1
|
Huang Y, Qian Y, Chang Y, Yu J, Li Q, Tang M, Yang X, Liu Z, Li H, Zhu Z, Li W, Zhang F, Qing G. Intense Left-handed Circularly Polarized Luminescence in Chiral Nematic Hydroxypropyl Cellulose Composite Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308742. [PMID: 38270293 DOI: 10.1002/adma.202308742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Integrating optically active components into chiral photonic cellulose to fabricate circularly polarized luminescent materials has transformative potential in disease detection, asymmetric reactions, and anticounterfeiting techniques. However, the lack of cellulose-based left-handed circularly polarized light (L-CPL) emissions hampers the progress of these chiral functionalizations. Here, this work proposes an unprecedented strategy: incorporating a chiral nematic organization of hydroxypropyl cellulose with robust aggregation-induced emission luminogens to generate intense L-CPL emission. By utilizing N,N-dimethylformamide as a good solvent for fluorescent components and cellulose matrices, this work produces a right-handed chiral nematic structure film with a uniform appearance in reflective and fluorescent states. Remarkably, this system integrates a high asymmetric factor (0.51) and an impressive emission quantum yield (55.8%) into one fascinating composite. More meaningfully, this approach is versatile, allowing for the incorporation of luminogen derivatives emitting multicolored L-CPL. These chiral fluorescent films possess exceptional mechanical flexibility (toughness up to 0.9 MJ m-3) and structural stability even under harsh environmental exposures, making them promising for the fabrication of various products. Additionally, these films can be cast on the fabrics to reveal multilevel and durable anticounterfeiting capabilities or used as a chiral light source to induce enantioselective photopolymerization, thereby offering significant potential for diverse practical applications.
Collapse
Affiliation(s)
- Yuxiao Huang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yi Qian
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yongxin Chang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jiaqi Yu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xindi Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhepai Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Hui Li
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Zece Zhu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Wei Li
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Fusheng Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Guangyan Qing
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
2
|
Hou J, Sampson W, Dumanli AG. Macromolecular crowding in chiral assembly of ellipsoidal nanoparticles. J Chem Phys 2024; 160:054905. [PMID: 38341709 DOI: 10.1063/5.0160172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/09/2024] [Indexed: 02/13/2024] Open
Abstract
Anisotropic colloidal particles have the ability to self-assemble into cholesteric structures. We used molecular dynamics to simulate the self-assembly of ellipsoidal particles with the objective to establish a general framework to reveal the primary factors driving chiral interactions. To characterize these interactions, we introduce a characteristic parameter following the crowding factor (CF) theory. Our simulations and statistical analysis showed good agreement with the CF theory; at the early stages of the assembly process, the ellipsoidal particles go through a critical aggregation point followed by further clustering toward nematic order. Furthermore, we demonstrate that under high CF conditions, small initial clusters may induce a chiral twist, which subsequently forms a cholesteric structure with no directional preference in higher organization states.
Collapse
Affiliation(s)
- Jiaxin Hou
- Department of Materials, The University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom
- Henry Royce Institute, The University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom
| | - William Sampson
- Department of Materials, The University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom
- Henry Royce Institute, The University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom
| | - Ahu Gümrah Dumanli
- Department of Materials, The University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom
- Henry Royce Institute, The University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom
| |
Collapse
|
3
|
Babaei-Ghazvini A, Vafakish B, Patel R, Falua KJ, Dunlop MJ, Acharya B. Cellulose nanocrystals in the development of biodegradable materials: A review on CNC resources, modification, and their hybridization. Int J Biol Macromol 2024; 258:128834. [PMID: 38128804 DOI: 10.1016/j.ijbiomac.2023.128834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The escalating demand for sustainable materials has propelled cellulose into the spotlight as a promising alternative to petroleum-based products. As the most abundant organic polymer on Earth, cellulose is ubiquitous, found in plants, bacteria, and even a unique marine animal-the tunicate. Cellulose polymers naturally give rise to microscale semi-crystalline fibers and nanoscale crystalline regions known as cellulose nanocrystals (CNCs). Exhibiting rod-like structures with widths spanning 3 to 50 nm and lengths ranging from 50 nm to several microns, CNC characteristics vary based on the cellulose source. The degree of crystallinity, crucial for CNC properties, fluctuates between 49 and 95 % depending on the source and synthesis method. CNCs, with their exceptional properties such as high aspect ratio, relatively low density (≈1.6 g cm-3), high axial elastic modulus (≈150 GPa), significant tensile strength, and birefringence, emerge as ideal candidates for biodegradable fillers in nanocomposites and functional materials. The percolation threshold, a mathematical concept defining long-range connectivity between filler and polymer, governs the effectiveness of reinforcement in nanocomposites. This threshold is intricately influenced by the aspect ratio and molecular interaction strength, impacting CNC performance in polymeric and pure nanocomposite materials. This comprehensive review explores diverse aspects of CNCs, encompassing their derivation from various sources, methods of modification (both physical and chemical), and hybridization with heterogeneous fillers. Special attention is devoted to the hybridization of CNCs derived from tunicates (TCNC) with those from wood (WCNC), leveraging the distinct advantages of each. The overarching objective is to demonstrate how this hybridization strategy mitigates the limitations of WCNC in composite materials, offering improved interaction and enhanced percolation. This, in turn, is anticipated to elevate the reinforcing effects and pave the way for the development of nanocomposites with tunable viscoelastic, physicochemical, and mechanical properties.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Bahareh Vafakish
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Ravi Patel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Matthew J Dunlop
- Tunistrong Technologies Incorporated, 7207 Route 11, Wellington, Charlottetown, PE C0B 20E, Canada.
