1
|
Yuan Q, Wang M, Ma M, Sun P, Zeng C, Chi W. Computational chemistry facilitates the development of second near-infrared xanthene-based dyes. J Mol Model 2024; 30:385. [PMID: 39467901 DOI: 10.1007/s00894-024-06179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
CONTEXT The dyes in the second near-infrared (NIR-II) region play a crucial role in advancing imaging technology. However, developing small-molecule dyes in NIR-II poses a significant bottleneck to meet the substantial demands in biological fields, which may be attributed to the lack of a rational design strategy. Herein, we designed a series of rhodamine analogs with more red-shifted emission by replacing the oxygen-bridge atom in xanthene-based dyes with -C(CH3)2, -Si(CH3)2, -SO2, and -P(O)Ph. We investigated the frontier molecular orbital, electrostatic potential surfaces, the interaction region indicator, electron-hole distribution, and absorption and emission spectrum of xanthene-based dyes using (time-dependent) density functional theory. Our results demonstrated that these designed small molecular dyes exhibit long emission wavelengths covering 1377-1809 nm. We expected these findings to enable the targeted design of long-wavelength rhodamines. METHOD Geometry optimization of dyes in the ground and excited states was carried out at ω-B97XD/Def2SVP level using Gaussian 16 A03. The absorption and emission wavelengths were evaluated using 13 functional, including TPSSH, O3LYP, B3LYP*, B3LYP, PBE0, MPW1B95, PBE-1/3, PBE38, MPWB1K, MN15, BHandHLYP, ω-B97XD, and CAM-B3LYP.
Collapse
Affiliation(s)
- Qinlin Yuan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Mingyu Wang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Mingyue Ma
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Pingping Sun
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Chaoyuan Zeng
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Zhang XX, Yang F, Zhao X, Wu Q, He L, Li Z, Zhou Z, Ren TB, Zhang XB, Yuan L. Dihydropyridopyrazine Functionalized Xanthene: Generating Stable NIR Dyes with Small-Molecular Weight by Enhanced Charge Separation. Angew Chem Int Ed Engl 2024; 63:e202410666. [PMID: 39007416 DOI: 10.1002/anie.202410666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
Near-infrared region (NIR; 650-1700 nm) dyes offer many advantages over traditional dyes with absorption and emission in the visible region. However, developing new NIR dyes, especially organic dyes with long wavelengths, small molecular weight, and excellent stability and biocompatibility, is still quite challenging. Herein, we present a general method to enhance the absorption and emission wavelengths of traditional fluorophores by simply appending a charge separation structure, dihydropyridopyrazine. These novel NIR dyes not only exhibited greatly redshifted wavelengths compared to their parent dyes, but also displayed a small molecular weight increase together with retained stability and biocompatibility. Specifically, dye NIR-OX, a dihydropyridopyra-zine derivative of oxazine with a molecular mass of 386.2 Da, exhibited an absorption at 822 nm and an emission extending to 1200 nm, making it one of the smallest molecular-weight NIR-II emitting dyes. Thanks to its rapid metabolism and long wave-length, NIR-OX enabled high-contrast bioimaging and assessment of cholestatic liver injury in vivo and also facilitated the evalua-tion of the efficacy of liver protection medicines against cholestatic liver injury.
Collapse
Affiliation(s)
- Xing-Xing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Feiyu Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xinyu Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Long He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Zhixuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
3
|
Liu C, Liu C, Ji X, Zhao W, Dong X. Synthesis and Photodynamic Activities of Pyridine- or Pyridinium-Substituted Aza-BODIPY Photosensitizers. J Med Chem 2024; 67:15908-15924. [PMID: 39167079 DOI: 10.1021/acs.jmedchem.4c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this work, various novel pyridinyl- and pyridinium-modified Aza-BODIPY PSs were designed and constructed based on monoiodo Aza-BODIPY PSs (BDP-4 and BDP-15) in an attempt to construct "structure-inherent organelles-targeted" PSs to endow potential organelle-targeting ability. Pyridinyl PSs displayed potent photodynamic efficacy, and monorigidified PSs were very effective. The monorigidified PS 20 with meta-pyridinyl moiety displayed the most potent photoactivity and negligible dark toxicity with a favorable dark/phototoxicity ratio (>4800). To our surprise, monorigidified PS with meta-pyridinyl moiety (e.g., 20) was lipid droplet-targeted. 20 showed good cellular uptake and intracellular ROS generation compared with BDP-15. The preliminary cell death process exploration indicated that 20 resulted in lipid peroxidation and induced cell death through an iron-independent ferroptosis-like cell death pathway. In vivo antitumor efficacy experiments manifested that 20 significantly inhibited tumor growth and outperformed BDP-15 and Ce6 even under a single low-dose light irradiation (30 J/cm2).
Collapse
Affiliation(s)
- Chang Liu
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chuan Liu
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Xin Ji
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Weili Zhao
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
4
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
5
|
Brøndsted F, Stains CI. Xanthene-Based Dyes for Photoacoustic Imaging and their Use as Analyte-Responsive Probes. Chemistry 2024; 30:e202400598. [PMID: 38662806 PMCID: PMC11219268 DOI: 10.1002/chem.202400598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 06/15/2024]
Abstract
Developing imaging tools that can report on the presence of disease-relevant analytes in multicellular organisms can provide insight into fundamental disease mechanisms as well as provide diagnostic tools for the clinic. Photoacoustic imaging (PAI) is a light-in, sound-out imaging technique that allows for high resolution, deep-tissue imaging with applications in pre-clinical and point-of-care settings. The continued development of near-infrared (NIR) absorbing small-molecule dyes promises to improve the capabilities of this emerging imaging modality. For example, new dye scaffolds bearing chemoselective functionalities are enabling the detection and quantification of disease-relevant analytes through activity-based sensing (ABS) approaches. Recently described strategies to engineer NIR absorbing xanthenes have enabled development of analyte-responsive PAI probes using this classic dye scaffold. Herein, we present current strategies for red-shifting the spectral properties of xanthenes via bridging heteroatom or auxochrome modifications. Additionally, we explore how these strategies, coupled with chemoselective spiroring-opening approaches, have been employed to create ABS probes for in vivo detection of hypochlorous acid, nitric oxide, copper (II), human NAD(P)H: quinone oxidoreductase isozyme 1, and carbon monoxide. Given the versatility of the xanthene scaffold, we anticipate continued growth and development of analyte-responsive PAI imaging probes based on this dye class.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
- University of Virginia Cancer Center, University of Virginia, 22908, Charlottesville, VA, USA
- Virginia Drug Discovery Consortium, 24061, Blacksburg, VA, USA
| |
Collapse
|
6
|
Saucier MA, Kruse NA, Seidel BE, Hammer NI, Tschumper GS, Delcamp JH. Phospha-RosIndolizine Dye with Shortwave Infrared (SWIR) Absorption and Emission. J Org Chem 2024; 89:9092-9097. [PMID: 38841830 DOI: 10.1021/acs.joc.4c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Shortwave infrared (SWIR, 1000-1700 nm) absorbing and emitting dyes are needed for infrared diodes and sensors used in a wide variety of industrial and medical applications. Herein, an electron-withdrawing phosphine oxide (P═O) substituted xanthene is coupled with strong indolizine donors to produce a SWIR absorbing (λabs = 1294 nm in DCM) and emitting (λemis = 1450 nm in DCM) dye called PRos1450. The unique properties of this dye are characterized via photophysical, electrochemical, and computational analyses.
