1
|
Caine JR, Larsen S, Ghosh A, Hudson ZM. Near-Infrared Photothermal Conversion by Isocorrole and Phlorin Derivatives. Inorg Chem 2025. [PMID: 39813273 DOI: 10.1021/acs.inorgchem.4c04647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Photothermal therapy is a promising strategy for treating tumors and bacterial infections by using light irradiation to locally heat tissues. Metalloisoporphyrinoid materials have been investigated for their use as singlet oxygen photosensitizers for photodynamic therapy but remain underexplored as photothermal agents. Recently, two metallophlorin and two metalloisocorrole materials were found to have strong near-infrared absorbance, with low photoluminescent quantum yields, suggesting high rates of nonradiative decay. Here we demonstrate that when encapsulated into aggregated organic nanoparticles (a-Odots), these materials show high photothermal conversion efficiencies between 67.3 ± 8.4 and 75.7 ± 4.1%. When considered alongside their ability to generate singlet oxygen, these materials may show promise as agents for dual photothermal and photodynamic therapy.
Collapse
Affiliation(s)
- Jana R Caine
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Simon Larsen
- Department of Chemistry, UiT─The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT─The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Alemayehu AB, Settineri NS, Lanza AE, Ghosh A. Rhenium-Sulfido and -Dithiolato Corroles: Reflections on Chalcophilicity. Inorg Chem 2024. [PMID: 39680845 DOI: 10.1021/acs.inorgchem.4c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The high-temperature (∼180 °C) reaction between free-base meso-triarylcorroles and Re2(CO)10, followed by exposure to PCl3 and thiols (or elemental sulfur), affords rhenium-sulfido (ReS) corroles in 67-76% yields. The use of shorter reaction times, lower temperatures (∼130 °C), and a dithiol (e.g., ethane-1,2-dithiol) also allows the isolation of rhenium-dithiolato corroles, presumptive intermediates on the path to ReS corroles. The ReS corroles exhibit high thermal stability and two reversible oxidations and reductions in their cyclic voltammograms, with redox potentials nearly identical to those observed for analogous ReO corroles. The electrochemical HOMO-LUMO gaps of the complexes, at 2.2 eV, are consistent with ligand-centered oxidation and reduction. The UV-vis spectra of ReS corroles, on the other hand, differ significantly from those of their ReO counterparts. Scalar-relativistic DFT calculations suggest that this difference reflects low-energy LUMO+2 and LUMO+3 levels, consisting of Re-S π-antibonding interactions; the ReO corroles, in contrast, exhibit a larger LUMO+1/LUMO+2 gap, as expected for a relatively classical Gouterman-type metalloporphyrin analogue. The high stability of ReS corroles is consistent with geochemists' view of rhenium as a moderately chalcophilic element (i.e., one that partitions into sulfide melts) as well as with a recent quantitative analysis of thiophilicity, which indicates that rhenium's oxophilicity and thiophilicity are essentially evenly balanced.
Collapse
Affiliation(s)
| | - Nicholas S Settineri
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Arianna E Lanza
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Abhik Ghosh
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
3
|
Deng W, Wei Z, Xu Y, Gong Z, Cai F, Shi Q, Guo K, Jia M, Zhao Y, Feng Y, Deng J, Zhang B. "One-Pot" Synthesized Phosphorus Corrole-Based Metal-Organic Frameworks for Synergistic Phototherapy and Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408975. [PMID: 39676348 DOI: 10.1002/smll.202408975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Indexed: 12/17/2024]
Abstract
As a distinctive class of porphyrin derivatives, corroles offer exceptional potential in phototherapy applications owing to their unique electronic structures. However, developing metal-organic frameworks (MOFs) that incorporate photosensitive corroles as functional ligands for synergistic phototherapy remains a formidable challenge. Herein, for the first time, the unique phosphorus corrole-based MOFs Cor(P)-Hf with (3,18)-connected gea topology are reported, which are constructed by Cs-symmetric dicarboxylate 3-connected linkers, 10-pentafluorophenyl-5,15-di(p-benzoate)phosphorus corrole (Cor(P)), and the peculiar D3h-symmetric 18-connected Hf12-oxo clusters. Interestingly, six para-position F substituents of six Cor(P) linkers are found to be coordinated with the apex of the Hf12-oxo cluster through Hf-F bonds along the c-axis direction, which is believed to help stabilize the framework. Furthermore, the mixed corrolic ligand-based MOFs Cor(P)/Cor(Cu)-Hf and Cor(P)/Cor(Fe)-Hf involving Cor(Fe) or Cor(Cu) as the secondary functional linkers are constructed by a simple "one-pot" solvent-thermal method, respectively. Remarkably, Cor(P)/Cor(Fe)-Hf facilitates synergistic phototherapy combining photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) when activated by an 808 nm laser, as evidenced by in vivo and in vitro experiments. This study demonstrates corrole-based MOFs Cor(P)-Hf as a powerful multifunctional nanoplatform for anti-cancer phototherapy.
Collapse
Affiliation(s)
- Wenbo Deng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zixiang Wei
- Department of Gastric Surgery, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yunhao Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhichao Gong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Fenglin Cai
- Department of Gastric Surgery, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Quan Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Kai Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Meng Jia
- Xi'an Aerospace Propulsion Test Technology Institute, Xian, 710000, China
| | - Yanming Zhao
- Henan Institute of Advanced Technology, Zhengzhou University, Zheng Zhou, 450000, China
| | - Yaqing Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jingyu Deng
- Department of Gastric Surgery, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Bao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
4
|
Zhang Y, Zhu Y, Deng T, Du Y. Exploring and Anticipating the Applications of Organic Room-Temperature Phosphorescent Materials in Biomedicine and Dentistry. Int J Nanomedicine 2024; 19:13201-13216. [PMID: 39670197 PMCID: PMC11636246 DOI: 10.2147/ijn.s492759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
As popular materials, organic room-temperature phosphorescent (RTP) materials have been studied and developed in many fields. RTP materials have the characteristics of a high signal-to-noise ratio (SNR) and high reactive oxygen species (ROS) quantum yield, which can achieve clear bioimaging and efficient ability of anti-tumor and antibacterial, and have received extensive attention from researchers for imaging, tumor therapy, and antibacterial treatment. Moreover, owing to their flexible molecular structures and various synthesis systems and methods, it may be possible to design and synthesize materials according to individual physiologic environments of patients in medical applications, making bioimaging more accurate and greatly improving tumor and bacterial killing rates. So they have great development potential in the medical field. On the basis of introducing the mechanism of RTP materials that emit phosphorescence and generate ROS, this review summarizes the medical applications of RTP materials from three aspects-bioimaging, tumor treatment and antibacterial treatment-to provide a basis for their application in the field of stomatology.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Yeyuhan Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Tian Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| |
Collapse
|
5
|
Banana T, Rajput SS, Chandravanshi N, Alam MM. Effect of meso-pentafluorophenyl group on two-photon absorption in heterocorroles and heterocorrins. Phys Chem Chem Phys 2024; 26:27694-27703. [PMID: 39469992 DOI: 10.1039/d4cp03450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Owing to their high reactivity, the meso-positions of corroles and corrins are usually protected by some bulky groups. These groups in addition to the said purpose may also affect the photophysical properties of such systems. However, there is no systematic study in the literature exploring this effect. In this work, we target to answer how the meso-substitution affects the photophysical properties in some heterocorroles and heterocorrins. We considered one of the commonly used substitutions, i.e., pentafluorophenyl (-PFPh), at meso positions of 26 heterocorroles and heterocorrins. We employed the state-of-the-art CC2 method in conjunction with resolution-of-identity approximation to study the charge-transfer and one- and two-photon absorption in these systems. It is further explored using a four-state model that helps in understanding the contribution of various transition dipole moments and their relative orientation. At the end, we also investigated the effect of other substitutions such as -CH3, -CF3, -C2H3, -OMe, -phenyl, and -tolyl on two-photon activity.
Collapse
Affiliation(s)
- Tejendra Banana
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Neelam Chandravanshi
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Md Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India
| |
Collapse
|
6
|
Giovanelli L, Ksari Y, Mrezguia H, Salomon E, Minissale M, Alemayehu AB, Ghosh A. Inverse Photoemission Spectroscopy of Coinage Metal Corroles: Comparison with Solution-Phase Electrochemistry. ACS ORGANIC & INORGANIC AU 2024; 4:485-491. [PMID: 39371327 PMCID: PMC11450770 DOI: 10.1021/acsorginorgau.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 10/08/2024]
Abstract
A combined direct and inverse photoemission study of coinage metal corroles suggests that the latter technique, in favorable cases, can provide some additional information relative to electrochemical measurements. Thus, whereas inverse photoemission spectroscopy (IPES) provides relative electron affinities for electron addition to different unoccupied orbitals, electrochemical reduction potentials shed light on the energetics of successive electron additions. While all three coinage metal triphenylcorrole (TPC) complexes exhibit similar ionization potentials, they exhibit dramatically different inverse photoemission spectra. For Cu[TPC], the lowest-energy IPES feature (0.74 eV) is found to be exceedingly close to the Fermi level; it is significantly higher for Ag[TPC] (1.65 eV) and much higher for Au[TPC] (2.40 eV). These differences qualitatively mirror those observed for electrochemical reduction potentials and are related to a partially metal-centered LUMO in the case of Cu- and Ag[TPC] and a fully corrole-based LUMO in the case of Au[TPC]; the latter orbital corresponds to the LUMO+1 in the case of Ag[TPC].