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
4
|
Frka-Petesic B, Parton TG, Honorato-Rios C, Narkevicius A, Ballu K, Shen Q, Lu Z, Ogawa Y, Haataja JS, Droguet BE, Parker RM, Vignolini S. Structural Color from Cellulose Nanocrystals or Chitin Nanocrystals: Self-Assembly, Optics, and Applications. Chem Rev 2023; 123:12595-12756. [PMID: 38011110 PMCID: PMC10729353 DOI: 10.1021/acs.chemrev.2c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 11/29/2023]
Abstract
Widespread concerns over the impact of human activity on the environment have resulted in a desire to replace artificial functional materials with naturally derived alternatives. As such, polysaccharides are drawing increasing attention due to offering a renewable, biodegradable, and biocompatible feedstock for functional nanomaterials. In particular, nanocrystals of cellulose and chitin have emerged as versatile and sustainable building blocks for diverse applications, ranging from mechanical reinforcement to structural coloration. Much of this interest arises from the tendency of these colloidally stable nanoparticles to self-organize in water into a lyotropic cholesteric liquid crystal, which can be readily manipulated in terms of its periodicity, structure, and geometry. Importantly, this helicoidal ordering can be retained into the solid-state, offering an accessible route to complex nanostructured films, coatings, and particles. In this review, the process of forming iridescent, structurally colored films from suspensions of cellulose nanocrystals (CNCs) is summarized and the mechanisms underlying the chemical and physical phenomena at each stage in the process explored. Analogy is then drawn with chitin nanocrystals (ChNCs), allowing for key differences to be critically assessed and strategies toward structural coloration to be presented. Importantly, the progress toward translating this technology from academia to industry is summarized, with unresolved scientific and technical questions put forward as challenges to the community.
Collapse
Affiliation(s)
- Bruno Frka-Petesic
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- International
Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Thomas G. Parton
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Camila Honorato-Rios
- Department
of Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Aurimas Narkevicius
- B
CUBE − Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kevin Ballu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Qingchen Shen
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Zihao Lu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yu Ogawa
- CERMAV-CNRS,
CS40700, 38041 Grenoble cedex 9, France
| | - Johannes S. Haataja
- Department
of Applied Physics, Aalto University School
of Science, P.O. Box
15100, Aalto, Espoo FI-00076, Finland
| | - Benjamin E. Droguet
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Richard M. Parker
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Silvia Vignolini
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
5
|
Parker RM, Parton TG, Chan CLC, Bay M, Frka-Petesic B, Vignolini S. Bioinspired Photonic Materials from Cellulose: Fabrication, Optical Analysis, and Applications. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:522-535. [PMID: 37383657 PMCID: PMC10294254 DOI: 10.1021/accountsmr.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Indexed: 06/30/2023]
Abstract
Polysaccharides are a class of biopolymers that are widely exploited in living organisms for a diversity of applications, ranging from structural reinforcement to energy storage. Among the numerous types of polysaccharides found in the natural world, cellulose is the most abundant and widespread, as it is found in virtually all plants. Cellulose is typically organized into nanoscale crystalline fibrils within the cell wall to give structural integrity to plant tissue. However, in several species, such fibrils are organized into helicoidal nanostructures with a periodicity comparable to visible light (i.e., in the range 250-450 nm), resulting in structural coloration. As such, when taking bioinspiration as a design principle, it is clear that helicoidal cellulose architectures are a promising approach to developing sustainable photonic materials. Different forms of cellulose-derived materials have been shown to produce structural color by exploiting self-assembly processes. For example, crystalline nanoparticles of cellulose can be extracted from natural sources, such as cotton or wood, by strong acid hydrolysis. Such "cellulose nanocrystals" (CNCs) have been shown to form colloidal suspensions in water that can spontaneously self-organize into a cholesteric liquid crystal phase, mimicking the natural helicoidal architecture. Upon drying, this nanoscale ordering can be retained into the solid state, enabling the specific reflection of visible light. Using this approach, colors from across the entire visible spectrum can be produced, alongside striking visual effects such as iridescence or a metallic shine. Similarly, polymeric cellulose derivatives can also organize into a cholesteric liquid crystal. In particular, edible hydroxypropyl cellulose (HPC) is known to produce colorful mesophases at high concentrations in water (ca. 60-70 wt %). This solution state behavior allows for interesting visual effects such as mechanochromism (enabling its use in low-cost colorimetric pressure or strain sensors), while trapping the structure into the solid state enables the production of structurally colored films, particles and 3D printed objects. In this article, we summarize the state-of-the-art for CNC and HPC-based photonic materials, encompassing the underlying self-assembly processes, strategies to design their photonic response, and current approaches to translate this burgeoning green technology toward commercial application in a wide range of sectors, from packaging to cosmetics and food. This overview is supported by a summary of the analytical techniques required to characterize these photonic materials and approaches to model their optical response. Finally, we present several unresolved scientific questions and outstanding technical challenges that the wider community should seek to address to develop these sustainable photonic materials.
