1
|
Ewoldt JK, DePalma SJ, Jewett ME, Karakan MÇ, Lin YM, Mir Hashemian P, Gao X, Lou L, McLellan MA, Tabares J, Ma M, Salazar Coariti AC, He J, Toussaint KC, Bifano TG, Ramaswamy S, White AE, Agarwal A, Lejeune E, Baker BM, Chen CS. Induced pluripotent stem cell-derived cardiomyocyte in vitro models: benchmarking progress and ongoing challenges. Nat Methods 2025; 22:24-40. [PMID: 39516564 DOI: 10.1038/s41592-024-02480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/15/2024] [Indexed: 11/16/2024]
Abstract
Recent innovations in differentiating cardiomyocytes from human induced pluripotent stem cells (hiPSCs) have unlocked a viable path to creating in vitro cardiac models. Currently, hiPSC-derived cardiomyocytes (hiPSC-CMs) remain immature, leading many in the field to explore approaches to enhance cell and tissue maturation. Here, we systematically analyzed 300 studies using hiPSC-CM models to determine common fabrication, maturation and assessment techniques used to evaluate cardiomyocyte functionality and maturity and compiled the data into an open-access database. Based on this analysis, we present the diversity of, and current trends in, in vitro models and highlight the most common and promising practices for functional assessments. We further analyzed outputs spanning structural maturity, contractile function, electrophysiology and gene expression and note field-wide improvements over time. Finally, we discuss opportunities to collectively pursue the shared goal of hiPSC-CM model development, maturation and assessment that we believe are critical for engineering mature cardiac tissue.
Collapse
Affiliation(s)
- Jourdan K Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Maggie E Jewett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - M Çağatay Karakan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Yih-Mei Lin
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Paria Mir Hashemian
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lihua Lou
- Department of Mechanical and Material Engineering, Florida International University, Miami, FL, USA
| | - Micheal A McLellan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jonathan Tabares
- Department of Physics, Florida International University, Miami, FL, USA
| | - Marshall Ma
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | | | - Jin He
- Department of Physics, Florida International University, Miami, FL, USA
| | - Kimani C Toussaint
- School of Engineering, Brown University, Providence, RI, USA
- Brown-Lifespan Center for Digital Health, Providence, RI, USA
| | - Thomas G Bifano
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Alice E White
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Arvind Agarwal
- Department of Mechanical and Material Engineering, Florida International University, Miami, FL, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Moss SP, Bakirci E, Feinberg AW. Engineering the 3D structure of organoids. Stem Cell Reports 2024:102379. [PMID: 39706178 DOI: 10.1016/j.stemcr.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Organoids form through the sel f-organizing capabilities of stem cells to produce a variety of differentiated cell and tissue types. Most organoid models, however, are limited in terms of the structure and function of the tissues that form, in part because it is difficult to regulate the cell type, arrangement, and cell-cell/cell-matrix interactions within these systems. In this article, we will discuss the engineering approaches to generate more complex organoids with improved function and translational relevance, as well as their advantages and disadvantages. Additionally, we will explore how biofabrication strategies can manipulate the cell composition, 3D organization, and scale-up of organoids, thus improving their utility for disease modeling, drug screening, and regenerative medicine applications.
Collapse
Affiliation(s)
- Samuel P Moss
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ezgi Bakirci
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Cui LH, Noh JM, Kim DH, Seo HR, Joo HJ, Choi SC, Song MH, Kim KS, Huang LH, Na JE, Rhyu IJ, Qu XK, Lee KB, Lim DS. Nanotopography promotes cardiogenesis of pluripotent stem cell-derived embryoid bodies through focal adhesion kinase signaling. Biochem Biophys Res Commun 2024; 735:150796. [PMID: 39427377 DOI: 10.1016/j.bbrc.2024.150796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Controlling the microenvironment surrounding the pluripotent stem cells (PSCs) is a pivotal strategy for regulating cellular differentiation. Surface nanotopography is one of the key factors influencing the lineage-specific differentiation of PSCs. However, much of the underlying mechanism remains unknown. In this study, we focused on the effects of gradient nanotopography on the differentiation of embryoid bodies (EBs). EBs were cultured on three differently sized nanopillar surfaces (Large, 280-360; Medium, 200-280; Small, 120-200 nm) for spontaneous cardiomyocyte differentiation without chemical stimuli. The large nanotopography significantly promoted cardiogenesis, with increased expression of cardiac markers such as α-MHC, cTnT, and cTnI, and redistributed vinculin expression to the contact area. In addition, the small and medium nanotopographies also influenced EB differentiation, affecting both cardiogenesis and hematopoiesis to varying degrees. The phosphorylation of focal adhesion kinase (FAK) decreased in the EBs on the large nanotopography compared to that in the EBs cultured on the flat surface. The gradient nanotopography with 280-360 nm nanopillars is beneficial for the cardiogenesis of EBs in a FAK-dependent manner. This study provides valuable insights into controlling stem cell differentiation through nanotopographical cues, thereby advancing our understanding of the microenvironmental regulation in stem cell-based cardiac tissue engineering.
Collapse
Affiliation(s)
- Long-Hui Cui
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Dae Hwan Kim
- Department of Biomedical Engineering, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; BK21 Four R&E Center for Precision Public Health, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Ha-Rim Seo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; Division of Drug Efficacy Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheonju-si, 28160, South Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; R&D Center for Companion Diagnosis, SOL Bio Corporation, Suite 510, 27, Seongsui-ro7-gil, Seongdong-gu, Seoul, 04780, South Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Kyung-Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Li-Hua Huang
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Xin-Kai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Kyu Back Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
4
|
Popovic AM, Lei MHC, Shakeri A, Khosravi R, Radisic M. Lab-on-a-chip models of cardiac inflammation. BIOMICROFLUIDICS 2024; 18:051507. [PMID: 39483204 PMCID: PMC11524635 DOI: 10.1063/5.0231735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide with numerous inflammatory cell etiologies associated with impaired cardiac function and heart failure. Inflammatory cardiomyopathy, also known as myocarditis, is an acquired cardiomyopathy characterized by inflammatory cell infiltration into the myocardium with a high risk of progression to deteriorated cardiac function. Recently, amidst the ongoing COVID-19 pandemic, the emergence of acute myocarditis as a complication of SARS-CoV-2 has garnered significant concern. Given its mechanisms remain elusive in conjunction with the recent withdrawal of previously FDA-approved antiviral therapeutics and prophylactics due to unexpected cardiotoxicity, there is a pressing need for human-mimetic platforms to investigate disease pathogenesis, model dysfunctional features, and support pre-clinical drug screening. Traditional in vitro models for studying cardiovascular diseases have inherent limitations in recapitulating the complexity of the in vivo microenvironment. Heart-on-a-chip technologies, combining microfabrication, microfluidics, and tissue engineering techniques, have emerged as a promising approach for modeling inflammatory cardiac diseases like myocarditis. This review outlines the established and emerging conditions of inflamed myocardium, identifying key features essential for recapitulating inflamed myocardial structure and functions in heart-on-a-chip models, highlighting recent advancements, including the integration of anisotropic contractile geometry, cardiomyocyte maturity, electromechanical functions, vascularization, circulating immunity, and patient/sex specificity. Finally, we discuss the limitations and future perspectives necessary for the clinical translation of these advanced technologies.
Collapse
Affiliation(s)
- Anna Maria Popovic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Matthew Ho Cheong Lei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | | |
Collapse
|
5
|
Hwang DG, Choi H, Yong U, Kim D, Kang W, Park SM, Jang J. Bioprinting-Assisted Tissue Assembly for Structural and Functional Modulation of Engineered Heart Tissue Mimicking Left Ventricular Myocardial Fiber Orientation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400364. [PMID: 38717016 DOI: 10.1002/adma.202400364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Left ventricular twist is influenced by the unique oriented structure of myocardial fibers. Replicating this intricate structural-functional relationship in an in vitro heart model remains challenging, mainly due to the difficulties in achieving a complex structure with synchrony between layers. This study introduces a novel approach through the utilization of bioprinting-assisted tissue assembly (BATA)-a synergistic integration of bioprinting and tissue assembly strategies. By flexibly manufacturing tissue modules and assembly platforms, BATA can create structures that traditional methods find difficult to achieve. This approach integrates engineered heart tissue (EHT) modules, each with intrinsic functional and structural characteristics, into a layered, multi-oriented tissue in a controlled manner. EHTs assembled in different orientations exhibit various contractile forces and electrical signal patterns. The BATA is capable of constructing complex myocardial fiber orientations within a chamber-like structure (MoCha). MoCha replicates the native cardiac architecture by exhibiting three layers and three alignment directions, and it reproduces the left ventricular twist by exhibiting synchronized contraction between layers and mimicking the native cardiac architecture. The potential of BATA extends to engineering tissues capable of constructing and functioning as complete organs on a large scale. This advancement holds the promise of realizing future organ-on-demand technology.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea
| | - Hwanyong Choi
- Department of Mechanical Engineering, POSTECH, Pohang, 37666, Republic of Korea
| | - Uijung Yong
- Future IT Innovation Laboratory, POSTECH, Pohang, 37666, Republic of Korea
| | - Donghwan Kim
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37666, Republic of Korea
| | - Wonok Kang
- Department of Convergence IT engineering, POSTECH, Pohang, 37666, Republic of Korea
| | - Sung-Min Park
- Department of Mechanical Engineering, POSTECH, Pohang, 37666, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37666, Republic of Korea
- Department of Convergence IT engineering, POSTECH, Pohang, 37666, Republic of Korea
- Department of Electrical Engineering, POSTECH, Pohang, 37666, Republic of Korea
| | - Jinah Jang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea
- Department of Mechanical Engineering, POSTECH, Pohang, 37666, Republic of Korea
- Future IT Innovation Laboratory, POSTECH, Pohang, 37666, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37666, Republic of Korea
- Department of Convergence IT engineering, POSTECH, Pohang, 37666, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
6
|
Satsuka A, Ribeiro AJS, Kawagishi H, Yanagida S, Hirata N, Yoshinaga T, Kurokawa J, Sugiyama A, Strauss DG, Kanda Y. Contractility assessment using aligned human iPSC-derived cardiomyocytes. J Pharmacol Toxicol Methods 2024; 128:107530. [PMID: 38917571 DOI: 10.1016/j.vascn.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Cardiac safety assessment, such as lethal arrhythmias and contractility dysfunction, is critical during drug development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been shown to be useful in predicting drug-induced proarrhythmic risk through international validation studies. Although cardiac contractility is another key function, fit-for-purpose hiPSC-CMs in evaluating drug-induced contractile dysfunction remain poorly understood. In this study, we investigated whether alignment of hiPSC-CMs on nanopatterned culture plates can assess drug-induced contractile changes more efficiently than non-aligned monolayer culture. METHODS Aligned hiPSC-CMs were obtained by culturing on 96-well culture plates with a ridge-groove-ridge nanopattern on the bottom surface, while non-aligned hiPSC-CMs were cultured on regular 96-well plates. Next-generation sequencing and qPCR experiments were performed for gene expression analysis. Contractility of the hiPSC-CMs was assessed using an imaging-based motion analysis system. RESULTS When cultured on nanopatterned plates, hiPSC-CMs exhibited an aligned morphology and enhanced expression of genes encoding proteins that regulate contractility, including myosin heavy chain, calcium channel, and ryanodine receptor. Compared to cultures on regular plates, the aligned hiPSC-CMs also showed both enhanced contraction and relaxation velocity. In addition, the aligned hiPSC-CMs showed a more physiological response to positive and negative inotropic agents, such as isoproterenol and verapamil. DISCUSSION Taken together, the aligned hiPSC-CMs exhibited enhanced structural and functional properties, leading to an improved capacity for contractility assessment compared to the non-aligned cells. These findings suggest that the aligned hiPSC-CMs can be used to evaluate drug-induced cardiac contractile changes.