Collapse
Affiliation(s)
- Matthew A Saucier
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Nicholas A Kruse
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Brennan E Seidel
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Gregory S Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| |
Collapse
|
7
|
Ohno H, Sasaki E, Yamada S, Hanaoka K. Recent advances in Si-rhodamine-based fluorescent probes for live-cell imaging. Org Biomol Chem 2024; 22:3099-3108. [PMID: 38444309 DOI: 10.1039/d4ob00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Fluorescence imaging is a powerful technique for visualizing biological events in living samples with high temporal and spatial resolution. Fluorescent probes emitting far-red to near infrared (NIR) fluorescence are particularly advantageous for in vivo imaging due to their high tissue permeability and low autofluorescence, as well as their suitability for multicolor imaging. Among the far-red to NIR fluorophores, Si-rhodamine is one of the most practical fluorophores for the development of tailor-made NIR fluorescent probes because of the relative ease of synthesis of various derivatives, the unique intramolecular spirocyclization behavior, and the relatively high water solubility and high photostability of the probes. This review summarizes these features of Si-rhodamines and presents recent advances in the synthesis and applications of far-red to NIR fluorescent probes based on Si-rhodamines, focusing on live-cell imaging applications such as fluorogenic probes, super-resolution imaging and dye-protein hybrid-based indicators.
Collapse
Affiliation(s)
- Hisashi Ohno
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
| | - Eita Sasaki
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Sota Yamada
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
8
|
Wu W, Yan K, He Z, Zhang L, Dong Y, Wu B, Liu H, Wang S, Zhang F. 2X-Rhodamine: A Bright and Fluorogenic Scaffold for Developing Near-Infrared Chemigenetic Indicators. J Am Chem Soc 2024. [PMID: 38605649 DOI: 10.1021/jacs.4c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Chemigenetic fusion of synthetic dyes with genetically encoded protein tags presents a promising avenue for in vivo imaging. However, its full potential has been hindered by the lack of bright and fluorogenic dyes operating in the "tissue transparency" near-infrared window (NIR, 700-1700 nm). Here, we report 2X-rhodamine (2XR), a novel bright scaffold that allows for the development of live-cell-compatible, NIR-excited variants with strong fluorogenicity beyond 1000 nm. 2XR utilizes a rigidified π-skeleton featuring dual atomic bridges and functions via a spiro-based fluorogenic mechanism. This design affords longer wavelengths, higher quantum yield (ΦF = 0.11), and enhanced fluorogenicity in water when compared to the phosphine oxide-cored, or sulfone-cored rhodamine, the NIR fluorogenic benchmarks currently used. We showcase their bright performance in video-rate dynamic imaging and targeted deep-tissue molecular imaging in vivo. Notably, we develop a 2XR variant, 2XR715-HTL, an NIR fluorogenic ligand for the HaloTag protein, enabling NIR genetically encoded calcium sensing and the first demonstration of in vivo chemigenetic labeling beyond 1000 nm. Our work expands the library of NIR fluorogenic tools, paving the way for in vivo imaging and sensing with the chemigenetic approach.
Collapse
Affiliation(s)
- Wenxiao Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Lu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Yuyao Dong
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Hongyue Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Turnbull JL, Miller EW. An open and shut case? Chemistry to control xanthene dyes. TRENDS IN CHEMISTRY 2024; 6:164-172. [PMID: 39036609 PMCID: PMC11257214 DOI: 10.1016/j.trechm.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Fluorescent dyes are an indispensable part of the scientific enterprise. Xanthene-based fluorophores, like fluorescein and rhodamine, have been in continual use across numerous fields since their invention in the late 19th century. Modern methods to synthesize and expand the scope of xanthene dye chemistry have enabled new colors, enhanced stability, and improved brightness. Modifications to the 3-position of xanthene dyes have been, until recently, less well-explored. Here, we discuss how small changes to the identity of the substituent at the 3-position of fluoresceins and rhodamines can profoundly alter the properties of xanthene dyes, with the potential to unlock new applications at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Joshua L. Turnbull
- Department of Chemistry, University of California, Berkeley, CA 94720, United States of America
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, CA 94720, United States of America
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, United States of America
- Helen Wills Neuroscience Institute University of California, Berkeley, CA 94720, United States of America
| |
Collapse
|
10
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
11
|
Tanioka M, Oyama M, Nakajima K, Mori M, Harada M, Matsuya Y, Kamino S. Coerulein B: a water-soluble and water-compatible near-infrared photoredox catalyst. Phys Chem Chem Phys 2024; 26:4474-4479. [PMID: 38240132 DOI: 10.1039/d3cp05585j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The recent expansion of photoredox catalysis into chemical biology has underscored the importance of photochemistry, attracting the attention of many researchers. On the other hand, as conventional photoredox catalysts were developed for organic synthesis, there is a necessity to develop biocompatible photoredox catalysts. Here, we show a water-soluble and water-compatible near-infrared (NIR) photoredox catalyst, coerulein B (CB). CB is a water-soluble molecule with a slightly twisted molecular structure, and its anionic species (CB-) exhibits NIR absorption and emission. We demonstrated that CB works as a water-compatible photoredox catalyst in the coupling reaction of pyridine hydrochloride and aryldiazonium salt. These results indicate that CB is one of the promising candidates for photocatalysts used in biological reactions.
Collapse
Affiliation(s)
- Masaru Tanioka
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Masaya Oyama
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Kaito Nakajima
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Minori Mori
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Mei Harada
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Yuji Matsuya
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Shinichiro Kamino
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
12
|
Brøndsted F, Fang Y, Li L, Zhou X, Grant S, Stains CI. Single Atom Stabilization of Phosphinate Ester-Containing Rhodamines Yields Cell Permeable Probes for Turn-On Photoacoustic Imaging. Chemistry 2024; 30:e202303038. [PMID: 37852935 PMCID: PMC10926271 DOI: 10.1002/chem.202303038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging technique that uses pulsed laser excitation with near-infrared (NIR) light to elicit local temperature increases through non-radiative relaxation events, ultimately leading to the production of ultrasound waves. The classical xanthene dye scaffold has found numerous applications in fluorescence imaging, however, xanthenes are rarely utilized for PAI since they do not typically display NIR absorbance. Herein, we report the ability of Nebraska Red (NR) xanthene dyes to produce photoacoustic (PA) signal and provide a rational design approach to reduce the hydrolysis rate of ester containing dyes, affording cell permeable probes. To demonstrate the utility of this approach, we construct the first cell permeable rhodamine-based, turn-on PAI imaging probe for hypochlorous acid (HOCl) with maximal absorbance within the range of commercial PA instrumentation. This probe, termed SNR700 -HOCl, is capable of detecting exogenous HOCl in mice. This work provides a new set of rhodamine-based PAI agents as well as a rational design approach to stabilize esterified versions of NR dyes with desirable properties for PAI. In the long term, the reagents described herein could be utilized to enable non-invasive imaging of HOCl in disease-relevant model systems.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Yuan Fang
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Lin Li
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, 23298, Richmond, VA, USA
| | - Xinqi Zhou
- Department of Chemistry, University of Nebraska-Lincoln, 68588, Lincoln, NE, USA
- Current Address: Department of Chemistry, University of California, 94720, Berkeley, CA, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, 23298, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, 23298, Richmond, VA, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
- University of Virginia Cancer Center, University of Virginia, 22908, Charlottesville, VA, USA
- Virginia Drug Discovery Consortium, 24061, Blacksburg, VA, USA
| |
Collapse
|
13
|
Zhang H, Xiang FF, Liu YZ, Chen YJ, Zhou DH, Liu YH, Chen SY, Yu XQ, Li K. Molecular Engineering of Sulfone-Xanthone Chromophore for Enhanced Fluorescence Navigation. JACS AU 2023; 3:3462-3472. [PMID: 38155649 PMCID: PMC10751763 DOI: 10.1021/jacsau.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Enriching the palette of high-performance fluorescent dyes is vital to support the frontier of biomedical imaging. Although various rhodamine skeletons remain the premier type of small-molecule fluorophores due to the apparent high brightness and flexible modifiability, they still suffer from the inherent defect of small Stokes shift due to the nonideal fluorescence imaging signal-to-background ratio. Especially, the rising class of fluorescent dyes, sulfone-substituted xanthone, exhibits great potential, but low chemical stability is also pointed out as the problem. Molecular engineering of sulfone-xanthone to obtain a large Stokes shift and high stability is highly desired, but it is still scarce. Herein, we present the combination modification method for optimizing the performance of sulfone-xanthone. These redesigned fluorescent skeletons owned greatly improved stability and Stokes shift compared with the parent sulfone-rhodamine. To the proof of bioimaging capacity, annexin protein-targeted peptide LS301 was introduced to the most promising dyes, J-S-ARh, to form the tumor-targeted fluorescent probe, J-S-LS301. The resulting probe, J-S-LS301, can be an outstanding fluorescence tool for the orthotopic transplantation tumor model of hepatocellular carcinoma imaging and on-site pathological analysis. In summary, the combination method could serve as a basis for rational optimization of sulfone-xanthone. Overall, the chemistry reported here broadens the scope of accessible sulfone-xanthone functionality and, in turn, enables to facilitate the translation of biomedical research toward the clinical domain.
