptors, and transducing systems enabled the development of novel diagnostic tools for rapid and reliable detection of biomarkers associated with SARS-CoV-2. The present review thoroughly summarises and discusses various biosensing strategies developed for probing SARS-CoV-2 molecular architectures (viral genome, S Protein, M protein, E protein, N protein and non-structural proteins) and antibodies as a potential diagnostic tool for COVID-19. This review discusses the various structural components of SARS-CoV-2, their binding regions and the bioreceptors used for recognizing the structural components. The various types of clinical specimens investigated for rapid and POC detection of SARS-CoV-2 is also highlighted. The importance of nanotechnology and artificial intelligence (AI) approaches in improving the biosensor performance for real-time and reagent-free monitoring the biomarkers of SARS-CoV-2 is also summarized. This review also encompasses existing practical challenges and prospects for developing new POC biosensors for clinical monitoring of COVID-19.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| |
Collapse
|
26
|
Tieu MV, Le HTN, Cho S. Using Nanomaterials for SARS-CoV-2 Sensing via Electrochemical Techniques. MICROMACHINES 2023; 14:933. [PMID: 37241556 PMCID: PMC10221901 DOI: 10.3390/mi14050933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023]
Abstract
Advancing low-cost and user-friendly innovations to benefit public health is an important task of scientific and engineering research. According to the World Health Organization (WHO), electrochemical sensors are being developed for low-cost SARS-CoV-2 diagnosis, particularly in resource-limited settings. Nanostructures with sizes ranging from 10 nm to a few micrometers could deliver optimum electrochemical behavior (e.g., quick response, compact size, sensitivity and selectivity, and portability), providing an excellent alternative to the existing techniques. Therefore, nanostructures, such as metal, 1D, and 2D materials, have been successfully applied in in vitro and in vivo detection of a wide range of infectious diseases, particularly SARS-CoV-2. Electrochemical detection methods reduce the cost of electrodes, provide analytical ability to detect targets with a wide variety of nanomaterials, and are an essential strategy in biomarker sensing as they can rapidly, sensitively, and selectively detect SARS-CoV-2. The current studies in this area provide fundamental knowledge of electrochemical techniques for future applications.
Collapse
Affiliation(s)
- My-Van Tieu
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hien T. Ngoc Le
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
27
|
Zhu J, Zhao X, Mao J, Na N, Ouyang J. Single-Molecule Evaluation of the SARS-CoV-2 Nucleocapsid Protein Using Gold Particle-in-a-Frame Nanostructures Enhanced Fluorescent Assay. Anal Chem 2023; 95:5267-5274. [PMID: 36912606 PMCID: PMC10022750 DOI: 10.1021/acs.analchem.2c05191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Abstract
Ultrasensitive evaluation of low-abundance analytes, particularly with limits approaching a single molecule, is a key challenge in the design of an assay for profiling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen. Herein, we report an aptamer claw strategy for directly evaluating the SARS-CoV-2 antigen based on gold particle-in-a-frame nanostructures (Au PIAFs). Au PIAF was used as a metal-enhanced fluorescence material. The assay integrated with a microplate reader achieved a sensitivity of 44 fg·mL-1 in under 3 min and accurately detected the SARS-CoV-2 nucleocapsid protein (N protein) in human saliva samples. When our assay is combined with a single-molecule counting platform, the limit of detection can be as low as 0.84 ag·mL-1. This rapid and ultrasensitive assay holds promise as a tool for screening SARS-CoV-2 and other contagious viruses.
Collapse
Affiliation(s)
- Jiale Zhu
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| | - Xuan Zhao
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| | - Jinpeng Mao
- Department of Chemistry, Tsinghua
University, Beijing 100084, China
| | - Na Na
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| |
Collapse
|
28
|
Song Y, Tang W, Han L, Liu Y, Shen C, Yin X, Ouyang B, Su Y, Guo X. Integration of nanomaterial sensing layers on printable organic field effect transistors for highly sensitive and stable biochemical signal conversion. NANOSCALE 2023; 15:5537-5559. [PMID: 36880412 DOI: 10.1039/d2nr05863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic field effect transistor (OFET) devices are one of the most popular candidates for the development of biochemical sensors due to their merits of being flexible and highly customizable for low-cost large-area manufacturing. This review describes the key points in constructing an extended-gate type OFET (EGOFET) biochemical sensor with high sensitivity and stability. The structure and working mechanism of OFET biochemical sensors are described firstly, emphasizing the importance of critical material and device engineering to higher biochemical sensing capabilities. Next, printable materials used to construct sensing electrodes (SEs) with high sensitivity and stability are presented with a focus on novel nanomaterials. Then, methods of obtaining printable OFET devices with steep subthreshold swing (SS) for high transconductance efficiency are introduced. Finally, approaches for the integration of OFETs and SEs to form portable biochemical sensor chips are introduced, followed by several demonstrations of sensory systems. This review will provide guidelines for optimizing the design and manufacturing of OFET biochemical sensors and accelerating the movement of OFET biochemical sensors from the laboratory to the marketplace.
