1
|
Menétrey M, Kupferschmid C, Gerstl S, Spolenak R. On the Resolution Limit of Electrohydrodynamic Redox 3D Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402067. [PMID: 39092685 DOI: 10.1002/smll.202402067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Additive manufacturing (AM) will empower the next breakthroughs in nanotechnology by combining unmatched geometrical freedom with nanometric resolution. Despite recent advances, no micro-AM technique has been able to synthesize functional nanostructures with excellent metal quality and sub-100 nm resolution. Here, significant breakthroughs in electrohydrodynamic redox 3D printing (EHD-RP) are reported by directly fabricating high-purity Cu (>98 at.%) with adjustable voxel size from >6µm down to 50 nm. This unique tunability of the feature size is achieved by managing in-flight solvent evaporation of the ion-loaded droplet to either trigger or prevent the Coulomb explosion. In the first case, the landing of confined droplets on the substrate allows the fabrication of high-aspect-ratio 50 nm-wide nanopillars, while in the second, droplet disintegration leads to large-area spray deposition. It is discussed that the reported pillar width corresponds to the ultimate resolution achievable by EHD printing. The unrivaled feature size and growth rate (>100 voxel s-1) enable the direct manufacturing of 30 µm-tall atom probe tomography (APT) tips that unveil the pristine microstructure and chemistry of the deposit. This method opens up prospects for the development of novel materials for 3D nano-printing.
Collapse
Affiliation(s)
- Maxence Menétrey
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Cédric Kupferschmid
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Stephan Gerstl
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zürich, Otto-Stern-Weg 3, Zürich 8093, Switzerland
| | - Ralph Spolenak
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| |
Collapse
|
2
|
Höflich K, Maćkosz K, Jureddy CS, Tsarapkin A, Utke I. Direct electron beam writing of silver using a β-diketonate precursor: first insights. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1117-1124. [PMID: 39224534 PMCID: PMC11368048 DOI: 10.3762/bjnano.15.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Direct electron beam writing is a powerful tool for fabricating complex nanostructures in a single step. The electron beam locally cleaves the molecules of an adsorbed gaseous precursor to form a deposit, similar to 3D printing but without the need for a resist or development step. Here, we employ for the first time a silver β-diketonate precursor for focused electron beam-induced deposition (FEBID). The used compound (hfac)AgPMe3 operates at an evaporation temperature of 70-80 °C and is compatible with commercially available gas injection systems used in any standard scanning electron microscope. Growth of smooth 3D geometries could be demonstrated for tightly focused electron beams, albeit with low silver content in the deposit volume. The electron beam-induced deposition proved sensitive to the irradiation conditions, leading to varying compositions of the deposit and internal inhomogeneities such as the formation of a layered structure consisting of a pure silver layer at the interface to the substrate covered by a deposit layer with low silver content. Imaging after the deposition process revealed morphological changes such as the growth of silver particles on the surface. While these effects complicate the application for 3D printing, the unique deposit structure with a thin, compact silver film beneath the deposit body is interesting from a fundamental point of view and may offer additional opportunities for applications.
Collapse
Affiliation(s)
- Katja Höflich
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
- Laboratory of Mechanics for Materials and Nanostructures, Empa – Swiss Federal Laboratories for Material Science and Technology, Feuerwerkerstrasse 39, CH 3602 Thun, Switzerland
| | - Krzysztof Maćkosz
- Laboratory of Mechanics for Materials and Nanostructures, Empa – Swiss Federal Laboratories for Material Science and Technology, Feuerwerkerstrasse 39, CH 3602 Thun, Switzerland
| | - Chinmai S Jureddy
- Laboratory of Mechanics for Materials and Nanostructures, Empa – Swiss Federal Laboratories for Material Science and Technology, Feuerwerkerstrasse 39, CH 3602 Thun, Switzerland
| | - Aleksei Tsarapkin
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
| | - Ivo Utke
- Laboratory of Mechanics for Materials and Nanostructures, Empa – Swiss Federal Laboratories for Material Science and Technology, Feuerwerkerstrasse 39, CH 3602 Thun, Switzerland
| |
Collapse
|
3
|
Barth S, Porrati F, Knez D, Jungwirth F, Jochmann NP, Huth M, Winkler R, Plank H, Gracia I, Cané C. Nanoscale, surface-confined phase separation by electron beam induced oxidation. NANOSCALE 2024; 16:14722-14729. [PMID: 38922329 DOI: 10.1039/d4nr01650e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Electron-assisted oxidation of Co-Si-based focused electron beam induced deposition (FEBID) materials is shown to form a 2-4 nm metal oxide surface layer on top of an electrically insulating silicon oxide layer less than 10 nm thick. Differences between thermal and electron-induced oxidation on the resulting microstructure are illustrated.
Collapse
Affiliation(s)
- Sven Barth
- Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60323 Frankfurt am Main, Germany.
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Fabrizio Porrati
- Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60323 Frankfurt am Main, Germany.
| | - Daniel Knez
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Felix Jungwirth
- Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60323 Frankfurt am Main, Germany.