Collapse
Affiliation(s)
| | | | - Chun Lam Clement Chan
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Mélanie
M. Bay
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Bruno Frka-Petesic
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Silvia Vignolini
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
6
|
Grating Assembly Dissected in Periodic Bands of Poly (Butylene Adipate) Modulated with Poly (Ethylene Oxide). Polymers (Basel) 2022; 14:polym14214781. [DOI: 10.3390/polym14214781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Polarized optical microscopy (POM), scanning electron microscopy (SEM), and synchrotron microbeam wide-angle X-ray diffraction (WAXD) were used to investigate the mechanisms of periodic assemblies leading to ring-banded crystal aggregates with light-grating capacity for iridescence in poly (1,4-butylene adipate) (PBA) modulated with poly (ethylene oxide) (PEO). A critical finding is that the PBA crystal assembly on the top surface and in the interior constitutes a grating architecture, with a cross-bar pitch equaling the inter-band spacing. The inner lamellae are arranged perpendicularly to the substrate under the ridge region, where they scroll, bend, and twist 90° to branch out newly spawned lamellae to form the parallel lamellae under the valley region. The cross-hatch grating with a fixed inter-spacing in the PBA aggregated crystals is proved in this work to perfectly act as light-interference entities capable of performing iridescence functions, which can be compared to those widely seen in many of nature’s organic bio-species or inorganic minerals such as opals. This is a novel breakthrough finding for PBA or similar polymers, such as photonic crystals, especially when the crystalline morphology could be custom-made and modulated with a second constituent.
Collapse
|
7
|
Emerging Developments on Nanocellulose as Liquid Crystals: A Biomimetic Approach. Polymers (Basel) 2022; 14:polym14081546. [PMID: 35458295 PMCID: PMC9025541 DOI: 10.3390/polym14081546] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Biomimetics is the field of obtaining ideas from nature that can be applied in science, engineering, and medicine. The usefulness of cellulose nanocrystals (CNC) and their excellent characteristics in biomimetic applications are exciting and promising areas of present and future research. CNCs are bio-based nanostructured material that can be isolated from several natural biomasses. The CNCs are one-dimensional with a high aspect ratio. They possess high crystalline order and high chirality when they are allowed to assemble in concentrated dispersions. Recent studies have demonstrated that CNCs possess remarkable optical and chemical properties that can be used to fabricate liquid crystals. Research is present in the early stage to develop CNC-based solvent-free liquid crystals that behave like both crystalline solids and liquids and exhibit the phenomenon of birefringence in anisotropic media. All these characteristics are beneficial for several biomimetic applications. Moreover, the films of CNC show the property of iridescent colors, making it suitable for photonic applications in various devices, such as electro-optical devices and flat panel displays.
Collapse
|
8
|
Grating assembly in periodic crystal aggregates of aliphatic polyesters with potential iridescence photonics. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Hynninen V, Patrakka J, Nonappa. Methylcellulose-Cellulose Nanocrystal Composites for Optomechanically Tunable Hydrogels and Fibers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5137. [PMID: 34576360 PMCID: PMC8465715 DOI: 10.3390/ma14185137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
Chemical modification of cellulose offers routes for structurally and functionally diverse biopolymer derivatives for numerous industrial applications. Among cellulose derivatives, cellulose ethers have found extensive use, such as emulsifiers, in food industries and biotechnology. Methylcellulose, one of the simplest cellulose derivatives, has been utilized for biomedical, construction materials and cell culture applications. Its improved water solubility, thermoresponsive gelation, and the ability to act as a matrix for various dopants also offer routes for cellulose-based functional materials. There has been a renewed interest in understanding the structural, mechanical, and optical properties of methylcellulose and its composites. This review focuses on the recent development in optically and mechanically tunable hydrogels derived from methylcellulose and methylcellulose-cellulose nanocrystal composites. We further discuss the application of the gels for preparing highly ductile and strong fibers. Finally, the emerging application of methylcellulose-based fibers as optical fibers and their application potentials are discussed.
Collapse
Affiliation(s)
- Ville Hynninen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Espoo, Finland
| | - Jani Patrakka
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
| |
Collapse
|
10
|
Hynninen V, Chandra S, Das S, Amini M, Dai Y, Lepikko S, Mohammadi P, Hietala S, Ras RHA, Sun Z, Ikkala O. Luminescent Gold Nanocluster-Methylcellulose Composite Optical Fibers with Low Attenuation Coefficient and High Photostability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005205. [PMID: 33491913 DOI: 10.1002/smll.202005205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Because of their lightweight structure, flexibility, and immunity to electromagnetic interference, polymer optical fibers (POFs) are used in numerous short-distance applications. Notably, the incorporation of luminescent nanomaterials in POFs offers optical amplification and sensing for advanced nanophotonics. However, conventional POFs suffer from nonsustainable components and processes. Furthermore, the traditionally used luminescent nanomaterials undergo photobleaching, oxidation, and they can be cytotoxic. Therefore, biopolymer-based optical fibers containing nontoxic luminescent nanomaterials are needed, with efficient and environmentally acceptable extrusion methods. Here, such an approach for fibers wet-spun from aqueous methylcellulose (MC) dispersions under ambient conditions is demonstrated. Further, the addition of either luminescent gold nanoclusters, rod-like cellulose nanocrystals or gold nanocluster-cellulose nanocrystal hybrids into the MC matrix furnishes strong and ductile composite fibers. Using cutback attenuation measurement, it is shown that the resulting fibers can act as short-distance optical fibers with a propagation loss as low as 1.47 dB cm-1 . The optical performance is on par with or even better than some of the previously reported biopolymeric optical fibers. The combination of excellent mechanical properties (Young's modulus and maximum strain values up to 8.4 GPa and 52%, respectively), low attenuation coefficient, and high photostability makes the MC-based composite fibers excellent candidates for multifunctional optical fibers and sensors.
