1
|
Li H, Wang D, Liu W, Ma Z, Wang D, Li Y, Huan W, Zhang Y. A LMOF/MIP paper-based chip and analysis of tetracycline in foodstuff with sample-to-answer performance. Talanta 2025; 281:126879. [PMID: 39293247 DOI: 10.1016/j.talanta.2024.126879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
The development of high-performance specific sensors is promising for the rapid detection of harmful residues in animal-derived foods. Recently, luminescent metal-organic framework/molecularly imprinted polymer (LMOF/MIP) materials have been developed as ideal candidates for the analysis of harmful residues. Here, we reported a simple fabrication protocol of paper-based chip through in-situ growth of LMOF on a negatively charged modified filter paper, a paper-based molecularly imprinting layer (FP@BA-Eu@MIP) was thereafter successfully prepared via the boronate affinity-based controllable oriented surface imprinting strategy. The paper-based chips obtained were used to construct a rapid test strip of tetracycline (TC). After addition of TC, significant fluorescence changes on the surface of the FP@BA-Eu@MIP paper-based chip could be observed from blue to red via inner filter effect and photo-induced electron transfer under the excitation of 360 nm. The adsorption kinetics was explored in detail. The presented strip exhibited satisfied selectiveness and sensitivity with a limit of detection of 8.47 μg L-1 for TC. It was confirmed that LMOF/MIP as a biomimetic recognition module can play a crucial role in enrichment and fluorescence response. This study provided a real application case for an in-situ fabricated fluorescence paper-based chip in rapidly detecting harmful residues.
Collapse
Affiliation(s)
- Han Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Donghui Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhan Ma
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Dingnan Wang
- Institute of Zhejiang Aquatic Product Technology, Hangzhou, 310000, China
| | - Yang Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yiming Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Tomac I, Adam V, Labuda J. Advanced chemically modified electrodes and platforms in food analysis and monitoring. Food Chem 2024; 460:140548. [PMID: 39096799 DOI: 10.1016/j.foodchem.2024.140548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
Electrochemical sensors and electroanalytical techniques become emerging as effective and low-cost tools for rapid assessment of special parameters of the food quality. Chemically modified electrodes are developed to change properties and behaviour, particularly sensitivity and selectivity, of conventional electroanalytical sensors. Within this comprehensive review, novel trends in chemical modifiers material structure, electrodes construction and flow analysis platforms are described and evaluated. Numerous recent application examples for the detection of food specific analytes are presented in a form of table to stimulate further development in both, the basic research and commercial field.
Collapse
Affiliation(s)
- Ivana Tomac
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek, J. J. Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Generála Píky 1999/5, 613 00 Brno, Czech Republic.
| | - Jan Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
3
|
Geng L, Huang J, Fang M, Wang H, Liu J, Wang G, Hu M, Sun J, Guo Y, Sun X. Recent progress of the research of metal-organic frameworks-molecularly imprinted polymers (MOFs-MIPs) in food safety detection field. Food Chem 2024; 458:140330. [PMID: 38970953 DOI: 10.1016/j.foodchem.2024.140330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Food safety is an important cornerstone of protecting human health and life. Therefore, it is of great significance to detect possible pollutants in food sensitively and efficiently. Molecularly imprinted polymers (MIPs) and metal-organic frameworks (MOFs) have been widely used in the adsorption and detection of food pollutants. However, traditional MIPs have problems such as uneven loading of the imprinted cavity and slow mass transfer efficiency. While the adsorption of MOFs has low specificity and cannot accurately identify target molecules. Therefore, some researchers have taken advantage of the high specific recognition abilities of MIPs and the large specific surface areas, high porosity and easy functionalization of MOFs to combine MOFs with MIPs, and have achieved a series of important results in the field of food safety detection. This paper reviews the research progress of the application of MOFs-MIPs in the field of food safety detection from 2019 to 2024. It furnishes researchers interested in this domain with a rapid and comprehensive grasp of the latest research status, it also offers them a chance to anticipate future development trends, thereby supporting the continuous advances of MOFs-MIPs in food safety detection.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mingxuan Fang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingjing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mengjiao Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
4
|
Atta S, Vo-Dinh T. Improved solution-based SERS detection of creatinine by inducing hydrogen-bonding interaction for effective analyte capture. Talanta 2024; 278:126373. [PMID: 38901075 DOI: 10.1016/j.talanta.2024.126373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Recently, solution-based surface-enhanced Raman scattering (SERS) detection technique has been widely recognized due to its cost-effectiveness, simplicity, and ease of use. However, solution-based SERS is limited for practical applications mainly because of the weak adsorption affinity of the target biomolecules to the surface of plasmonic nanoparticles. Herein, we developed a highly sensitive solution-based SERS sensing platform based on mercaptopropionic acid (MPA)-capped silver-coated gold nanostars (SGNS@MPA), which allows efficient enrichment on the nanostars surface for improved detection of an analyte: creatinine, a potential biomarker of chronic kidney disease (CKD). The SGNS@MPA exhibited high enrichment ability towards creatinine molecules in alkaline medium (pH-9) through multiple hydrogen bonding interaction, which causes aggregation of the nanoparticles and enhances the SERS signal of creatinine. The detection limit for creatinine was achieved at 0.1 nM, with a limit of detection (LOD) value of 14.6 pM. As a proof-of-concept demonstration, we conducted the first quantitative detection of creatinine in noninvasive human fluids, such as saliva and sweat, under separation-free conditions. We achieved a detection limit of up to 1 nM for both saliva and sweat, with LOD values as low as 0.136 nM for saliva and 0.266 nM for sweat. Overall, our molecular enrichment strategy offers a new way to improve the solution-based SERS detection technique for real-world practical applications in point-of-care settings and low-resource settings.