Collapse
Affiliation(s)
- Hong Zhang
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
- Department
of Radiology, West China Hospital, Sichuan
University, No. 37, Guoxue
Street, Chengdu 610041, P. R. China
| | - Fei-Fan Xiang
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yan-Zhao Liu
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yu-Jin Chen
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Ding-Heng Zhou
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yan-Hong Liu
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Shan-Yong Chen
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
- Asymmetric
Synthesis and Chiral Technology Key Laboratory of Sichuan Province,
Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Kun Li
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
14
|
Turnbull JL, Golden RP, Benlian BR, Henn KM, Lipman SM, Miller EW. Mild and scalable synthesis of phosphonorhodamines. Chem Sci 2023; 14:11365-11373. [PMID: 37886078 PMCID: PMC10599461 DOI: 10.1039/d3sc02590j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 10/28/2023] Open
Abstract
Since their discovery in 1887, rhodamines have become indispensable fluorophores for biological imaging. Recent studies have extensively explored heteroatom substitution at the 10' position and a variety of substitution patterns on the 3',6' nitrogens. Although 3-carboxy- and 3-sulfono-rhodamines were first reported in the 19th century, the 3-phosphono analogues have never been reported. Here, we report a mild, scalable synthetic route to 3-phosphonorhodamines. We explore the substrate scope and investigate mechanistic details of an exogenous acid-free condensation. Tetramethyl-3-phosphonorhodamine (phosTMR) derivatives can be accessed on the 1.5 mmol scale in up to 98% yield (2 steps). phosTMR shows a 12- to 500-fold increase in water solubility relative to 3-carboxy and 3-sulfonorhodamine derivatives and has excellent chemical stability. Additionally, phosphonates allow for chemical derivatization; esterification of phosTMR facilitates intracellular delivery with localization profiles that differ from 3-carboxyrhodamines. The free phosphonate can be incorporated into a molecular wire scaffold to create a phosphonated rhodamine voltage reporter, phosphonoRhoVR. PhosRhoVR 1 can be synthesized in just 6 steps, with an overall yield of 37% to provide >400 mg of material, compared to a 6-step, ∼2% yield for the previously reported RhoVR 1. PhosRhoVR 1 possesses excellent voltage sensitivity (37% ΔF/F) and a 2-fold increase in cellular brightness compared to RhoVR 1.
Collapse
Affiliation(s)
- Joshua L Turnbull
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Ryan P Golden
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Brittany R Benlian
- Department of Molecular & Cell Biology, University of California Berkeley CA 94720-1460 USA
| | - Katharine M Henn
- Helen Wills Neuroscience Institute, University of California Berkeley CA 94720-1460 USA
| | - Soren M Lipman
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Evan W Miller
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
- Department of Molecular & Cell Biology, University of California Berkeley CA 94720-1460 USA
- Helen Wills Neuroscience Institute, University of California Berkeley CA 94720-1460 USA
| |
Collapse
|
15
|
Chi W, Tan D, Qiao Q, Xu Z, Liu X. Spontaneously Blinking Rhodamine Dyes for Single-Molecule Localization Microscopy. Angew Chem Int Ed Engl 2023; 62:e202306061. [PMID: 37246144 DOI: 10.1002/anie.202306061] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Single-molecule localization microscopy (SMLM) has found extensive applications in various fields of biology and chemistry. As a vital component of SMLM, fluorophores play an essential role in obtaining super-resolution fluorescence images. Recent research on spontaneously blinking fluorophores has greatly simplified the experimental setups and extended the imaging duration of SMLM. To support this crucial development, this review provides a comprehensive overview of the development of spontaneously blinking rhodamines from 2014 to 2023, as well as the key mechanistic aspects of intramolecular spirocyclization reactions. We hope that by offering insightful design guidelines, this review will contribute to accelerating the advancement of super-resolution imaging technologies.
Collapse
Affiliation(s)
- Weijie Chi
- Collaborative Innovation Center of One Health, School of Science, Hainan University, Renmin Road 58, Haikou, 570228, P. R. China
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| |
Collapse
|
16
|
Chen S, Ma X, Wang H, Wang L, Wu Y, Wang Y, Li Y, Fan W, Niu C, Hou S. Visualize intracellular β-galactosidase using an asymmetric near-infrared fluorescent probe with a large Stokes shift. Anal Chim Acta 2023; 1272:341482. [PMID: 37355329 DOI: 10.1016/j.aca.2023.341482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 06/26/2023]
Abstract
β-galactosidase (β-Gal) is an important biomarker of cell senescence and primary ovarian cancer. Therefore, it is of great significance to construct a near-infrared fluorescent probe with deep tissue penetration and a high signal-to-noise ratio for visualization of β-galactosidase in biological systems. However, most near-infrared probes tend to have small Stokes shifts and low signal-to-noise ratios due to crosstalk between excitation and emission spectra. Using d-galactose residues as specific recognition units and near-infrared dye TJ730 as fluorophores, a near-infrared fluorescence probe SN-CR with asymmetric structure was developed for the detection of β-Gal. The probe has a fast reaction equilibrium time (<12 min) with β-Gal, excellent biocompatibility, near-infrared emission (738 nm), low detection limit (0.0029 U/mL), and no crosstalk between the excitation spectrum and emission spectrum (Stokes shifts 142 nm) of the probe. Cell imaging studies have shown that SN-CR can visually trace β-Gal in different cells and distinguish ovarian cancer cells from other cells.