Collapse
Affiliation(s)
- Luca Giovanelli
- Aix-Marseille
Université, CNRS, IM2NP, Marseille 13397, France
| | - Younal Ksari
- Aix-Marseille
Université, CNRS, IM2NP, Marseille 13397, France
| | - Hela Mrezguia
- Aix-Marseille
Université, CNRS, IM2NP, Marseille 13397, France
| | - Eric Salomon
- Aix-Marseille
Université, CNRS, PIIM, Marseille 13397, France
| | - Marco Minissale
- Aix-Marseille
Université, CNRS, PIIM, Marseille 13397, France
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
7
|
Imahori H, Akiyama M. Molecular donor-acceptor linked systems as models for examining their interactions in excited states. J Chem Phys 2024; 161:080901. [PMID: 39171699 DOI: 10.1063/5.0222310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Molecular donor-acceptor (D-A) linked systems have attracted significant attention due to their potential to address D-A interactions in excited states. In these systems, it is crucial to understand the interplay between electrons and spin behaviors, atomic nucleus movements (including vibration, rotation, fluctuation, and transfer), and collective motion (electron-phonon coupling) over time. Through intentional manipulation of locally excited, charge-transfer excited, and charge-separated states, along with modulation of dynamic effects (enhancement or restraint), we expect to unlock the full potential of D-A systems for photofunctions in electronics, energy, healthcare, and functional materials. In this perspective, we present our recent examples of D-A linked systems and related ones that address the aforementioned issues as part of our "Dynamic Exciton" research project in Japan.
Collapse
Affiliation(s)
- Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Institute for Liberal Arts and Sciences (ILAS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Midori Akiyama
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
8
|
Geppert M, Jellinek K, Linseis M, Bodensteiner M, Geppert J, Unterlass MM, Winter RF. Dual Fluorescence and Phosphorescence Emissions from Dye-Modified ( NCN)-Bismuth Pincer Thiolate Complexes. Inorg Chem 2024; 63:14876-14888. [PMID: 39078292 PMCID: PMC11323247 DOI: 10.1021/acs.inorgchem.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
We report the synthesis, characterization, and photophysical properties of four new dye-modified (NCN)Bi pincer complexes with two mercaptocoumarin or mercaptopyrene ligands. Their photophysical properties were probed by UV/vis spectroscopy, photoluminescence (PL) studies, and time-dependent density functional theory (TD-DFT) calculations. Absorption spectra of the complexes are dominated by mixed pyrene or coumarin π → π*/n(pS) → pyrene or coumarin π* transitions. While unstable toward reductive elimination of the corresponding disulfide under irradiation at room temperature, the complexes provide stable emissions at 77 K. Under these conditions, coumarin complexes 2 and 4 exhibit exclusively green phosphorescence at 508 nm. In contrast, the emissive properties of pyrene complexes 1 and 3 depend on the excitation wavelength and on sample concentration. Irradiation into the lowest-energy absorption band exclusively triggers red phosphorescence from the pyrenyl residues at 640 nm. At concentrations c < 1 μM, excitation into higher excited electronic states results in blue pyrene fluorescence. With increasing c (1-100 μM), the emission profile changes to dual fluorescence and phosphorescence emission, with a steady increase of the phosphorescence intensity, until at c ≥ 1 mM only red phosphorescence ensues. Progressive red-shifts and broadening of steady-state excitation spectra with increasing sample concentration suggest the presence of static excimers, as we observe it for concentrated solutions of pyrene. Crystalline and powdered samples of 1 indeed show intermolecular association through π-stacking. TD-DFT calculations on model dimers and a tetramer of 1 support the idea of aggregation-induced intersystem crossing (AI-ISC) as the underlying reason for this behavior.
Collapse
Affiliation(s)
- Marcel Geppert
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Kai Jellinek
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Jessica Geppert
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
9
|
Larsen S, Adewuyi JA, Thomas KE, Conradie J, Rousselin Y, Ung G, Ghosh A. Electronic Structure of Metallophlorins: Lessons from Iridium and Gold Phlorin Derivatives. Inorg Chem 2024; 63:9842-9853. [PMID: 38743029 PMCID: PMC11134504 DOI: 10.1021/acs.inorgchem.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Phlorins have long remained underexplored relative to their fully conjugated counterparts, such as porphyrins, hydroporphyrins, and corroles. Herein, we have attempted to bridge that knowledge gap with a scalar-relativistic density functional theory (DFT) study of unsubstituted iridium and gold phlorin derivatives and a multitechnique experimental study of iridium-bispyridine and gold complexes of 5,5-dimethyl-10,15,20-tris(pentafluorophenyl)phlorin. Theory and experiments concur that the phlorin derivatives exhibit substantially smaller HOMO-LUMO gaps, as reflected in a variety of observable properties. Thus, the experimentally studied Ir and Au complexes absorb strongly in the near-infrared (NIR), with absorption maxima at 806 and 770 nm, respectively. The two complexes are also weakly phosphorescent with emission maxima at 950 and 967 nm, respectively. They were also found to photosensitize singlet oxygen formation, with quantum yields of 40 and 28%, respectively. The near-infrared (NIR) absorption and emission are consonants with smaller electrochemical HOMO-LUMO gaps of ∼1.6 V, compared to values of ∼2.1 V, for electronically innocent porphyrins and corroles. Interestingly, both the first oxidation and reduction potentials of the Ir complex are some 600 mV shifted to more negative potentials relative to those of the Au complex, indicating an exceptionally electron-rich macrocycle in the case of the Ir complex.
Collapse
Affiliation(s)
- Simon Larsen
- Department
of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Joseph A. Adewuyi
- Department
of Chemistry, University of Connecticut, 55 N. Eagleville Rd, Storrs, Connecticut 06269, United States
| | - Kolle E. Thomas
- Department
of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Jeanet Conradie
- Department
of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
- Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa
| | - Yoann Rousselin
- ICMUB,
UMR CNRS 6302, Université Bourgogne Franche-Comte, BP 47870, Dijon Cedex 21078, France
| | - Gaël Ung
- Department
of Chemistry, University of Connecticut, 55 N. Eagleville Rd, Storrs, Connecticut 06269, United States
| | - Abhik Ghosh
- Department
of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
10
|
Guo Q, Higashino T, Adachi R, Wechwithayakhlung C, Packwood D, Yamakata A, Imahori H. Suppression of Charge Recombination by Vertical Arrangement of A Donor Moiety on Flat Planar Dyes for Efficient Dye-Sensitized Solar Cells. CHEMSUSCHEM 2024; 17:e202301661. [PMID: 38191798 DOI: 10.1002/cssc.202301661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
In dye-sensitized solar cells (DSSCs), flat planar dyes (e. g., highly light-harvesting porphyrins and corroles) with multiple anchoring groups are known to adopt a horizontal orientation on TiO2 through the multiple binding to TiO2. Due to the strong electronic coupling between the dye and TiO2, fast charge recombination between the oxidized dye and an electron in TiO2 occurs, lowering the power conversion efficiency (η). To overcome this situation, an additional donor moiety can be placed on top of the planar dye on TiO2 to slow down the undesirable charge recombination. Here we report the synthesis and photovoltaic properties of a triarylamine (TAA)-tethered gold(III) corrole (TAA-AuCor). The DSSC with TAA-AuCor using iodine redox shuttle exhibited the highest η-value among corrole-based DSSCs, which is much higher than that with the reference AuCor. The transient absorption spectroscopies clearly demonstrated that fast electron transfer from the TAA moiety to the corrole radical cation in TAA-AuCor competes with the undesirable charge recombination to generate long-lived charge separated state TAA⋅+-Cor/TiO2⋅- efficiently. Consequently, the introduction of the TAA moiety enhanced the η-value remarkably, demonstrating the usefulness of our new concept to manipulate charge-separated states toward highly efficient DSSCs.