Collapse
Affiliation(s)
- Ville Hynninen
- Faculty of Engineering and Natural Sciences, Tampere University, P. O. Box 541, Tampere, FI-33101, Finland
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Sourov Chandra
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Susobhan Das
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Mohammad Amini
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Yunyun Dai
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Sakari Lepikko
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre, P. O. Box 1000, Espoo, FI-02044, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P. O. Box 55, Helsinki, FI-00014, Finland
| | - Robin H A Ras
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Olli Ikkala
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| |
Collapse
|
11
|
Nagarajan S, Woo EM, Su CH, Yang CE. Microstructural Periodic Arrays in Poly(Butylene Adipate) Featured with Photonic Crystal Aggregates. Macromol Rapid Commun 2021; 42:e2100202. [PMID: 34121268 DOI: 10.1002/marc.202100202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Poly(butylene adipate) (PBA) self-aggregation into unique periodicity correlating to its interfacial photonic properties is probed in detail. Investigations on the unique periodic morphology and top-surface and interior architectures in specifically crystallized PBA are focused on its novel photonic patterns with periodic gratings. Detailed analysis of the interior lamellae from ringless to periodically ordered aggregates (crystallized at 33-35 °C vs. Tc = 30 °C) serves as ideal comparisons. Each interior arc-shape shell is composed of tangential and radial lamellae mutually intersecting at 90o angle. The interior layer thickness in SEM-revealed arc-shape shish-kebab shell is exactly equal to the optical inter-band spacing (≈6 µm). A 3D assembly mechanism of periodically banded PBA crystals is proposed, where the orderly arrays on top surfaces as well as the interior microstructures of strut-rib alternate-layered assembly resemble nature's photonic crystals and collectively account for the interfacial photonic properties in the ring-banded PBA crystal that is novel and has potential applications in future.
Collapse
Affiliation(s)
- Selvaraj Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Eamor M Woo
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chi-Hsuan Su
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Cheng-En Yang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
12
|
Bast L, Klockars KW, Greca LG, Rojas OJ, Tardy BL, Bruns N. Infiltration of Proteins in Cholesteric Cellulose Structures. Biomacromolecules 2021; 22:2067-2080. [PMID: 33899466 PMCID: PMC8154265 DOI: 10.1021/acs.biomac.1c00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/09/2021] [Indexed: 11/30/2022]
Abstract
Cellulose nanocrystals (CNCs) can spontaneously self-assemble into chiral nematic (cn) structures, similar to natural cholesteric organizations. The latter display highly dissipative fracture propagation mechanisms given their "brick" (particles) and "mortar" (soft matrix) architecture. Unfortunately, CNCs in liquid media have strong supramolecular interactions with most macromolecules, leading to aggregated suspensions. Herein, we describe a method to prepare nanocomposite materials from chiral nematic CNCs (cn-CNCs) with strongly interacting secondary components. Films of cn-CNCs were infiltrated at various loadings with strongly interacting silk proteins and bovine serum albumin. For comparison and to determine the molecular weight range of macromolecules that can infiltrate cn-CNC films, they were also infiltrated with a range of poly(ethylene glycol) polymers that do not interact strongly with CNCs. The extent and impact of infiltration were evaluated by studying the optical reflection properties of the resulting hybrid materials (UV-vis spectroscopy), while fracture dissipation mechanisms were observed via electron microscopy. We propose that infiltration of cn-CNCs enables the introduction of virtually any secondary phase for nanocomposite formation that is otherwise not possible using simple mixing or other conventional approaches.
Collapse
Affiliation(s)
- Livia
K. Bast
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Konrad W. Klockars
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, 00076 Aalto, Finland
| | - Luiz G. Greca
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, 00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, 00076 Aalto, Finland
- Departments
of Chemical and Biological Engineering, Chemistry, and Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, 00076 Aalto, Finland
| | - Nico Bruns
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
13
|
Shape Memory Biomaterials and Their Clinical Applications. Biomed Mater 2021. [DOI: 10.1007/978-3-030-49206-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Origin of vacuum-assisted chiral self-assembly of cellulose nanocrystals. Carbohydr Polym 2020; 245:116459. [DOI: 10.1016/j.carbpol.2020.116459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/19/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022]
|
15
|
Pospisil MJ, Noor MM, Amit SK, Neufeld CW, Saha P, Davis VA, Green MJ. Chiral Structure Formation during Casting of Cellulose Nanocrystalline Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4975-4984. [PMID: 32308003 DOI: 10.1021/acs.langmuir.0c00508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A Landau-de Gennes formulation coupled with a mass-transfer equation was used to track the evaporation front and the development of chiral microstructures during the casting of sulfuric acid-hydrolyzed cellulose nanocrystal (CNC) films. These simulations are compared to thin-film casting experiments that used analogous processing parameters and environments. The results show that the initial concentration, chiral strength, surface anchoring, speed of drying, and the influence of initial shear alignment all affect the uniformity of the microstructure and the orientation of the chiral director. In this report, we aim to show that under optimal casting conditions, the lateral size of planar microstructural domains that exhibit uniform selective reflection can be achieved on the order of millimeters.