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Nicolas P Jochmann
- Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60323 Frankfurt am Main, Germany.
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Michael Huth
- Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60323 Frankfurt am Main, Germany.
| | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes (DEFINE), Institute of Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Harald Plank
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes (DEFINE), Institute of Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Isabel Gracia
- Institut de Microelectrònica de Barcelona (IMB), Centre Nacional de Microelectrònica (CNM), Consejo Superior de Investigaciones Científicas (CSIC), 08193 Barcelona, Spain
| | - Carles Cané
- Institut de Microelectrònica de Barcelona (IMB), Centre Nacional de Microelectrònica (CNM), Consejo Superior de Investigaciones Científicas (CSIC), 08193 Barcelona, Spain
| |
Collapse
|
4
|
Glessi C, Polman FA, Hagen CW. Water-assisted purification during electron beam-induced deposition of platinum and gold. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:884-896. [PMID: 39076692 PMCID: PMC11285079 DOI: 10.3762/bjnano.15.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
Direct fabrication of pure metallic nanostructures is one of the main aims of focused electron beam-induced deposition (FEBID). It was recently achieved for gold deposits by the co-injection of a water precursor and the gold precursor Au(tfac)Me2. In this work results are reported, using the same approach, on a different gold precursor, Au(acac)Me2, as well as the frequently used platinum precursor MeCpPtMe3. As a water precursor MgSO4·7H2O was used. The purification during deposition led to a decrease of the carbon-to-gold ratio (in atom %) from 2.8 to 0.5 and a decrease of the carbon-to-platinum ratio (in atom %) from 6-7 to 0.2. The purification was done in a regular scanning electron microscope using commercially available components and chemicals, which paves the way for a broader application of direct etching-assisted FEBID to obtain pure metallic structures.
Collapse
Affiliation(s)
- Cristiano Glessi
- Delft University of Technology, Fac. Applied Sciences, Dept. Imaging Physics, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - Fabian A Polman
- Delft University of Technology, Fac. Applied Sciences, Dept. Imaging Physics, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - Cornelis W Hagen
- Delft University of Technology, Fac. Applied Sciences, Dept. Imaging Physics, Lorentzweg 1, 2628CJ Delft, Netherlands
| |
Collapse
|
5
|
Solov’yov AV, Verkhovtsev AV, Mason NJ, Amos RA, Bald I, Baldacchino G, Dromey B, Falk M, Fedor J, Gerhards L, Hausmann M, Hildenbrand G, Hrabovský M, Kadlec S, Kočišek J, Lépine F, Ming S, Nisbet A, Ricketts K, Sala L, Schlathölter T, Wheatley AEH, Solov’yov IA. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chem Rev 2024; 124:8014-8129. [PMID: 38842266 PMCID: PMC11240271 DOI: 10.1021/acs.chemrev.3c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.
Collapse
Affiliation(s)
| | | | - Nigel J. Mason
- School
of Physics and Astronomy, University of
Kent, Canterbury CT2 7NH, United
Kingdom
| | - Richard A. Amos
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gérard Baldacchino
- Université
Paris-Saclay, CEA, LIDYL, 91191 Gif-sur-Yvette, France
- CY Cergy Paris Université,
CEA, LIDYL, 91191 Gif-sur-Yvette, France
| | - Brendan Dromey
- Centre
for Light Matter Interactions, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Martin Falk
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Juraj Fedor
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Faculty
of Engineering, University of Applied Sciences
Aschaffenburg, Würzburger
Str. 45, 63743 Aschaffenburg, Germany
| | | | - Stanislav Kadlec
- Eaton European
Innovation Center, Bořivojova
2380, 25263 Roztoky, Czech Republic
| | - Jaroslav Kočišek
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Franck Lépine
- Université
Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, F-69622, Villeurbanne, France
| | - Siyi Ming
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Kate Ricketts
- Department
of Targeted Intervention, University College
London, Gower Street, London WC1E 6BT, United Kingdom
| | - Leo Sala
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Thomas Schlathölter
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- University
College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands
| | - Andrew E. H. Wheatley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
6
|
Tsarapkin A, Maćkosz K, Jureddy CS, Utke I, Höflich K. Area-Selective Chemical Vapor Deposition of Gold by Electron Beam Seeding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313571. [PMID: 38546415 DOI: 10.1002/adma.202313571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Chemical vapor deposition (CVD) is an established method for producing high-purity thin films, but it typically necessitates the pre- and post-processing using a mask to produce structures. This study presents a novel maskless patterning technique that enables area-selective CVD of gold. A focused electron beam is used to decompose the metal-organic precursor Au(acac)Me2 locally, thereby creating an autocatalytically active seed layer for subsequent CVD with the same precursor. The procedure can be included in the same CVD process without the need for clean room lithographic processing. Moreover, it operates at low temperatures of 80 °C, over 200 K lower than standard CVD temperatures for this precursor, reducing thermal load on the specimen. Given that electron beam seeding operates on any even moderately conductive surface, the process does not constrain device design. This is demonstrated by the example of vertical nanostructures with high aspect ratios of ≈40:1 and more. Written using a focused electron beam and the same precursor, these nanopillars exhibit catalytically active nuclei on their surface. Furthermore, by using the onset of the autocatalytic CVD growth, for the first time the local temperature increase caused by the writing of nanostructures with an electron beam can be precisely determined.