Collapse
Affiliation(s)
- Ayano Satsuka
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Silver Spring, MD 20903, USA
| | - Hiroyuki Kawagishi
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Takashi Yoshinaga
- Advanced Biosignal Safety Assessment, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan.
| |
Collapse
|
7
|
Yoon S, Fuwad A, Jeong S, Cho H, Jeon TJ, Kim SM. Surface Deformation of Biocompatible Materials: Recent Advances in Biological Applications. Biomimetics (Basel) 2024; 9:395. [PMID: 39056836 PMCID: PMC11274418 DOI: 10.3390/biomimetics9070395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The surface topography of substrates is a crucial factor that determines the interaction with biological materials in bioengineering research. Therefore, it is important to appropriately modify the surface topography according to the research purpose. Surface topography can be fabricated in various forms, such as wrinkles, creases, and ridges using surface deformation techniques, which can contribute to the performance enhancement of cell chips, organ chips, and biosensors. This review provides a comprehensive overview of the characteristics of soft, hard, and hybrid substrates used in the bioengineering field and the surface deformation techniques applied to the substrates. Furthermore, this review summarizes the cases of cell-based research and other applications, such as biosensor research, that utilize surface deformation techniques. In cell-based research, various studies have reported optimized cell behavior and differentiation through surface deformation, while, in the biosensor and biofilm fields, performance improvement cases due to surface deformation have been reported. Through these studies, we confirm the contribution of surface deformation techniques to the advancement of the bioengineering field. In the future, it is expected that the application of surface deformation techniques to the real-time interaction analysis between biological materials and dynamically deformable substrates will increase the utilization and importance of these techniques in various fields, including cell research and biosensors.
Collapse
Affiliation(s)
- Sunhee Yoon
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.Y.); (H.C.)
- Industry-Academia Interactive R&E Center for Bioprocess Innovation (BK21), Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (A.F.); (S.J.)
| | - Seorin Jeong
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (A.F.); (S.J.)
| | - Hyeran Cho
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.Y.); (H.C.)
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.Y.); (H.C.)
- Industry-Academia Interactive R&E Center for Bioprocess Innovation (BK21), Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.Y.); (H.C.)
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (A.F.); (S.J.)
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
8
|
Zhang B, Luo Y, Zhou X, Gao L, Yin X, Yang H. GelMA micropattern enhances cardiomyocyte organization, maturation, and contraction via contact guidance. APL Bioeng 2024; 8:026108. [PMID: 38699629 PMCID: PMC11065454 DOI: 10.1063/5.0182585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Cardiac tissue engineering has emerged as a promising approach for restoring the functionality of damaged cardiac tissues following myocardial infarction. To effectively replicate the native anisotropic structure of cardiac tissues in vitro, this study focused on the fabrication of micropatterned gelatin methacryloyl hydrogels with varying geometric parameters. These substrates were evaluated for their ability to guide induced pluripotent stem cell-derived cardiomyocytes (CMs). The findings demonstrate that the mechanical properties of this hydrogel closely resemble those of native cardiac tissues, and it exhibits high fidelity in micropattern fabrication. Micropatterned hydrogel substrates lead to enhanced organization, maturation, and contraction of CMs. A microgroove with 20-μm-width and 20-μm-spacing was identified as the optimal configuration for maximizing the contact guidance effect, supported by analyses of nuclear orientation and F-actin organization. Furthermore, this specific micropattern design was found to promote CMs' maturation, as evidenced by increased expression of connexin 43 and vinculin, along with extended sarcomere length. It also enhanced CMs' contraction, resulting in larger contractile amplitudes and greater contractile motion anisotropy. In conclusion, these results underscore the significant benefits of optimizing micropatterned gelatin methacryloyl for improving CMs' organization, maturation, and contraction. This valuable insight paves the way for the development of highly organized and functionally mature cardiac tissues in vitro.
Collapse
Affiliation(s)
- Bin Zhang
- Author to whom correspondence should be addressed:
| | | | | | | | | | | |
Collapse
|
9
|
Elkhoury K, Kodeih S, Enciso‐Martínez E, Maziz A, Bergaud C. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches. Adv Healthc Mater 2024; 13:e2303288. [PMID: 38349615 PMCID: PMC11468390 DOI: 10.1002/adhm.202303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | - Sacha Kodeih
- Faculty of Medicine and Medical SciencesUniversity of BalamandTripoliP.O. Box 100Lebanon
| | | | - Ali Maziz
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | | |
Collapse
|
10
|
Jain A, Choudhury S, Sundaresan NR, Chatterjee K. Essential Role of Anisotropy in Bioengineered Cardiac Tissue Models. Adv Biol (Weinh) 2024; 8:e2300197. [PMID: 38126909 DOI: 10.1002/adbi.202300197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Indexed: 12/23/2023]
Abstract
As regulatory bodies encourage alternatives to animal testing, there is renewed interest in engineering disease models, particularly for cardiac tissues. The aligned organization of cells in the mammalian heart controls the electrical and ionic currents and its ability to efficiently circulate blood to the body. Although the development of engineered cardiac systems is rising, insights into the topographical aspects, in particular, the necessity to design in vitro cardiac models incorporating cues for unidirectional cell growth, is lacking. This review first summarizes the widely used methods to organize cardiomyocytes (CMs) unidirectionally and the ways to quantify the resulting cellular alignment. The behavior of CMs in response to alignment is described, with emphasis on their functions and underlying mechanisms. Lastly, the limitations of state-of-the-art techniques to modulate CM alignment in vitro and opportunities for further development in the future to improve the cardiac tissue models that more faithfully mimic the pathophysiological hallmarks are outlined. This review serves as a call to action for bioengineers to delve deeper into the in vivo role of cellular organization in cardiac muscle tissue and draw inspiration to effectively mimic in vitro for engineering reliable disease models.
Collapse
Affiliation(s)
- Aditi Jain
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Nagalingam R Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, 560012, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
11
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Al-attar R, Jargstorf J, Romagnuolo R, Jouni M, Alibhai FJ, Lampe PD, Solan JL, Laflamme MA. Casein Kinase 1 Phosphomimetic Mutations Negatively Impact Connexin-43 Gap Junctions in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Biomolecules 2024; 14:61. [PMID: 38254663 PMCID: PMC10813327 DOI: 10.3390/biom14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has shown promise in preclinical models of myocardial infarction, but graft myocardium exhibits incomplete host-graft electromechanical integration and a propensity for pro-arrhythmic behavior. Perhaps contributing to this situation, hPSC-CM grafts show low expression of connexin 43 (Cx43), the major gap junction (GJ) protein, in ventricular myocardia. We hypothesized that Cx43 expression and function could be rescued by engineering Cx43 in hPSC-CMs with a series of phosphatase-resistant mutations at three casein kinase 1 phosphorylation sites (Cx43-S3E) that have been previously reported to stabilize Cx43 GJs and reduce arrhythmias in transgenic mice. However, contrary to our predictions, transgenic Cx43-S3E hPSC-CMs exhibited reduced Cx43 expression relative to wild-type cells, both at baseline and following ischemic challenge. Cx43-S3E hPSC-CMs showed correspondingly slower conduction velocities, increased automaticity, and differential expression of other connexin isoforms and various genes involved in cardiac excitation-contraction coupling. Cx43-S3E hPSC-CMs also had phosphorylation marks associated with Cx43 GJ internalization, a finding that may account for their impaired GJ localization. Taken collectively, our data indicate that the Cx43-S3E mutation behaves differently in hPSC-CMs than in adult mouse ventricular myocytes and that multiple biological factors likely need to be addressed synchronously to ensure proper Cx43 expression, localization, and function.
Collapse
Affiliation(s)
- Rasha Al-attar
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Joseph Jargstorf
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Mariam Jouni
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Faisal J. Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Paul D. Lampe
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (P.D.L.); (J.L.S.)
| | - Joell L. Solan
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (P.D.L.); (J.L.S.)