Collapse
Affiliation(s)
- Martin J Pospisil
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Matthew M Noor
- Samuel Ginn Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Sadat Kamal Amit
- Samuel Ginn Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Caleb W Neufeld
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Partha Saha
- Samuel Ginn Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Virginia A Davis
- Samuel Ginn Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
16
|
Zhu Q, Liu S, Sun J, Liu J, Kirubaharan CJ, Chen H, Xu W, Wang Q. Stimuli-responsive cellulose nanomaterials for smart applications. Carbohydr Polym 2020; 235:115933. [DOI: 10.1016/j.carbpol.2020.115933] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 11/24/2022]
|
17
|
Hanif Z, Choi D, Tariq MZ, La M, Park SJ. Water-Stable Flexible Nanocellulose Chiral Nematic Films through Acid Vapor Cross-Linked Glutaraldehyde for Chiral Nematic Templating. ACS Macro Lett 2020; 9:146-151. [PMID: 35638674 DOI: 10.1021/acsmacrolett.9b00826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cellulose nanocrystals (CNCs) have drawn considerable attention for their use in optical and sensor applications due to their appealing properties of chiral nematic photonic structures. However, the flexibility and water instability of neat CNC chiral nematic films are questionable and compromise their outstanding properties. We propose a room-temperature process for fabricating flexible, water-stable chiral nematic CNC films. Aqueous glutaraldehyde (GA) was first mixed with CNCs, and then free-standing films were formed by evaporation-induced self-assembly. The chiral nematic dry films that formed were then exposed to hydrochloric acid vapor for subsequent GA cross-linking with CNCs. The GA cross-linked CNC films had a highly ordered chiral nematic organization. The enhanced water stability of the films was demonstrated by using GA cross-linked CNC films as freestanding template substrates for conducting polymers (polypyrrole) and metal oxides (iron oxide) to form flexible chiral nematic photonic hybrids.
Collapse
Affiliation(s)
| | - Dongwhi Choi
- Department of Mechanical Engineering, Kyung Hee University, 17104 Yongin, Gyeonggi, Republic of Korea
| | | | | | | |
Collapse
|
18
|
Jose S, George JJ, Siengchin S, Parameswaranpillai J. Introduction to Shape-Memory Polymers, Polymer Blends and Composites: State of the Art, Opportunities, New Challenges and Future Outlook. ADVANCED STRUCTURED MATERIALS 2020. [DOI: 10.1007/978-981-13-8574-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Frka-Petesic B, Kamita G, Guidetti G, Vignolini S. The angular optical response of cellulose nanocrystal films explained by the distortion of the arrested suspension upon drying. PHYSICAL REVIEW MATERIALS 2019; 3:045601. [PMID: 33225202 PMCID: PMC7116400 DOI: 10.1103/physrevmaterials.3.045601] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cellulose nanocrystals (CNCs) are bio-sourced chiral nanorods that can form stable colloidal suspensions able to spontaneously assemble above a critical concentration into a cholesteric liquid crystal, with a cholesteric pitch usually in the micron range. When these suspensions are dried on a substrate, solid films with a pitch of the order of few hundreds of nanometers can be produced, leading to intense reflection in the visible range. However, the resulting cholesteric nanostructure is usually not homogeneous within a sample and comports important variations of the cholesteric domain orientation and pitch, which affect the photonic properties. In this work, we first propose a model accounting for the formation of the photonic structure from the vertical compression of the cholesteric suspension upon solvent evaporation, starting at the onset of the kinetic arrest of the drying suspension and ending when solvent evaporation is complete. From that assumption, various structural features of the films can be derived, such as the variation of the cholesteric pitch with the domain tilt, the orientation distribution density of the final cholesteric domains and the distortion of the helix from the unperturbed cholesteric case. The angular-resolved optical response of such films is then derived, including the iridescence and the generation of higher order reflection bands, and a simulation of the angular optical response is provided, including its tailoring under external magnetic fields. Second, we conducted an experimental investigation of CNC films covering a structural and optical analysis of the films. The macroscopic appearance of the films is discussed and complemented with angular-resolved optical spectroscopy, optical and electron microscopy, and our quantitative analysis shows an excellent agreement with the proposed model. This allows us to access the precise composition and the pitch of the suspension when it transited into a kinetically arrested phase directly from the optical analysis of the film. This work highlights the key role that the anisotropic compression of the kinetically arrested state plays in the formation of CNC films and is relevant to the broader case of structure formation in cast dispersions and colloidal self-assembly upon solvent evaporation.