Collapse
Affiliation(s)
- Aleksei Tsarapkin
- Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, D-12489, Berlin, Germany
| | - Krzysztof Maćkosz
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun, CH-3602, Switzerland
| | - Chinmai Sai Jureddy
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun, CH-3602, Switzerland
| | - Ivo Utke
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun, CH-3602, Switzerland
| | - Katja Höflich
- Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, D-12489, Berlin, Germany
| |
Collapse
|
7
|
Volkov OM, Pylypovskyi OV, Porrati F, Kronast F, Fernandez-Roldan JA, Kákay A, Kuprava A, Barth S, Rybakov FN, Eriksson O, Lamb-Camarena S, Makushko P, Mawass MA, Shakeel S, Dobrovolskiy OV, Huth M, Makarov D. Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes. Nat Commun 2024; 15:2193. [PMID: 38467623 PMCID: PMC10928081 DOI: 10.1038/s41467-024-46403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Additive nanotechnology enable curvilinear and three-dimensional (3D) magnetic architectures with tunable topology and functionalities surpassing their planar counterparts. Here, we experimentally reveal that 3D soft magnetic wireframe structures resemble compact manifolds and accommodate magnetic textures of high order vorticity determined by the Euler characteristic, χ. We demonstrate that self-standing magnetic tetrapods (homeomorphic to a sphere; χ = + 2) support six surface topological solitons, namely four vortices and two antivortices, with a total vorticity of + 2 equal to its Euler characteristic. Alternatively, wireframe structures with one loop (homeomorphic to a torus; χ = 0) possess equal number of vortices and antivortices, which is relevant for spin-wave splitters and 3D magnonics. Subsequent introduction of n holes into the wireframe geometry (homeomorphic to an n-torus; χ < 0) enables the accommodation of a virtually unlimited number of antivortices, which suggests their usefulness for non-conventional (e.g., reservoir) computation. Furthermore, complex stray-field topologies around these objects are of interest for superconducting electronics, particle trapping and biomedical applications.
Collapse
Affiliation(s)
- Oleksii M Volkov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
| | - Oleksandr V Pylypovskyi
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
- Kyiv Academic University, 03142, Kyiv, Ukraine.
| | - Fabrizio Porrati
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany.
| | - Florian Kronast
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Jose A Fernandez-Roldan
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Attila Kákay
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Alexander Kuprava
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Sven Barth
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Filipp N Rybakov
- Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20, Sweden
| | - Olle Eriksson
- Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Uppsala University, 75121, Uppsala, Sweden
| | - Sebastian Lamb-Camarena
- University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090, Vienna, Austria
- University of Vienna, Vienna Doctoral School in Physics, Boltzmanngasse 5, A-1090, Vienna, Austria
| | - Pavlo Makushko
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Mohamad-Assaad Mawass
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4 - 6, 14195, Berlin, Germany
| | - Shahrukh Shakeel
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Oleksandr V Dobrovolskiy
- University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090, Vienna, Austria
| | - Michael Huth
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
| |
Collapse
|
8
|
Piasecki T, Kwoka K, Gacka E, Kunicki P, Gotszalk T. Electrical, thermal and noise properties of platinum-carbon free-standing nanowires designed as nanoscale resistive thermal devices. NANOTECHNOLOGY 2023; 35:115502. [PMID: 38064743 DOI: 10.1088/1361-6528/ad13c0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Platinum-carbon (PtC) composite nanowires were fabricated using focused electron beam induced deposition and postprocessed, and their performance as a nanoscale resistive thermal device (RTD) was evaluated. Nanowires were free-standing and deposited on a dedicated substrate to eliminate the influence of the substrate itself and of the halo effect on the results. The PtC free-standing nanowires were postprocessed to lower their electrical resistance using electron beam irradiation and thermal annealing using Joule heat both separately and combined. Postprocessed PtC free-standing nanowires were characterized to evaluate their noise figure (NF) and thermal coefficients at the temperature range from 30 K to 80 °C. The thermal sensitivity of RTD was lowered with the reduced resistance but simultaneously the NF improved, especially with electron-beam irradiation. The temperature measurement resolution achievable with the PtC free-standing nanowires was 0.1 K in 1 kHz bandwidth.