Collapse
Affiliation(s)
- Qi Guo
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomohiro Higashino
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Rintaro Adachi
- Graduate School of Natural Science and Technology, Okayama University Kita-ku, Okayama, 700-8530, Japan
| | - Chayanit Wechwithayakhlung
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Daniel Packwood
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Akira Yamakata
- Graduate School of Natural Science and Technology, Okayama University Kita-ku, Okayama, 700-8530, Japan
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
- Institute for Liberal Arts and Sciences (ILAS), Kyoto University Sakyo-ku, Kyoto, 606-8316, Japan
| |
Collapse
|
11
|
Di Zazzo L, Nardis S, Caroleo F, Pizzoli F, Fronczek FR, Smith KM, Berna BB, Paolesse R. 5- and 10-oxocorroles from β-octaalkylcorroles. Chem Commun (Camb) 2023; 60:102-105. [PMID: 38019678 DOI: 10.1039/d3cc05204d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The reaction of Zn ions with β-octaalkylcorroles leads to the air oxidation of the macrocycle, with the formation of a mixture of 5- and 10-oxocorroles. Spectroscopic characterization confirms the antiaromatic character of these macrocycles. A simple synthetic protocol opens the way for more detailed studies of oxocorrole chemistry.
Collapse
Affiliation(s)
- Lorena Di Zazzo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Fabrizio Caroleo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Francesco Pizzoli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kevin M Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Beatrice Berionni Berna
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Rome 00133, Italy.
| |
Collapse
|
12
|
Johannessen K, Johansen MAL, Einrem RF, M cCormick M cPherson LJ, Alemayehu AB, Borisov SM, Ghosh A. Influence of Fluorinated Substituents on the Near-Infrared Phosphorescence of 5d Metallocorroles. ACS ORGANIC & INORGANIC AU 2023; 3:241-245. [PMID: 37810408 PMCID: PMC10557119 DOI: 10.1021/acsorginorgau.3c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 10/10/2023]
Abstract
The influence of fluorinated substituents on the luminescent properties of rhenium-oxo, osmium-nitrido, and gold triarylcorroles was studied via a comparison of four ligands: triphenylcorrole (TPC), tris(p-trifluoromethylphenyl)corrole (TpCF3PC), tris{3,5-bis(trifluoromethyl)phenyl}corrole (T3,5-CF3PC), and tris(pentafluorophenyl)corrole (TPFPC). For each metal series examined, fluorinated substituents were found to enhance the luminescent properties, with the phosphorescence quantum yields and triplet decay times increasing in the order TPC < TpCF3PC < T3,5-CF3PC < TPFPC. Among the 11 complexes examined, the highest phosphorescence quantum yield, 2.2%, was recorded for Re[TPFPC](O).
Collapse
Affiliation(s)
| | | | - Rune F. Einrem
- Department
of Chemistry, UiT−The Arctic University
of Norway, 9037 Tromsø, Norway
| | - Laura J. McCormick McPherson
- EPSRC
National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT−The Arctic University
of Norway, 9037 Tromsø, Norway
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Abhik Ghosh
- Department
of Chemistry, UiT−The Arctic University
of Norway, 9037 Tromsø, Norway
| |
Collapse
|
13
|
Larsen S, Adewuyi JA, Ung G, Ghosh A. Transition-Metal Isocorroles as Singlet Oxygen Sensitizers. Inorg Chem 2023; 62:7483-7490. [PMID: 37141580 DOI: 10.1021/acs.inorgchem.3c00782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Building on a highly efficient synthesis of pyrrole-appended isocorroles, we have worked out conditions for manganese, palladium, and platinum insertion into free-base 5/10-(2-pyrrolyl)-5,10,15-tris(4-methylphenyl)isocorrole, H2[5/10-(2-py)TpMePiC]. Platinum insertion proved exceedingly challenging but was finally accomplished with cis-Pt(PhCN)2Cl2. All the complexes proved weakly phosphorescent in the near-infrared under ambient conditions, with a maximum phosphorescence quantum yield of 0.1% observed for Pd[5-(2-py)TpMePiC]. The emission maximum was found to exhibit a strong metal ion dependence for the 5-regioisomeric complexes but not for the 10-regioisomers. Despite the low phosphorescence quantum yields, all the complexes were found to sensitize singlet oxygen formation with moderate to good efficiency, with singlet oxygen quantum yields ranging over 21-52%. With significant absorption in the near-infrared and good singlet oxygen-sensitizing ability, metalloisocorroles deserve examination as photosensitizers in the photodynamic therapy of cancer and other diseases.
Collapse
Affiliation(s)
- Simon Larsen
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Joseph A Adewuyi
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd, Storrs, Connecticut 06269, United States
| | - Gaël Ung
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd, Storrs, Connecticut 06269, United States
| | - Abhik Ghosh
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
14
|
Yadav I, Prakash V, Maurya MR, Sankar M. Oxido-Molybdenum(V) Corroles as Robust Catalysts for Oxidative Bromination and Selective Epoxidation Reactions in Aqueous Media under Mild Conditions. Inorg Chem 2023; 62:5292-5301. [PMID: 36958040 DOI: 10.1021/acs.inorgchem.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Two new meso-substituted oxido-molybdenum corroles were synthesized and characterized by various spectroscopic techniques. In the thermogram, MoO[TTC] (1) exhibited excellent thermal stability up to 491 °C while MoO[TNPC] (2) exhibited good stability up to 318 °C. The oxidation states of the molybdenum(V) were verified by electron paramagnetic resonance (EPR) spectroscopy and exhibited an axial compression with dxy1 configuration. Oxido-molybdenum(V) complexes were utilized for the selective epoxidation of various olefins with high TOF values (2066-3287 h-1) in good yields in a CH3CN/H2O (3:2, v/v) mixture in the presence of hydrogen peroxide as a green oxidant and NaHCO3 as a promoter. The oxidative bromination catalytic activity of oxido-molybdenum(V) complexes in an aqueous medium has been reported for the first time. Surprisingly, MoO[TNPC] (2) biomimics of the vanadium bromoperoxidase (VBPO) enzyme activity exhibited remarkably high TOF values (36 988-61 646 h-1) for the selective oxidative bromination of p-cresol and other phenol derivatives. Catalyst MoO[TNPC] (2) exhibited higher TOF values and better catalytic activity than catalyst MoO[TTC] (1) due to the presence of electron-withdrawing nitro groups evident from cyclic voltammetric studies.
Collapse
Affiliation(s)
- Inderpal Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ved Prakash
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
15
|
Sharma VK, Assaraf YG, Gross Z. Hallmarks of anticancer and antimicrobial activities of corroles. Drug Resist Updat 2023; 67:100931. [PMID: 36739808 DOI: 10.1016/j.drup.2023.100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corroles provide a remarkable opportunity for the development of cancer theranostic agents among other porphyrinoids. While most transition metal corrole complexes are only therapeutic, post-transition metallocorroles also find their applications in bioimaging. Moreover, corroles exhibit excellent photo-physicochemical properties, which can be harnessed for antitumor and antimicrobial interventions. Nevertheless, these intriguing, yet distinct properties of corroles, have not attained sufficient momentum in cancer research. The current review provides a comprehensive summary of various cancer-relevant features of corroles ranging from their structural and photophysical properties, chelation, protein/corrole interactions, to DNA intercalation. Another aspect of the paper deals with the studies of corroles conducted in vitro and in vivo with an emphasis on medical imaging (optical and magnetic resonance), photo/sonodynamic therapies, and photodynamic inactivation. Special attention is also given to a most recent finding that shows the development of pH-responsive phosphorus corrole as a potent antitumor drug for organelle selective antitumor cytotoxicity in preclinical studies. Another biomedical application of corroles is also highlighted, signifying the application of water-soluble and completely lipophilic corroles in the photodynamic inactivation of microorganisms. We strongly believe that future studies will offer a greater possibility of utilizing advanced corroles for selective tumor targeting and antitumor cytotoxicity. In the line with future developments, an ideal pipeline is envisioned on grounds of cancer targeting nanoparticle systems upon decoration with tumor-specific ligands. Hence, we envision that a bright future lies ahead of corrole anticancer research and therapeutics.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
16
|
Sautour M, Pacquelet S, Gros CP, Desbois N. Evaluation of carboxylic acid-derivatized corroles as novel gram-positive antibacterial agents under non-photodynamic inactivation conditions. Bioorg Med Chem Lett 2023; 82:129167. [PMID: 36736706 DOI: 10.1016/j.bmcl.2023.129167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Herein, we report the synthesis and evaluation of carboxylic acid corroles bearing either one, two, three of four carboxylic groups as gram-positive antibacterial agents against two strains of S. aureus, one methicillin-sensible (MSSA) and the other methicillin-resistant (MRSA). Lead compounds 5 and 6 show low minimum inhibitory concentrations (MICs) of 0.78 μg/mL against both MSSA and MRSA. These molecules, previously underexplored as antibacterial agents, can now serve as a new scaffold for antimicrobial development.