Collapse
Affiliation(s)
- Bruno Frka-Petesic
- Melville laboratory for polymer Synthesis, Chemistry dept., University of Cambridge
| | - Gen Kamita
- Melville laboratory for polymer Synthesis, Chemistry dept., University of Cambridge
| | - Giulia Guidetti
- Melville laboratory for polymer Synthesis, Chemistry dept., University of Cambridge
| | - Silvia Vignolini
- Melville laboratory for polymer Synthesis, Chemistry dept., University of Cambridge
| |
Collapse
|
20
|
Sharma S, Saini SK, Nair RV. A versatile micro-reflectivity setup for probing the optical properties of photonic nanostructures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:023103. [PMID: 30831714 DOI: 10.1063/1.5065575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The spatial- and spectral-dependent optical reflectivity measurements are essential to characterize various natural as well as artificial micron-scale photonic nanostructures. However, it is onerous to measure spatially and spectrally resolved reflectivity values from such photonic nanostructures due to their size limitations. Here, we discuss the development of a versatile micro-reflectivity setup with an in situ optical microscope combined with high-resolution actuators to measure the reflectivity from areas as small as 25 × 25 µm2. We illustrate the reflectivity measurements from natural as well as artificially prepared ordered and disordered photonic nanostructures. The optical features that are hidden in the conventional reflectivity measurements are clearly resolved using the micro-reflectivity measurements. The proposed setup is also capable of measuring the polarization-dependent reflectivity and transmission of light.
Collapse
Affiliation(s)
- Sachin Sharma
- Laboratory for Nano-Scale Optics and Meta-Materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar,Rupnagar, Punjab 140 001, India
| | - Sudhir Kumar Saini
- Laboratory for Nano-Scale Optics and Meta-Materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar,Rupnagar, Punjab 140 001, India
| | - Rajesh V Nair
- Laboratory for Nano-Scale Optics and Meta-Materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar,Rupnagar, Punjab 140 001, India
| |
Collapse
|
21
|
Pan L, Ban J, Ren L, Zhang Z, Peng Q, Lu S. The influence of liquid crystals on the properties of sisal fibre polyurethanes with multi-shape memory effects. NEW J CHEM 2019. [DOI: 10.1039/c8nj05791e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LC-SF-SMPUs show excellent multi-shape memory properties.
Collapse
Affiliation(s)
- Lulu Pan
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Jianfeng Ban
- College of Chemical Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Li Ren
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Zuocai Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Qingyuan Peng
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| |
Collapse
|
22
|
Espinha A, Dore C, Matricardi C, Alonso MI, Goñi AR, Mihi A. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. NATURE PHOTONICS 2018; 12:343-348. [PMID: 29881447 PMCID: PMC5985939 DOI: 10.1038/s41566-018-0152-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/12/2018] [Indexed: 05/21/2023]
Abstract
As contamination and environmental degradation increase nowadays, there is a huge demand for new eco-friendly materials. Despite its use for thousands of years, cellulose and its derivatives have gained renewed interest as favourable alternatives to conventional plastics, due to their abundance and lower environmental impact. We report the fabrication of photonic and plasmonic structures by moulding hydroxypropyl cellulose into sub-micrometric periodic lattices, using soft lithography. This is an alternative way to achieve structural colour in this material which is usually obtained exploiting its chiral nematic phase. Cellulose based photonic crystals are biocompatible and can be dissolved in water or not depending on the derivative employed. Patterned cellulose membranes exhibit tuneable colours and may be used to boost the photoluminescence of a host organic dye. Furthermore, we show how metal coating these cellulose photonic architectures leads to plasmonic crystals with excellent optical properties acting as disposable surface enhanced Raman spectroscopy substrates.
Collapse
Affiliation(s)
- André Espinha
- Institut de Ciència de Materials de Barcelona, Consejo
Superior de Investigaciones Científicas, Carrer dels Til·lers S/N,
Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - Camilla Dore
- Institut de Ciència de Materials de Barcelona, Consejo
Superior de Investigaciones Científicas, Carrer dels Til·lers S/N,
Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - Cristiano Matricardi
- Institut de Ciència de Materials de Barcelona, Consejo
Superior de Investigaciones Científicas, Carrer dels Til·lers S/N,
Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - Maria Isabel Alonso
- Institut de Ciència de Materials de Barcelona, Consejo
Superior de Investigaciones Científicas, Carrer dels Til·lers S/N,
Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - Alejandro R. Goñi
- Institut de Ciència de Materials de Barcelona, Consejo
Superior de Investigaciones Científicas, Carrer dels Til·lers S/N,
Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats,
Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Agustín Mihi
- Institut de Ciència de Materials de Barcelona, Consejo
Superior de Investigaciones Científicas, Carrer dels Til·lers S/N,
Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
- Correspondence and requests for materials should be addressed to
A. M.
| |
Collapse
|
23
|
Parker RM, Guidetti G, Williams CA, Zhao T, Narkevicius A, Vignolini S, Frka-Petesic B. The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704477. [PMID: 29250832 DOI: 10.1002/adma.201704477] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/18/2017] [Indexed: 05/19/2023]
Abstract
By controlling the interaction of biological building blocks at the nanoscale, natural photonic nanostructures have been optimized to produce intense coloration. Inspired by such biological nanostructures, the possibility to design the visual appearance of a material by guiding the hierarchical self-assembly of its constituent components, ideally using natural materials, is an attractive route for rationally designed, sustainable manufacturing. Within the large variety of biological building blocks, cellulose nanocrystals are one of the most promising biosourced materials, primarily for their abundance, biocompatibility, and ability to readily organize into photonic structures. Here, the mechanisms underlying the formation of iridescent, vividly colored materials from colloidal liquid crystal suspensions of cellulose nanocrystals are reviewed and recent advances in structural control over the hierarchical assembly process are reported as a toolbox for the design of sophisticated optical materials.