Collapse
Affiliation(s)
- Tomasz Piasecki
- Department of Nanometrology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Krzysztof Kwoka
- Department of Nanometrology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Ewelina Gacka
- Department of Nanometrology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Piotr Kunicki
- Department of Nanometrology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Teodor Gotszalk
- Department of Nanometrology, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
9
|
Kim WG, Kim H, Ko B, Jeon N, Park C, Oh JW, Rho J. Freestanding, Freeform Metamolecule Fibers Tailoring Artificial Optical Magnetism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303749. [PMID: 37480180 DOI: 10.1002/smll.202303749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Indexed: 07/23/2023]
Abstract
Metamolecule clusters support various unique types of artificial electromagnetism at optical frequencies. However, the technological challenges regarding the freeform fabrication of freestanding metamolecule clusters with programmed geometries and multiple compositions remain unresolved. Here, the freeform, freestanding raspberry-like metamolecule (RMM) fibers based on the directional guidance of a femtoliter meniscus are presented, resulting in the evaporative co-assembly of silica nanoparticles and gold nanoparticles with the aid of 3D nanoprinting. This method offers a facile and universal pathway to shape RMM fibers in 3D, enabling versatile manipulation of near- and far-field characteristics. In particular, the authors demonstrate the ability to decrease the scattering of the millimeter-scale RMM fiber in visible spectrum. In addition, the influence of electric and magnetic dipole modes on the directional scattering of RMM fibers is investigated. These experiments show that the magnetic response of an individual RMM can be controlled by adjusting the filling factor of gold nanoparticles. The authors anticipate that this method will allow for unrestricted design and realization of nanophotonic structures, surpassing the limitations of conventional fabrication processes.
Collapse
Affiliation(s)
- Won-Geun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Repulic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Repulic of Korea
| | - Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Repulic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Repulic of Korea
| | - Cherry Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Repulic of Korea
| | - Jin-Woo Oh
- Department of Nanoenergy Engineering, Pusan National University, Busan, 46241, Repulic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Repulic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
10
|
Kopyra J, Abdoul-Carime H. Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:980-987. [PMID: 37800122 PMCID: PMC10548254 DOI: 10.3762/bjnano.14.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Nowadays, organometallic complexes receive particular attention because of their use in the design of pure nanoscale metal structures. In the present work, we present results obtained from a series of studies on the degradation of metal(II) bis(acetylacetonate)s induced by low-energy electrons. These slow particles induce the formation of the acetylacetonate anion, [acac]-, and the parent anion as the most dominant species at incident electron energies near 0 eV. They also fragment the organometallic compounds via various competitive reaction channels that occur at higher energies via dissociative electron attachment. The reported data may contribute to a better understanding of the physical chemistry underlying the electron-molecule interactions, which is crucial for potential applications of these molecular systems in the deposition of nanoscale structures.
Collapse
Affiliation(s)
- Janina Kopyra
- Siedlce University of Natural Sciences and Humanities, Faculty of Sciences, 3 Maja 54, 08-110 Siedlce, Poland
| | - Hassan Abdoul-Carime
- Universite de Lyon, Université Lyon 1, Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UMR5822, F-69003 Lyon, France
| |
Collapse
|
11
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
12
|
Pintea M, Mason N, Peiró-Franch A, Clark E, Samanta K, Glessi C, Schmidtke IL, Luxford T. Dissociative electron attachment to gold(I)-based compounds: 4,5-dichloro-1,3-diethyl-imidazolylidene trifluoromethyl gold(I). Front Chem 2023; 11:1028008. [PMID: 37405247 PMCID: PMC10315492 DOI: 10.3389/fchem.2023.1028008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
With the use of proton-NMR and powder XRD (XRPD) studies, the suitability of specific Au-focused electron beam induced deposition (FEBID) precursors has been investigated with low electron energy, structure, excited states and resonances, structural crystal modifications, flexibility, and vaporization level. 4,5-Dichloro-1,3-diethyl-imidazolylidene trifluoromethyl gold(I) is a compound that is a uniquely designed precursor to meet the needs of focused electron beam-induced deposition at the nanostructure level, which proves its capability in creating high purity structures, and its growing importance in other AuImx and AuClnB (where x and n are the number of radicals, B = CH, CH3, or Br) compounds in the radiation cancer therapy increases the efforts to design more suitable bonds in processes of SEM (scanning electron microscopy) deposition and in gas-phase studies. The investigation performed of its powder shape using the XRPD XPERT3 panalytical diffractometer based on CoKα lines shows changes to its structure with change in temperature, level of vacuum, and light; the sensitivity of this compound makes it highly interesting in particular to the radiation research. Used in FEBID, though its smaller number of C, H, and O atoms has lower levels of C contamination in the structures and on the surface, it replaces these bonds with C-Cl and C-N bonds that have lower bond-breaking energy. However, it still needs an extra purification step in the deposition process, either H2O, O2, or H jets.