Collapse
Affiliation(s)
- Yawen Song
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lei Han
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chaochao Shen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaokuan Yin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bang Ouyang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaojun Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
29
|
Triastuti A, Zakiyyah SN, Gaffar S, Anshori I, Surawijaya A, Hidayat D, Wiraswati HL, Yusuf M, Hartati YW. CeO 2@NH 2 functionalized electrodes for the rapid detection of SARS-CoV-2 spike receptor binding domain. RSC Adv 2023; 13:5874-5884. [PMID: 36816083 PMCID: PMC9933633 DOI: 10.1039/d2ra07560a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
A detection method based on an electrochemical aptasensor has been developed as an alternative fast, portable, simple, inexpensive, and high-accuracy detection method for detecting the SARS-CoV-2 Spike Receptor Binding Domain (spike RBD). The CeO2@NH2 functionalized Screen Printed Carbon Electrode (SPCE) was used to immobilize an aminated aptamer of spike RBD protein via glutaraldehyde as a linker. The aptamer's interaction with the SARS-CoV-2 Spike RBD was measured via the [Fe(CN)6]4-/3- redox system signal. Experimental conditions were optimized using a Box-Behnken experimental design and showed that the optimal conditions of the SARS-CoV-2 aptasensor were 1.5 ng mL-1 of aptamer, immobilization of aptamer for 60 minutes, and Spike RBD incubation for 10 minutes. The developed aptasensor was able to detect the standard SARS-CoV-2 Spike RBD with a detection limit of 0.017 ng mL-1 in the range of 0.001-100 ng mL-1. This aptasensor was used to detect salivary and oropharyngeal swab samples of normal individuals with the addition of Spike RBD, and the recoveries were 92.96% and 96.52%, respectively. The testing on nasopharyngeal swab samples of COVID-19 patients showed that the aptasensor results were comparable with the qRT-PCR results. Thus, the developed aptasensor has the potential to be applied as a SARS-CoV-2 rapid test method for clinical samples.
Collapse
Affiliation(s)
- Ayu Triastuti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Salma Nur Zakiyyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
- Moleculer Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran Indonesia
| | - Isa Anshori
- Moleculer Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran Indonesia
- Lab-on-Chip Group, Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology Indonesia
| | - Akhmadi Surawijaya
- Center of Excellence on Microelectronics, School of Electrical Engineering and Informatics, Bandung Institute of Technology Bandung Indonesia
| | - Darmawan Hidayat
- Department of Electrical Engineering, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Hesti Lina Wiraswati
- Department of Parasitology Faculty of Medicine, Universitas Padjadjaran Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
- Moleculer Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
- Moleculer Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran Indonesia
| |
Collapse
|
30
|
Sengupta J, Hussain CM. The Emergence of Carbon Nanomaterials as Effective Nano-Avenues to Fight against COVID-19. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1068. [PMID: 36770075 PMCID: PMC9918919 DOI: 10.3390/ma16031068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
COVID-19 (Coronavirus Disease 2019), a viral respiratory ailment that was first identified in Wuhan, China, in 2019, and then expanded globally, was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The severity of the illness necessitated quick action to cease the virus's spread. The best practices to avert the infection include early detection, the use of protective clothing, the consumption of antiviral medicines, and finally the immunization of the patients through vaccination. The family of carbon nanomaterials, which includes graphene, fullerene, carbon nanotube (CNT), and carbon dot (CD), has a great deal of potential to effectively contribute to each of the main trails in the battle against the coronavirus. Consequently, the recent advances in the application of carbon nanomaterials for containing and combating the SARS-CoV-2 virus are discussed herein, along with their associated challenges and futuristic applicability.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
31
|