Collapse
Affiliation(s)
- Marc Sautour
- Parasitology-Mycology Laboratory, University Hospital Biology Platform, Dijon University Hospital Center (CHU), 21000 Dijon, France; UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université Bourgogne Franche-Comté, AgroSup Dijon, 21000 Dijon, France
| | - Sandrine Pacquelet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR CNRS 6302), Université Bourgogne Franche-Comté, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Claude P Gros
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR CNRS 6302), Université Bourgogne Franche-Comté, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Nicolas Desbois
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR CNRS 6302), Université Bourgogne Franche-Comté, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
| |
Collapse
|
17
|
Alemayehu AB, Ghosh A. Phenol- and resorcinol-appended metallocorroles and their derivatization with fluorous tags. Sci Rep 2022; 12:19256. [PMID: 36357501 PMCID: PMC9649713 DOI: 10.1038/s41598-022-23889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Boron tribromide-mediated demethylation of rhenium-oxo and gold meso-tris(4-methoxyphenyl)corrole and meso-tris(3,5-dimethoxyphenylcorrole), M[TpOMePC] and M[T(3,5-OMe)PC] (M = ReO, Au), have yielded the corresponding phenol- and resorcinol-appended metallocorroles, M[TpOHPC] and M[T(3,5-OH)PC], in good yields. The latter compounds proved insoluble in dichloromethane and chloroform but soluble in THF. The M[T(3,5-OH)PC] derivatives also proved moderately soluble in 0.05 M aqueous KOH. Unlike oxidation-prone aminophenyl-substituted corroles, the phenol- and resorcinol-appended metallocorroles could be readily handled in air without special precautions. The phenolic metallocorroles could be readily alkylated with 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl iodide ("FtI") to afford the fluorous-tagged metallocorroles M[TpOFtPC] and M[T(3,5-OFt)PC] in > 90% yields. The simplicity of the synthetic protocols promise a wide range of phenolic and fluorous-tagged porphyrin analogues with potential applications to diverse fields such as sensors, catalysis, and photodynamic therapy, among others.
Collapse
Affiliation(s)
- Abraham B. Alemayehu
- grid.10919.300000000122595234Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- grid.10919.300000000122595234Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
18
|
Reaction of Corroles with Sarcosine and Paraformaldehyde: A New Facet of Corrole Chemistry. Int J Mol Sci 2022; 23:ijms232113581. [DOI: 10.3390/ijms232113581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Details on the unexpected formation of two new (dimethylamino)methyl corrole isomers from the reaction of 5,10,15-tris(pentafluorophenyl)corrolatogallium(III) with sarcosine and paraformaldehyde are presented. Semi-empirical calculations on possible mechanism pathways seem to indicate that the new compounds are probably formed through a Mannich-type reaction. The extension of the protocol to the free-base 5,10,15-tris(pentafluorophenyl)corrole afforded an unexpected new seven-membered ring corrole derivative, confirming the peculiar behavior of corroles towards known reactions when compared to the well-behaved porphyrin counterparts.
Collapse
|
19
|
Hayduk M, Schaller T, Niemeyer FC, Rudolph K, Clever GH, Rizzo F, Voskuhl J. Phosphorescence Induction by Host‐Guest Complexation with Cyclodextrins – The Role of Regioisomerism and Affinity. Chemistry 2022; 28:e202201081. [DOI: 10.1002/chem.202201081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Matthias Hayduk
- Faculty of Chemistry (Organic Chemistry), ZMB and CENIDE University of Duisburg-Essen Universitätsstraße 7 Essen 45141 Germany
| | - Torsten Schaller
- Faculty of Chemistry (Organic Chemistry), ZMB and CENIDE University of Duisburg-Essen Universitätsstraße 7 Essen 45141 Germany
| | - Felix C. Niemeyer
- Faculty of Chemistry (Organic Chemistry), ZMB and CENIDE University of Duisburg-Essen Universitätsstraße 7 Essen 45141 Germany
| | - Kevin Rudolph
- Faculty of Chemistry (Organic Chemistry), ZMB and CENIDE University of Duisburg-Essen Universitätsstraße 7 Essen 45141 Germany
| | - Guido H. Clever
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Fabio Rizzo
- Institute of Chemical Science and Technologies “G. Natta” (SCITEC) National Research Council (CNR) via G. Fantoli 16/15 20138 Milano Italy
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms-Universität Münster Busso-Peus-Str. 10 48149 Münster Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry), ZMB and CENIDE University of Duisburg-Essen Universitätsstraße 7 Essen 45141 Germany
| |
Collapse
|
20
|
Sahu K, Angeloni S, Conradie J, Villa M, Nayak M, Ghosh A, Ceroni P, Kar S. NIR-emissive, singlet-oxygen-sensitizing gold tetra(thiocyano)corroles. Dalton Trans 2022; 51:13236-13245. [PMID: 35968801 DOI: 10.1039/d2dt01959k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Presented herein are two fully characterized gold tetrathiocyanocorroles representing a potentially significant new class of NIR-emissive 5d-metallocorroles. The four SCN groups on the bipyrrole unit of the corrole exert a powerful electron-withdrawing effect, upshifting both the oxidation and reduction potentials by roughly half a volt relative to their unsubstituted counterparts. That said, the upshift of the LUMO is somewhat higher than that of the HOMO so these complexes also exhibit a smaller HOMO-LUMO gap, as evinced in both electrochemical measurements and Q band energies (∼595 nm relative to ∼571 nm for their SCN-free counterparts). The new compounds exhibit NIR phosphorescence under ambient conditions with emission maxima around 900 nm (compared with 790 nm for simple Au triarylcorroles), phosphorescence quantum yields around 0.3%, phosphorescence lifetimes around 10 μs, and singlet oxygen sensitization with a quantum yield of around 50 ± 5% in solution, together signifying wide-ranging potential applications as triplet photosensitizers in oxygen sensing and photodynamic therapy.
Collapse
Affiliation(s)
- Kasturi Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Sara Angeloni
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| | - Jeanet Conradie
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway. .,Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa
| | - Marco Villa
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| | - Manisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Paola Ceroni
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
21
|
Cen JH, Wan B, Zhao Y, Li MY, Liao YH, Liu HY. Photodynamic Antitumor Activity of 5,15‐Bis(perfluorophenyl)‐10‐(4‐carboxyphenyl)corrole and its Gallium(III) and Phosphorus(V) Complexes. Chempluschem 2022; 87:e202200188. [DOI: 10.1002/cplu.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jing-He Cen
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Bei Wan
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yue Zhao
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Meng-Yuan Li
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yu-Hui Liao
- Southern Medical University Dermatology Hospital CHINA
| | - Hai-Yang Liu
- South China University of Technology Department of Chemistry 381# Wushan Road 510641 Guangzhou CHINA
| |
Collapse
|
22
|
Jena S, Eyyathiyil J, Behera SK, Kitahara M, Imai Y, Thilagar P. Crystallization induced room-temperature phosphorescence and chiral photoluminescence properties of phosphoramides. Chem Sci 2022; 13:5893-5901. [PMID: 35685799 PMCID: PMC9132070 DOI: 10.1039/d2sc00990k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
We report the design and synthesis of a series of room temperature phosphorescent phosphoramides TPTZPO, TPTZPS, and TPTZPSe with a donor (phenothiazine)-acceptor (P = X, X = O, S, and Se) architecture. All the compounds show structureless fluorescence with a nanosecond lifetime in dilute solutions. However, these compounds show dual fluorescence and room temperature phosphorescence (RTP) in the solid state. Both the intensity and energy of luminescence depend on the heteroatom attached to the phosphorus center. For example, compound TPTZPO with the P[double bond, length as m-dash]O unit exhibits fluorescence at a higher energy region than TPTZPS and TPTZPSe with the P[double bond, length as m-dash]S and P[double bond, length as m-dash]Se groups, respectively. Crystalline samples of TPTZPO, TPTZPS, and TPTZPSe show stronger RTP than the amorphous powder of respective compounds. Detailed steady-state, time-resolved photoluminescence and computational studies established that the 3n-π* state dominated by the phenothiazine moiety is the emissive state of these compounds. Although TPTZPS and TPTZPSe crystallized in the chiral space group, only TPTZPSe showed chiroptical properties in the solid state. The luminescence dissymmetry factor (g lum) value of TPTZPS is small and below the detection limit, and a CPL spectrum could not be observed for this compound.
Collapse
Affiliation(s)
- Satyam Jena
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore India - 560012
| | - Jusaina Eyyathiyil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore India - 560012
| | - Santosh Kumar Behera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore India - 560012
| | - Maho Kitahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-Osaka Osaka 577-8502 Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-Osaka Osaka 577-8502 Japan
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore India - 560012
| |
Collapse
|
23
|
Di Natale C, Gros CP, Paolesse R. Corroles at work: a small macrocycle for great applications. Chem Soc Rev 2022; 51:1277-1335. [PMID: 35037929 DOI: 10.1039/d1cs00662b] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Corrole chemistry has witnessed an impressive boost in studies in the last 20 years, thanks to the possibility of preparing corrole derivatives by simple synthetic procedures. The investigation of a large number of corroles has highlighted some peculiar characteristics of these macrocycles, having features different from those of the parent porphyrins. With this progress in the elucidation of corrole properties, attention has been focused on the potential for the exploitation of corrole derivatives in different important application fields. In some areas, the potential of corroles has been studied in certain detail, for example, the use of corrole metal complexes as electrocatalysts for energy conversion. In some other areas, the field is still in its infancy, such as in the exploitation of corroles in solar cells. Herein, we report an overview of the different applications of corroles, focusing on the studies reported in the last five years.