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Durham, NC, 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Durham, NC, 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA; Department of Chemistry, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
5
|
Thiruvengadam M, Kim JT, Kim WR, Kim JY, Jung BS, Choi HJ, Chi HY, Govindasamy R, Kim SH. Safeguarding Public Health: Advanced Detection of Food Adulteration Using Nanoparticle-Based Sensors. Crit Rev Anal Chem 2024:1-21. [PMID: 39269682 DOI: 10.1080/10408347.2024.2399202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food adulteration, whether intentional or accidental, poses a significant public health risk. Traditional detection methods often lack the precision required to detect subtle adulterants that can be harmful. Although chromatographic and spectrometric techniques are effective, their high cost and complexity have limited their widespread use. To explore and validate the application of nanoparticle-based sensors for enhancing the detection of food adulteration, focusing on their specificity, sensitivity, and practical utility in the development of resilient food safety systems. This study integrates forensic principles with advanced nanomaterials to create a robust detection framework. Techniques include the development of nanoparticle-based assays designed to improve the detection specificity and sensitivity. In addition, sensor-based technologies, including electronic noses and tongues, have been assessed for their capacity to mimic and enhance human sensory detection, offering objective and reliable results. The use of nanomaterials, including functionalized nanoparticles, has significantly improved the detection of trace amounts of adulterants. Nanoparticle-based sensors demonstrate superior performance in terms of speed, sensitivity, and selectivity compared with traditional methods. Moreover, the integration of these sensors into food safety protocols shows promise for real-time and onsite detection of adulteration. Nanoparticle-based sensors represent a cutting-edge approach for detecting food adulteration, and offer enhanced sensitivity, specificity, and scalability. By integrating forensic principles and nanotechnology, this framework advances the development of more resilient food-safety systems. Future research should focus on optimizing these technologies for widespread application and adapting them to address emerging adulteration threats.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jung-Tae Kim
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration (RDA), Jellabuk-do, Republic of Korea
| | - Won-Ryeol Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ji-Ye Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Bum-Su Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jin Choi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Narula K, Rajpal S, Bhakta S, Kulanthaivel S, Mishra P. Rationally designed protein A surface molecularly imprinted magnetic nanoparticles for the capture and detection of Staphylococcus aureus. J Mater Chem B 2024; 12:5699-5710. [PMID: 38757517 DOI: 10.1039/d4tb00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Staphylococcus aureus (S. aureus), a commensal organism found on the human skin, is commonly associated with nosocomial infections and exhibits virulence mediated by toxins and resistance to antibiotics. The global threat of antibiotic resistance has necessitated antimicrobial stewardship to improve the safe and appropriate use of antimicrobials; hence, there is an urgent demand for the advanced, cost-effective, and rapid detection of specific bacteria. In this regard, we aimed to selectively detect S. aureus using surface molecularly imprinted magnetic nanoparticles templated with a well-known biomarker protein A, specific to S. aureus. Herein, a highly selective surface molecularly imprinted polymeric thin layer was created on ∼250 nm magnetic nanoparticles (MNPs) through the immobilization of protein A to aldehyde functionalized MNPs, followed by monomer polymerization and template washing. This study employs the rational selection of monomers based on their computationally predicted binding affinity to protein A at multiple surface residues. The resulting MIPs from rationally selected monomer combinations demonstrated an imprinting factor as high as ∼5. Selectivity studies revealed MIPs with four-fold higher binding capacity (BC) to protein A than other non-target proteins, such as lysozyme and serum albumin. In addition, it showed significant binding to S. aureus, whereas negligible binding to other non-specific Gram-negative, i.e. Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), and Gram-positive, i.e. Bacillus subtilis (B. subtilis), bacteria. This MIP was employed for the capture and specific detection of fluorescently labeled S. aureus. Quantitative detection was performed using a conventional plate counting technique in a linear detection range of 101-107 bacterial cells. Remarkably, the MIPs also exhibited approximately 100% cell recovery from milk samples spiked with S. aureus (106 CFU mL-1), underscoring its potential as a robust tool for sensitive and accurate bacterial detection in dairy products. The developed MIP exhibiting high affinity and selective binding to protein A finds its potential applications in the magnetic capture and selective detection of protein A as well as S. aureus infections and contaminations.