Aptamer-Based Electrochemical Biosensors for the Detection of Salmonella: A Scoping Review. Diagnostics (Basel) 2022; 12:diagnostics12123186. [PMID: 36553193 PMCID: PMC9777869 DOI: 10.3390/diagnostics12123186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The development of rapid, accurate, and efficient detection methods for Salmonella can significantly control the outbreak of salmonellosis that threatens global public health. Despite the high sensitivity and specificity of the microbiological, nucleic-acid, and immunological-based methods, they are impractical for detecting samples outside of the laboratory due to the requirement for skilled individuals and sophisticated bench-top equipment. Ideally, an electrochemical biosensor could overcome the limitations of these detection methods since it offers simplicity for the detection process, on-site quantitative analysis, rapid detection time, high sensitivity, and portability. The present scoping review aims to assess the current trends in electrochemical aptasensors to detect and quantify Salmonella. This review was conducted according to the latest Preferred Reporting Items for Systematic review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. A literature search was performed using aptamer and Salmonella keywords in three databases: PubMed, Scopus, and Springer. Studies on electrochemical aptasensors for detecting Salmonella published between January 2014 and January 2022 were retrieved. Of the 787 studies recorded in the search, 29 studies were screened for eligibility, and 15 studies that met the inclusion criteria were retrieved for this review. Information on the Salmonella serovars, targets, samples, sensor specification, platform technologies for fabrication, electrochemical detection methods, limit of detection (LoD), and detection time was discussed to evaluate the effectiveness and limitations of the developed electrochemical aptasensor platform for the detection of Salmonella. The reported electrochemical aptasensors were mainly developed to detect Salmonella enterica Typhimurium in chicken meat samples. Most of the developed electrochemical aptasensors were fabricated using conventional electrodes (13 studies) rather than screen-printed electrodes (SPEs) (two studies). The developed aptasensors showed LoD ranges from 550 CFU/mL to as low as 1 CFU/mL within 5 min to 240 min of detection time. The promising detection performance of the electrochemical aptasensor highlights its potential as an excellent alternative to the existing detection methods. Nonetheless, more research is required to determine the sensitivity and specificity of the electrochemical sensing platform for Salmonella detection, particularly in human clinical samples, to enable their future use in clinical practice.
Collapse
|
32
|
Adeel M, Asif K, Alshabouna F, Canzonieri V, Rahman MM, Ansari SA, Güder F, Rizzolio F, Daniele S. Label-free electrochemical aptasensor for the detection of SARS-CoV-2 spike protein based on carbon cloth sputtered gold nanoparticles. BIOSENSORS & BIOELECTRONICS: X 2022; 12:100256. [PMID: 36187906 PMCID: PMC9508700 DOI: 10.1016/j.biosx.2022.100256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The proliferation and transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or the (COVID-19) disease, has become a threat to worldwide biosecurity. Therefore, early diagnosis of COVID-19 is crucial to combat the ongoing infection spread. In this study we propose a flexible aptamer-based electrochemical sensor for the rapid, label-free detection of SARS-CoV-2 spike protein (SP). A platform made of a porous and flexible carbon cloth, coated with gold nanoparticles, to increase the conductivity and electrochemical performance of the material, was assembled with a thiol functionalized DNA aptamer via S-Au bonds, for the selective recognition of the SARS-CoV-2 SP. The various steps for the sensor preparation were followed by using scanning electron microscopy, cyclic voltammetry and differential pulse voltammetry (DPV). The proposed platform displayed good mechanical stability, revealing negligible changes on voltammetric responses to bending at various angles. Quantification of SARS-CoV-2 SP was performed by DPV and chronopotentiometry (CP), exploiting the changes of the electrical signals due the [Fe(CN)6]3-/4- redox probe, when SARS-CoV-2 SP binds to the aptamer immobilized on the electrode surface. Current density, in DPV, and square root of the transition time, in CP, varied linearly with the log[ SARS-CoV-2 SP], providing lower limits of detection (LOD) of 0.11 ng/mL and 37.8 ng/mL, respectively. The sensor displayed good selectivity, repeatability, and was tested in diluted human saliva, spiked with different SARS-CoV-2 SP concentrations, providing LODs of 0.167 ng/mL and 46.2 ng/mL for DPV and CP, respectively.