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
13
|
Choi JS, Doo HM, Kim B, Lee SH, Sung S, Go G, Suarez A, Kim Y, Weon BM, Choi B, Kim HJ, Kim D. NanoIEA: A Nanopatterned Interdigitated Electrode Array-Based Impedance Assay for Real-Time Measurement of Aligned Endothelial Cell Barrier Functions. Adv Healthc Mater 2024; 13:e2301124. [PMID: 37820720 PMCID: PMC10841753 DOI: 10.1002/adhm.202301124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Indexed: 10/13/2023]
Abstract
A nanopatterned interdigitated electrode array (nanoIEA)-based impedance assay is developed for quantitative real-time measurement of aligned endothelial cell (EC) barrier functions in vitro. A bioinspired poly(3,4-dihydroxy-L-phenylalanine) (poly (l-DOPA)) coating is applied to improve the human brain EC adhesion onto the Nafion nanopatterned surfaces. It is found that a poly (l-DOPA)-coated Nafion grooved nanopattern makes the human brain ECs orient along the nanopattern direction. Aligned human brain ECs on Nafion nanopatterns exhibit increased expression of genes encoding tight and adherens junction proteins. Aligned human brain ECs also have enhanced impedance and resistance versus unaligned ones. Treatment with a glycogen synthase kinase-3 inhibitor (GSK3i) further increases impedance and resistance, suggesting synergistic effects occur on the cell-cell tightness of in vitro human brain ECs via a combination of anisotropic matrix nanotopography and GSK3i treatment. It is found that this enhanced cell-cell tightness of the combined approach is accompanied by increased expression of claudin protein. These data demonstrate that the proposed nanoIEA assay integrated with poly (l-DOPA)-coated Nafion nanopatterns and interdigitated electrode arrays can make not only biomimetic aligned ECs, but also enable real-time measurement of the enhanced barrier functions of aligned ECs via tighter cell-cell junctions.
Collapse
Affiliation(s)
- Jong Seob Choi
- Department of Biomedical Engineering, Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMD21205USA
- Division of Advanced Materials EngineeringKongju National UniversityCheonanChungnam31080South Korea
| | - Hyun Myung Doo
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoul06351South Korea
- Department of Biomedical Research CenterKorea University Guro HospitalSeoul08308South Korea
- Division of Medical Oncology, Department of Internal MedicineKorea University Guro Hospital, Korea University College of MedicineSeoul08308South Korea
| | - Byunggik Kim
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Su Han Lee
- Digital Health Care Research CenterGumi Electronics and Information Technology Research Institute (GERI)GumiGyeongbuk39253South Korea
| | - Sang‐keun Sung
- Digital Health Care Research CenterGumi Electronics and Information Technology Research Institute (GERI)GumiGyeongbuk39253South Korea
| | - Gwangjun Go
- Department of Biomedical Engineering, Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Mechanical EngineeringChosun UniversityGwangju61452South Korea
| | - Allister Suarez
- Department of Biomedical Engineering, Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMD21205USA
| | - Yeseul Kim
- SKKU Advanced Institute of Nanotechnology (SAINT)School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Byung Mook Weon
- SKKU Advanced Institute of Nanotechnology (SAINT)School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Byung‐Ok Choi
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoul06351South Korea
- Department of NeurologySamsung Medical CenterSungkyunkwan University School of MedicineSeoul06351South Korea
| | - Hyung Jin Kim
- School of Electrical and Electronic EngineeringUlsan CollegeUlsan44610South Korea
| | - Deok‐Ho Kim
- Department of Biomedical Engineering, Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMD21218USA
| |
Collapse
|
14
|
Ormrod B, Ehler E. Induced pluripotent stem cell-derived cardiomyocytes-more show than substance? Biophys Rev 2023; 15:1941-1950. [PMID: 38192353 PMCID: PMC10771368 DOI: 10.1007/s12551-023-01099-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/04/2023] [Indexed: 01/10/2024] Open
Abstract
Cardiomyocytes that are derived from human-induced pluripotent stem cells (iPSC-CM) are an exciting tool to investigate cardiomyopathy disease mechanisms at the cellular level as well as to screen for potential side effects of novel drugs. However, currently their benefit is limited due to their fairly immature differentiation status under conventional culture conditions. This review is mainly aimed at researchers outside of the iPSC-CM field and will describe potential pitfalls and which features at the level of the myofibrils would be desired to make them a more representative model system. We will also discuss different strategies that may help to achieve these.
Collapse
Affiliation(s)
- Beth Ormrod
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, SE1 1UL UK
| | - Elisabeth Ehler
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, SE1 1UL UK
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), Room 3.26A, New Hunt’s House, Guy’s Campus, London, SE1 1UL UK
- British Heart Foundation Centre of Research Excellence, King’s College London, London, SE1 1UL UK
| |
Collapse
|
15
|
Jilberto J, DePalma SJ, Lo J, Kobeissi H, Quach L, Lejeune E, Baker BM, Nordsletten D. A data-driven computational model for engineered cardiac microtissues. Acta Biomater 2023; 172:123-134. [PMID: 37879587 PMCID: PMC10938557 DOI: 10.1016/j.actbio.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Engineered heart tissues (EHTs) present a potential solution to some of the current challenges in the treatment of heart disease; however, the development of mature, adult-like cardiac tissues remains elusive. Mechanical stimuli have been observed to improve whole-tissue function and cardiomyocyte (CM) maturation, although our ability to fully utilize these mechanisms is hampered, in part, by our incomplete understanding of the mechanobiology of EHTs. In this work, we leverage experimental data, produced by a mechanically tunable experimental setup, to introduce a tissue-specific computational modeling pipeline of EHTs. Our new modeling pipeline generates simulated, image-based EHTs, capturing ECM and myofibrillar structure as well as functional parameters estimated directly from experimental data. This approach enables the unique estimation of EHT function by data-based estimation of CM active stresses. We use this experimental and modeling pipeline to study different mechanical environments, where we contrast the force output of the tissue with the computed active stress of CMs. We show that the significant differences in measured experimental forces can largely be explained by the levels of myofibril formation achieved by the CMs in the distinct mechanical environments, with active stress showing more muted variations across conditions. The presented model also enables us to dissect the relative contributions of myofibrils and extracellular matrix to tissue force output, a task difficult to address experimentally. These results highlight the importance of tissue-specific modeling to augment EHT experiments, providing deeper insights into the mechanobiology driving EHT function. STATEMENT OF SIGNIFICANCE: Engineered heart tissues (EHTs) have the potential to revolutionize the way heart disease is treated. However, developing mature cardiomyocytes (CM) in these tissues remains a challenge due, in part, to our incomplete understanding of the fundamental biomechanical mechanisms that drive EHT development. This work integrates the experimental data of an EHT platform developed to study the influence of mechanics in CM maturation with computational biomechanical models. This approach is used to augment conclusions obtained in-vitro - by measuring quantities such as cell stress and strain - and to dissect the relevance of each component in the whole tissue performance. Our results show how a combination of specialized in-silico and in-vitro approaches can help us better understand the mechanobiology of EHTs.
Collapse
Affiliation(s)
- Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, MI, USA.
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Jason Lo
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, MA, USA
| | - Lani Quach
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, MA, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan, MI, USA; Department of Cardiac Surgery, University of Michigan, MI, USA; Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
16
|
DePalma SJ, Jillberto J, Stis AE, Huang DD, Lo J, Davidson CD, Chowdhury A, Jewett ME, Kobeissi H, Chen CS, Lejeune E, Helms AS, Nordsletten DA, Baker BM. Matrix architecture and mechanics regulate myofibril organization, costamere assembly, and contractility of engineered myocardial microtissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563346. [PMID: 37961415 PMCID: PMC10634701 DOI: 10.1101/2023.10.20.563346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, we established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling. We find that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC-CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell-ECM interactions in myofibril assembly and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC-CM tissue models with controllable architecture and mechanics can inform the design of translatable regenerative cardiac therapies.
Collapse
|
17
|
House A, Cornick J, Butt Q, Guvendiren M. Elastomeric platform with surface wrinkling patterns to control cardiac cell alignment. J Biomed Mater Res A 2023; 111:1228-1242. [PMID: 36762538 DOI: 10.1002/jbm.a.37511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
There is a growing interest in creating 2D cardiac tissue models that display native extracellular matrix (ECM) cues of the heart tissue. Cellular alignment alone is known to be a crucial cue for cardiac tissue development by regulating cell-cell and cell-ECM interactions. In this study, we report a simple and robust approach to create lamellar surface wrinkling patterns enabling spatial control of pattern dimensions with a wide range of pattern amplitude (A ≈ 2-55 μm) and wavelength (λ ≈ 35-100 μm). For human cardiomyocytes (hCMs) and human cardiac fibroblasts (hCFs), our results indicate that the degree of cellular alignment and pattern recognition are correlated with pattern A and λ. We also demonstrate fabrication of devices composed of micro-well arrays with user-defined lamellar patterns on the bottom surface of each well for high-throughput screening studies. Results from a screening study indicate that cellular alignment is strongly diminished with increasing seeding density. In another study, we show our ability to vary hCM/hCF seeding ratio for each well to create co-culture systems where seeding ratio is independent of cellular alignment.
Collapse
Affiliation(s)
- Andrew House
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jason Cornick
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Quratulain Butt
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
18
|
Dou W, Daoud A, Chen X, Wang T, Malhi M, Gong Z, Mirshafiei F, Zhu M, Shan G, Huang X, Maynes JT, Sun Y. Ultrathin and Flexible Bioelectronic Arrays for Functional Measurement of iPSC-Cardiomyocytes under Cardiotropic Drug Administration and Controlled Microenvironments. NANO LETTERS 2023; 23:2321-2331. [PMID: 36893018 DOI: 10.1021/acs.nanolett.3c00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Emerging heart-on-a-chip technology is a promising tool to establish in vitro cardiac models for therapeutic testing and disease modeling. However, due to the technical complexity of integrating cell culture chambers, biosensors, and bioreactors into a single entity, a microphysiological system capable of reproducing controlled microenvironmental cues to regulate cell phenotypes, promote iPS-cardiomyocyte maturity, and simultaneously measure the dynamic changes of cardiomyocyte function in situ is not available. This paper reports an ultrathin and flexible bioelectronic array platform in 24-well format for higher-throughput contractility measurement under candidate drug administration or defined microenvironmental conditions. In the array, carbon black (CB)-PDMS flexible strain sensors were embedded for detecting iPSC-CM contractility signals. Carbon fiber electrodes and pneumatic air channels were integrated to provide electrical and mechanical stimulation to improve iPSC-CM maturation. Performed experiments validate that the bioelectronic array accurately reveals the effects of cardiotropic drugs and identifies mechanical/electrical stimulation strategies for promoting iPSC-CM maturation.