Collapse
Affiliation(s)
- Shijun Chen
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Xiaodong Ma
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Haijie Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Lin Wang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yuanyuan Wu
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yaping Wang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yiyi Li
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Wenkang Fan
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Caoyuan Niu
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
17
|
Bardi B, Vygranenko KV, Koszarna B, Vakuliuk O, Dobrzycki Ł, Gryko DT, Terenziani F, Painelli A. Novel Method for the Synthesis of Merocyanines: New Photophysical Possibilities for a Known Class of Fluorophores. Chemistry 2023; 29:e202300979. [PMID: 37203589 DOI: 10.1002/chem.202300979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/20/2023]
Abstract
A new, transformative method for the preparation of rhodols and other merocyanines from readily available tetrafluorohydroxybenzaldehyde and aminophenols has been developed. It is now possible to prepare merocyanines bearing three fluorine atoms and additional conjugated rings, and the whole one-pot process occurs under neutral, mild conditions. Three heretofore unknown merocyanine-based architectures were prepared using this strategy from aminonaphthols and 4-hydroxycoumarins. The ability to change the structure of original rhodol chromophore into π-expanded merocyanines translates to a comprehensive method for the modulation of photophysical properties, such as shifting the absorption and emission bands across almost the entire visible spectrum, reaching a huge Stokes shift i. e. 4800 cm-1 , brightness approximately 80.000 M-1 cm-1 , two-photon absorption cross-section above 150 GM and switching-on/off solvatofluorochromism. A detailed investigation allowed to rationalize the different spectroscopic behavior of rhodols and new merocyanines, addressing solvatochromism and two-photon absorption.
Collapse
Affiliation(s)
- Brunella Bardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124, Parma, Italy
| | | | - Beata Koszarna
- Institute of Organic Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Olena Vakuliuk
- Institute of Organic Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Francesca Terenziani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124, Parma, Italy
| | - Anna Painelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124, Parma, Italy
| |
Collapse
|
18
|
Kaur J, Deng F, Morris MJ, Goldys E. QDs-based fluorescent lateral flow assays for Point-of-care testing of insulin. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082853 DOI: 10.1109/embc40787.2023.10340110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Point-of-care testing (POCT) can be performed near the site of the patient to achieve results in a few minutes. Different POCT devices are available in the market, such as microfluidic chips and paper-based lateral flow assays (LFAs). The paper-based LFAs have certain advantages, such as being cheap and disposable, able to detect a wide range of biomolecules, and the fluid flows through them via capillary action eliminating the need for external forces. The LFAs can be optimized for the sensitive and rapid detection of biomolecules. In this study, paper-based fluorescent LFAs platforms using aptamers as the biorecognition molecules were developed for the POCT of insulin. Various parameters were optimized such as concentrations of aptamers, the type of reporter molecules, the volume of sample, and the assay time to quantify insulin levels using a standard LFA reader. The fluorescent LFAs exhibited a linear detection range of 0.1-4 ng.mL-1 with a limit of detection (LOD) 0.1 ng.mL-1. The developed LFAs will help to achieve insulin measurement in a few minutes and will be easy to perform by end-users without the requirement of sophisticated instruments, laboratory set-up, and trained personnel. The developed device will be useful for the measurement of insulin levels in biological samples without the need for pretreatment, reducing the overall cost and time of testing. Moreover, the POCT device were fabricated using paper which is a low-cost (approximately AUD 2 per strip) option and is disposable.Clinical Relevance- POCT monitoring of insulin can facilitate both disease diagnosis and management. The developed LFAs have the capability of rapidly testing insulin concentration within several minutes. It will benefit both patients for at-home daily insulin monitoring and clinicians for hospital rapid insulin testing.
Collapse
|
19
|
Mao Z, Rha H, Kim J, You X, Zhang F, Tao W, Kim JS. THQ-Xanthene: An Emerging Strategy to Create Next-Generation NIR-I/II Fluorophores. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301177. [PMID: 37114796 PMCID: PMC10288261 DOI: 10.1002/advs.202301177] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Near-infrared fluorescence imaging is vital for exploring the biological world. The short emissions (<650 nm) and small Stokes shifts (<30 nm) of current xanthene dyes obstruct their biological applications since a long time. Recently, a potent and universal THQ structural modification technique that shifts emission to the NIR-I/II range and enables a substantial Stokes shift (>100 nm) for THQ-modified xanthene dyes is established. Thus, a timely discussion of THQ-xanthene and its applications is extensive. Hence, the advent, working principles, development trajectory, and biological applications of THQ-xanthene dyes, especially in the fields of fluorescence probe-based sensing and imaging, cancer theranostics, and super-resolution imaging, are introduced. It is envisioned that the THQ modification tactic is a simple yet exceptional approach to upgrade the performance of conventional xanthene dyes. THQ-xanthene will advance the strides of xanthene-based potentials in early fluorescent diagnosis of diseases, cancer theranostics, and imaging-guided surgery.
Collapse
Affiliation(s)
- Zhiqiang Mao
- College of Health Science and EngineeringCollege of Chemistry and Chemical EngineeringHubei UniversityWuhan430062China
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Hyeonji Rha
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Jungryun Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Xinru You
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Fan Zhang
- College of Health Science and EngineeringCollege of Chemistry and Chemical EngineeringHubei UniversityWuhan430062China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jong Seung Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| |
Collapse
|
20
|
Li Y, Zhou Z, Chen S, Pang X, Wu C, Li H, Zhang Y. Mitochondria-targeting fluorescent sensor with high photostability and permeability for visualizing viscosity in mitochondrial malfunction, inflammation, and AD models. Anal Chim Acta 2023; 1250:340967. [PMID: 36898810 DOI: 10.1016/j.aca.2023.340967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Viscosity changes in mitochondria are closely associated with numerous cellular processes and diseases. Currently available fluorescence probes used in mitochondrial viscosity imaging are not very photostable or sufficiently permeable. Herein, a highly photostable and permeable mitochondria-targeting red fluorescent probe (Mito-DDP) was designed and synthesized for viscosity sensing. Viscosity was imaged in living cells using a confocal laser scanning microscope, and the results suggested that Mito-DDP penetrated the membrane and stained the living cells. Importantly, practical applications of Mito-DDP were demonstrated: viscosity visualization was realized for mitochondrial malfunction, cellular and zebrafish inflammation, and Drosophila Alzheimer's disease models, i.e., for subcellular organelles, cells, and organisms. The excellent analytical and bioimaging performance of Mito-DDP in vivo makes it an effective tool for exploring the physiological and pathological effects of viscosity.
Collapse
Affiliation(s)
- Yaqian Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China; Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zile Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Shiying Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Xiao Pang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
21
|
Rathnamalala CSL, Hernandez S, Lucero MY, Swartchick CB, Kalam Shaik A, Hammer NI, East AK, Gwaltney SR, Chan J, Scott CN. Xanthene-Based Nitric Oxide-Responsive Nanosensor for Photoacoustic Imaging in the SWIR Window. Angew Chem Int Ed Engl 2023; 62:e202214855. [PMID: 36722146 PMCID: PMC10088865 DOI: 10.1002/anie.202214855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near-infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR-1), thienothiophene (SCR-2), or bithiophene (SCR-3). We leverage the fact that SCR-1 undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP-NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug-induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.