Collapse
Affiliation(s)
- Kritika Narula
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | - Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | - Snehasis Bhakta
- Department of Chemistry, Cooch Behar College, West Bengal, India
| | - Senthilguru Kulanthaivel
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
7
|
Jalili V, Ghiasvand A, Ebrahimzadeh H, Vahabi M, Zendehdel R. Comparative study of molecularly imprinted polymer surface modified magnetic silica aerogel, zeolite Y, and MIL-101(Cr) for dispersive solid phase extraction of fuel ether oxygenates in drinking water. Food Chem 2024; 442:138455. [PMID: 38271905 DOI: 10.1016/j.foodchem.2024.138455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
The study was performed in two phases. First, the polymerization was carried out upon three magnetized surfaces of silica aerogel, zeolite Y, and MIL-101(Cr). Then, optimal molecularly imprinted polymer and optimal extraction conditions were determined by the central composite design-response surface method. Subsequently, the validation parameters of dispersive solid-phase extraction based optimal molecularly imprinted polymer were examined for the extraction of the fuel ether oxygenates. The optimal conditions include the type of adsorbent: Zeolite-magnetic molecularly imprinted polymer, the amount of adsorbent: 40 mg, pH: 7.7, and absorption time: 24.8 min which was selected with desirability equal to 0.996. The calibration graphs were linear between 1 and 100 μg L-1, with good correlation coefficients. The limits of detection were found to be 0.64, 0. 4, and 0.34 μg L-1 for methyl tert-butyl ether, ethyl tert-butyl ether, and tert butyl formate, respectively. The method proved reliable for analyzing fuel ether oxygenates in drinking water.
Collapse
Affiliation(s)
- Vahid Jalili
- Student Research Committee, Department of Occupational Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khoramabad, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Masoomeh Vahabi
- Department of Occupational Health Engineering, School of health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rezvan Zendehdel
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Lakavath K, Kafley C, Sajeevan A, Jana S, Marty JL, Kotagiri YG. Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides. Toxins (Basel) 2024; 16:244. [PMID: 38922139 PMCID: PMC11209398 DOI: 10.3390/toxins16060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Monitoring agricultural toxins such as mycotoxins is crucial for a healthy society. High concentrations of these toxins lead to the cause of several chronic diseases; therefore, developing analytical systems for detecting/monitoring agricultural toxins is essential. These toxins are found in crops such as vegetables, fruits, food, and beverage products. Currently, screening of these toxins is mostly performed with sophisticated instrumentation such as chromatography and spectroscopy techniques. However, these techniques are very expensive and require extensive maintenance, and their availability is limited to metro cities only. Alternatively, electrochemical biomimetic sensing methodologies have progressed hugely during the last decade due to their unique advantages like point-of-care sensing, miniaturized instrumentations, and mobile/personalized monitoring systems. Specifically, affinity-based sensing strategies including immunosensors, aptasensors, and molecular imprinted polymers offer tremendous sensitivity, selectivity, and stability to the sensing system. The current review discusses the principal mechanisms and the recent developments in affinity-based sensing methodologies for the detection and continuous monitoring of mycotoxins and pesticides. The core discussion has mainly focused on the fabrication protocols, advantages, and disadvantages of affinity-based sensing systems and different exploited electrochemical transduction techniques.
Collapse
Affiliation(s)
- Kavitha Lakavath
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Chandan Kafley
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Anjana Sajeevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Soumyajit Jana
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Jean Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| |
Collapse
|
9
|
Kubo T, Yagishita M, Tanigawa T, Konishi-Yamada S, Nakajima D. Enhanced molecular recognition with longer chain crosslinkers in molecularly imprinted polymers for an efficient separation of TR active substances. RSC Adv 2024; 14:12021-12029. [PMID: 38623302 PMCID: PMC11017824 DOI: 10.1039/d3ra08854e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Molecular imprinting technology has been widely studied as a technique to obtain molecular recognition by artificial means. Selecting functional monomers or polymerization conditions plays a key role to optimize molecularly imprinted polymer (MIP) synthesis. To date, there have been few reports well exploiting the effect of crosslinkers. Here, in this study, we synthesized the MIPs using poly(ethyleneglycol) dimethacrylate with different units of ethylene oxide (n = 1 to 23) as crosslinkers to observe the molecular recognition abilities. The MIPs were attached to the surface of mono-dispersed polymer beads. The obtained spherical MIPs and non-imprinted polymers were filled in a column for high performance liquid chromatography. Then the retention selectivity toward TR active substances was evaluated. The result revealed that the recognition ability did not improve regardless of the amount of ethylene oxide. With the crosslinker (n = 9), extremely high retention selectivity was observed, which provides at most around ten times as large imprinting factors in comparison with other MIPs. Interestingly, we obtained the highest recognition ability at around polymerization temperature from the evaluation of the recognition ability toward temperature shift using the MIP (n = 9). In general, hydrogen bonding based on MIPs provides high recognition ability at low temperature, whereas, this study indicates that the use of flexible crosslinkers may enable the synthesis of MIPs that precisely memorize the conditions of polymerization. Lastly, we simultaneously analyzed the TR active substances using the column filled with MIPs (n = 9). The result showed relatively linear correlation between the retention strength of each substance and phycological activity toward TR obtained by yeast assay. Therefore, we can conclude that an induced fit like the receptor emerged by constructing the flexible molecular recognition field.