Collapse
Affiliation(s)
- Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Viale del Politecnico, 00133 Rome, Italy.
| | - Claude P Gros
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France.
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
24
|
Ghosh A, Conradie J. The Dog That Didn't Bark: A New Interpretation of Hypsoporphyrin Spectra and the Question of Hypsocorroles. J Phys Chem A 2021; 125:9962-9968. [PMID: 34762440 PMCID: PMC8630793 DOI: 10.1021/acs.jpca.1c08425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Nearly a half-century after Gouterman classified the UV-vis-NIR spectra of porphyrin derivatives as normal, hyper, or hypso, we propose a heretofore unsuspected "mechanism" underlying hypso spectra. Hypsoporphyrins, which exhibit blueshifted optical spectra relative to normal porphyrins (such as Zn porphyrins), typically involve dn transition metal ions, where n > 6. The spectral blueshifts have been traditionally ascribed to elevated porphyrin eg LUMO (lowest unoccupied molecular orbital) energy levels as a result of antibonding interactions with metal dπ orbitals. Herein, we have found instead that the blueshifts reflect a lowering of the a2u HOMO (highest occupied molecular orbital) energy levels. Electronegative metals such as Pd and Pt transfer smaller quantities of electron density to the porphyrin nitrogens, compared to a more electropositive metal such as Zn. With large amplitudes at the porphyrin nitrogens, the a2u HOMOs of Pd(II) and Pt(II) porphyrins accordingly exhibit lower orbital energies than those of Zn(II) porphyrins, thus explaining the hypso effect. Hypso spectra are also observed for corroles: compared with six-coordinate Al(III) corroles, which may be thought of exhibiting normal spectra, Au(III) corroles, for instance, exhibit blueshifted or hypso spectra.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department
of Chemistry, UiT—The Arctic University
of Norway, Tromsø N-9037, Norway
| | - Jeanet Conradie
- Department
of Chemistry, UiT—The Arctic University
of Norway, Tromsø N-9037, Norway
- Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic
of South Africa
| |
Collapse
|
25
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 702] [Impact Index Per Article: 175.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
26
|
Einrem RF, Jonsson ET, Teat SJ, Settineri NS, Alemayehu AB, Ghosh A. Regioselective formylation of rhenium-oxo and gold corroles: substituent effects on optical spectra and redox potentials. RSC Adv 2021; 11:34086-34094. [PMID: 35497316 PMCID: PMC9042328 DOI: 10.1039/d1ra05525a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Vilsmeier-Haack formylation of ReO and Au meso-triarylcorroles over 16-18 hours affords moderate to good yields (47-65%) of the ReO-3-formyl and Au-3,17-diformyl derivatives in a highly regioselective manner. Formylation was found to effect substantial upshifts for redox potentials (especially the reduction potentials) as well as significant to dramatic redshifts for both the Soret and Q bands.
Collapse
Affiliation(s)
- Rune F Einrem
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Einar Torfi Jonsson
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720-8229 USA
| | - Nicholas S Settineri
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720-8229 USA
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| | - Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| |
Collapse
|
27
|
Alemayehu AB, Thomas KE, Einrem RF, Ghosh A. The Story of 5d Metallocorroles: From Metal-Ligand Misfits to New Building Blocks for Cancer Phototherapeutics. Acc Chem Res 2021; 54:3095-3107. [PMID: 34297542 PMCID: PMC8382219 DOI: 10.1021/acs.accounts.1c00290] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Porphyrin chemistry is Shakespearean: over a
century of study has
not withered the field’s apparently infinite variety. Heme
proteins continually astonish us with novel molecular mechanisms,
while new porphyrin analogues bowl us over with unprecedented optical,
electronic, and metal-binding properties. Within the latter domain,
corroles occupy a special place, exhibiting a unique and rich coordination
chemistry. The 5d metallocorroles are arguably the icing on that cake. New Zealand chemist Penny Brothers has used the word “misfit”
to describe the interactions of boron, a small atom with a predilection
for tetrahedral coordination, and porphyrins, classic square-planar
ligands. Steve Jobs lionized misfits as those who see things differently
and push humanity forward. Both perspectives have inspired us. The
5d metallocorroles are misfits in that they encapsulate a large 5d
transition metal ion within the tight cavity of a contracted porphyrin
ligand. Given the steric mismatch inherent in their structures,
the syntheses
of some 5d metallocorroles are understandably capricious,
proceeding under highly specific conditions and affording poor yields.
Three broad approaches may be distinguished. (a) In the metal–alkyl approach, a free-base
corrole is exposed to an alkyllithium and the resulting lithio-corrole
is treated with an early transition metal chloride; a variant of the
method eschews alkyllithium and deploys a transition metal–alkyl
instead, resulting in elimination of the alkyl group as an alkane
and insertion of the metal into the corrole. This approach is useful
for inserting transition metals from groups 4, 5, and, to some extent,
6, as well as lanthanides and actinides. (b) In our laboratory,
we have often deployed a low-valent
organometallic approach for the middle transition elements
(groups 6, 7, 8, and 9). The reagents are low-valent metal–carbonyl
or −olefin complexes, which lose one or more carbon ligands
at high temperature, affording coordinatively unsaturated, sticky
metal fragments that are trapped by the corrole nitrogens. (c)
Finally, a metal acetate approach provides
the method of choice for gold and platinum insertion (groups 10 and
11). This Account provides a first-hand perspective
of the three approaches, focusing on the last two, which were largely
developed in our laboratory. In general, the products were characterized
with X-ray crystallography, electrochemistry, and a variety of spectroscopic
methods. The physicochemical data, supplemented by relativistic DFT
calculations, have provided fascinating insights into periodic trends
and relativistic effects. An unexpected feature of many 5d metallocorroles,
given their misfit
character, is their remarkable stability under thermal, chemical,
and photochemical stimulation. Many of them also exhibit long triplet
lifetimes on the order of 100 μs and effectively sensitize singlet
oxygen formation. Many exhibit phosphorescence in the near-infrared
under ambient conditions. Furthermore, water-soluble ReO and Au corroles
exhibit impressive photocytotoxicity against multiple cancer cell
lines, promising potential applications as cancer phototherapeutics.
We thus envision a bright future for the compounds as rugged building
blocks for new generations of therapeutic and diagnostic (theranostic)
agents.
Collapse
Affiliation(s)
- Abraham B. Alemayehu
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromso, Norway
| | - Kolle E. Thomas
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromso, Norway
| | - Rune F. Einrem
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromso, Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromso, Norway
| |
Collapse
|
28
|
Thomassen IK, Rasmussen D, Einrem RF, Ghosh A. Simple, Axial Ligand-Mediated Route to Water-Soluble Iridium Corroles. ACS OMEGA 2021; 6:16683-16687. [PMID: 34235340 PMCID: PMC8246702 DOI: 10.1021/acsomega.1c02399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 05/04/2023]
Abstract
The synthesis and purification of water-soluble porphyrin-type compounds for photodynamic therapy and other medical applications is often a tedious exercise. Here, we have investigated the simple stratagem of adding a water-soluble axial ligand to the standard protocol for iridium insertion into simple meso-triarylcorroles. Early results showed that six-coordinate Ir[TpXPC](dna)2 derivatives, in which TpXPC = tris(para-X-phenyl)corrole (X = CF3, CN, H, and OMe) and dna = dinicotinic acid, are highly water-soluble. In the end, however, all axially nitrogen-ligated complexes proved unstable with respect to chromatographic purification and storage. Five-coordinate water-soluble phosphine adducts, fortunately, proved a great improvement. From the point of view of ease of purification and storage, the best products proved to be Ir[TpXPC](L), where X = CF3 and OMe and L = tris(2-carboxyethyl)phosphine (tcep) and trisodium tris(3-sulfonatophenyl)phosphine (tppts); carefully optimized synthetic protocols are presented for these four compounds.