Collapse
Affiliation(s)
- Maria Pintea
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Nigel Mason
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Anna Peiró-Franch
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Ewan Clark
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Kushal Samanta
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Thomas Luxford
- Department of Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
13
|
Jurczyk J, Höflich K, Madajska K, Berger L, Brockhuis L, Edwards TEJ, Kapusta C, Szymańska IB, Utke I. Ligand Size and Carbon-Chain Length Study of Silver Carboxylates in Focused Electron-Beam-Induced Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091516. [PMID: 37177061 PMCID: PMC10180361 DOI: 10.3390/nano13091516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Gas-assisted focused electron-beam-induced deposition is a versatile tool for the direct writing of complex-shaped nanostructures with unprecedented shape fidelity and resolution. While the technique is well-established for various materials, the direct electron beam writing of silver is still in its infancy. Here, we examine and compare five different silver carboxylates, three perfluorinated: [Ag2(µ-O2CCF3)2], [Ag2(µ-O2CC2F5)2], and [Ag2(µ-O2CC3F7)2], and two containing branched substituents: [Ag2(µ-O2CCMe2Et)2] and [Ag2(µ-O2CtBu)2], as potential precursors for focused electron-beam-induced deposition. All of the compounds show high sensitivity to electron dissociation and efficient dissociation of Ag-O bonds. The as-deposited materials have silver contents from 42 at.% to above 70 at.% and are composed of silver nano-crystals with impurities of carbon and fluorine between them. Precursors with the shortest carbon-fluorine chain ligands yield the highest silver contents. In addition, the deposited silver content depends on the balance of electron-induced ligand co-deposition and ligand desorption. For all of the tested compounds, low electron flux was related to high silver content. Our findings demonstrate that silver carboxylates constitute a promising group of precursors for gas-assisted focused electron beam writing of high silver content materials.
Collapse
Affiliation(s)
- Jakub Jurczyk
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Krakow Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katja Höflich
- Helmholtz-Zentrum Berlin Für Materialien und Energie, Nanoscale Structures and Microscopic Analysis, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Ferdinand-Braun Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
| | - Katarzyna Madajska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Luisa Berger
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Leo Brockhuis
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Krakow Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Thomas Edward James Edwards
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Czesław Kapusta
- Faculty of Physics and Applied Computer Science, AGH University of Krakow Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Iwona B Szymańska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| |
Collapse
|
14
|
Winkler R, Brugger-Hatzl M, Seewald LM, Kuhness D, Barth S, Mairhofer T, Kothleitner G, Plank H. Additive Manufacturing of Co 3Fe Nano-Probes for Magnetic Force Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1217. [PMID: 37049311 PMCID: PMC10097098 DOI: 10.3390/nano13071217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Magnetic force microscopy (MFM) is a powerful extension of atomic force microscopy (AFM), which mostly uses nano-probes with functional coatings for studying magnetic surface features. Although well established, additional layers inherently increase apex radii, which reduce lateral resolution and also contain the risk of delamination, rendering such nano-probes doubtful or even useless. To overcome these limitations, we now introduce the additive direct-write fabrication of magnetic nano-cones via focused electron beam-induced deposition (FEBID) using an HCo3Fe(CO)12 precursor. The study first identifies a proper 3D design, confines the most relevant process parameters by means of primary electron energy and beam currents, and evaluates post-growth procedures as well. That way, highly crystalline nano-tips with minimal surface contamination and apex radii in the sub-15 nm regime are fabricated and benchmarked against commercial products. The results not only reveal a very high performance during MFM operation but in particular demonstrate virtually loss-free behavior after almost 8 h of continuous operation, thanks to the all-metal character. Even after more than 12 months of storage in ambient conditions, no performance loss is observed, which underlines the high overall performance of the here-introduced FEBID-based Co3Fe MFM nano-probes.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | | | | | - David Kuhness
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | - Sven Barth
- Institute of Physics, Goethe University, 60438 Frankfurt, Germany
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Thomas Mairhofer
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Gerald Kothleitner
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
15
|
Porrati F, Barth S, Gazzadi GC, Frabboni S, Volkov OM, Makarov D, Huth M. Site-Selective Chemical Vapor Deposition on Direct-Write 3D Nanoarchitectures. ACS NANO 2023; 17:4704-4715. [PMID: 36826847 DOI: 10.1021/acsnano.2c10968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advancements in additive manufacturing have enabled the preparation of free-shaped 3D objects with feature sizes down to and below the micrometer scale. Among the fabrication methods, focused electron beam- and focused ion beam-induced deposition (FEBID and FIBID, respectively) associate a high flexibility and unmatched accuracy in 3D writing with a wide material portfolio, thereby allowing for the growth of metallic to insulating materials. The combination of the free-shaped 3D nanowriting with established chemical vapor deposition (CVD) techniques provides attractive opportunities to synthesize complex 3D core-shell heterostructures. Hence, this hybrid approach enables the fabrication of morphologically tunable layer-based nanostructures with the great potential of unlocking further functionalities. Here, the fundamentals of such a hybrid approach are demonstrated by preparing core-shell heterostructures using 3D FEBID scaffolds for site-selective CVD. In particular, 3D microbridges are printed by FEBID with the (CH3)3CH3C5H4Pt precursor and coated by thermal CVD using the Nb(NMe2)3(N-t-Bu) and HFeCo3(CO)12 precursors. Two model systems on the basis of CVD layers consisting of a superconducting NbC-based layer and a ferromagnetic Co3Fe layer are prepared and characterized with regard to their composition, microstructure, and magneto-transport properties.