Collapse
Affiliation(s)
| | - Selena Hernandez
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Melissa Y Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Chelsea B Swartchick
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | | | | | - Amanda K East
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762, USA
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Colleen N Scott
- Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762, USA
| |
Collapse
|
22
|
Chen Z, Yang L, Xu W, Xu F, Sheng J, Xiao Q, Song X, Chen W. Homoadamantane-Fused Tetrahydroquinoxaline as a Robust Electron-Donating Unit for High-Performance Asymmetric NIR Rhodamine Development. Anal Chem 2023; 95:3325-3331. [PMID: 36716181 DOI: 10.1021/acs.analchem.2c04445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rhodamines have emerged as a useful class of dye for bioimaging. However, intrinsic issues such as short emission wavelengths and small Stokes shifts limit their widespread applications in living systems. By taking advantage of the homoadamantane-fused tetrahydroquinoxaline (HFT) moiety as an electron donor, we developed a new class of asymmetric NIR rhodamine dyes, NNR1-7. These new dyes retained ideal photophysical properties from the classical rhodamine scaffold and showed large Stokes shifts (>80 nm) with improved chemo/photostability. We found that NNR1-7 specifically target cellular mitochondria with superior photobleaching resistance and improved tolerance for cell fixation compared to commercial mitochondria trackers. Based on NNR4, a novel NIR pH sensor (NNR4M) was also constructed and successfully applied for real-time monitoring of variations in lysosomal pH. We envision this design strategy would find broad applications in the development of highly stable NIR dyes with a large Stokes shift.
Collapse
Affiliation(s)
- Zhipeng Chen
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Wenju Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| | - Feifei Xu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Jiarong Sheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province 410083, P. R. China
| | - Wenqiang Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| |
Collapse
|
23
|
DiMeglio D, Zhou X, Wirth T, Brøndsted F, Lesiak L, Fang Y, Shadmehr M, Stains CI. Experimentally Calibrated Computational Prediction Enables Accurate Fine-Tuning of Near-Infrared Rhodamines for Multiplexing. Chemistry 2023; 29:e202202861. [PMID: 36282517 PMCID: PMC9898109 DOI: 10.1002/chem.202202861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
A significant barrier inhibiting multiplexed imaging in the near-infrared (NIR) is the extensive trial and error associated with fine-tuning NIR dyes. In particular, the need to synthesize and experimentally evaluate dye derivatives in order to empirically identify those that can be used in multiplexing applications, requires a large investment of time. While coarse-tuning efforts benefit from computational prediction that can be used to identify target dye structures for synthetic campaigns, errors in computational prediction remain too large to accurately parse modifications aimed at fine-tuning changes in dye absorbance and emission. To address this issue, we screened different levels of theory and identified a time-dependent density functional theory (TD-DFT) approach that can rapidly, as opposed to synthesis and experimental evaluation, estimate absorbance and emission. By calibrating these computational estimations of absorbance and emission to experimentally determined parameters for a panel of existing NIR dyes, we obtain calibration curves that can be used to accurately predict the effect of fine-tuning modifications in new dyes. We demonstrate the predictive power of this calibrated dataset using seven previously unreported dyes, obtaining mean percent errors in absorbance and emission of 2.2 and 2.8 %, respectively. This approach provides a significant timesavings, relative to synthesis and evaluation of dye derivatives, and can be used to focus synthetic campaigns on the most promising dye structures. The new dyes described herein can be utilized for multiplexed imaging, and the experimentally calibrated dataset will provide the dye chemistry community with a means to rapidly identify fine-tuned NIR dyes in silico to guide subsequent synthetic campaigns.
Collapse
Affiliation(s)
- David DiMeglio
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Xinqi Zhou
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE68588, USA
- Current Address: Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Tatiana Wirth
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Frederik Brøndsted
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Lauren Lesiak
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE68588, USA
- Current Address: Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Yuan Fang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Mehrdad Shadmehr
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Cliff I. Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
- Virginia Drug Discovery Consortium, Blacksburg, VA 24061, USA
| |
Collapse
|
24
|
Komori Y, Sugimoto S, Sato T, Okawara H, Watanabe R, Takano Y, Kitaoka S, Egawa Y. A New Boron-Rhodamine-Containing Carboxylic Acid as a Sugar Chemosensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:1528. [PMID: 36772569 PMCID: PMC9921257 DOI: 10.3390/s23031528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
We propose a boron-rhodamine-containing carboxylic acid (BRhoC) substance as a new sugar chemosensor. BRhoC was obtained by the Friedel-Crafts reaction of 4-formylbenzoic acid and N,N-dimethylphenylboronic acid, followed by chloranil oxidation. In an aqueous buffer solution at pH 7.4, BRhoC exhibited an absorption maximum (Absmax) at 621 nm. Its molar absorption coefficient at Absmax was calculated to be 1.4 × 105 M-1 cm-1, and it exhibited an emission maximum (Emmax) at 644 nm for the excitation at 621 nm. The quantum yield of BRhoC in CH3OH was calculated to be 0.16. The borinate group of BRhoC reacted with a diol moiety of sugar to form a cyclic ester, which induced a change in the absorbance and fluorescence spectra. An increase in the D-fructose (Fru) concentration resulted in the red shift of the Absmax (621 nm without sugar and 637 nm with 100 mM Fru) and Emmax (644 nm without sugar and 658 nm with 100 mM Fru) peaks. From the curve fitting of the plots of the fluorescence intensity ratio at 644 nm and 658 nm, the binding constants (K) were determined to be 2.3 × 102 M-1 and 3.1 M-1 for Fru and D-glucose, respectively. The sugar-binding ability and presence of a carboxyl group render BRhoC a suitable building block for the fabrication of highly advanced chemosensors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuya Egawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
25
|
Dong Y, Lu X, Li Y, Chen W, Yin L, Zhao J, Hu X, Li X, Lei Z, Wu Y, Chen H, Luo X, Qian X, Yang Y. Spectral and biodistributional engineering of deep near-infrared chromophore. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Raliski BK, Mun DM, Miller EW. Sulfone Rhodamines for Voltage Imaging. Chem Asian J 2022; 17:e202200906. [PMID: 36356288 PMCID: PMC9772261 DOI: 10.1002/asia.202200906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent indicators that respond to changes in biological membrane potentials provide a powerful complement to existing methods for monitoring neuronal activity. Indicators that absorb and emit in the near infrared window are especially attractive, since lower energy wavelengths excite fewer biological molecules and can penetrate more deeply into biological tissues. In this work, we incorporate sulfone rhodamine chromophores into a voltage-sensitive scaffold in order to generate voltage sensitive fluorophores which absorb and emit above 700 nm. These Sulfone Rhodamine Voltage Reporters (SuRhoVRs) partition into cell membranes and display good sensitivity to membrane potential changes. The most sensitive SuRhoVR derivative also displays excellent photostability and can track membrane potential changes in dissociated rat hippocampal neurons.
Collapse
Affiliation(s)
- Benjamin K. Raliski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| | - Dong Min Mun
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720-1460, USA,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| |
Collapse
|
27
|
East AK, Lee MC, Smaga LP, Jiang C, Mallojjala SC, Hirschi JS, Chan J. Synthesis of Silicon-Substituted Hemicyanines for Multimodal SWIR Imaging. Org Lett 2022; 24:8509-8513. [PMID: 36374323 PMCID: PMC10112353 DOI: 10.1021/acs.orglett.2c03382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SWIR dyes offer many advantages over their more common NIR congeners; however, the available options are limited. New SWIR imaging agents can be accessed by remodeling existing NIR molecules (i.e., hemicyanines (HDs)). In this study, we synthesized SWIR-HD, a modified HD featuring dimethylsilicon and benzo[cd]indolium groups that are designed to red-shift the absorbance and emission to 988 and 1126 nm, respectively. SWIR-HD was employed to visualize the liver and tumors via multimodal SWIR imaging.