Collapse
|
29
|
Xu J, Zhu L, Gao H, Li C, Zhu M, Jia Z, Zhu X, Zhao Y, Li S, Wu F, Shen Z. Ligand Non‐innocence and Single Molecular Spintronic Properties of Ag
II
Dibenzocorrole Radical on Ag(111). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jialiang Xu
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Li Zhu
- National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of, Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Chenhong Li
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Meng‐Jiao Zhu
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Zhen‐Yu Jia
- National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of, Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
| | - Xin‐Yang Zhu
- National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of, Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Shao‐Chun Li
- National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of, Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
- Jiangsu Provincial Key Laboratory for Nanotechnology Nanjing University Nanjing 210093 China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| |
Collapse
|
30
|
Xu J, Zhu L, Gao H, Li C, Zhu MJ, Jia ZY, Zhu XY, Zhao Y, Li SC, Wu F, Shen Z. Ligand Non-innocence and Single Molecular Spintronic Properties of Ag II Dibenzocorrole Radical on Ag(111). Angew Chem Int Ed Engl 2021; 60:11702-11706. [PMID: 33694297 DOI: 10.1002/anie.202016674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Indexed: 11/08/2022]
Abstract
A facile method for the quantitative preparation of silver dibenzo-fused corrole Ag-1 is described. In contrast to the saddle conformation resolved by single-crystal X-ray analysis for Ag-1, it adopts an unprecedented domed geometry, with up and down orientations, when adsorbed on an Ag(111) surface. Sharp Kondo resonances near Fermi level, both at the corrole ligand and the silver center were observed by cryogenic STM, with relatively high Kondo temperature (172 K), providing evidence for a non-innocent AgII -corrole.2- species. Further investigation validates that benzene ring fusion and molecule-substrate interactions play pivotal roles in enhancing Ag(4d(x2 -y2 ))-corrole (π) orbital interactions, thereby stabilizing the open-shell singlet AgII -corrole.2- on Ag(111) surface. Moreover, this strategy used for constructing metal-free benzene-ring fused corrole ligand gives rise to inspiration of designing novel metal-corrole compound for multichannel molecular spintronics devices.
Collapse
Affiliation(s)
- Jialiang Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Li Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of, Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Chenhong Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Meng-Jiao Zhu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Zhen-Yu Jia
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of, Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin-Yang Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of, Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Shao-Chun Li
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of, Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.,Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| |
Collapse
|
31
|
Lee W, Zhan X, Palma J, Vestfrid J, Gross Z, Churchill DG. Minding our P-block and Q-bands: paving inroads into main group corrole research to help instil broader potential. Chem Commun (Camb) 2021; 57:4605-4641. [PMID: 33881055 DOI: 10.1039/d1cc00105a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Main group chemistry is often considered less "dynamic" than transition metal (TM) chemistry because of predictable VSEPR-based central atom geometries, relatively slower redox switching and lack of electronic d-d transitions. However, we delineate what has been made possible with main group chemistry to give it its proper due and up-to-date treatment. The huge untapped potential regarding photophysical properties and functioning hereby spurred us to review a range of corrole reports addressing primarily photophysical trends, synthetic aspects, and important guidelines regarding substitution and inorganic principles. We also look at Ag and Au systems and also consider substitutions such as CF3, halogens, additives and also counterions. Throughout, as well as at the end of this review, we suggest various future directions; further future industrial catalytic and health science research is encouraged.
Collapse
Affiliation(s)
- Woohyun Lee
- Korea Advanced Institute of Science and Technology (KAIST), Department of Chemistry, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Xuan Zhan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Jaymee Palma
- Korea Advanced Institute of Science and Technology (KAIST), Department of Chemistry, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jenya Vestfrid
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel. and Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S3E5, Canada.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - David G Churchill
- Korea Advanced Institute of Science and Technology (KAIST), Department of Chemistry, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea and KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), Daejeon 34141, Republic of Korea
| |
Collapse
|
32
|
Yadav I, Dhiman D, Sankar M. β-Disubstituted silver(III) corroles: Facile synthesis, photophysical and electrochemical redox properties. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Facile synthesis of 3,17-disubstituted Ag(III) tritolylcorroles (2-5), R2[TTC]Ag where R = methyl (2), phenyl (3), methyl acrylate (MA) (4) and phenylethynyl (PE) (5) using Pd-catalyzed reactions in good to excellent yields are reported. All synthesized corroles were characterized by various spectroscopic techniques and mass spectrometry. MA2[TTC]Ag (4) and PE2[TTC]Ag (5) exhibited highly red-shifted electronic spectral bands with considerable broadening due to extended [Formula: see text]-conjugation and electron withdrawing effect of [Formula: see text]-substituents. Geometry optimization of these corroles was performed using density functional theory (DFT). Among all, MA2[TTC]Ag (4) exhibited very high dipole moment (10.31 D) which could be the potential candidate for nonlinear optical (NLO) applications. The redox tunability was achieved by substituting electron donating and withdrawing substituents at the [Formula: see text]-positions. Particularly, corroles 4 and 5 exhibited lower HOMO–LUMO gap due to extended [Formula: see text]-conjugation and electron withdrawing [Formula: see text]-substituents.
Collapse
Affiliation(s)
- Inderpal Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Divyansh Dhiman
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| |
Collapse
|
33
|
He Y, Li N, Liu X, Chen W, Zhu X, Liu Q. 5,10,15,20-tetrakis (4-carboxyl phenyl) porphyrin-functionalized urchin-like CuCo 2O 4 as an excellent artificial nanozyme for determination of dopamine. Mikrochim Acta 2021; 188:171. [PMID: 33893537 DOI: 10.1007/s00604-021-04819-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/02/2021] [Indexed: 12/25/2022]
Abstract
Urchin-like peroxidase mimics 5,10,15,20-tetrakis (4-carboxyl phenyl) porphyrin-functionalized CuCo2O4 nanospheres (Por-CuCo2O4) has been fabricated as an excellent visual biosensor. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) have been employed to characterize the composition, morphologies, and elemental analysis of the as-synthesized Por-CuCo2O4. The catalytic activity of Por-CuCo2O4 was evaluated by the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) with the aid of H2O2, which exhibited a visual blue change with an absorption maximum at 652 nm for only 10 s. The peroxidase-like behaviors of Por-CuCo2O4 conformed to the Michaelis-Menten equation. Electrochemistry, radical scavenger, and fluorescence probe experiments verified that electron transfer, •O2- radicals, and holes (h+) are the important factors during the catalytic oxidation of TMB. Based on the inhibition of dopamine (DA) on TMB oxidation, the Por-CuCo2O4-based colorimetric biosensor has been successfully constructed for sensitive determination of DA witha detection limit (LOD) of 0.94 μΜ. In addition, colorimetry was validated to detect DA in serum samples with high sensitivity and good selectivity. 5,10,15,20-tetrakis (4-carboxyl phenyl) porphyrin-functionalized urchin-like CuCo2O4 (Por-CuCo2O4) with excellent peroxidase activity, ascribed to the synergistic effect between •O2- radicals and holes (h+). A fast colorimetric sensor on the basis of Por-CuCo2O4 has been constructed to quantitatively determine dopamine concentration in human serums.
Collapse
Affiliation(s)
- Yanlei He
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Ning Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Xiangwei Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Wei Chen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China.
| |
Collapse
|
34
|
Sujesh S, Basumatary B, Kumar A, Sankar J. Pyrene Appended Free‐base, Phosphorus(V) and Gallium(III) Corroles and Their
β
,
β
′‐Linked Corrole Dimers: Synthesis, Photophysical and Electrochemical Properties. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- S. Sujesh
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal, M.P 462066 India
| | - Biju Basumatary
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal, M.P 462066 India
| | - Amit Kumar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal, M.P 462066 India
| | - Jeyaraman Sankar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal, M.P 462066 India
| |
Collapse
|
35
|
Alemayehu AB, Einrem RF, McCormick-McPherson LJ, Settineri NS, Ghosh A. Synthesis and molecular structure of perhalogenated rhenium-oxo corroles. Sci Rep 2020; 10:19727. [PMID: 33184456 PMCID: PMC7665048 DOI: 10.1038/s41598-020-76308-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 11/09/2022] Open
Abstract
As part of our efforts to develop rhenium-oxo corroles as photosensitizers for oxygen sensing and photodynamic therapy, we investigated the potential β-perhalogenation of five ReO meso-tris(para-X-phenyl)corroles, Re[TpXPC](O) (X = CF3, H, F, CH3, and OCH3), with elemental chlorine and bromine. With Cl2, β-octachlorinated products Re[Cl8TpXPC](O) were rapidly obtained for X = CF3, H, and CH3, but X = OCH3 resulted in overchlorination on the meso-aryl groups. Full β-octabromination proved slower relative to Cu and Ir corroles, but the desired Re[Br8TpXPC](O) products were finally obtained for X = H and F after a week at room temperature. For X = CH3 and OCH3, these conditions led to undecabrominated products Re[Br11TpXPC](O). Compared to the β-unsubstituted starting materials, the β-octahalogenated products were found to exhibit sharp 1H NMR signals at room temperature, indicating that the aryl groups are locked in place by the β-halogens, and substantially redshifted Soret and Q bands. Single-crystal X-ray structures of Re[Cl8TpCF3PC](O), Re[Cl8TpCH3PC](O), and Re[Br8TpFPC](O) revealed mild saddling for one Cl8 structure and the Br8 structure. These structural variations, however, appear too insignificant to explain the slowness of the β-octabromination protocols, which seems best attributed to the deactivating influence of the high-valent Re center.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Rune F Einrem
- Department of Chemistry, UiT - The Arctic University of Norway, 9037, Tromsø, Norway
| | | | - Nicholas S Settineri
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-8229, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
36
|
Abstract
Abstract
The rapid expansion of photoredox catalysis and artificial photosynthesis has garnered renewed interest in the field of photochemistry. While porphyrins have been widely utilized for a variety of photochemical applications, corrole photochemistry remains underexplored, despite an exponential growth in corrole chemistry. Indeed, less than 4% of all corrole-related publications have studied the photochemistry of these molecules. Since corroles exhibit chemical properties that are distinct from porphyrins and related macrocycles, it is likely that this divergence would also be observed in their photochemical properties. This review provides a comprehensive summary of the extant corrole photochemistry literature. Corroles primarily serve as photosensitizers that transfer energy or an electron to molecular oxygen to form singlet oxygen or superoxide, respectively. While both of these reactive oxygen species can be used to drive chemical reactions, they can also be exploited for photodynamic therapy to treat cancer and other diseases. Although direct photochemical activation of metal–ligand bonds has been less explored, corroles mediate a variety of transformations, particularly oxygen atom transfer reactions. Together, these examples illustrate the diversity of corrole photochemistry and suggest that there are many additional applications yet to be discovered.