Collapse
Affiliation(s)
- Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Abdelkader Daoud
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Tiancong Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Manpreet Malhi
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Fatemeh Mirshafiei
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Min Zhu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Xi Huang
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Jason T Maynes
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada
| |
Collapse
|
19
|
Biomedical applications of solid-binding peptides and proteins. Mater Today Bio 2023; 19:100580. [PMID: 36846310 PMCID: PMC9950531 DOI: 10.1016/j.mtbio.2023.100580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, solid-binding peptides (SBPs) have found multiple applications in materials science. In non-covalent surface modification strategies, solid-binding peptides are a simple and versatile tool for the immobilization of biomolecules on a vast variety of solid surfaces. Especially in physiological environments, SBPs can increase the biocompatibility of hybrid materials and offer tunable properties for the display of biomolecules with minimal impact on their functionality. All these features make SBPs attractive for the manufacturing of bioinspired materials in diagnostic and therapeutic applications. In particular, biomedical applications such as drug delivery, biosensing, and regenerative therapies have benefited from the introduction of SBPs. Here, we review recent literature on the use of solid-binding peptides and solid-binding proteins in biomedical applications. We focus on applications where modulating the interactions between solid materials and biomolecules is crucial. In this review, we describe solid-binding peptides and proteins, providing background on sequence design and binding mechanism. We then discuss their application on materials relevant for biomedicine (calcium phosphates, silicates, ice crystals, metals, plastics, and graphene). Although the limited characterization of SBPs still represents a challenge for their design and widespread application, our review shows that SBP-mediated bioconjugation can be easily introduced into complex designs and on nanomaterials with very different surface chemistries.
Collapse
|
20
|
Watanabe T, Sassi S, Ulziibayar A, Hama R, Kitsuka T, Shinoka T. The Application of Porous Scaffolds for Cardiovascular Tissues. Bioengineering (Basel) 2023; 10:236. [PMID: 36829730 PMCID: PMC9952004 DOI: 10.3390/bioengineering10020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
As the number of arteriosclerotic diseases continues to increase, much improvement is still needed with treatments for cardiovascular diseases. This is mainly due to the limitations of currently existing treatment options, including the limited number of donor organs available or the long-term durability of the artificial organs. Therefore, tissue engineering has attracted significant attention as a tissue regeneration therapy in this area. Porous scaffolds are one of the effective methods for tissue engineering. However, it could be better, and its effectiveness varies depending on the tissue application. This paper will address the challenges presented by various materials and their combinations. We will also describe some of the latest methods for tissue engineering.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Salha Sassi
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Rikako Hama
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Takahiro Kitsuka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Surgery, Nationwide Children’s Hospital, Ohio State University, Columbus, OH 43205, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
21
|
Bissoli I, D’Adamo S, Pignatti C, Agnetti G, Flamigni F, Cetrullo S. Induced pluripotent stem cell-based models: Are we ready for that heart in a dish? Front Cell Dev Biol 2023; 11:1129263. [PMID: 36743420 PMCID: PMC9892938 DOI: 10.3389/fcell.2023.1129263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Affiliation(s)
- Irene Bissoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Stefania D’Adamo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Carla Pignatti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giulio Agnetti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
- Center for Research on Cardiac Intermediate Filaments, Johns Hopkins University, Baltimore, MD, United States
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
| |
Collapse
|
22
|
Ahn H, Cho Y, Yun GT, Jung KB, Jeong W, Kim Y, Son MY, Lee E, Im SG, Jung HT. Hierarchical Topography with Tunable Micro- and Nanoarchitectonics for Highly Enhanced Cardiomyocyte Maturation via Multi-Scale Mechanotransduction. Adv Healthc Mater 2023; 12:e2202371. [PMID: 36652539 DOI: 10.1002/adhm.202202371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Enhancing cardiomyocyte (CM) maturation by topographical cues is a critical issue in cardiac tissue engineering. Thus far, single-scale topographies with a broad range of feature shapes and dimensions have been utilized including grooves, pillars, and fibers. This study reports for the first time a hierarchical structure composed of nano-pillars (nPs) on micro-wrinkles (µWs) for effective maturation of CMs. Through capillary force lithography followed by a wrinkling process, vast size ranges of topographies are fabricated, and the responses of CMs are systematically investigated. Maturation of CMs on the hierarchical structures is highly enhanced compared to a single-scale topography: cardiac differentiation of H9C2s (rat cardiomyocytes) on the hierarchical topography is ≈ 2.8 and ≈ 1.9 times higher than those consisting of single-scale µWs and nPs. Both nPs and µWs have important roles in cardiac maturation, and the aspect ratio (height/diameter) of the nPs and the wavelength of the µWs are important in CM maturation. This enhancement is caused by strong focal adhesion and nucleus mediated mechanotransduction of CMs from the confinement effects of the different wavelengths of µWs and the cellular membrane protrusion on the nPs. This study demonstrates how a large family of hierarchical structures is used for cardiac maturation.
Collapse
Affiliation(s)
- Hyunah Ahn
- National Laboratory for Organic Opto-Electronic Material, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Younghak Cho
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Geun-Tae Yun
- National Nanofab Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Kwang Bo Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Wonji Jeong
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Yesol Kim
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Eunjung Lee
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Sung Gap Im
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hee-Tae Jung
- National Laboratory for Organic Opto-Electronic Material, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
23
|
Mostert D, Groenen B, Klouda L, Passier R, Goumans MJ, Kurniawan NA, Bouten CVC. Human pluripotent stem cell-derived cardiomyocytes align under cyclic strain when guided by cardiac fibroblasts. APL Bioeng 2022; 6:046108. [PMID: 36567768 PMCID: PMC9771596 DOI: 10.1063/5.0108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The myocardium is a mechanically active tissue typified by anisotropy of the resident cells [cardiomyocytes (CMs) and cardiac fibroblasts (cFBs)] and the extracellular matrix (ECM). Upon ischemic injury, the anisotropic tissue is replaced by disorganized scar tissue, resulting in loss of coordinated contraction. Efforts to re-establish tissue anisotropy in the injured myocardium are hampered by a lack of understanding of how CM and/or cFB structural organization is affected by the two major physical cues inherent in the myocardium: ECM organization and cyclic mechanical strain. Herein, we investigate the singular and combined effect of ECM (dis)organization and cyclic strain in a two-dimensional human in vitro co-culture model of the myocardial microenvironment. We show that (an)isotropic ECM protein patterning can guide the orientation of CMs and cFBs, both in mono- and co-culture. Subsequent application of uniaxial cyclic strain-mimicking the local anisotropic deformation of beating myocardium-causes no effect when applied parallel to the anisotropic ECM. However, when cultured on isotropic substrates, cFBs, but not CMs, orient away from the direction of cyclic uniaxial strain (strain avoidance). In contrast, CMs show strain avoidance via active remodeling of their sarcomeres only when co-cultured with at least 30% cFBs. Paracrine signaling or N-cadherin-mediated communication between CMs and cFBs was no contributing factor. Our findings suggest that the mechanoresponsive cFBs provide structural guidance for CM orientation and elongation. Our study, therefore, highlights a synergistic mechanobiological interplay between CMs and cFBs in shaping tissue organization, which is of relevance for regenerating functionally organized myocardium.
Collapse
Affiliation(s)
| | - Bart Groenen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Leda Klouda
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Marie-Jose Goumans
- Department of Cell and Chemical Biology and Center for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | |
Collapse
|
24
|
Mao J, Saiding Q, Qian S, Liu Z, Zhao B, Zhao Q, Lu B, Mao X, Zhang L, Zhang Y, Sun X, Cui W. Reprogramming stem cells in regenerative medicine. SMART MEDICINE 2022; 1:e20220005. [PMID: 39188749 PMCID: PMC11235200 DOI: 10.1002/smmd.20220005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 08/28/2024]
Abstract
Induced pluripotent stem cells (iPSCs) that are generated from adult somatic cells are induced to express genes that make them pluripotent through reprogramming techniques. With their unlimited proliferative capacity and multifaceted differentiation potential and circumventing the ethical problems encountered in the application of embryonic stem cells (ESC), iPSCs have a broad application in the fields of cell therapy, drug screening, and disease models and may open up new possibilities for regenerative medicine to treat diseases in the future. In this review, we begin with different reprogramming cell technologies to obtain iPSCs, including biotechnological, chemical, and physical modulation techniques, and present their respective strengths, and limitations, as well as the recent progress of research. Secondly, we review recent research advances in iPSC reprogramming-based regenerative therapies. iPSCs are now widely used to study various clinical diseases of hair follicle defects, myocardial infarction, neurological disorders, liver diseases, and spinal cord injuries. This review focuses on the translational clinical research around iPSCs as well as their potential for growth in the medical field. Finally, we summarize the overall review and look at the potential future of iPSCs in the field of cell therapy as well as tissue regeneration engineering and possible problems. We believe that the advancing iPSC research will help drive long-awaited breakthroughs in cellular therapy.