Collapse
Affiliation(s)
- Amanda K. East
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael C. Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lukas P. Smaga
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chang Jiang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sharath C. Mallojjala
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jennifer S. Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Wang L, Hsiung CH, Liu X, Wang S, Loredo A, Zhang X, Xiao H. Xanthone-based solvatochromic fluorophores for quantifying micropolarity of protein aggregates. Chem Sci 2022; 13:12540-12549. [PMID: 36382293 PMCID: PMC9629104 DOI: 10.1039/d2sc05004h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 01/31/2023] Open
Abstract
Proper three-dimensional structures are essential for maintaining the functionality of proteins and for avoiding pathological consequences of improper folding. Misfolding and aggregation of proteins have been both associated with neurodegenerative disease. Therefore, a variety of fluorogenic tools that respond to both polarity and viscosity have been developed to detect protein aggregation. However, the rational design of highly sensitive fluorophores that respond solely to polarity has remained elusive. In this work, we demonstrate that electron-withdrawing heteroatoms with (d-p)-π* conjugation can stabilize lowest unoccupied molecular orbital (LUMO) energy levels and promote bathochromic shifts. Guided by computational analyses, we have devised a novel series of xanthone-based solvatochromic fluorophores that have rarely been systematically studied. The resulting probes exhibit superior sensitivity to polarity but are insensitive to viscosity. As proof of concept, we have synthesized protein targeting probes for live-cell confocal imaging intended to quantify the polarity of misfolded and aggregated proteins. Interestingly, our results reveal several layers of protein aggregates in a way that we had not anticipated. First, microenvironments with reduced polarity were validated in the misfolding and aggregation of folded globular proteins. Second, granular aggregates of AgHalo displayed a less polar environment than aggregates formed by folded globular protein represented by Htt-polyQ. Third, our studies reveal that granular protein aggregates formed in response to different types of stressors exhibit significant polarity differences. These results show that the solvatochromic fluorophores solely responsive to polarity represent a new class of indicators that can be widely used for detecting protein aggregation in live cells, thus paving the way for elucidating cellular mechanisms of protein aggregation as well as therapeutic approaches to managing intracellular aggregates.
Collapse
Affiliation(s)
- Lushun Wang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Chia-Heng Hsiung
- Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park PA 16802 USA
| | - Xiaojing Liu
- Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA
| | - Shichao Wang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Axel Loredo
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Xin Zhang
- Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park PA 16802 USA
| | - Han Xiao
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
- Department of Biosciences, Rice University 6100 Main Street Houston Texas 77005 USA
- Department of Bioengineering, Rice University 6100 Main Street Houston Texas 77005 USA
| |
Collapse
|
29
|
Zhou X, Fang Y, Wimalasiri V, Stains CI, Miller EW. A long-wavelength xanthene dye for photoacoustic imaging. Chem Commun (Camb) 2022; 58:11941-11944. [PMID: 36196957 PMCID: PMC9634815 DOI: 10.1039/d2cc03947h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Photoacoustic (PA) imaging is a powerful biomedical imaging modality. We designed KeTMR and KeJuR, two xanthene-based dyes that were readily obtained through a 2-step synthetic route. KeJuR has low molecular weight, good aqueous solubility, and superior chemical stability compared to KeTMR. KeJuR shows a robust PA signal under 860 nm excitation and can be paired with traditional PA dyes for multiplex imaging in blood samples under a tissue-mimicking environment.
Collapse
Affiliation(s)
- Xinqi Zhou
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
| | - Yuan Fang
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Viranga Wimalasiri
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- University of Virgnia Cancer Center, University of Virginia, Charlottesville, VA, 22904, USA
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
30
|
Liu C, Xiang J, Li J, Xiang C, Li H, Wei F, Zhao Z, Li R, Wong KMC, Gong P. Rational design and synthesis of novel NIR photosensitizers and application in antimicrobial photodynamic inactivation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Liu C, Jin Y, Ji X, Zhao W, Dong X. Access to Pyridinyl or Pyridinium Aza‐BODIPYs with Tunable Near‐Infrared Fluorescence through ICT from 4‐Pyridinyl Pyrroles**. Chemistry 2022; 28:e202201503. [DOI: 10.1002/chem.202201503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Chang Liu
- Department of Medicinal Chemistry School of Pharmacy Fudan University Shanghai 201203 P. R. China
| | - Yue Jin
- Key Laboratory for Special Functional Materials of the Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Xin Ji
- Department of Medicinal Chemistry School of Pharmacy Fudan University Shanghai 201203 P. R. China
| | - Weili Zhao
- Department of Medicinal Chemistry School of Pharmacy Fudan University Shanghai 201203 P. R. China
- Key Laboratory for Special Functional Materials of the Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Xiaochun Dong
- Department of Medicinal Chemistry School of Pharmacy Fudan University Shanghai 201203 P. R. China
| |
Collapse
|
32
|
Kausar F, Rasheed T, Tuoqeer Anwar M, Ali J. Revisiting the Role of Sulfur based Compounds in monitoring of Various analytes through spectroscopical investigations. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Yu W, Wang L, Zhang N, Yan J, Zheng K. Wavelength-tunable fluorophores based on quinoline fused α-cyanovinyl derivatives: Synthesis, photophysics properties and imaging. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Chen XX, Wu Y, Ge X, Lei L, Niu LY, Yang QZ, Zheng L. In vivo imaging of heart failure with preserved ejection fraction by simultaneous monitoring of cardiac nitric oxide and glutathione using a three-channel fluorescent probe. Biosens Bioelectron 2022; 214:114510. [DOI: 10.1016/j.bios.2022.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
|
35
|
He D, Zhang L, Sun Y. Meso-substituented pyronine: colorful emission and versatile platform for the rational design of fluorescent probes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Ren M, Zhou C, Wang L, Lv X, Guo W. Rationally designed meso-benzimidazole-pyronin with emission wavelength beyond 700 nm enabling in vivo visualization of acute-liver-injury-induced peroxynitrite. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Rao DN, Ji X, Miller SC. Silicon functionalization expands the repertoire of Si-rhodamine fluorescent probes. Chem Sci 2022; 13:6081-6088. [PMID: 35685786 PMCID: PMC9132037 DOI: 10.1039/d2sc01821g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/30/2022] [Indexed: 01/03/2023] Open
Abstract
Fluorescent dyes such as rhodamines are widely used to assay the activity and image the location of otherwise invisible molecules. Si-rhodamines, in which the bridging oxygen of rhodamines is replaced with a dimethyl silyl group, are increasingly the dye scaffold of choice for biological applications, as fluorescence is shifted into the near-infrared while maintaining high brightness. Despite intense interest in Si-rhodamines, there has been no exploration of the scope of silicon functionalization in these dyes, a potential site of modification that does not exist in conventional rhodamines. Here we report a broad range of silyl modifications that enable brighter dyes, further red-shifting, new ways to modulate fluorescence, and the introduction of handles for dye attachment, including fluorogenic labeling agents for nuclear DNA, SNAP-tag and HaloTag labeling. Modifications to the bridging silicon are therefore of broad utility to improve and expand the applications of all Si-dyes. Functionalization of the bridging silicon atom of Si-rhodamine dyes allows tuning of dye performance, the attachment of sensors, and the addition of biomolecular targeting ligands useful for the construction of live cell imaging probes.![]()
Collapse
Affiliation(s)
- Desaboini Nageswara Rao
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School Worcester Massachusetts 01605 USA
| | - Xincai Ji
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School Worcester Massachusetts 01605 USA
| | - Stephen C Miller
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School Worcester Massachusetts 01605 USA
| |
Collapse
|
38
|
Grzybowski M, Morawski O, Nowak K, Garbacz P. Fluorene analogues of xanthenes - low molecular weight near-infrared dyes. Chem Commun (Camb) 2022; 58:5455-5458. [PMID: 35315849 DOI: 10.1039/d2cc00561a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorene-based analogues of fluorescein, rhodol, and rhodamine exhibit absorption and fluorescence beyond 800-900 nm in water, 300-400 nm red-shifted compared to the original oxygen-bridged xanthene dyes, giving potential access to low molecular weight fluorescent markers for the second biological window (NIR-II, ca. 1000-1350 nm).