Collapse
Affiliation(s)
- Richard M Parker
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Giulia Guidetti
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Cyan A Williams
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tianheng Zhao
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Aurimas Narkevicius
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Bruno Frka-Petesic
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
24
|
Wang PX, Hamad WY, MacLachlan MJ. Size-Selective Exclusion Effects of Liquid Crystalline Tactoids on Nanoparticles: A Separation Method. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pei-Xi Wang
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| | - Wadood Y. Hamad
- FPInnovations; 2665 East Mall Vancouver British Columbia V6T 1Z4 Canada
| | - Mark J. MacLachlan
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| |
Collapse
|
25
|
Wang PX, Hamad WY, MacLachlan MJ. Size-Selective Exclusion Effects of Liquid Crystalline Tactoids on Nanoparticles: A Separation Method. Angew Chem Int Ed Engl 2018; 57:3360-3365. [DOI: 10.1002/anie.201712158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/19/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Pei-Xi Wang
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| | - Wadood Y. Hamad
- FPInnovations; 2665 East Mall Vancouver British Columbia V6T 1Z4 Canada
| | - Mark J. MacLachlan
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| |
Collapse
|
26
|
He YD, Zhang ZL, Xue J, Wang XH, Song F, Wang XL, Zhu LL, Wang YZ. Biomimetic Optical Cellulose Nanocrystal Films with Controllable Iridescent Color and Environmental Stimuli-Responsive Chromism. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5805-5811. [PMID: 29361212 DOI: 10.1021/acsami.7b18440] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a wise and profound teacher, nature provides numerous creatures with rich colors to us. To biomimic structural colors in nature as well as color changes responsive to environmental stimuli, there is a long way to go for the development of free-standing photonic films from natural polymers. Herein, a highly flexible, controllably iridescent, and multistimuli-responsive cellulose nanocrystal (CNC) film is prepared by simply introducing a small molecule as both plasticizer and hygroscopic agent. The presence of the additive does not block the self-assembly of CNC in aqueous solution but results in the enhancement of its mechanical toughness, making it possible to obtain free-standing iridescent CNC films with tunable structural colors. In response to environmental humidity and mechanical compression, such films can change structural colors smoothly by modulating their chiral nematic structures. Notably, the chromism is reversible by alternately changing relative humidity between 16 and 98%, mimicking the longhorn beetle Tmesisternus isabellae. This chromic effect enables various applications of the biofilms in colorimetric sensors, anticounterfeiting technology, and decorative coatings.
Collapse
Affiliation(s)
- Yao-Dong He
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Ze-Lian Zhang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Juan Xue
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Xiao-Hui Wang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Fei Song
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Xiu-Li Wang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Li-Li Zhu
- The Affiliated Hospital of Guizhou Medical University , Guiyang 510000, China
| | - Yu-Zhong Wang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
27
|
Pan L, Xiong Z, Song L, Ban J, Lu S. Synthesis and characterization of sisal fibre polyurethane network cross-linked with triple-shape memory properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj00181b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a thermo-responsive network shape-memory polymer (SMP) which has high elasticity, triple shape-memory properties and rapid shape recovery effects was reported.
Collapse
Affiliation(s)
- Lulu Pan
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Zhongqiang Xiong
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Laifu Song
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Jianfeng Ban
- College of Chemical Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| |
Collapse
|
28
|
Wu H, Williams GR, Wu J, Wu J, Niu S, Li H, Wang H, Zhu L. Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydr Polym 2018; 180:304-313. [DOI: 10.1016/j.carbpol.2017.10.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/15/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
|
29
|
Peterson GI, Dobrynin AV, Becker ML. Biodegradable Shape Memory Polymers in Medicine. Adv Healthc Mater 2017; 6. [PMID: 28941154 DOI: 10.1002/adhm.201700694] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/04/2017] [Indexed: 01/13/2023]
Abstract
Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications.
Collapse
Affiliation(s)
- Gregory I. Peterson
- The University of Akron Department of Polymer Science Akron OH 44325‐3909 USA
| | - Andrey V. Dobrynin
- The University of Akron Department of Polymer Science Akron OH 44325‐3909 USA
| | - Matthew L. Becker
- The University of Akron Department of Polymer Science Akron OH 44325‐3909 USA
| |
Collapse
|
30
|
Moirangthem M, Engels TAP, Murphy J, Bastiaansen CWM, Schenning APHJ. Photonic Shape Memory Polymer with Stable Multiple Colors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32161-32167. [PMID: 28840717 PMCID: PMC5609120 DOI: 10.1021/acsami.7b10198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/25/2017] [Indexed: 05/19/2023]
Abstract
A photonic shape memory polymer film that shows large color response (∼155 nm) in a wide temperature range has been fabricated from a semi-interpenetrating network of a cholesteric polymer and poly(benzyl acrylate). The large color response is achieved by mechanical embossing of the photonic film above its broad glass transition temperature. The embossed film, as it recovers to its original shape on heating through the broad thermal transition, exhibits multiple structural colors ranging from blue to orange. The relaxation behavior of the embossed film can be fully described using a Kelvin-Voigt model, which reveals that the influence of temperature on the generation of colors is much stronger than that of time, thereby producing stable multiple colors.