Collapse
Affiliation(s)
- Fabrizio Porrati
- Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| | - Sven Barth
- Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| | - Gian Carlo Gazzadi
- S3 Center, Nanoscience Institute-CNR, Via Campi 213/a, I-41125 Modena, Italy
| | - Stefano Frabboni
- S3 Center, Nanoscience Institute-CNR, Via Campi 213/a, I-41125 Modena, Italy
- FIM Department, University of Modena and Reggio Emilia, Via G. Campi 213/a, I-41125 Modena, Italy
| | - Oleksii M Volkov
- Helmholtz-Zentrum DresdenRossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Denys Makarov
- Helmholtz-Zentrum DresdenRossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Michael Huth
- Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
16
|
Kuprava A, Huth M. Fast and Efficient Simulation of the FEBID Process with Thermal Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:858. [PMID: 36903735 PMCID: PMC10005571 DOI: 10.3390/nano13050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Focused electron-beam-induced deposition (FEBID) is a highly versatile direct-write approach with particular strengths in the 3D nanofabrication of functional materials. Despite its apparent similarity to other 3D printing approaches, non-local effects related to precursor depletion, electron scattering and sample heating during the 3D growth process complicate the shape-true transfer from a target 3D model to the actual deposit. Here, we describe an efficient and fast numerical approach to simulate the growth process, which allows for a systematic study of the influence of the most important growth parameters on the resulting shape of the 3D structures. The precursor parameter set derived in this work for the precursor Me3PtCpMe enables a detailed replication of the experimentally fabricated nanostructure, taking beam-induced heating into account. The modular character of the simulation approach allows for additional future performance increases using parallelization or drawing on the use of graphics cards. Ultimately, beam-control pattern generation for 3D FEBID will profit from being routinely combined with this fast simulation approach for optimized shape transfer.
Collapse
|
17
|
Lasseter J, Rack PD, Randolph SJ. Selected Area Deposition of High Purity Gold for Functional 3D Architectures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:757. [PMID: 36839126 PMCID: PMC9965196 DOI: 10.3390/nano13040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Selected area deposition of high purity gold films onto nanoscale 3D architectures is highly desirable as gold is conductive, inert, plasmonically active, and can be functionalized with thiol chemistries, which are useful in many biological applications. Here, we show that high-purity gold coatings can be selectively grown with the Me2Au (acac) precursor onto nanoscale 3D architectures via a pulsed laser pyrolytic chemical vapor deposition process. The selected area of deposition is achieved due to the high thermal resistance of the nanoscale geometries. Focused electron beam induced deposits (FEBID) and carbon nanofibers are functionalized with gold coatings, and we demonstrate the effects that laser irradiance, pulse width, and precursor pressure have on the growth rate. Furthermore, we demonstrate selected area deposition with a feature-targeting resolutions of ~100 and 5 µm, using diode lasers coupled to a multimode (915 nm) and single mode (785 nm) fiber optic, respectively. The experimental results are rationalized via finite element thermal modeling.
Collapse
Affiliation(s)
- John Lasseter
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Philip D. Rack
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Steven J. Randolph
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
18
|
Fowlkes J, Winkler R, Rack PD, Plank H. 3D Nanoprinting Replication Enhancement Using a Simulation-Informed Analytical Model for Electron Beam Exposure Dose Compensation. ACS OMEGA 2023; 8:3148-3175. [PMID: 36713724 PMCID: PMC9878664 DOI: 10.1021/acsomega.2c06596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
3D nanoprinting, using focused electron beam-induced deposition, is prone to a common structural artifact arising from a temperature gradient that naturally evolves during deposition, extending from the electron beam impact region (BIR) to the substrate. Inelastic electron energy loss drives the Joule heating and surface temperature variations lead to precursor surface concentration variations due, in most part, to temperature-dependent precursor surface desorption. The result is unwanted curvature when prescribing linear segments in 3D objects, and thus, complex geometries contain distortions. Here, an electron dose compensation strategy is presented to offset deleterious heating effects; the Decelerating Beam Exposure Algorithm, or DBEA, which corrects for nanowire bending a priori, during computer-aided design, uses an analytical solution derived from information gleaned from 3D nanoprinting simulations. Electron dose modulation is an ideal solution for artifact correction because variations in electron dose have no influence on temperature. Thus, the generalized compensation strategy revealed here will help advance 3D nanoscale printing fidelity for focused electron beam-induced deposition.