Collapse
Affiliation(s)
- Christopher M. Lemon
- Miller Institute for Basic Research in Science , Department of Molecular and Cell Biology , and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley , Berkeley , CA, 94720, USA
| |
Collapse
|
37
|
Katturi NK, Balahoju SA, Ramya A, Biswas C, Raavi SSK, Giribabu L, Soma VR. Ultrafast photophysical and nonlinear optical properties of novel free base and axially substituted phosphorus (V) corroles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Einrem RF, Alemayehu AB, Borisov SM, Ghosh A, Gederaas OA. Amphiphilic Rhenium-Oxo Corroles as a New Class of Sensitizers for Photodynamic Therapy. ACS OMEGA 2020; 5:10596-10601. [PMID: 32426618 PMCID: PMC7227046 DOI: 10.1021/acsomega.0c01090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/15/2020] [Indexed: 05/21/2023]
Abstract
A set of rhenium(V)-oxo meso-triarylcorroles bearing ester and carboxylic acid functionalities were synthesized with a view to determining their potential for photodynamic therapy. Toward this end, we measured their near-IR phosphorescence and their ability to sensitize singlet oxygen formation. The two esters studied, ReVO 5,10,15-tris(meta-carbomethoxyphenyl)corrole and ReVO 5,10,15-tris(para-carbomethoxyphenyl)corrole, were found to exhibit phosphorescence quantum yields of around 1% and fairly long phosphorescence lifetimes of about 60 μs in toluene. The corresponding carboxylic acids, which were examined in ethanolic/aqueous media, in contrast, showed much lower phosphorescence quantum yields on the order of 0.01% and somewhat shorter phosphorescent lifetimes. The quantum yields for singlet oxygen formation, on the other hand, turned out to be equally high (0.72 ± 0.02) for the esters and corresponding carboxylic acids. For the two carboxylic acids, we also carried out photocytotoxicity measurements on rat bladder cancer cells (AY27) and human colon carcinoma cells (WiDr). Cell viability measurements (MTT assays) indicated 50% cell death (LD50) for AY27 cells upon 5 min of blue light exposure with the meta carboxylic acid and upon 7 min of exposure with the para carboxylic acid; complete cell death resulted after 20 min for both compounds. The WiDr cells proved less sensitive, and LD50 values were reached after 8 and 12 min illumination with the meta and para carboxylic acids, respectively.
Collapse
Affiliation(s)
- Rune F. Einrem
- Department
of Chemistry, UiT—The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT—The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Abhik Ghosh
- Department
of Chemistry, UiT—The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Odrun A. Gederaas
- Department
of Clinical and Molecular Medicine and Department of Physics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| |
Collapse
|
39
|
Iridium Corroles Exhibit Weak Near-Infrared Phosphorescence but Efficiently Sensitize Singlet Oxygen Formation. Sci Rep 2020; 10:7551. [PMID: 32371925 PMCID: PMC7200656 DOI: 10.1038/s41598-020-64389-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/16/2020] [Indexed: 11/19/2022] Open
Abstract
Six-coordinate iridium(III) triarylcorrole derivatives, Ir[TpXPC)]L2, where TpXPC = tris(para-X-phenyl)corrole (X = CF3, H, Me, and OCH3) and L = pyridine (py), trimethylamine (tma), isoquinoline (isoq), 4-dimethylaminopyridine (dmap), and 4-picolinic acid (4pa), have been examined, with a view to identifying axial ligands most conducive to near-infrared phosphorescence. Disappointingly, the phosphorescence quantum yield invariably turned out to be very low, about 0.02 – 0.04% at ambient temperature, with about a two-fold increase at 77 K. Phosphorescence decay times were found to be around ~5 µs at 295 K and ~10 µs at 77 K. Fortunately, two of the Ir[TpCF3PC)]L2 derivatives, which were tested for their ability to sensitize singlet oxygen formation, were found to do so efficiently with quantum yields Φ(1O2) = 0.71 and 0.38 for L = py and 4pa, respectively. Iridium corroles thus may hold promise as photosensitizers in photodynamic therapy (PDT). The possibility of varying the axial ligand and of attaching biotargeting groups at the axial positions makes iridium corroles particularly exciting as PDT drug candidates.
Collapse
|
40
|
Hassani N. The reaction mechanism of the hydration of ethylene over the CorroleM (M = B, Al, and Ga) complexes: A theoretical approach. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Abstract
Metallocorroles involving 5d transition metals are currently of interest as near-IR phosphors and as photosensitizers for oxygen sensing and photodynamic therapy. Their syntheses, however, are often bedeviled by capricious and low-yielding protocols. Against this backdrop, we describe rhenium-imido corroles, a new class of 5d metallocorroles, synthesized simply and in respectable (∼30%) yields via the interaction of a free-base corrole, Re2(CO)10, K2CO3, and aniline in 1,2,4-trichlorobenzene at ∼190 °C in a sealed vial under strict anaerobic conditions. The generality of the method was shown by the synthesis of six derivatives, including those derived from meso-tris(pentafluorophenyl)corrole, H3[TPFPC], and five different meso-tris(p-X-phenyl)corroles, H3[TpXPC], where X = CF3, F, H, CH3, OCH3. Single-crystal X-ray structures obtained for two of the complexes, Re[TpFPC](NPh) and Re[TpCF3PC](NPh), revealed relatively unstrained equatorial Re-N distances of ∼2.00 Å, a ∼ 0.7-Å displacement of the Re from the mean plane of the corrole nitrogens, and an Re-Nimido distance of ∼1.72 Å. Details of the corrole skeletal bond distances, diamagnetic 1H NMR spectra, relatively substituent-independent Soret maxima, and electrochemical HOMO-LUMO gaps of ∼2.2 V all indicated an innocent corrole macrocycle. Surprisingly, unlike several other classes of 5d metallocorroles, the Re-imido complexes proved nonemissive in solution at room temperature and also failed to sensitize singlet oxygen formation, indicating rapid radiationless deactivation of the triplet state, presumably via the rapidly rotating axial phenyl group. By analogy with other metal-oxo and -imido corroles, we remain hopeful that the Re-imido group will prove amenable to further elaboration and thereby contribute to the development of a somewhat challenging area of coordination chemistry.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
42
|
Reinholdt A, Alemayehu AB, Gagnon KJ, Bendix J, Ghosh A. Electrophilic Activation of Osmium-Nitrido Corroles: The OsN Triple Bond as a π-Acceptor Metallaligand in a Heterobimetallic Os VIN-Pt II Complex. Inorg Chem 2020; 59:5276-5280. [PMID: 32227864 PMCID: PMC7311052 DOI: 10.1021/acs.inorgchem.0c00654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Presented herein is a first investigation of the chemical reactivity of osmium-nitrido corroles, which are known for their unusual thermal, chemical, and photochemical stability. Elemental chlorine perchlorinates the β-positions of the triarylcorrole but leaves the OsN unit untouched. The OsN unit is also unaffected by a variety of other electrophilic and nucleophilic reagents. Upon photolysis, however, the anion of Zeise's salt associates with the nitrido ligand to generate an OsVI≡N-PtII complex. The very short OsN-Pt linkage [1.895(9)-1.917(8) Å] and the downfield 195Pt NMR resonance (-2702 ppm) suggest that the OsN corrole acts as a π-accepting ligand toward the Pt(II) center. This finding represents a rare example of the successful photochemical activation of a metal-ligand multiple bond that is too kinetically inert to exhibit any appreciable reactivity under thermal conditions.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kevin J Gagnon
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
43
|
Lopes SMM, Pinho E Melo TMVD. Meso-Substituted Corroles from Nitrosoalkenes and Dipyrromethanes. J Org Chem 2020; 85:3328-3335. [PMID: 31989827 DOI: 10.1021/acs.joc.9b03151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of bilanes and hexapyrroles containing an oxime functionality, prepared by two and three consecutive hetero-Diels-Alder reactions (or conjugated additions) between nitrosoalkenes and dipyrromethanes, is described. Bilanes underwent oxidative macrocyclization to afford a new class of trans-A2B-corroles. Porphyrins could also be obtained by reacting bilanes with aldehydes in the presence of trifluoroacetic acid, followed by an oxidative step.