Collapse
Affiliation(s)
- Jiayi Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shutong Qian
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhimo Liu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Binfan Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bolun Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuguang Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
25
|
Pioner JM, Santini L, Palandri C, Langione M, Grandinetti B, Querceto S, Martella D, Mazzantini C, Scellini B, Giammarino L, Lupi F, Mazzarotto F, Gowran A, Rovina D, Santoro R, Pompilio G, Tesi C, Parmeggiani C, Regnier M, Cerbai E, Mack DL, Poggesi C, Ferrantini C, Coppini R. Calcium handling maturation and adaptation to increased substrate stiffness in human iPSC-derived cardiomyocytes: The impact of full-length dystrophin deficiency. Front Physiol 2022; 13:1030920. [PMID: 36419836 PMCID: PMC9676373 DOI: 10.3389/fphys.2022.1030920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Cardiomyocytes differentiated from human induced Pluripotent Stem Cells (hiPSC- CMs) are a unique source for modelling inherited cardiomyopathies. In particular, the possibility of observing maturation processes in a simple culture dish opens novel perspectives in the study of early-disease defects caused by genetic mutations before the onset of clinical manifestations. For instance, calcium handling abnormalities are considered as a leading cause of cardiomyocyte dysfunction in several genetic-based dilated cardiomyopathies, including rare types such as Duchenne Muscular Dystrophy (DMD)-associated cardiomyopathy. To better define the maturation of calcium handling we simultaneously measured action potential and calcium transients (Ca-Ts) using fluorescent indicators at specific time points. We combined micropatterned substrates with long-term cultures to improve maturation of hiPSC-CMs (60, 75 or 90 days post-differentiation). Control-(hiPSC)-CMs displayed increased maturation over time (90 vs 60 days), with longer action potential duration (APD), increased Ca-T amplitude, faster Ca-T rise (time to peak) and Ca-T decay (RT50). The progressively increased contribution of the SR to Ca release (estimated by post-rest potentiation or Caffeine-induced Ca-Ts) appeared as the main determinant of the progressive rise of Ca-T amplitude during maturation. As an example of severe cardiomyopathy with early onset, we compared hiPSC-CMs generated from a DMD patient (DMD-ΔExon50) and a CRISPR-Cas9 genome edited cell line isogenic to the healthy control with deletion of a G base at position 263 of the DMD gene (c.263delG-CMs). In DMD-hiPSC-CMs, changes of Ca-Ts during maturation were less pronounced: indeed, DMD cells at 90 days showed reduced Ca-T amplitude and faster Ca-T rise and RT50, as compared with control hiPSC-CMs. Caffeine-Ca-T was reduced in amplitude and had a slower time course, suggesting lower SR calcium content and NCX function in DMD vs control cells. Nonetheless, the inotropic and lusitropic responses to forskolin were preserved. CRISPR-induced c.263delG-CM line recapitulated the same developmental calcium handling alterations observed in DMD-CMs. We then tested the effects of micropatterned substrates with higher stiffness. In control hiPSC-CMs, higher stiffness leads to higher amplitude of Ca-T with faster decay kinetics. In hiPSC-CMs lacking full-length dystrophin, however, stiffer substrates did not modify Ca-Ts but only led to higher SR Ca content. These findings highlighted the inability of dystrophin-deficient cardiomyocytes to adjust their calcium homeostasis in response to increases of extracellular matrix stiffness, which suggests a mechanism occurring during the physiological and pathological development (i.e. fibrosis).
Collapse
Affiliation(s)
| | - Lorenzo Santini
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Chiara Palandri
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Marianna Langione
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
| | - Silvia Querceto
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
| | - Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Turin, Italy
| | | | - Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Flavia Lupi
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Davide Rovina
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Rosaria Santoro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | | | - David L. Mack
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Raffaele Coppini
- Department of Neurofarba, University of Florence, Florence, Italy
| |
Collapse
|
26
|
Li J, Liu L, Zhang J, Qu X, Kawamura T, Miyagawa S, Sawa Y. Engineered Tissue for Cardiac Regeneration: Current Status and Future Perspectives. Bioengineering (Basel) 2022; 9:605. [PMID: 36354516 PMCID: PMC9688015 DOI: 10.3390/bioengineering9110605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2023] Open
Abstract
Heart failure (HF) is the leading cause of death worldwide. The most effective HF treatment is heart transplantation, the use of which is restricted by the limited supply of donor hearts. The human pluripotent stem cell (hPSC), including human embryonic stem cell (hESC) and the induced pluripotent stem cells (hiPSC), could be produced in an infinite manner and differentiated into cardiomyocytes (CMs) with high efficiency. The hPSC-CMs have, thus, offered a promising alternative for heart transplant. In this review, we introduce the tissue-engineering technologies for hPSC-CM, including the materials for cell culture and tissue formation, and the delivery means into the heart. The most recent progress in clinical application of hPSC-CMs is also introduced. In addition, the bottleneck limitations and future perspectives for clinical translation are further discussed.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Cardiovascular Division, Osaka Police Hospital, Tennoji, Osaka 543-0035, Japan
| |
Collapse
|
27
|
Leowattana W, Leowattana T, Leowattana P. Human-induced pluripotent stem cell-atrial-specific cardiomyocytes and atrial fibrillation. World J Clin Cases 2022; 10:9588-9601. [PMID: 36186184 PMCID: PMC9516943 DOI: 10.12998/wjcc.v10.i27.9588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Patient-specific human-induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs) may be produced, genome-edited, and differentiated into multiple cell types for regenerative medicine, disease modeling, drug testing, toxicity screening, and three-dimensional tissue fabrication. There is presently no complete model of atrial fibrillation (AF) available for studying human pharmacological responses and evaluating the toxicity of potential medication candidates. It has been demonstrated that hiPSC-aCMs can replicate the electrophysiological disease phenotype and genotype of AF. The hiPSC-aCMs, however, are immature and do not reflect the maturity of aCMs in the native myocardium. Numerous laboratories utilize a variety of methodologies and procedures to improve and promote aCM maturation, including electrical stimulation, culture duration, biophysical signals, and changes in metabolic variables. This review covers the current methods being explored for use in the maturation of patient-specific hiPSC-aCMs and their application towards a personalized approach to the pharmacologic therapy of AF.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
28
|
Dickerson DA. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites. Adv Biol (Weinh) 2022; 7:e2200067. [PMID: 35999488 DOI: 10.1002/adbi.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Indexed: 11/10/2022]
Abstract
A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.
Collapse
Affiliation(s)
- Darryl A. Dickerson
- Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler St Miami FL 33174 USA
| |
Collapse
|
29
|
Afzal J, Liu Y, Du W, Suhail Y, Zong P, Feng J, Ajeti V, Sayyad WA, Nikolaus J, Yankova M, Deymier AC, Yue L, Kshitiz. Cardiac ultrastructure inspired matrix induces advanced metabolic and functional maturation of differentiated human cardiomyocytes. Cell Rep 2022; 40:111146. [PMID: 35905711 DOI: 10.1016/j.celrep.2022.111146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 12/21/2022] Open
Abstract
The vast potential of human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) in preclinical models of cardiac pathologies, precision medicine, and drug screening remains to be fully realized because hiPSC-CMs are immature without adult-like characteristics. Here, we present a method to accelerate hiPSC-CM maturation on a substrate, cardiac mimetic matrix (CMM), mimicking adult human heart matrix ligand chemistry, rigidity, and submicron ultrastructure, which synergistically mature hiPSC-CMs rapidly within 30 days. hiPSC-CMs matured on CMM exhibit systemic transcriptomic maturation toward an adult heart state, are aligned with high strain energy, metabolically rely on oxidative phosphorylation and fatty acid oxidation, and display enhanced redox handling capability, efficient calcium handling, and electrophysiological features of ventricular myocytes. Endothelin-1-induced pathological hypertrophy is mitigated on CMM, highlighting the role of a native cardiac microenvironment in withstanding hypertrophy progression. CMM is a convenient model for accelerated development of ventricular myocytes manifesting highly specialized cardiac-specific functions.
Collapse
Affiliation(s)
- Junaid Afzal
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Wenqiang Du
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Pengyu Zong
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Jianlin Feng
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Visar Ajeti
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Wasim A Sayyad
- Department of Cell Biology, Yale University, New Haven, CT 06510, USA
| | - Joerg Nikolaus
- West Campus Imaging Core, Yale University, New Haven, CT 06477, USA
| | - Maya Yankova
- Electron Microscopy Core, University of Connecticut Health, Farmington, CT 06032, USA
| | - Alix C Deymier
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Lixia Yue
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA; Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA.
| |
Collapse
|
30
|
Wang Y, Yu M, Hao K, Lei W, Tang M, Hu S. Cardiomyocyte Maturation-the Road is not Obstructed. Stem Cell Rev Rep 2022; 18:2966-2981. [PMID: 35788883 DOI: 10.1007/s12015-022-10407-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent one of the most promising ways to treat cardiovascular diseases. High-purity cardiomyocytes (CM) from different cell sources could be obtained at present. However, the immature nature of these cardiomyocytes hinders its further clinical application. From immature to mature state, it involves structural, functional, and metabolic changes in cardiomyocytes. Generally, two types of culturing (2D and 3D) systems have been reported to induce cardiomyocyte maturation. 2D culture mainly achieves the maturation of cardiomyocytes through long-term culture, co-culture, supplementation of small molecule compounds, and the application of biophysical cues. The combined use of biomaterial's surface topography and biophysical cues also facilitates the maturation of cardiomyocytes. Cardiomyocyte maturation is a complex process involving many signaling pathways, and current methods fail to fully reproduce this process. Therefore, analyzing the signaling pathway network related to the maturation and producing hPSC-CMs with adult-like phenotype is a challenge. In this review, we summarized the structural and functional differences between hPSC-CMs and mature cardiomyocytes, and introduced various methods to induce cardiomyocyte maturation.
Collapse
Affiliation(s)
- Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Kaili Hao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Mingliang Tang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
31
|
Querceto S, Santoro R, Gowran A, Grandinetti B, Pompilio G, Regnier M, Tesi C, Poggesi C, Ferrantini C, Pioner JM. The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. J Mol Cell Cardiol 2022; 166:36-49. [PMID: 35139328 PMCID: PMC11270945 DOI: 10.1016/j.yjmcc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/27/2022]
Abstract
The quest for novel methods to mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for cardiac regeneration, modelling and drug testing has emphasized a need to create microenvironments with physiological features. Many studies have reported on how cardiomyocytes sense substrate stiffness and adapt their morphological and functional properties. However, these observations have raised new biological questions and a shared vision to translate it into a tissue or organ context is still elusive. In this review, we will focus on the relevance of substrates mimicking cardiac extracellular matrix (cECM) rigidity for the understanding of the biomechanical crosstalk between the extracellular and intracellular environment. The ability to opportunely modulate these pathways could be a key to regulate in vitro hiPSC-CM maturation. Therefore, both hiPSC-CM models and substrate stiffness appear as intriguing tools for the investigation of cECM-cell interactions. More understanding of these mechanisms may provide novel insights on how cECM affects cardiac cell function in the context of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Silvia Querceto
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, FI, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chiara Tesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Josè Manuel Pioner
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
32
|
Tan YH, Helms HR, Nakayama KH. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues. Front Bioeng Biotechnol 2022; 10:831300. [PMID: 35295645 PMCID: PMC8918733 DOI: 10.3389/fbioe.2022.831300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and is associated with approximately 17.9 million deaths each year. Musculoskeletal conditions affect more than 1.71 billion people globally and are the leading cause of disability. These two areas represent a massive global health burden that is perpetuated by a lack of functionally restorative treatment options. The fields of regenerative medicine and tissue engineering offer great promise for the development of therapies to repair damaged or diseased tissues. Decellularized tissues and extracellular matrices are cornerstones of regenerative biomaterials and have been used clinically for decades and many have received FDA approval. In this review, we first discuss and compare methods used to produce decellularized tissues and ECMs from cardiac and skeletal muscle. We take a focused look at how different biophysical properties such as spatial topography, extracellular matrix composition, and mechanical characteristics influence cell behavior and function in the context of regenerative medicine. Lastly, we describe emerging research and forecast the future high impact applications of decellularized cardiac and skeletal muscle that will drive novel and effective regenerative therapies.