Collapse
Affiliation(s)
- Jason
D. Fowlkes
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Robert Winkler
- Christian
Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes
(DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010Graz, Austria
| | - Philip D. Rack
- Department
of Materials Science and Engineering, University
of Tennessee, Knoxville, Tennessee37996, United States
| | - Harald Plank
- Christian
Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes
(DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010Graz, Austria
- Institute
of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010Graz, Austria
- Graz
Centre for Electron Microscopy, 8010Graz, Austria
| |
Collapse
|
19
|
Seewald LM, Sattelkow J, Brugger-Hatzl M, Kothleitner G, Frerichs H, Schwalb C, Hummel S, Plank H. 3D Nanoprinting of All-Metal Nanoprobes for Electric AFM Modes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4477. [PMID: 36558331 PMCID: PMC9787867 DOI: 10.3390/nano12244477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
3D nanoprinting via focused electron beam induced deposition (FEBID) is applied for fabrication of all-metal nanoprobes for atomic force microscopy (AFM)-based electrical operation modes. The 3D tip concept is based on a hollow-cone (HC) design, with all-metal material properties and apex radii in the sub-10 nm regime to allow for high-resolution imaging during morphological imaging, conductive AFM (CAFM) and electrostatic force microscopy (EFM). The study starts with design aspects to motivate the proposed HC architecture, followed by detailed fabrication characterization to identify and optimize FEBID process parameters. To arrive at desired material properties, e-beam assisted purification in low-pressure water atmospheres was applied at room temperature, which enabled the removal of carbon impurities from as-deposited structures. The microstructure of final HCs was analyzed via scanning transmission electron microscopy-high-angle annular dark field (STEM-HAADF), whereas electrical and mechanical properties were investigated in situ using micromanipulators. Finally, AFM/EFM/CAFM measurements were performed in comparison to non-functional, high-resolution tips and commercially available electric probes. In essence, we demonstrate that the proposed all-metal HCs provide the resolution capabilities of the former, with the electric conductivity of the latter onboard, combining both assets in one design.
Collapse
Affiliation(s)
- Lukas Matthias Seewald
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Graz University of Technology, 8010 Graz, Austria
| | - Jürgen Sattelkow
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Graz University of Technology, 8010 Graz, Austria
| | - Michele Brugger-Hatzl
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Graz University of Technology, 8010 Graz, Austria
| | - Gerald Kothleitner
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| | | | - Christian Schwalb
- GETec Microscopy Inc., 1020 Wien, Austria
- Quantum Design Microscopy, 64293 Darmstadt, Germany
| | | | - Harald Plank
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Graz University of Technology, 8010 Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| |
Collapse
|
20
|
Weitzer A, Winkler R, Kuhness D, Kothleitner G, Plank H. Controlled Morphological Bending of 3D-FEBID Structures via Electron Beam Curing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4246. [PMID: 36500873 PMCID: PMC9737864 DOI: 10.3390/nano12234246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Focused electron beam induced deposition (FEBID) is one of the few additive, direct-write manufacturing techniques capable of depositing complex 3D nanostructures. In this work, we explore post-growth electron beam curing (EBC) of such platinum-based FEBID deposits, where free-standing, sheet-like elements were deformed in a targeted manner by local irradiation without precursor gas present. This process diminishes the volumes of exposed regions and alters nano-grain sizes, which was comprehensively characterized by SEM, TEM and AFM and complemented by Monte Carlo simulations. For obtaining controlled and reproducible conditions for smooth, stable morphological bending, a wide range of parameters were varied, which will here be presented as a first step towards using local EBC as a tool to realize even more complex nano-architectures, beyond current 3D-FEBID capabilities, such as overhanging structures. We thereby open up a new prospect for future applications in research and development that could even be further developed towards functional imprinting.
Collapse
Affiliation(s)
- Anna Weitzer
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - David Kuhness
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Gerald Kothleitner
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| | - Harald Plank
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| |
Collapse
|
21
|
Kamali A, Bilgilisoy E, Wolfram A, Gentner TX, Ballmann G, Harder S, Marbach H, Ingólfsson O. On the Electron-Induced Reactions of (CH 3)AuP(CH 3) 3: A Combined UHV Surface Science and Gas-Phase Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2727. [PMID: 35957158 PMCID: PMC9370483 DOI: 10.3390/nano12152727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Focused-electron-beam-induced deposition (FEBID) is a powerful nanopatterning technique where electrons trigger the local dissociation of precursor molecules, leaving a deposit of non-volatile dissociation products. The fabrication of high-purity gold deposits via FEBID has significant potential to expand the scope of this method. For this, gold precursors that are stable under ambient conditions but fragment selectively under electron exposure are essential. Here, we investigated the potential gold precursor (CH3)AuP(CH3)3 using FEBID under ultra-high vacuum (UHV) and spectroscopic characterization of the corresponding metal-containing deposits. For a detailed insight into electron-induced fragmentation, the deposit's composition was compared with the fragmentation pathways of this compound through dissociative ionization (DI) under single-collision conditions using quantum chemical calculations to aid the interpretation of these data. Further comparison was made with a previous high-vacuum (HV) FEBID study of this precursor. The average loss of about 2 carbon and 0.8 phosphor per incident was found in DI, which agreed well with the carbon content of the UHV FEBID deposits. However, the UHV deposits were found to be as good as free of phosphor, indicating that the trimethyl phosphate is a good leaving group. Differently, the HV FEBID experiments showed significant phosphor content in the deposits.