Collapse
Affiliation(s)
- Takuya Kubo
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku Kyoto 606-8522 Japan
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Mayuko Yagishita
- Department of Life and Environmental Science, Prefectural University of Hiroshima Shobara City Hiroshima 727-0023 Japan
| | - Tetsuya Tanigawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Sayaka Konishi-Yamada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Daisuke Nakajima
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES) Tsukuba City Ibaraki 305-8506 Japan
| |
Collapse
|
10
|
Qu G, Liu G, Zhao C, Yuan Z, Yang Y, Xiang K. Detection and treatment of mono and polycyclic aromatic hydrocarbon pollutants in aqueous environments based on electrochemical technology: recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23334-23362. [PMID: 38436845 DOI: 10.1007/s11356-024-32640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Mono and polycyclic aromatic hydrocarbons are widely distributed and severely pollute the aqueous environment due to natural and human activities, particularly human activity. It is crucial to identify and address them in order to reduce the dangers and threats they pose to biological processes and ecosystems. In the fields of sensor detection and water treatment, electrochemistry plays a crucial role as a trustworthy and environmentally friendly technology. In order to accomplish trace detection while enhancing detection accuracy and precision, researchers have created and studied sensors using a range of materials based on electrochemical processes, and their results have demonstrated good performance. One cannot overlook the challenges associated with treating aromatic pollutants, including mono and polycyclic. Much work has been done and good progress has been achieved in order to address these challenges. This study discusses the mono and polycyclic aromatic hydrocarbon sensor detection and electrochemical treatment technologies for contaminants in the aqueous environment. Additionally mentioned are the sources, distribution, risks, hazards, and problems in the removal of pollutants. The obstacles to be overcome and the future development plans of the field are then suggested by summarizing and assessing the research findings of the researchers.
Collapse
Affiliation(s)
- Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| | - Guojun Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Zheng Yuan
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Yixin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Keyi Xiang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
11
|
Zhou B, Sheng X, Cao J, Xie H, Li X, Huang L, Yang M, Zhong M, Liu YN. A novel electrochemical sensor based on dual-functional MMIP-CuMOFs for both target recognition and signal reporting and its application for sensing bisphenol A in milk. Food Chem 2024; 437:137756. [PMID: 37897829 DOI: 10.1016/j.foodchem.2023.137756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
In this work, novel magnetic molecularly imprinted CuMOFs (MMIP-CuMOFs) were synthesized and applied to construct an electrochemical bisphenol A sensor. The constructed sensor used an electrode modified with reduced graphene oxide (RGO/GCE) as the sensing platform to improve its stability and sensitivity. The Fe3O4 nanoparticles in magnetic MOFs simplified the preparation process. Moreover, the combination of CuMOFs and molecular imprinting methodology was beneficial for improving the detection specificity, and the electroactive copper hexacyanoferrate generated by the reaction of Cu2+ in CuMOFs with potassium ferricyanide was used as the signal probe. The sensor showed a good linear relationship in the range of 0.5 to 500 nmol/L, with a low detection limit of 0.18 nmol/L. In addition, the sensor had good selectivity, repeatability (RSD = 2.59 %), and a good recovery rate for actual milk sample detection (99.8-102.49 %). This technique holds great promise for the detection of detrimental substances in food.
Collapse
Affiliation(s)
- Binbin Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Xingxin Sheng
- College of Construction Equipment, GuiZhou Polytechnic of Construction, Guiyang, Guizhou 551499, China
| | - Jing Cao
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Hao Xie
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Lijun Huang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Ming Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
| | - Ming Zhong
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
12
|
Mumtaz F, Zhang B, Subramaniyam N, Roman M, Holtmann P, Hungund AP, O'Malley R, Spudich TM, Davis M, Gerald Ii RE, Huang J. Miniature Optical Fiber Fabry-Perot Interferometer Based on a Single-Crystal Metal-Organic Framework for the Detection and Quantification of Benzene and Ethanol at Low Concentrations in Nitrogen Gas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13071-13081. [PMID: 38431899 DOI: 10.1021/acsami.3c18702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
This study reports for the first time, to the best of our knowledge, a real-time detection of ultralow-concentration chemical gases using fiber-optic technology, combining a miniaturized Fabry-Perot interferometer (FPI) with metal-organic frameworks (MOFs). The sensor consists of a short and thick-walled silica capillary segment spliced to a lead-in single-mode fiber (SMF), housing a tiny single crystal of HKUST-1 MOF, imparting chemoselectivity features. Ethanol and benzene gases were tested, resulting in a shift in the FPI interference signal. The sensor demonstrated high sensitivity, detecting ethanol gas concentrations (EGCs) with a sensitivity of 0.428 nm/ppm between 24.9 and 40.11 ppm and benzene gas concentrations (BGCs) with a sensitivity of 0.15 nm/ppm between 99 and 124 ppm. The selectivity study involved a combination of three ultralow concentrations of ethanol, benzene, and toluene gases, revealing an enhancement factor of 436% for benzene and 140% for toluene, attributed to the improved miscibility of these conjugated ring molecules with the alkane chains of the ethanol-modified HKUST-1. Experimental tests confirmed the sensor's viability, demonstrating significantly improved response time and spectral characteristics through crystal polishing, indicating its potential for quantifying and detecting chemical gases at ultralow concentrations. This technology may prevent energy resource losses, and the sensor's small size and robust construction make it applicable in confined and hazardous locations.