Collapse
Affiliation(s)
| | | | - Karina H. Nakayama
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
33
|
Li Y, Wei L, Lan L, Gao Y, Zhang Q, Dawit H, Mao J, Guo L, Shen L, Wang L. Conductive biomaterials for cardiac repair: A review. Acta Biomater 2022; 139:157-178. [PMID: 33887448 DOI: 10.1016/j.actbio.2021.04.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) is one of the fatal diseases in humans. Its incidence is constantly increasing annually all over the world. The problem is accompanied by the limited regenerative capacity of cardiomyocytes, yielding fibrous scar tissue formation. The propagation of electrical impulses in such tissue is severely hampered, negatively influencing the normal heart pumping function. Thus, reconstruction of the internal cardiac electrical connection is currently a major concern of myocardial repair. Conductive biomaterials with or without cell loading were extensively investigated to address this problem. This article introduces a detailed overview of the recent progress in conductive biomaterials and fabrication methods of conductive scaffolds for cardiac repair. After that, the advances in myocardial tissue construction in vitro by the restoration of intercellular communication and simulation of the dynamic electrophysiological environment are systematically reviewed. Furthermore, the latest trend in the study of cardiac repair in vivo using various conductive patches is summarized. Finally, we discuss the achievements and shortcomings of the existing conductive biomaterials and the properties of an ideal conductive patch for myocardial repair. We hope this review will help readers understand the importance and usefulness of conductive biomaterials in cardiac repair and inspire researchers to design and develop new conductive patches to meet the clinical requirements. STATEMENT OF SIGNIFICANCE: After myocardial infarction, the infarcted myocardial area is gradually replaced by heterogeneous fibrous tissue with inferior conduction properties, resulting in arrhythmia and heart remodeling. Conductive biomaterials have been extensively adopted to solve the problem. Summarizing the relevant literature, this review presents an overview of the types and fabrication methods of conductive biomaterials, and focally discusses the recent advances in myocardial tissue construction in vitro and myocardial repair in vivo, which is rarely covered in previous reviews. As well, the deficiencies of the existing conductive patches and their construction strategies for myocardial repair are discussed as well as the improving directions. Confidently, the readers of this review would appreciate advantages and current limitations of conductive biomaterials/patches in cardiac repair.
Collapse
Affiliation(s)
- Yimeng Li
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Leqian Wei
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lizhen Lan
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yaya Gao
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Qian Zhang
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Hewan Dawit
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China.
| | - Lamei Guo
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Li Shen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Lu Wang
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
34
|
Arslanova A, Shafaattalab S, Ye K, Asghari P, Lin L, Kim B, Roston TM, Hove-Madsen L, Van Petegem F, Sanatani S, Moore E, Lynn F, Søndergaard M, Luo Y, Chen SRW, Tibbits GF. Using hiPSC-CMs to Examine Mechanisms of Catecholaminergic Polymorphic Ventricular Tachycardia. Curr Protoc 2021; 1:e320. [PMID: 34958715 DOI: 10.1002/cpz1.320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a potentially lethal inherited cardiac arrhythmia condition, triggered by physical or acute emotional stress, that predominantly expresses early in life. Gain-of-function mutations in the cardiac ryanodine receptor gene (RYR2) account for the majority of CPVT cases, causing substantial disruption of intracellular calcium (Ca2+ ) homeostasis particularly during the periods of β-adrenergic receptor stimulation. However, the highly variable penetrance, patient outcomes, and drug responses observed in clinical practice remain unexplained, even for patients with well-established founder RyR2 mutations. Therefore, investigation of the electrophysiological consequences of CPVT-causing RyR2 mutations is crucial to better understand the pathophysiology of the disease. The development of strategies for reprogramming human somatic cells to human induced pluripotent stem cells (hiPSCs) has provided a unique opportunity to study inherited arrhythmias, due to the ability of hiPSCs to differentiate down a cardiac lineage. Employment of genome editing enables generation of disease-specific cell lines from healthy and diseased patient-derived hiPSCs, which subsequently can be differentiated into cardiomyocytes. This paper describes the means for establishing an hiPSC-based model of CPVT in order to recapitulate the disease phenotype in vitro and investigate underlying pathophysiological mechanisms. The framework of this approach has the potential to contribute to disease modeling and personalized medicine using hiPSC-derived cardiomyocytes. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Alia Arslanova
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sanam Shafaattalab
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kevin Ye
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Lin
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - BaRun Kim
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Thomas M Roston
- British Columbia Children's Hospital Heart Center, Vancouver, British Columbia, Canada
| | - Leif Hove-Madsen
- Cardiac Rhythm and Contraction Group, IIBB-CSIC, CIBERCV, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shubhayan Sanatani
- British Columbia Children's Hospital Heart Center, Vancouver, British Columbia, Canada
| | - Edwin Moore
- Cardiac Rhythm and Contraction Group, IIBB-CSIC, CIBERCV, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Francis Lynn
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | | | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Glen F Tibbits
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Vasu S, Zhou J, Chen J, Johnston PV, Kim DH. Biomaterials-based Approaches for Cardiac Regeneration. Korean Circ J 2021; 51:943-960. [PMID: 34854577 PMCID: PMC8636758 DOI: 10.4070/kcj.2021.0291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease is a prevalent cause of mortality and morbidity, largely due to the limited ability of cardiomyocytes to proliferate. Existing therapies for cardiac regeneration include cell-based therapies and bioactive molecules. However, delivery remains one of the major challenges impeding such therapies from having significant clinical impact. Recent advancements in biomaterials-based approaches for cardiac regeneration have shown promise in improving cardiac function, promoting angiogenesis, and reducing adverse immune response in both human clinical trials and animal studies. These advances in therapeutic delivery via extracellular vesicles, cardiac patches, and hydrogels have the potential to enable clinical impact of cardiac regeneration therapies. The limited ability of cardiomyocytes to proliferate is a major cause of mortality and morbidity in cardiovascular diseases. There exist therapies for cardiac regeneration that are cell-based as well as that involve bioactive molecules. However, delivery remains one of the major challenges impeding such therapies from having clinical impact. Recent advancements in biomaterials-based approaches for cardiac regeneration have shown promise in clinical trials and animal studies in improving cardiac function, promoting angiogenesis, and reducing adverse immune response. This review will focus on current clinical studies of three contemporary biomaterials-based approaches for cardiac regeneration (extracellular vesicles, injectable hydrogels, and cardiac patches), remaining challenges and shortcomings to be overcome, and future directions for the use of biomaterials to promote cardiac regeneration.
Collapse
Affiliation(s)
- Samhita Vasu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Justin Zhou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter V Johnston
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
Possible Treatment of Myocardial Infarct Based on Tissue Engineering Using a Cellularized Solid Collagen Scaffold Functionalized with Arg-Glyc-Asp (RGD) Peptide. Int J Mol Sci 2021; 22:ijms222212563. [PMID: 34830447 PMCID: PMC8620820 DOI: 10.3390/ijms222212563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, the clinical impact of cell therapy after a myocardial infarction (MI) is limited by low cell engraftment due to low cell retention, cell death in inflammatory and poor angiogenic infarcted areas, secondary migration. Cells interact with their microenvironment through integrin mechanoreceptors that control their survival/apoptosis/differentiation/migration and proliferation. The association of cells with a three-dimensional material may be a way to improve interactions with their integrins, and thus outcomes, especially if preparations are epicardially applied. In this review, we will focus on the rationale for using collagen as a polymer backbone for tissue engineering of a contractile tissue. Contractilities are reported for natural but not synthetic polymers and for naturals only for: collagen/gelatin/decellularized-tissue/fibrin/Matrigel™ and for different material states: hydrogels/gels/solids. To achieve a thick/long-term contractile tissue and for cell transfer, solid porous compliant scaffolds are superior to hydrogels or gels. Classical methods to produce solid scaffolds: electrospinning/freeze-drying/3D-printing/solvent-casting and methods to reinforce and/or maintain scaffold properties by reticulations are reported. We also highlight the possibility of improving integrin interaction between cells and their associated collagen by its functionalizing with the RGD-peptide. Using a contractile patch that can be applied epicardially may be a way of improving ventricular remodeling and limiting secondary cell migration.
Collapse
|
37
|
Singh JP, Young JL. The cardiac nanoenvironment: form and function at the nanoscale. Biophys Rev 2021; 13:625-636. [PMID: 34765045 PMCID: PMC8555021 DOI: 10.1007/s12551-021-00834-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Mechanical forces in the cardiovascular system occur over a wide range of length scales. At the whole organ level, large scale forces drive the beating heart as a synergistic unit. On the microscale, individual cells and their surrounding extracellular matrix (ECM) exhibit dynamic reciprocity, with mechanical feedback moving bidirectionally. Finally, in the nanometer regime, molecular features of cells and the ECM show remarkable sensitivity to mechanical cues. While small, these nanoscale properties are in many cases directly responsible for the mechanosensitive signaling processes that elicit cellular outcomes. Given the inherent challenges in observing, quantifying, and reconstituting this nanoscale environment, it is not surprising that this landscape has been understudied compared to larger length scales. Here, we aim to shine light upon the cardiac nanoenvironment, which plays a crucial role in maintaining physiological homeostasis while also underlying pathological processes. Thus, we will highlight strategies aimed at (1) elucidating the nanoscale components of the cardiac matrix, and (2) designing new materials and biosystems capable of mimicking these features in vitro.