Collapse
Affiliation(s)
- Marek Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Olaf Morawski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Krzysztof Nowak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Paula Garbacz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
39
|
Brøndsted F, Stains CI. Heteroatom-Substituted Xanthene Fluorophores Enter the Shortwave-Infrared Region. Photochem Photobiol 2022; 98:400-403. [PMID: 34953073 PMCID: PMC8930474 DOI: 10.1111/php.13578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022]
Abstract
This article is a highlight of the paper by Ivanic and Schnermann et al. in this issue of Photochemistry and Photobiology (Daly et al. Photochem. Photobiol. 2022). The collaborative team utilized computational approaches to investigate the influence of electron-withdrawing groups at the 10' position of tetramethylrhodamine (TMR). Leveraging this information, the team was able to extend the emission of the TMR scaffold into the shortwave-infrared region (SWIR, 1000-2500 nm) by incorporation of a ketone functional group at the 10' position (Daly et al. Photochem. Photobiol. 2022). This work provides the first example of a TMR derivative with peak SWIR emission (λabs : 862 nm, λem : 1058 nm). The authors utilize the ketone rhodamine scaffold to generate fluorogenic, pH-responsive reporters. This work demonstrates the potential of the classic xanthene scaffold for use as a SWIR reporter, an important step in the ultimate expansion of the repertoire of small-molecule organic fluorophore scaffolds available for deep-tissue imaging applications.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Cliff I. Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA,University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA,Corresponding author: (Cliff I. Stains)
| |
Collapse
|
40
|
Daly HC, Matikonda SS, Steffens HC, Ruehle B, Resch-Genger U, Ivanic J, Schnermann MJ. Ketone Incorporation Extends the Emission Properties of the Xanthene Scaffold Beyond 1000 nm. Photochem Photobiol 2022; 98:325-333. [PMID: 34676539 PMCID: PMC10503429 DOI: 10.1111/php.13544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Imaging in the shortwave-infrared region (SWIR, λ = 1000-2500 nm) has the potential to enable deep tissue imaging with high resolution. Critical to the development of these methods is the identification of low molecular weight, biologically compatible fluorescent probes that emit beyond 1000 nm. Exchanging the bridging oxygen atom on the xanthene scaffold (C10' position) with electron withdrawing groups has been shown to lead to significant redshifts in absorbance and emission. Guided by quantum chemistry computational modeling studies, we investigated the installation of a ketone bridge at the C10' position. This simple modification extends the absorbance maxima to 860 nm and the emission beyond 1000 nm, albeit with reduced photon output. Overall, these studies demonstrate that broadly applied xanthene dyes can be extended into the SWIR range.
Collapse
Affiliation(s)
- Harrison C. Daly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Siddharth S. Matikonda
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Helena C. Steffens
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Bastian Ruehle
- Division Biophotonics, Federal Institute of Materials Research and Testing (BAM),Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute of Materials Research and Testing (BAM),Berlin, Germany
| | - Joseph Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| |
Collapse
|
41
|
Guo Y, Sun Y, Li Z, Feng S, Yang R, Qu L. Detection, detoxification, and removal of multiply heavy metal ions using a recyclable probe enabled by click and declick chemistry. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127242. [PMID: 34844360 DOI: 10.1016/j.jhazmat.2021.127242] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The pollution of water with heavy metal ions has generated great concern among both the public and academics due to the high toxicity, persistence, and non-degradability of heavy metals. The detection, detoxification, and removal of heavy metal ions are critical for monitoring water quality and treating polluted water. However, these tasks remain challenging due to lack of effective detection, detoxification, and removal strategies. By combining thiol-triggered click chemistry and heavy metal ion-triggered declick chemistry, a recyclable fluorescent probe for detecting numerous heavy metal ions was successfully developed through simple addition of thiol-containing heavy metal antidote to a carefully selected Michael acceptor-type fluorophore. The probe could be regenerated by adding equal amount of antidote to the detection solution without any purification step recycled up to 10 times. The generated water-soluble heavy metal ion-antidote complexes showed weak toxicity to biological systems, indicating successful detoxification. Finally, a simple, economical, and practical device for detecting, detoxifying, and removing heavy metal ions was fabricated by loading the recyclable fluorescent probe into polymer beads. The percent of detection, and removal are 98.10% and 97.59%, respectively. And detoxification percent is as high as 65.55%. The device is a promising candidate for water quality monitoring and treatment.
Collapse
Affiliation(s)
- Yifei Guo
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, PR China
| | - Suxiang Feng
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, PR China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, PR China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, PR China
| |
Collapse
|
42
|
Zhang H, Shi L, Li K, Liu X, Won M, Liu Y, Choe Y, Liu X, Liu Y, Chen S, Yu K, Kim JS, Yu X. Discovery of an Ultra‐rapid and Sensitive Lysosomal Fluorescence Lipophagy Process. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hong Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 61064 P. R. China
| | - Lei Shi
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 61064 P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 61064 P. R. China
| | - Xin Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 61064 P. R. China
| | - Miae Won
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Yan‐Zhao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 61064 P. R. China
| | - Youmi Choe
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Xin‐Yao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 61064 P. R. China
| | - Yan‐Hong Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 61064 P. R. China
| | - Shan‐Yong Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 61064 P. R. China
| | - Kang‐Kang Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 61064 P. R. China
| | - Jong Seung Kim
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Xiao‐Qi Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 61064 P. R. China
| |
Collapse
|
43
|
Ren Y, Zhou L, Li X. Red-Shift (2-Hydroxyphenyl)-Benzothiazole Emission by Mimicking the Excited-State Intramolecular Proton Transfer Effect. Front Chem 2022; 9:807433. [PMID: 35004624 PMCID: PMC8738082 DOI: 10.3389/fchem.2021.807433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Novel strategies to optimize the photophysical properties of organic fluorophores are of great significance to the design of imaging probes to interrogate biology. While the 2-(2-hydroxyphenyl)-benzothiazole (HBT) fluorophore has attracted considerable attention in the field of fluorescence imaging, its short emission in the blue region and low quantum yield restrict its wide application. Herein, by mimicking the excited-state intramolecular proton transfer (ESIPT) effect, we designed a series of 2-(2-hydroxyphenyl)-benzothiazole (HBT) derivatives by complexing the heteroatoms therein with a boron atom to enhance the chance of the tautomerized keto-like resonance form. This strategy significantly red-shifted the emission wavelengths of HBT, greatly enhanced its quantum yields, and caused little effect on molecular size. Typically, compounds 12B and 13B were observed to emit in the near-infrared region, making them among the smallest organic structures with emission above 650 nm.
Collapse
Affiliation(s)
- Yong Ren
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lei Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Li X, Yang Z, Bian J, Fu M, Zhang Y, Jiang N, Qiao Y, Chen H, Gao B. Fluorescent probes based on multifunctional encapsulated perylene diimide dyes for imaging of lipid droplets in live cells. Analyst 2022; 147:1410-1416. [DOI: 10.1039/d2an00100d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multifunctional encapsulation strategy confers perylene diimide dyes with high brightness, live-cell permeability, excellent anti-oxidation and lipid droplet-specific staining ability.