Collapse
Affiliation(s)
- Farhan Mumtaz
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Bohong Zhang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Narasimman Subramaniyam
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Mohammad Roman
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Peter Holtmann
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Abhishek Prakash Hungund
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Ryan O'Malley
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Thomas M Spudich
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Michael Davis
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Rex E Gerald Ii
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Jie Huang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| |
Collapse
|
13
|
Li Y, Guan C, Liu C, Li Z, Han G. Disease diagnosis and application analysis of molecularly imprinted polymers (MIPs) in saliva detection. Talanta 2024; 269:125394. [PMID: 37980173 DOI: 10.1016/j.talanta.2023.125394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Saliva has significantly evolved as a diagnostic fluid in recent years, giving a non-invasive alternative to blood analysis. A high protein concentration in saliva is delivered directly from the bloodstream, making it a "human mirror" that reflects the body's physiological state. It plays an essential role in detecting diseases in biomedical and fitness monitoring. Molecularly imprinted polymers (MIPs) are biomimetic materials with custom-designed synthetic recognition sites that imitate biological counterparts renowned for sensitive analyte detection. This paper reviews the progress made in research about MIP biosensors for detecting saliva biomarkers. Specifically, we investigate the link between saliva biomarkers and various diseases, providing detailed insights into the corresponding biosensors. Furthermore, we discuss the principles of molecular imprinting for disease diagnostics and application analysis, including recent advances in integrated MIP-sensor technologies for high-affinity analyte detection in saliva. Notably, these biosensors exhibit high discrimination, allowing for the detection of saliva biomarkers linked explicitly to chronic stress disorders, diabetes, cancer, bacterial or viral-induced illnesses, and exposure to illicit toxic substances or tobacco smoke. Our findings indicate that MIP-based biosensors match and perhaps surpass their counterparts featuring integrated natural antibodies in terms of stability, signal-to-noise ratios, and detection limits. Additionally, we highlight the design of MIP coatings, strategies for synthesizing polymers, and the integration of advanced biodevices. These tailored biodevices, designed to assess various salivary biomarkers, are emerging as promising screening or diagnostic tools for real-time monitoring and self-health management, improving quality of life.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Changjun Guan
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
14
|
Yimklan S, Kaeosamut N, Sammawipawekul N, Wongngam S, Ngamsomrit S, Rujiwatra A, Chimupala Y. Base-Directed Formation of Isostructural Lanthanide-Sulfate-Glutarate Coordination Polymers with Photoluminescence. ACS OMEGA 2024; 9:3988-3996. [PMID: 38284037 PMCID: PMC10809318 DOI: 10.1021/acsomega.3c08506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024]
Abstract
A series of five isostructural 3D lanthanide-based coordination polymers [LnIII2(H2O)6(glu)(SO4)2]n [Ln = Pr(1), Nd(2), Sm(3), Eu(4), and Gd(5)] was effortlessly obtained within a few minutes via the microwave-heating method. The employment of auxiliary bases, that is, sodium hydroxide, 4,4'-bipyridine, and 1,4-diazabicyclo[2.2.2]octane, led to the formation of the title complex, whereas base-free synthesis yielded a three-dimensional inorganic coordination polymer, [Ln2(H2O)4(SO4)3]n·nH2O, Ln = Nd (2a). The robustness of the synthetic method was illustrated as both microwave-heating and conventional hydrothermal techniques also enabled the formation of a high-crystalline phase-pure complex 1-5. In the structure of 1-5, glutarato (glu2-) and sulfato ligands link dinuclear Ln(III) building units into three-dimensional frames. The glu2- ligands act as tethering linkers, expanding the structure into a neutral 3D coordination network. Hydrogen bonds were found to be the predominant intermolecular interactions in the crystal structures. Photoluminescence of the complex 1-5 was studied.
Collapse
Affiliation(s)
- Saranphong Yimklan
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence in Materials Science and Technology, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Nippich Kaeosamut
- Department
of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, U.K.
| | - Nithiwat Sammawipawekul
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - Sutsiri Wongngam
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | | | - Apinpus Rujiwatra
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence in Materials Science and Technology, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Yothin Chimupala
- Center
of Excellence in Materials Science and Technology, Chiang Mai University, Chiang
Mai 50200, Thailand
- Research
Laboratory of Pollution Treatment and Environmental Materials, Department
of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang
Mai 50200, Thailand
| |
Collapse
|
15
|
Ozer T, Henry CS. Recent Trends in Nanomaterial Based Electrochemical Sensors for Drug Detection: Considering Green Assessment. Curr Top Med Chem 2024; 24:952-972. [PMID: 38415434 DOI: 10.2174/0115680266286981240207053402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
An individual's therapeutic drug exposure level is directly linked to corresponding clinical effects. Rapid, sensitive, inexpensive, portable and reliable devices are needed for diagnosis related to drug exposure, treatment, and prognosis of diseases. Electrochemical sensors are useful for drug monitoring due to their high sensitivity and fast response time. Also, they can be combined with portable signal read-out devices for point-of-care applications. In recent years, nanomaterials such as carbon-based, carbon-metal nanocomposites, noble nanomaterials have been widely used to modify electrode surfaces due to their outstanding features including catalytic abilities, conductivity, chemical stability, biocompatibility for development of electrochemical sensors. This review paper presents the most recent advances about nanomaterials-based electrochemical sensors including the use of green assessment approach for detection of drugs including anticancer, antiviral, anti-inflammatory, and antibiotics covering the period from 2019 to 2023. The sensor characteristics such as analyte interactions, fabrication, sensitivity, and selectivity are also discussed. In addition, the current challenges and potential future directions of the field are highlighted.