Collapse
Affiliation(s)
- Muhammad Adeel
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123, Venezia, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Kanwal Asif
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123, Venezia, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Fahad Alshabouna
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Center of Excellence for Advanced Materials and Manufacturing, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, South Korea
| | - Sajid Ali Ansari
- Department of Physics, College of Science, King Faisal University, P. O. Box 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123, Venezia, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123, Venezia, Italy
| |
Collapse
|
33
|
Discovery and translation of functional nucleic acids for clinically diagnosing infectious diseases: Opportunities and challenges. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Sengupta J, Hussain CM. Decadal Journey of CNT-Based Analytical Biosensing Platforms in the Detection of Human Viruses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4132. [PMID: 36500755 PMCID: PMC9738197 DOI: 10.3390/nano12234132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
It has been proven that viral infections pose a serious hazard to humans and also affect social health, including morbidity and mental suffering, as illustrated by the COVID-19 pandemic. The early detection and isolation of virally infected people are, thus, required to control the spread of viruses. Due to the outstanding and unparalleled properties of nanomaterials, numerous biosensors were developed for the early detection of viral diseases via sensitive, minimally invasive, and simple procedures. To that aim, viral detection technologies based on carbon nanotubes (CNTs) are being developed as viable alternatives to existing diagnostic approaches. This article summarizes the advancements in CNT-based biosensors since the last decade in the detection of different human viruses, namely, SARS-CoV-2, dengue, influenza, human immunodeficiency virus (HIV), and hepatitis. Finally, the shortcomings and benefits of CNT-based biosensors for the detection of viruses are outlined and discussed.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
35
|
Amouzadeh Tabrizi M, Acedo P. Highly sensitive aptasensor for the detection of SARS-CoV-2-RBD using aptamer-gated methylene blue@mesoporous silica film/laser engraved graphene electrode. Biosens Bioelectron 2022; 215:114556. [PMID: 35870337 PMCID: PMC9288240 DOI: 10.1016/j.bios.2022.114556] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
Herein, an aptasensor was designed to detect the receptor-binding domain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2-RBD) based on the encapsulation of the methylene blue (MB) inside the mesoporous silica film (MPSF), and an aptamer as an electrochemical probe, a porous matrix, and a bio-gatekeeper, respectively. The signal analysis of the proposed aptasensor indicated that the surface coverage of the encapsulated MB inside the MPSF (MB@MPSF) was 1.9 nmol/cm2. Aptamers were capped the MB@MPSF, avoiding the release of MB into the solution via the electrostatic attraction between the positively charged amino groups of the MPSF and negatively charged phosphate groups of the aptamers. Therefore, the electrochemical signal of the encapsulated MB in the absence of the SARS-CoV-2-RBD was high. In the presence of SARS-CoV-2-RBD, the aptamers that had a high affinity to the SARS-CoV-2-RBD molecules were removed from the electrode surface to interact with SARS-CoV-2-RBD. It gave rise to the release of the MB from the MPSF to the solution and washed away on the electrode surface. Therefore, the electrochemical signal of the aptasensor decreased. The electrochemical signal was recorded with a square wave voltammetry technical in the range of 0.5-250 ng/mL of SARS-CoV-2-RBD in a saliva sample. The limit of detection was found to be 0.36 ng/mL. Furthermore, the selectivity factor values of the proposed aptasensor to 32 ng/mL SARS-CoV-2-RBD in the presence of C-reactive protein, hemagglutinin, and neuraminidase of influenza A virus were 35.9, 11.7, and 17.37, respectively, indicating the high selectivity of the proposed aptasensor.
Collapse
Affiliation(s)
| | - Pablo Acedo
- Electronic Technology Department, Universidad Carlos III de Madrid, Leganés, Spain.
| |
Collapse
|
36
|
Ye Q, Zhang Z, Liu J, Wang X. Screen-printed electrode-based biosensors modified with functional nucleic acid probes and their applications in this pandemic age: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2961-2975. [PMID: 35913361 DOI: 10.1039/d2ay00666a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical methodology has probably been the most used sensing platform in the past few years as they provide superior advantages. In particular, screen-printed electrode (SPE)-based sensing applications stand out as they provide extraordinary miniaturized but robust and user-friendly detection system. In this context, we are focusing on the modification of SPE with functional nucleic acid probes and nanostructures to improve the electrochemical detection performance in versatile sensing applications, particularly in the fight against the COVID-19 pandemic. Aptamers are immobilized on the electrode surface to detect non-nucleic acid targets and complementary probes to recognize and capture nucleic acid targets. In a step further, SPE-based biosensors with the modification of self-assembled DNA nanostructures are emphasized as they offer great potential for the interface engineering of the electrode surface and promote the excellent performance of various interface reactions. By equipping with a portable potentiostat and a smartphone monitoring device, the realization of this SPE-based miniaturized diagnostic system for the further requirement of fast and POC detection is revealed. Finally, more novel and excellent works are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Qingqing Ye
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
37
|
Abstract
Rapid and early diagnosis of lethal coronavirus disease-19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important issue considering global human health, economy, education, and other activities. The advancement of understanding of the chemistry/biochemistry and the structure of the SARS-CoV-2 virus has led to the development of low-cost, efficient, and reliable methods for COVID-19 diagnosis over “gold standard” real-time reverse transcription-polymerase chain reaction (RT-PCR) due to its several limitations. This led to the development of electrochemical sensors/biosensors for rapid, fast, and low-cost detection of the SARS-CoV-2 virus from the patient’s biological fluids by detecting the components of the virus, including structural proteins (antigens), nucleic acid, and antibodies created after COVID-19 infection. This review comprehensively summarizes the state-of-the-art research progress of electrochemical biosensors for COVID-19 diagnosis. They include the detection of spike protein, nucleocapsid protein, whole virus, nucleic acid, and antibodies. The review also outlines the structure of the SARS-CoV-2 virus, different detection methods, and design strategies of electrochemical SARS-CoV-2 biosensors by highlighting the current challenges and future perspectives.