Collapse
Affiliation(s)
- Xinwei Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Zikang Yang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Jiqing Bian
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Mingyang Fu
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Yan Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Nan Jiang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Yanjun Qiao
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Hua Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Baoxiang Gao
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
- Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
45
|
Kim JS, Zhang H, Li K, Shi L, Liu X, Won M, Liu YZ, Choe Y, Liu XY, Liu YH, Chen SY, Yu KK, Yu XQ. Discovery of an Ultra-rapid and Sensitive Lysosomal Fluorescence Lipophagy Process. Angew Chem Int Ed Engl 2021; 61:e202116439. [PMID: 34964238 DOI: 10.1002/anie.202116439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 11/11/2022]
Abstract
Non-invasive dynamic tracking of lysosomes and their interactions with other organelles is important for the study of lysosomal function and related diseases. However, many fluorescent dyes developed so far to target lysosomes cannot be used to monitor these processes due to the high concentrations required for imaging, long cell penetration times, and non-ideal photostability. In this regard, we synthesized three lysosomal targeting probes with large Stokes shifts, good stability, and high brightness. The Q-P-ARh , developed by us for the first time, can stain lysosomes at ultra-low concentrations (1.0 nM) without affecting the physiological functions of the lysosomes. More importantly, its excellent anti-interference ability and ultrafast lysosomal staining ability (within 1.0 min) clearly monitored the entire dynamic process of lipophagy. Ultimately, this method can greatly contribute to the study of autophagy pathways. This novel fluorescence platform shows great promise for the development of biological probes for application in pathological environments.
Collapse
Affiliation(s)
- Jong Seung Kim
- Korea University, Department of Chemistry, Anamdong, 02841, Seoul, KOREA, REPUBLIC OF
| | - Hong Zhang
- Sichuan University, College of Chemistry, CHINA
| | - Kun Li
- Sichuan University, College of Chemistry, CHINA
| | - Lei Shi
- Sichuan University, College of Chemistry, CHINA
| | - Xin Liu
- Sichuan University, College of Chemistry, CHINA
| | - Miae Won
- Korea University, Department of Chemistry, 337, Asan Science Build. 145, Anam-ro Seongbuk-gu, Seoul, 02841, Seoul, KOREA, REPUBLIC OF
| | | | - Youmi Choe
- Korea University - Seoul Campus: Korea University, Department of Chemistry, CHINA
| | - Xin-Yao Liu
- Sichuan University, College of Chemistry, CHINA
| | | | | | | | - Xiao-Qi Yu
- Sichuan University, College of Chemistry, CHINA
| |
Collapse
|
46
|
Li P, Zhou Z, Zhao YS, Yan Y. Recent advances in luminescent metal-organic frameworks and their photonic applications. Chem Commun (Camb) 2021; 57:13678-13691. [PMID: 34870655 DOI: 10.1039/d1cc05541k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, metal-organic frameworks (MOFs) have been attracting ever more interest owing to their fascinating structures and widespread applications. Among the optoelectronic materials, luminescent MOFs (LMOFs) have become one of the most attractive candidates in the fields of optics and photonics thanks to the unique characteristics of their frameworks. Luminescence from MOFs can originate from either the frameworks, mainly including organic linkers and metal ions, or the encapsulated guests, such as dyes, perovskites, and carbon dots. Here, we systematically review the recent progress in LMOFs, with an emphasis on the relationships between their structures and emission behaviour. On this basis, we comprehensively discuss the research progress and applications of multicolour emission from homogeneous and heterogeneous structures, host-guest hybrid lasers, and pure MOF lasers based on optically excited LMOFs in the field of micro/nanophotonics. We also highlight recent developments in other types of luminescence, such as electroluminescence and chemiluminescence, from LMOFs. Future perspectives and challenges for LMOFs are provided to give an outlook of this emerging field. We anticipate that this article will promote the development of MOF-based functional materials with desired performance towards robust optoelectronic applications.
Collapse
Affiliation(s)
- Penghao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhonghao Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yong Sheng Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongli Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
47
|
Xu S, Pan W, Ren T, Huan S, Yuan L, Zhang X. Molecular Engineering of Novel Fluorophores for
High‐Contrast
Bioimaging. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuai Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Wenjing Pan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Tian‐Bing Ren
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Shuang‐Yan Huan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Xiao‐Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| |
Collapse
|
48
|
Liu D, He Z, Zhao Y, Yang Y, Shi W, Li X, Ma H. Xanthene-Based NIR-II Dyes for In Vivo Dynamic Imaging of Blood Circulation. J Am Chem Soc 2021; 143:17136-17143. [PMID: 34632770 DOI: 10.1021/jacs.1c07711] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescence bioimaging through the second near-infrared window (NIR-II, 1000-1700 nm) has attracted much attention due to its deep penetration and high contrast. However, exploring new fluorescent materials, especially small molecular fluorophores with long wavelength and high brightness, is still quite challenging. By expanding π-conjugation and enhancing the intramolecular charge transfer effect, herein we report a series of new xanthene-based NIR-II dyes, named VIXs. Among these dyes, VIX-4 exhibits the best performance with fluorescence emission at 1210 nm and high brightness and has been used for dynamically imaging the blood flow of mice at 200 fps. By virtue of high spatiotemporal resolution of the dynamic imaging, we can distinguish directly the artery and vein through the blood flow direction and measure the blood flow volume by the videos. This study provides not only an effective tool for high spatial and temporal resolution bioimaging but also a new and promising conjugated skeleton for NIR-II dyes.
Collapse
Affiliation(s)
- Diankai Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixu He
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyan Zhao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuantao Yang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Ito M, Sakai M, Ando N, Yamaguchi S. Electron-Deficient Heteroacenes that Contain Two Boron Atoms: Near-Infrared Fluorescence Based on a Push-Pull Effect*. Angew Chem Int Ed Engl 2021; 60:21853-21859. [PMID: 34115434 DOI: 10.1002/anie.202106642] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Electron-deficient heteroacenes that contain two tricoordinate boron atoms in their acene skeletons and planarized phenyl ether moieties at their periphery were synthesized via the borylation of silicon-bridged precursors. X-ray crystallographic analysis revealed quinoidal structures, which give rise to two-step reversible redox processes for both the reduction and oxidation. These compounds exhibit intense absorption and sharp fluorescence bands with vibronic structures in the near-infrared (NIR) region. These properties originate from the push-pull effect along the long axis of the molecule derived from the electron-donating ether moieties and the electron-accepting boron moieties. Of particular note is the NIR emission of the thienothiophene-centered heteroacene, which has a maximum at 952 nm with a narrow band width of 309 cm-1 in cyclohexane. A Franck-Condon analysis revealed the crucial role of the sterically less-hindered thienothiophene spacer in achieving this sharp emission band.
Collapse
Affiliation(s)
- Masato Ito
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Mika Sakai
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
50
|
Ito M, Sakai M, Ando N, Yamaguchi S. Electron‐Deficient Heteroacenes that Contain Two Boron Atoms: Near‐Infrared Fluorescence Based on a Push–Pull Effect**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masato Ito
- Department of Chemistry Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University, Furo Chikusa Nagoya 464–8602 Japan
| | - Mika Sakai
- Department of Chemistry Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University, Furo Chikusa Nagoya 464–8602 Japan
| | - Naoki Ando
- Department of Chemistry Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University, Furo Chikusa Nagoya 464–8602 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University, Furo Chikusa Nagoya 464–8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Furo Chikusa Nagoya 464–8601 Japan
| |
Collapse
|