Collapse
Affiliation(s)
- Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, 34220, Esenler, Istanbul, Türkiye
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523, United States
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
17
|
Ait Lahcen A, Lamaoui A, Amine A. Exploring the potential of molecularly imprinted polymers and metal/metal oxide nanoparticles in sensors: recent advancements and prospects. Mikrochim Acta 2023; 190:497. [PMID: 38040934 DOI: 10.1007/s00604-023-06030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/04/2023] [Indexed: 12/03/2023]
Abstract
Metal/metal oxide nanoparticles have gained increasing attention in recent years due to their outstanding features, including optical and catalytic properties, as well as their excellent conductivity. The implementation of metal/metal oxide nanoparticles, combined with molecularly imprinted polymers (MIPs) has paved the way for a new generation of building blocks to engineer and enhance the fascinating features of advanced sensors. This review critically evaluates the impact of combining metal/metal oxide nanoparticles with MIPs in sensors. It covers synthesis strategies, advantages of coupling these materials with MIPs, and addresses questions about the selectivity of these hybrid materials. In the end, the current challenges and future perspectives of this field are discussed, with a particular focus on the potential applications of these hybrid composites in the sensor field. This review highlights the exciting opportunities of using metal/metal oxide nanoparticles along with MIPs for the development of next-generation sensors.
Collapse
Affiliation(s)
| | - Abderrahman Lamaoui
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Aziz Amine
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|
18
|
Chen Y, Tang K, Zhou Q, Wang X, Wang R, Zhang Z. Integrating Intelligent Logic Gate Dual-Nanozyme Cascade Fluorescence Capillary Imprinted Sensors for Ultrasensitive Simultaneous Detection of 2,4-Dichlorophenoxyacetic Acid and 2,4-Dichlorophenol. Anal Chem 2023. [PMID: 38013435 DOI: 10.1021/acs.analchem.3c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein, a dual-nanozyme cascade catalysis triemission fluorescence capillary imprinted sensor integrated with intelligent logic gates was constructed for simultaneous detection of 2,4-dichlorophenoxyacetic acid (2,4-DA) and 2,4-dichlorophenol (2,4-DCP). The novel nanozyme fluorescence organic framework (Bi, Co-MOF) was grafted on the surface of Fe3O4 modified with histidine to form a nanozyme composite (FBM) with dual-enzyme activity, which was imprinted with 2,4-DA to prepare a fluorescence molecularly imprinted polymer (FBM@MIP). Carbon dots (CDs) coupling with FBM@MIP (FBM@MIP/CDs) was inhaled into a capillary to construct a dual-nanozyme capillary imprinted sensor directly. The FBM@MIP/CDs capillary sensor realized to detect 2,4-DA and 2,4-DCP simultaneously within a linear concentration range of 1.0 × 10-12-1.2 × 10-9 M and 1.0 × 10-12-4.8 × 10-9 M with the detection limit of 0.75 and 0.68 pM, respectively. Interestingly, a smartphone-assisted portable capillary fluorescence intelligent sensing platform was developed that can detect 2,4-DA and 2,4-DCP visually without tedious operations such as soaking and drying. Combined with a smartphone, the linear relationships between RGB ratios and concentrations of 2,4-DA and 2,4-DCP were established with the detection limit of 0.93 and 0.81 pM, respectively. The integrated logic gates provided a promising way for intelligent sensing of multiple targets simultaneously, which provided a new strategy for ultrasensitive simultaneous detection of multiple pollutants with a microvolume (18 μL/time) in complex environments.