Collapse
Affiliation(s)
- Susana M M Lopes
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | | |
Collapse
|
44
|
Lai SH, Wang LL, Wan B, Lu AW, Wang H, Liu HY. Photophysical properties, singlet oxygen generation and DNA binding affinity of Tris(4-pyridyl)corrole and its phosphorous, gallium and tin complexes. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
45
|
Zhou D, To WP, Tong GSM, Cheng G, Du L, Phillips DL, Che CM. Tetradentate Gold(III) Complexes as Thermally Activated Delayed Fluorescence (TADF) Emitters: Microwave-Assisted Synthesis and High-Performance OLEDs with Long Operational Lifetime. Angew Chem Int Ed Engl 2020; 59:6375-6382. [PMID: 31943594 DOI: 10.1002/anie.201914661] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Indexed: 12/23/2022]
Abstract
Structurally robust tetradentate gold(III)-emitters have potent material applications but are rare and unprecedented for those displaying thermally activated delayed fluorescence (TADF). Herein, a novel synthetic route leading to the preparation of highly emissive, charge-neutral tetradentate [C^C^N^C] gold(III) complexes with 5-5-6-membered chelate rings has been developed through microwave-assisted C-H bond activation. These complexes show high thermal stability and with emission origin (3 IL, 3 ILCT, and TADF) tuned by varying the substituents of the C^C^N^C ligand. With phenoxazine/diphenylamine substituent, we prepared the first tetradentate gold(III) complexes that are TADF emitters with emission quantum yields of up to 94 % and emission lifetimes of down to 0.62 μs in deoxygenated toluene. These tetradentate AuIII TADF emitters showed good performance in vacuum-deposited OLEDs with maximum EQEs of up to 25 % and LT95 of up to 5280 h at 100 cd m-2 .
Collapse
Affiliation(s)
- Dongling Zhou
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Glenna So Ming Tong
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518053, China
| | - Lili Du
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - David Lee Phillips
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518053, China
| |
Collapse
|
46
|
Zhou D, To W, Tong GSM, Cheng G, Du L, Phillips DL, Che C. Tetradentate Gold(III) Complexes as Thermally Activated Delayed Fluorescence (TADF) Emitters: Microwave‐Assisted Synthesis and High‐Performance OLEDs with Long Operational Lifetime. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dongling Zhou
- State Key Laboratory of Synthetic ChemistryHKU-CAS Joint Laboratory on New MaterialsDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Wai‐Pong To
- State Key Laboratory of Synthetic ChemistryHKU-CAS Joint Laboratory on New MaterialsDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Glenna So Ming Tong
- State Key Laboratory of Synthetic ChemistryHKU-CAS Joint Laboratory on New MaterialsDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Gang Cheng
- State Key Laboratory of Synthetic ChemistryHKU-CAS Joint Laboratory on New MaterialsDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518053 China
| | - Lili Du
- State Key Laboratory of Synthetic ChemistryHKU-CAS Joint Laboratory on New MaterialsDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - David Lee Phillips
- State Key Laboratory of Synthetic ChemistryHKU-CAS Joint Laboratory on New MaterialsDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic ChemistryHKU-CAS Joint Laboratory on New MaterialsDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518053 China
| |
Collapse
|
47
|
Berionni Berna B, Savoldelli A, Pomarico G, Zurlo F, Magna G, Paolesse R, Fronczek FR, Smith KM, Nardis S. Grafting Copper and Gallium Corroles onto Zinc Oxide Nanoparticles. Chempluschem 2020; 84:154-160. [PMID: 31950693 DOI: 10.1002/cplu.201800576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/05/2019] [Indexed: 12/29/2022]
Abstract
Two different copper and gallium arylcorroles have been functionalized using the Vilsmeier-Haack reaction. A further Knoevenagel reaction with cyanoacetic acid was performed on both complexes, affording the desired products with yields above 90 %. The newly synthesized compounds have been thoroughly characterized by a combination of spectroscopic methods, optical analyses, and X-ray crystallography. Moreover, they have been tested as anchoring groups for the hydrothermal synthesis of ZnO nanoparticles. The morphology of the heterogeneous composites has been studied by SEM, EDS and fluorescence microscopy analyses, thus confirming the presence of the corrole macrocycle in the hybrid material.
Collapse
Affiliation(s)
- Beatrice Berionni Berna
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Andrea Savoldelli
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Giuseppe Pomarico
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesca Zurlo
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Gabriele Magna
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Kevin M Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Sara Nardis
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
48
|
Thomas KE, Desbois N, Conradie J, Teat SJ, Gros CP, Ghosh A. Gold dipyrrin-bisphenolates: a combined experimental and DFT study of metal–ligand interactions. RSC Adv 2020; 10:533-540. [PMID: 35492572 PMCID: PMC9047278 DOI: 10.1039/c9ra09228e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/18/2019] [Indexed: 11/21/2022] Open
Abstract
Given that noninnocent and metalloradical-type electronic structures are ubiquitous among dipyrrin-bisphenolate (DPP) complexes, we synthesized the gold(iii) derivatives as potentially innocent paradigms against which the properties of other metallo-DPP derivatives can be evaluated. Electronic absorption spectra, electrochemical studies, a single-crystal X-ray structure, and DFT calculations all suggest that the ground states of the new complexes indeed correspond to an innocent AuIII–DPP3−, paralleling a similar description noted for Au corroles. Interestingly, while DFT calculations indicate purely ligand-centered oxidations, reduction of AuDPP is predicted to occur across both the metal and the ligand. The first gold dipyrrin-bisphenolates have been synthesized. Like their corrole analogues, they exhibit AuIII–L3− ground states, providing rare innocent paradigms for a class of complexes that commonly occur as metalloradicals.![]()
Collapse
Affiliation(s)
- Kolle E. Thomas
- Department of Chemistry
- UiT – The Arctic University of Norway
- Tromsø N-9037
- Norway
| | - Nicolas Desbois
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB)
- UMR CNRS 6302
- Université Bourgogne-Franche Comté
- 21078 Dijon Cedex
- France
| | - Jeanet Conradie
- Department of Chemistry
- UiT – The Arctic University of Norway
- Tromsø N-9037
- Norway
- Department of Chemistry
| | - Simon J. Teat
- Advanced Light Source
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Claude P. Gros
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB)
- UMR CNRS 6302
- Université Bourgogne-Franche Comté
- 21078 Dijon Cedex
- France
| | - Abhik Ghosh
- Department of Chemistry
- UiT – The Arctic University of Norway
- Tromsø N-9037
- Norway
| |
Collapse
|
49
|
Binding of Gold(III) Porphyrin by the Pro-metastatic Regulatory Protein Human Galectin-3. Molecules 2019; 24:molecules24244561. [PMID: 31842510 PMCID: PMC6943629 DOI: 10.3390/molecules24244561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Gold(III) porphyrin presents an attractive alternative to the use of, for example, cisplatin in chemotherapy. However, approaches that allow to selectively target cancer cells are highly sought. Many plant and mammalian lectins have been shown to bind oligosaccharide sequences of the aberrant glycosylation pattern found on cancerous tumors. For example human galectin-3, of the galectin family specific for β-galactoside, is overexpressed in the extracellular matrix of tumorigenous and metastatic tissues. We searched for non-carbohydrate ligands for galectin-3 that can guide a cytotoxic drug to the cancer cells by maintaining its affinity for tumor associated carbohydrate antigens. Previous findings showed that zinc tetrasulfonatophenylporphyrin can bind galectin-3 with sub-micromolar affinity without disturbing lactose binding. Gold(III) porphyrin is not only cytotoxic to cancer cells, it knows also a potential application as photosensitiser in photodynamic therapy. We investigated the binding of gold(III) porphyrin to galectin-3 using different biophysical interaction techniques and demonstrated a low micromolar affinity of human galectin-3 for the cytotoxic compound. Co-crystallization attempts in order to understand the binding mode of gold porphyrin to galectin-3 failed, but molecular docking emphasized a highly populated secondary binding site that does not hinder lactose or Thomsen Friendenreich disaccharide binding. This suggests that gold(III) porphyrin might significantly enhance its concentration and delivery to cancer cells by binding to human galectin-3 that keeps its orientation towards tumor associated carbohydrate antigens.
Collapse
|
50
|
Zhan X, Zini Y, Fridman N, Chen Q, Churchill DG, Gross Z. “Hetero‐Multifunctionalization” of Gallium Corroles: Facile Synthesis, Phosphorescence, Redox Tuning, and Photooxidative Catalytic Improvement. Chempluschem 2019. [DOI: 10.1002/cplu.201900667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuan Zhan
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 32000 Israel
| | - Yael Zini
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 32000 Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 32000 Israel
| | - Qiu‐Cheng Chen
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 32000 Israel
| | - David G. Churchill
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 32000 Israel
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Zeev Gross
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|