Collapse
Affiliation(s)
- Jashan P Singh
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore
| | - Jennifer L Young
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, 117575 Singapore, Singapore
| |
Collapse
|
38
|
Hierarchically Structured Polystyrene-Based Surfaces Amplifying Fluorescence Signals: Cytocompatibility with Human Induced Pluripotent Stem Cell. Int J Mol Sci 2021; 22:ijms222111943. [PMID: 34769373 PMCID: PMC8584612 DOI: 10.3390/ijms222111943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/10/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
An innovative multi-step phase separation process was used to prepare tissue culture for the polystyrene-based, hierarchically structured substrates, which mimicked in vivo microenvironment and architecture. Macro- (pore area from 3000 to 18,000 µm2; roughness (Ra) 7.2 ± 0.1 µm) and meso- (pore area from 50 to 300 µm2; Ra 1.1 ± 0.1 µm) structured substrates covered with micro-pores (area around 3 µm2) were prepared and characterised. Both types of substrate were suitable for human-induced pluripotent stem cell (hiPSC) cultivation and were found to be beneficial for the induction of cardiomyogenesis in hiPSC. This was confirmed both by the number of promoted proliferated cells and the expressions of specific markers (Nkx2.5, MYH6, MYL2, and MYL7). Moreover, the substrates amplified the fluorescence signal when Ca2+ flow was monitored. This property, together with cytocompatibility, make this material especially suitable for in vitro studies of cell/material interactions within tissue-mimicking environments.
Collapse
|
39
|
Tsan YC, DePalma SJ, Zhao YT, Capilnasiu A, Wu YW, Elder B, Panse I, Ufford K, Matera DL, Friedline S, O'Leary TS, Wubshet N, Ho KKY, Previs MJ, Nordsletten D, Isom LL, Baker BM, Liu AP, Helms AS. Physiologic biomechanics enhance reproducible contractile development in a stem cell derived cardiac muscle platform. Nat Commun 2021; 12:6167. [PMID: 34697315 PMCID: PMC8546060 DOI: 10.1038/s41467-021-26496-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) allow investigations in a human cardiac model system, but disorganized mechanics and immaturity of hPSC-CMs on standard two-dimensional surfaces have been hurdles. Here, we developed a platform of micron-scale cardiac muscle bundles to control biomechanics in arrays of thousands of purified, independently contracting cardiac muscle strips on two-dimensional elastomer substrates with far greater throughput than single cell methods. By defining geometry and workload in this reductionist platform, we show that myofibrillar alignment and auxotonic contractions at physiologic workload drive maturation of contractile function, calcium handling, and electrophysiology. Using transcriptomics, reporter hPSC-CMs, and quantitative immunofluorescence, these cardiac muscle bundles can be used to parse orthogonal cues in early development, including contractile force, calcium load, and metabolic signals. Additionally, the resultant organized biomechanics facilitates automated extraction of contractile kinetics from brightfield microscopy imaging, increasing the accessibility, reproducibility, and throughput of pharmacologic testing and cardiomyopathy disease modeling. Investigations of human cardiac disease involving human pluripotent stem cell-derived cardiomyocytes are limited by the disorganized presentation of biomechanical cues resulting in cell immaturity. Here the authors develop a platform of micron-scale 2D cardiac muscle bundles to precisely deliver physiologic cues, improving reproducibility and throughput.
Collapse
Affiliation(s)
- Yao-Chang Tsan
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yan-Ting Zhao
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Adela Capilnasiu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yu-Wei Wu
- Institute of Molecular Biology, Academia Sinica, NanKang, Taipei, Taiwan
| | - Brynn Elder
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Isabella Panse
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kathryn Ufford
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daniel L Matera
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sabrina Friedline
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas S O'Leary
- Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Nadab Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael J Previs
- Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Cardiovascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Allen P Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Adam S Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Swiatlowska P, Iskratsch T. Tools for studying and modulating (cardiac muscle) cell mechanics and mechanosensing across the scales. Biophys Rev 2021; 13:611-623. [PMID: 34765044 PMCID: PMC8553672 DOI: 10.1007/s12551-021-00837-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Cardiomyocytes generate force for the contraction of the heart to pump blood into the lungs and body. At the same time, they are exquisitely tuned to the mechanical environment and react to e.g. changes in cell and extracellular matrix stiffness or altered stretching due to reduced ejection fraction in heart disease, by adapting their cytoskeleton, force generation and cell mechanics. Both mechanical sensing and cell mechanical adaptations are multiscale processes. Receptor interactions with the extracellular matrix at the nanoscale will lead to clustering of receptors and modification of the cytoskeleton. This in turn alters mechanosensing, force generation, cell and nuclear stiffness and viscoelasticity at the microscale. Further, this affects cell shape, orientation, maturation and tissue integration at the microscale to macroscale. A variety of tools have been developed and adapted to measure cardiomyocyte receptor-ligand interactions and forces or mechanics at the different ranges, resulting in a wealth of new information about cardiomyocyte mechanobiology. Here, we take stock at the different tools for exploring cardiomyocyte mechanosensing and cell mechanics at the different scales from the nanoscale to microscale and macroscale.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
41
|
Cortella LRX, Cestari IA, Lahuerta RD, Araña MC, Soldera M, Rank A, Lasagni AF, Cestari IN. Conditioning of hiPSC-derived cardiomyocytes using surface topography obtained with high throughput technology. Biomed Mater 2021; 16. [PMID: 34412045 DOI: 10.1088/1748-605x/ac1f73] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 08/19/2021] [Indexed: 12/31/2022]
Abstract
Surface functionalization of polymers aims to introduce novel properties that favor bioactive responses. We have investigated the possibility of surface functionalization of polyethylene terephthalate (PET) sheets by the combination of laser ablation with hot embossing and the application of such techniques in the field of stem cell research. We investigated the response of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to topography in the low micrometer range. HiPSC-CMs are expected to offer new therapeutic tools for myocardial replacement or regeneration after an infarct or other causes of cardiac tissue loss. However, hiPSC-CMs are phenotypically immature compared to myocytes in the adult myocardium, hampering their clinical application. We aimed to develop and test a high-throughput technique for surface structuring that would improve hiPSC-CMs structural maturation. We used laser ablation with a ps-laser source in combination with nanoimprint lithography to fabricate large areas of homogeneous micron- to submicron line-like pattern with a spatial period of 3 µm on the PET surface. We evaluated cell morphology, alignment, sarcomeric myofibrils assembly, and calcium transients to evaluate phenotypic changes associated with culturing hiPSC-CMs on functionalized PET. Surface functionalization through hot embossing was able to generate, at low cost, low micrometer features on the PET surface that influenced the hiPSC-CMs phenotype, suggesting improved structural and functional maturation. This technique may be relevant for high-throughput technologies that require conditioning of hiPSC-CMs and may be useful for the production of these cells for drug screening and disease modeling applications with lower costs.
Collapse
Affiliation(s)
- Lucas R X Cortella
- Bioengineering Department, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Enéas de Carvalho Aguiar, 44, 05403-900 São Paulo, Brazil
| | - Idágene A Cestari
- Bioengineering Department, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Enéas de Carvalho Aguiar, 44, 05403-900 São Paulo, Brazil
| | - Ricardo D Lahuerta
- Bioengineering Department, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Enéas de Carvalho Aguiar, 44, 05403-900 São Paulo, Brazil
| | - Matheus C Araña
- Bioengineering Department, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Enéas de Carvalho Aguiar, 44, 05403-900 São Paulo, Brazil
| | - Marcos Soldera
- Institute for Manufacturing Technology, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany.,PROBIEN-CONICET, Dto. de Electrotecnia, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén, Argentina
| | - Andreas Rank
- Institute for Manufacturing Technology, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany
| | - Andrés F Lasagni
- Institute for Manufacturing Technology, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany.,Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden, Germany
| | - Ismar N Cestari
- Bioengineering Department, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Enéas de Carvalho Aguiar, 44, 05403-900 São Paulo, Brazil
| |
Collapse
|
42
|
Schussler O, Chachques JC, Alifano M, Lecarpentier Y. Key Roles of RGD-Recognizing Integrins During Cardiac Development, on Cardiac Cells, and After Myocardial Infarction. J Cardiovasc Transl Res 2021; 15:179-203. [PMID: 34342855 DOI: 10.1007/s12265-021-10154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Cardiac cells interact with the extracellular matrix (ECM) proteins through integrin mechanoreceptors that control many cellular events such as cell survival, apoptosis, differentiation, migration, and proliferation. Integrins play a crucial role in cardiac development as well as in cardiac fibrosis and hypertrophy. Integrins recognize oligopeptides present on ECM proteins and are involved in three main types of interaction, namely with collagen, laminin, and the oligopeptide RGD (Arg-Gly-Asp) present on vitronectin and fibronectin proteins. To date, the specific role of integrins recognizing the RGD has not been addressed. In this review, we examine their role during cardiac development, their role on cardiac cells, and their upregulation during pathological processes such as heart fibrosis and hypertrophy. We also examine their role in regenerative and angiogenic processes after myocardial infarction (MI) in the peri-infarct area. Specific targeting of these integrins may be a way of controlling some of these pathological events and thereby improving medical outcomes.
Collapse
Affiliation(s)
- Olivier Schussler
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, Paris, France.
| | - Juan C Chachques
- Department of Cardiac Surgery Pompidou Hospital, Laboratory of Biosurgical Research, Carpentier Foundation, University Paris Descartes, 75015, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, Paris, France.,INSERM U1138 Team "Cancer, Immune Control, and Escape", Cordeliers Research Center, University of Paris, Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| |
Collapse
|
43
|
Zhu X, Wang Z, Teng F. A review of regulated self-organizing approaches for tissue regeneration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:63-78. [PMID: 34293337 DOI: 10.1016/j.pbiomolbio.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Tissue and organ regeneration is the dynamic process by which a population of cells rearranges into a specific form with specific functions. Traditional tissue regeneration utilizes tissue grafting, cell implantation, and structured scaffolds to achieve clinical efficacy. However, tissue grafting methods face a shortage of donor tissue, while cell implantation may involve leakage of the implanted cells without a supportive 3D matrix. Cell migration, proliferation, and differentiation in structured scaffolds may disorganize and frustrate the artificially pre-designed structures, and sometimes involve immunogenic reactions. To overcome this limitation, the self-organizing properties and innate regenerative capability of tissue/organism formation in the absence of guidance by structured scaffolds has been investigated. This review emphasizes the growing subfield of the regulated self-organizing approach for neotissue formation and describes advances in the subfield using diverse, cutting-edge, inter-disciplinarity technologies. We cohesively summarize the directed self-organization of cells in the micro-engineered cell-ECM system and 3D/4D cell printing. Mathematical modeling of cellular self-organization is also discussed for providing rational guidance to intractable problems in tissue regeneration. It is envisioned that future self-organization approaches integrating biomathematics, micro-nano engineering, and gene circuits developed from synthetic biology will continue to work in concert with self-organizing morphogenesis to enhance rational control during self-organizing in tissue and organ regeneration.