Collapse
Affiliation(s)
- Yu Chen
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, PR China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou,Hunan 416000, China
| | - Kangling Tang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, PR China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou,Hunan 416000, China
| | - Qin Zhou
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, PR China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou,Hunan 416000, China
| | - Xiangni Wang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, PR China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou,Hunan 416000, China
| | - Ruoyan Wang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, PR China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou,Hunan 416000, China
| | - Zhaohui Zhang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, PR China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou,Hunan 416000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| |
Collapse
|
19
|
Bu L, Su C, Song Q, Jiang D, Shan X, Wang W, Chen Z. A molecularly imprinted polypyrrole electrochemiluminescence sensor based on a novel zinc-based metal-organic framework and chitosan for determination of enrofloxacin. Analyst 2023; 148:6087-6096. [PMID: 37916516 DOI: 10.1039/d3an01236k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Nowadays, bacterial resistance caused by the abuse of antibiotics has become a worldwide problem. In this work, a quinolone antibiotic, enrofloxacin (ENR), was rapidly monitored by combining a selective molecular imprinting polymer (MIP) with the electrochemiluminescence (ECL) method. Zn-PTC, a novel zinc-based metal-organic framework (MOF) that has a large specific surface area and ultra-high luminous efficiency, was used as the ECL luminophore. Chitosan (CHIT) was used to contact the specific surface area of molecularly imprinted polymer films and further improved the detection sensitivity. Subsequently, the molecularly imprinted polypyrrole was electropolymerized on the surface of the Zn-PTC and CHIT modified glassy carbon electrode (GCE). The specific sites that could target recombining ENR were shaped on the surface of MIP after extracting the ENR templates. The specific concentrations of ENR could be detected according to the difference in ECL intensity (ΔECL) between the eluting and rebinding of ENR. After optimization, a good linear response of ΔECL and a logarithm of specific ENR concentrations could be obtained in the range of 1.0 × 10-12-1.0 × 10-4 mol L-1, with a detection limit of 9.3 × 10-13 mol L-1 (S/N = 3). Notably, this study provided a rapid, convenient, and cheap method for the detection of ENR in actual samples.
Collapse
Affiliation(s)
- Liyin Bu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Chang Su
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Qingyuan Song
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Ding Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Wenchang Wang
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Zhidong Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
20
|
Cui J, Zhang Y, Lun K, Wu B, He L, Wang M, Fang S, Zhang Z, Zhou L. Sensitive detection of Escherichia coli in diverse foodstuffs by electrochemical aptasensor based on 2D porphyrin-based COF. Mikrochim Acta 2023; 190:421. [PMID: 37773421 DOI: 10.1007/s00604-023-05978-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
The two-dimensional porphyrin-based covalent organic framework (denoted by Tph-TDC-COF) was used as the sensitive layerto build an aptamer-based electrochemical sensor for the detection of Escherichia coli (E.coli). Tph-TDC-COF produced with 5,10,15,20-tetrakis(4-aminophenyl)-21H, 23H-porphine (Tph) and [2,2'-bithiophene]-2,5'-dicarbaldehyde (TDC) as building blocks exhibited a highly conjugated structure, outstanding conductivity, large specific surface area, and strong bioaffinity towards aptamers. The adoption of Tph-TDC-COF-modified electrode resulted in improved sensing performance and increased anchoring affinity toward the E.coli-targeted aptamer. Under optimal conditions, the Tph-TDC-COF-based electrochemical aptasensor demonstrated an extremely low detection limit of 0.17 CFU mL-1 for E.coli detection within a linear range of 10 to 1 × 108 CFU mL-1, accompanied by good stability, excellent reproducibility and regeneration ability, and wide practical applications. The current electrochemical aptasensing technique has the potential to be extended to detect different foodborne bacteria using specific aptamer, therefore widening the application of COFs in biosensing and food safety fields.
Collapse
Affiliation(s)
- Jing Cui
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Yu Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Kan Lun
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Baiwei Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Shaoming Fang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
21
|
Lamaoui A, Lahcen AA, Amine A. Unlocking the Potential of Molecularly Imprinted Polydopamine in Sensing Applications. Polymers (Basel) 2023; 15:3712. [PMID: 37765566 PMCID: PMC10536926 DOI: 10.3390/polym15183712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors that mimic the specificity of biological antibody-antigen interactions. By using a "lock and key" process, MIPs selectively bind to target molecules that were used as templates during polymerization. While MIPs are typically prepared using conventional monomers, such as methacrylic acid and acrylamide, contemporary advancements have pivoted towards the functional potential of dopamine as a novel monomer. The overreaching goal of the proposed review is to fully unlock the potential of molecularly imprinted polydopamine (MIPda) within the realm of cutting-edge sensing applications. This review embarks by shedding light on the intricate tapestry of materials harnessed in the meticulous crafting of MIPda, endowing them with tailored properties. Moreover, we will cover the diverse sensing applications of MIPda, including its use in the detection of ions, small molecules, epitopes, proteins, viruses, and bacteria. In addition, the main synthesis methods of MIPda, including self-polymerization and electropolymerization, will be thoroughly examined. Finally, we will examine the challenges and drawbacks associated with this research field, as well as the prospects for future developments. In its entirety, this review stands as a resolute guiding compass, illuminating the path for researchers and connoisseurs alike.