Collapse
Affiliation(s)
- Monali Moirangthem
- Functional
Organic Materials & Devices and Polymer Technology, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tom A. P. Engels
- Functional
Organic Materials & Devices and Polymer Technology, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jeffrey Murphy
- Functional
Organic Materials & Devices and Polymer Technology, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Cees W. M. Bastiaansen
- Functional
Organic Materials & Devices and Polymer Technology, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Albertus P. H. J. Schenning
- Functional
Organic Materials & Devices and Polymer Technology, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- E-mail:
| |
Collapse
|
31
|
Frka-Petesic B, Guidetti G, Kamita G, Vignolini S. Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701469. [PMID: 28635143 DOI: 10.1002/adma.201701469] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Indexed: 05/20/2023]
Abstract
The self-assembly of cellulose nanocrystals is a powerful method for the fabrication of biosourced photonic films with a chiral optical response. While various techniques have been exploited to tune the optical properties of such systems, the presence of external fields has yet to be reported to significantly modify their optical properties. In this work, by using small commercial magnets (≈ 0.5-1.2 T) the orientation of the cholesteric domains is enabled to tune in suspension as they assemble into films. A detailed analysis of these films shows an unprecedented control of their angular response. This simple and yet powerful technique unlocks new possibilities in designing the visual appearance of such iridescent films, ranging from metallic to pixelated or matt textures, paving the way for the development of truly sustainable photonic pigments in coatings, cosmetics, and security labeling.
Collapse
Affiliation(s)
- Bruno Frka-Petesic
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, Lensfield Road, CB2 1EW, UK
| | - Giulia Guidetti
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, Lensfield Road, CB2 1EW, UK
| | - Gen Kamita
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, Lensfield Road, CB2 1EW, UK
| | - Silvia Vignolini
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, Lensfield Road, CB2 1EW, UK
| |
Collapse
|
32
|
Optical sensor platform based on cellulose nanocrystals (CNC) – 4′-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films. Carbohydr Polym 2017; 168:346-355. [DOI: 10.1016/j.carbpol.2017.03.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/13/2017] [Accepted: 03/23/2017] [Indexed: 01/11/2023]
|
33
|
Yao K, Meng Q, Bulone V, Zhou Q. Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701323. [PMID: 28558169 DOI: 10.1002/adma.201701323] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/17/2017] [Indexed: 05/19/2023]
Abstract
The fabrication of responsive photonic structures from cellulose nanocrystals (CNCs) that can operate in the entire visible spectrum is challenging due to the requirements of precise periodic modulation of the pitch size of the self-assembled multilayer structures at the length scale within the wavelength of the visible light. The surface charge density of CNCs is an important factor in controlling the pitch size of the chiral nematic structure of the dried solid CNC films. The assembly of poly(ethylene glycol) (PEG) together with CNCs into smaller chiral nematic domains results in solid films with uniform helical structure upon slow drying. Large, flexible, and flat photonic composite films with uniform structure colors from blue to red are prepared by changing the composition of CNCs and PEG. The CNC/PEG(80/20) composite film demonstrates a reversible and smooth structural color change between green and transparent in response to an increase and decrease of relative humidity between 50% and 100% owing to the reversible swelling and dehydration of the chiral nematic structure. The composite also shows excellent mechanical and thermal properties, complementing the multifunctional property profile.
Collapse
Affiliation(s)
- Kun Yao
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden
- Wallenberg Wood Science Center, Royal Institute of Technology (KTH), 100 44, Stockholm, Sweden
| | - Qijun Meng
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Vincent Bulone
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Qi Zhou
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden
- Wallenberg Wood Science Center, Royal Institute of Technology (KTH), 100 44, Stockholm, Sweden
| |
Collapse
|
34
|
Qin C, Feng Y, An H, Han J, Cao C, Feng W. Tetracarboxylated Azobenzene/Polymer Supramolecular Assemblies as High-Performance Multiresponsive Actuators. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4066-4073. [PMID: 28079357 DOI: 10.1021/acsami.6b15075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multistimuli-responsive polymers are materials of emerging interest but synthetically challenging. In this work, supramolecular assembly was employed as a facile and effective approach for constructing 3,3',5,5'-azobenzenetetracarboxylic acid (H4abtc)/poly(diallyldimethylammonium chloride) (PDAC) supramolecules. Structural transformations of H4abtc can be induced by light, mechanical force, and heat and influenced by free volume. Thus, the fabricated free-standing H4abtc/PDAC film underwent bending/unbending movements upon treatment with light, humidity, or temperature, as asymmetric structural transformations on either side of the film generated asymmetric contraction/stretching forces. Fast rates of shape recovery were achieved for the film on exposure to gently flowing humid nitrogen. The bending/unbending motions are controllable, reversible, and repeatable. Hence, this light-, humido-, and thermo-responsive film has great potential in device applications for advanced functions.
Collapse
Affiliation(s)
- Chengqun Qin
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, P. R China
| | - Yiyu Feng
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, P. R China
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin 300072, P. R China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072, P. R China
| | - Haoran An
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, P. R China
| | - Junkai Han
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, P. R China
| | - Chen Cao
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, P. R China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, P. R China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R China
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin 300072, P. R China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072, P. R China
| |
Collapse
|