Collapse
Affiliation(s)
- Xiaolu Zhu
- College of Mechanical & Electrical Engineering, Hohai University, Changzhou, Jiangsu, 213022, China; Changzhou Key Laboratory of Digital Manufacture Technology, Hohai University, Changzhou, Jiangsu, 213022, China; Jiangsu Key Laboratory of Special Robot Technology, Hohai University, Changzhou, Jiangsu, 213022, China.
| | - Zheng Wang
- College of Mechanical & Electrical Engineering, Hohai University, Changzhou, Jiangsu, 213022, China
| | - Fang Teng
- Department of Gynaecology and Obstetrics, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210004, China.
| |
Collapse
|
44
|
Andrysiak K, Stępniewski J, Dulak J. Human-induced pluripotent stem cell-derived cardiomyocytes, 3D cardiac structures, and heart-on-a-chip as tools for drug research. Pflugers Arch 2021; 473:1061-1085. [PMID: 33629131 PMCID: PMC8245367 DOI: 10.1007/s00424-021-02536-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Development of new drugs is of high interest for the field of cardiac and cardiovascular diseases, which are a dominant cause of death worldwide. Before being allowed to be used and distributed, every new potentially therapeutic compound must be strictly validated during preclinical and clinical trials. The preclinical studies usually involve the in vitro and in vivo evaluation. Due to the increasing reporting of discrepancy in drug effects in animal and humans and the requirement to reduce the number of animals used in research, improvement of in vitro models based on human cells is indispensable. Primary cardiac cells are difficult to access and maintain in cell culture for extensive experiments; therefore, the human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) became an excellent alternative. This technology enables a production of high number of patient- and disease-specific cardiomyocytes and other cardiac cell types for a large-scale research. The drug effects can be extensively evaluated in the context of electrophysiological responses with a use of well-established tools, such as multielectrode array (MEA), patch clamp, or calcium ion oscillation measurements. Cardiotoxicity, which is a common reason for withdrawing drugs from marketing or rejection at final stages of clinical trials, can be easily verified with a use of hiPSC-CM model providing a prediction of human-specific responses and higher safety of clinical trials involving patient cohort. Abovementioned studies can be performed using two-dimensional cell culture providing a high-throughput and relatively lower costs. On the other hand, more complex structures, such as engineered heart tissue, organoids, or spheroids, frequently applied as co-culture systems, represent more physiological conditions and higher maturation rate of hiPSC-derived cells. Furthermore, heart-on-a-chip technology has recently become an increasingly popular tool, as it implements controllable culture conditions, application of various stimulations and continuous parameters read-out. This paper is an overview of possible use of cardiomyocytes and other cardiac cell types derived from hiPSC as in vitro models of heart in drug research area prepared on the basis of latest scientific reports and providing thorough discussion regarding their advantages and limitations.
Collapse
Affiliation(s)
- Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
45
|
Gharanei M, Shafaattalab S, Sangha S, Gunawan M, Laksman Z, Hove-Madsen L, Tibbits GF. Atrial-specific hiPSC-derived cardiomyocytes in drug discovery and disease modeling. Methods 2021; 203:364-377. [PMID: 34144175 DOI: 10.1016/j.ymeth.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/19/2022] Open
Abstract
The discovery and application of human-induced pluripotent stem cells (hiPSCs) have been instrumental in the investigation of the pathophysiology of cardiovascular diseases. Patient-specific hiPSCs can now be generated, genome-edited, and subsequently differentiated into various cell types and used for regenerative medicine, disease modeling, drug testing, toxicity screening, and 3D tissue generation. Modulation of the retinoic acid signaling pathway has been shown to direct cardiomyocyte differentiation towards an atrial lineage. A variety of studies have successfully differentiated patient-specific atrial cardiac myocytes (hiPSC-aCM) and atrial engineered heart tissue (aEHT) that express atrial specific genes (e.g., sarcolipin and ANP) and exhibit atrial electrophysiological and contractility profiles. Identification of protocols to differentiate atrial cells from patients with atrial fibrillation and other inherited diseases or creating disease models using genetic mutation studies has shed light on the mechanisms of atrial-specific diseases and identified the efficacy of atrial-selective pharmacological compounds. hiPSC-aCMs and aEHTs can be used in drug discovery and drug screening studies to investigate the efficacy of atrial selective drugs on atrial fibrillation models. Furthermore, hiPSC-aCMs can be effective tools in studying the mechanism, pathophysiology and treatment options of atrial fibrillation and its genetic underpinnings. The main limitation of using hiPSC-CMs is their immature phenotype compared to adult CMs. A wide range of approaches and protocols are used by various laboratories to optimize and enhance CM maturation, including electrical stimulation, culture time, biophysical cues and changes in metabolic factors.
Collapse
Affiliation(s)
- Mayel Gharanei
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sarabjit Sangha
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Marvin Gunawan
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Zachary Laksman
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Leif Hove-Madsen
- Cardiac Rhythm and Contraction Group, IIBB-CSIC, CIBERCV, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
46
|
Mohindra P, Desai TA. Micro- and nanoscale biophysical cues for cardiovascular disease therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 34:102365. [PMID: 33571682 PMCID: PMC8217090 DOI: 10.1016/j.nano.2021.102365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022]
Abstract
After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA.
| |
Collapse
|
47
|
Batalov I, Jallerat Q, Kim S, Bliley J, Feinberg AW. Engineering aligned human cardiac muscle using developmentally inspired fibronectin micropatterns. Sci Rep 2021; 11:11502. [PMID: 34075068 PMCID: PMC8169656 DOI: 10.1038/s41598-021-87550-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Cardiac two-dimensional tissues were engineered using biomimetic micropatterns based on the fibronectin-rich extracellular matrix (ECM) of the embryonic heart. The goal of this developmentally-inspired, in vitro approach was to identify cell-cell and cell-ECM interactions in the microenvironment of the early 4-chambered vertebrate heart that drive cardiomyocyte organization and alignment. To test this, biomimetic micropatterns based on confocal imaging of fibronectin in embryonic chick myocardium were created and compared to control micropatterns designed with 2 or 20 µm wide fibronectin lines. Results show that embryonic chick cardiomyocytes have a unique density-dependent alignment on the biomimetic micropattern that is mediated in part by N-cadherin, suggesting that both cell-cell and cell-ECM interactions play an important role in the formation of aligned myocardium. Human induced pluripotent stem cell-derived cardiomyocytes also showed density-dependent alignment on the biomimetic micropattern but were overall less well organized. Interestingly, the addition of human adult cardiac fibroblasts and conditioning with T3 hormone were both shown to increase human cardiomyocyte alignment. In total, these results show that cardiomyocyte maturation state, cardiomyocyte-cardiomyocyte and cardiomyocyte-fibroblast interactions, and cardiomyocyte-ECM interactions can all play a role when engineering anisotropic cardiac tissues in vitro and provides insight as to how these factors may influence cardiogenesis in vivo.
Collapse
Affiliation(s)
- Ivan Batalov
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Sean Kim
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Jacqueline Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Adam W Feinberg
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA. .,Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA.
| |
Collapse
|
48
|
64 PI/PDMS hybrid cantilever arrays with an integrated strain sensor for a high-throughput drug toxicity screening application. Biosens Bioelectron 2021; 190:113380. [PMID: 34111727 DOI: 10.1016/j.bios.2021.113380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/12/2023]
Abstract
Herein, we propose a novel biosensing platform involving an array of 64 hybrid cantilevers and integrated strain sensors to measure the real-time contractility of the drug-treated cardiomyocytes (CMs). The strain sensor is integrated on the polyimide (PI) cantilever. To improve the strain sensor reliability and construct the engineered cardiac tissue, the nanogroove-patterned polydimethylsiloxane (PDMS) encapsulation layer is bonded on the PI cantilever. The preliminary sensing characteristics demonstrate the superior structural integrity, robustness, enhanced sensitivity, and repeatability of the proposed devices. The long-term durability and biocompatibility of the PI/PDMS hybrid cantilever is verified by evaluating the cell viability and contractility. We also validate the proposed biosensing platform for cardiotoxicity measurement by applying it to two specific cardiovascular drugs: quinidine and verapamil. In response to quinidine and verapamil, the engineered CMs exhibited negative inotropic and chronotropic effects. The fabricated cantilever device successfully detected the quinidine-induced adverse effects in CMs such as early after depolarization (EADs) and Torsade de points (TdP) in real-time. The array of hybrid cantilevers with integrated strain sensors has the potential to satisfy the need for innovative analytic platforms owing to its high throughput and simplified data analysis.
Collapse
|
49
|
Maturation of human pluripotent stem cell derived cardiomyocytes in vitro and in vivo. Semin Cell Dev Biol 2021; 118:163-171. [PMID: 34053865 DOI: 10.1016/j.semcdb.2021.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
Human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) represent an inexhaustible cell source for in vitro disease modeling, drug discovery and toxicity screening, and potential therapeutic applications. However, currently available differentiation protocols yield populations of hPSC-CMs with an immature phenotype similar to cardiomyocytes in the early fetal heart. In this review, we consider the developmental processes and signaling cues involved in normal human cardiac maturation, as well as how these insights might be applied to the specific maturation of hPSC-CMs. We summarize the state-of-the-art and relative merits of reported hPSC-CM maturation strategies including prolonged duration in culture, metabolic manipulation, treatment with soluble or substrate-based cues, and tissue engineering approaches. Finally, we review the evidence that hPSC-CMs mature after implantation in injured hearts as such in vivo remodeling will likely affect the safety and efficacy of a potential hPSC-based cardiac therapy.
Collapse
|
50
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|