Collapse
Affiliation(s)
- Abderrahman Lamaoui
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia 28806, Morocco
| | | | - Aziz Amine
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia 28806, Morocco
| |
Collapse
|
22
|
Prusti B, Tripathi S, Jain A, Chakravarty M. Concentration-Guided Visual Detection of Multiphase Aliphatic Biogenic Amines through Amine-Phenol Recognition Using a Dual-State Emitter. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16492-16504. [PMID: 36944182 DOI: 10.1021/acsami.3c00791] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intermolecular amine-phenol interactions are largely recognized as unique models with diverse supramolecular interactions. However, fluorescence (FL) variations originating from such interactions are rare. Herein, FL changes are well realized from amine-phenol interactions to identify an important biomarker, biogenic amines (BAs). A simple, inexpensive, and thermally stable anthracenylphosphonate is linked with 2,2'-biphenol to design a functional dual-state emitter. Among the various amines tested, this emitter displays superior sensitivity with the lowest possible limit of detection as 5.8-9.7 ppb with aliphatic polyamines such as 1,3-, 1,4-, 1,5-, and 1,6- diamines and spermidine in the solution phase. Fast, on-spot detection of the BA vapors was visually conducted through a notable high-contrast change from blue to yellow emission in the solid state. FT-IR, 1H/31P NMR, and mass spectroscopic studies identify the ground-state amine-phenol interactions. The failure in BA detection with the 2,2'-dimethoxy-biphenyl-linked analog verifies the role of amine-phenol interactions. Mechanistic studies determine amine-phenol interactions in the ground and excited states. The molecular structure and packing of the doubly twisted probe are documented with a substantial void space facilitating close contact of the BAs with the strong amine-phenol interactions desired for efficient detection. Finally, this probe governs the freshness of a piece of Catla catla fish and prawn. Further, a remarkable concentration-controlled diverse emission with a red shift difference of 141 nm is detected with 1,3-diaminopropane (1,3-DAP) vapor (from 29 to 319 mg/L) for the first time. Thus, a cost-effective device is developed to detect 1,3-DAP at a precise concentration, visible through the naked eye.
Collapse
Affiliation(s)
- Banchhanidhi Prusti
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Shivani Tripathi
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Akshita Jain
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Manab Chakravarty
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
23
|
Rajaji U, Yogesh Kumar K, Arumugam R, Alothman AA, Ouladsmane M, Chung RJ, Liu TY. Sonochemical construction of hierarchical strontium doped lanthanum trisulfide electrocatalyst: An efficient electrode for highly sensitive detection of ecological pollutant in food and water. ULTRASONICS SONOCHEMISTRY 2023; 92:106251. [PMID: 36462467 PMCID: PMC9712680 DOI: 10.1016/j.ultsonch.2022.106251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Herbicides are used constantly in agriculture to enhance productivity across the globe. This herbicide monitoring requires utmost importance since its high dose leads to ecological imbalance and a negative impact on the environment. Moreover, a quantification of toxic herbicide is one of the important problems in the food analysis. In this work, deals with the development of a simple, and facile one-pot sonochemical synthesis of strontium doped La2S3 (Sr@La2S3). Morphological and structural characterization confirms the doping of Sr@La2S3 to generate a hierarchical layered structure. The electrochemical performance of modified with rotating disk electrode (RDE) using Sr@La2S3 composite is high, compared to La2S3 and bare electrodes towards the quantitative detection of mesotrione (MTO) in phosphate buffer. Sr@La2S3/RDE showed good sensitivity for MTO detection and it exhibit a range of 0.01-307.01 μM and limit of detection of 2.4 nM. Besides, the selectivity of fabricated electrode is high as it can electrochemically reduce MTO particularly, even in the presence of other chemicals, biological molecules and inorganic ions. The repeatability of MTO detection is high even after 30 days with a lower RSD values. Hence, simple fabrication of Sr@La2S3/RDE could be a novel electrode for the sensitive, selective, and reproducible determination of herbicides in real-time applications.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore 562112, India
| | - Rameshkumar Arumugam
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Erode, India; Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligent Medical Devices, Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan.
| |
Collapse
|
24
|
Song J, He K, Xing B, Pei Y, Wang D, Wang Y, Li S, Li J, Huan W, Zhang Y, Hammock BD. Rapid Measurement of Residual Kanamycin Using Highly Specific Biomimetic Recognition Paper-Based Chip. Anal Chem 2022; 94:17567-17576. [PMID: 36458677 PMCID: PMC9942939 DOI: 10.1021/acs.analchem.2c03932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The development of highly specific biomimetic recognition material is a challenge for rapid detection of harmful residues in foodstuff. In this study, a paper-based boronate affinity metal-organic framework/molecularly imprinted polymer microfluidic chip (FZS-BA@MIP) was constructed based on the in situ construction strategy, which was also designed as a highly specific biomimetic recognition module. Here, the homogeneous zeolitic imidazole framework-8 (ZIF-8) membrane served as a great scaffold and enrichment layer. Besides, the recognition layer of MIP was prepared based on a highly oriented boronate affinity surface imprinting strategy. With the aid of the liquid flow channel, the highly specific enrichment and visual detection for antibiotic residues like kanamycin in actual products were achieved on the paper chip module of an integrated lateral flow platform. The whole analysis process could be accomplished within 30 min. In brief, this study offered a new integrated biomimetic recognition platform for visually detecting harmful veterinary residues containing cis-diols, which demonstrated promising commercial value in point-of-care testing of foodborne hazardous compounds.
Collapse
Affiliation(s)
- Jian Song
- College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bingcong Xing
- College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yong Pei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Department of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Dingnan Wang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- Institute of Zhejiang aquatic product technology, Hangzhou, 310000, China
| | - Yang Wang
- Institute of Zhejiang aquatic product technology, Hangzhou, 310000, China
| | - Shiyan Li
- Institute of Zhejiang aquatic product technology, Hangzhou, 310000, China
| | - Jie Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, 311300, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yiming Zhang
- College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Bruce. D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| |
Collapse
|