Collapse
|
38
|
Mei Y, Lin X, He C, Zeng W, Luo Y, Liu C, Liu Z, Yang M, Kuang Y, Huang Q. Recent Progresses in Electrochemical DNA Biosensors for SARS-CoV-2 Detection. Front Bioeng Biotechnol 2022; 10:952510. [PMID: 35910031 PMCID: PMC9335408 DOI: 10.3389/fbioe.2022.952510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 12/16/2022] Open
Abstract
Coronavirus disease 19 (COVID-19) is still a major public health concern in many nations today. COVID-19 transmission is now controlled mostly through early discovery, isolation, and therapy. Because of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the contributing factor to COVID-19, establishing timely, sensitive, accurate, simple, and budget detection technologies for the SARS-CoV-2 is urgent for epidemic prevention. Recently, several electrochemical DNA biosensors have been developed for the rapid monitoring and detection of SARS-CoV-2. This mini-review examines the latest improvements in the detection of SARS-COV-2 utilizing electrochemical DNA biosensors. Meanwhile, this mini-review summarizes the problems faced by the existing assays and puts an outlook on future trends in the development of new assays for SARS-CoV-2, to provide researchers with a borrowing role in the generation of different assays.
Collapse
Affiliation(s)
- Yanqiu Mei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Public Health and Health Management, School of Medical and Information Engineering, Gannan Medical University, Ganzhou, China
| | - Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Public Health and Health Management, School of Medical and Information Engineering, Gannan Medical University, Ganzhou, China
- Oil-Tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, The Science Research Center, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Chen He
- Oil-Tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, The Science Research Center, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Weijia Zeng
- Oil-Tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, The Science Research Center, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yan Luo
- Oil-Tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, The Science Research Center, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Chenghao Liu
- Oil-Tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, The Science Research Center, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Zhehao Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Public Health and Health Management, School of Medical and Information Engineering, Gannan Medical University, Ganzhou, China
- Oil-Tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, The Science Research Center, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Min Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Public Health and Health Management, School of Medical and Information Engineering, Gannan Medical University, Ganzhou, China
- Oil-Tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, The Science Research Center, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Ying Kuang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Public Health and Health Management, School of Medical and Information Engineering, Gannan Medical University, Ganzhou, China
- Oil-Tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, The Science Research Center, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Public Health and Health Management, School of Medical and Information Engineering, Gannan Medical University, Ganzhou, China
- Oil-Tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, The Science Research Center, School of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
39
|
Chen XF, Zhao X, Yang Z. Aptasensors for the detection of infectious pathogens: design strategies and point-of-care testing. Mikrochim Acta 2022; 189:443. [PMID: 36350388 PMCID: PMC9643942 DOI: 10.1007/s00604-022-05533-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
The epidemic of infectious diseases caused by contagious pathogens is a life-threatening hazard to the entire human population worldwide. A timely and accurate diagnosis is the critical link in the fight against infectious diseases. Aptamer-based biosensors, the so-called aptasensors, employ nucleic acid aptamers as bio-receptors for the recognition of target pathogens of interest. This review focuses on the design strategies as well as state-of-the-art technologies of aptasensor-based diagnostics for infectious pathogens (mainly bacteria and viruses), covering the utilization of three major signal transducers, the employment of aptamers as recognition moieties, the construction of versatile biosensing platforms (mostly micro and nanomaterial-based), innovated reporting mechanisms, and signal enhancement approaches. Advanced point-of-care testing (POCT) for infectious disease diagnostics are also discussed highlighting some representative ready-to-use devices to address the urgent needs of currently prevalent coronavirus disease 2019 (COVID-19). Pressing issues in aptamer-based technology and some future perspectives of aptasensors are provided for the implementation of aptasensor-based diagnostics into practical application.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
- Guangzhou Laboratory, Guangzhou, 510320, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|