Collapse
Affiliation(s)
- Ali Kamali
- Department of Chemistry and Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Elif Bilgilisoy
- Physikalische Chemie II, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexander Wolfram
- Physikalische Chemie II, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Thomas Xaver Gentner
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Gerd Ballmann
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Hubertus Marbach
- Physikalische Chemie II, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- Carl Zeiss SMT GmbH, 64380 Roßdorf, Germany
| | - Oddur Ingólfsson
- Department of Chemistry and Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| |
Collapse
|
22
|
Jurczyk J, Pillatsch L, Berger L, Priebe A, Madajska K, Kapusta C, Szymańska IB, Michler J, Utke I. In Situ Time-of-Flight Mass Spectrometry of Ionic Fragments Induced by Focused Electron Beam Irradiation: Investigation of Electron Driven Surface Chemistry inside an SEM under High Vacuum. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2710. [PMID: 35957140 PMCID: PMC9370286 DOI: 10.3390/nano12152710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Recent developments in nanoprinting using focused electron beams have created a need to develop analysis methods for the products of electron-induced fragmentation of different metalorganic compounds. The original approach used here is termed focused-electron-beam-induced mass spectrometry (FEBiMS). FEBiMS enables the investigation of the fragmentation of electron-sensitive materials during irradiation within the typical primary electron beam energy range of a scanning electron microscope (0.5 to 30 keV) and high vacuum range. The method combines a typical scanning electron microscope with an ion-extractor-coupled mass spectrometer setup collecting the charged fragments generated by the focused electron beam when impinging on the substrate material. The FEBiMS of fragments obtained during 10 keV electron irradiation of grains of silver and copper carboxylates and shows that the carboxylate ligand dissociates into many smaller volatile fragments. Furthermore, in situ FEBiMS was performed on carbonyls of ruthenium (solid) and during electron-beam-induced deposition, using tungsten carbonyl (inserted via a gas injection system). Loss of carbonyl ligands was identified as the main channel of dissociation for electron irradiation of these carbonyl compounds. The presented results clearly indicate that FEBiMS analysis can be expanded to organic, inorganic, and metal organic materials used in resist lithography, ice (cryo-)lithography, and focused-electron-beam-induced deposition and becomes, thus, a valuable versatile analysis tool to study both fundamental and process parameters in these nanotechnology fields.
Collapse
Affiliation(s)
- Jakub Jurczyk
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Lex Pillatsch
- TOFWERK AG, Schorenstrasse 39, CH-3645 Thun, Switzerland
| | - Luisa Berger
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Agnieszka Priebe
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Katarzyna Madajska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Czesław Kapusta
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Iwona B. Szymańska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| |
Collapse
|
23
|
Salvador-Porroche A, Herrer L, Sangiao S, de Teresa JM, Cea P. Low-resistivity Pd nanopatterns created by a direct electron beam irradiation process free of post-treatment steps. NANOTECHNOLOGY 2022; 33:405302. [PMID: 34983030 DOI: 10.1088/1361-6528/ac47cf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/04/2022] [Indexed: 05/28/2023]
Abstract
The ability to create metallic patterned nanostructures with excellent control of size, shape and spatial orientation is of utmost importance in the construction of next-generation electronic and optical devices as well as in other applications such as (bio)sensors, reactive surfaces for catalysis, etc. Moreover, development of simple, rapid and low-cost fabrication processes of metallic patterned nanostructures is a challenging issue for the incorporation of such devices in real market applications. In this contribution, a direct-write method that results in highly conducting palladium-based nanopatterned structures without the need of applying subsequent curing processes is presented. Spin-coated films of palladium acetate were irradiated with an electron beam to produce palladium nanodeposits (PdNDs) with controlled size, shape and height. The use of different electron doses was investigated and its influence on the PdNDs features determined, namely: (1) thickness of the deposits, (2) atomic percentage of palladium content, (3) oxidation state of palladium in the deposit, (4) morphology of the sample and grain size of the Pd nanocrystals and (5) resistivity. It has been probed that the use of high electron doses, 30000μC cm-2results in the lowest resistivity reported to date for PdNDs, namely 145μΩ cm, which is only one order of magnitude higher than bulk palladium. This result paves the way for development of simplified lithography processes of nanostructured deposits avoiding subsequent post-treatment steps.
Collapse
Affiliation(s)
- Alba Salvador-Porroche
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - Lucía Herrer
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - Soraya Sangiao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - José María de Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - Pilar Cea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| |
Collapse
|
24
|
Fomin VM, Rezaev RO, Dobrovolskiy OV. Topological transitions in ac/dc-driven superconductor nanotubes. Sci Rep 2022; 12:10069. [PMID: 35710913 PMCID: PMC9203797 DOI: 10.1038/s41598-022-13543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Extending of nanostructures into the third dimension has become a major research avenue in condensed-matter physics, because of geometry- and topology-induced phenomena. In this regard, superconductor 3D nanoarchitectures feature magnetic field inhomogeneity, non-trivial topology of Meissner currents and complex dynamics of topological defects. Here, we investigate theoretically topological transitions in the dynamics of vortices and slips of the phase of the order parameter in open superconductor nanotubes under a modulated transport current. Relying upon the time-dependent Ginzburg–Landau equation, we reveal two distinct voltage regimes when (i) a dominant part of the tube is in either the normal or superconducting state and (ii) a complex interplay between vortices, phase-slip regions and screening currents determines a rich FFT voltage spectrum. Our findings unveil novel dynamical states in superconductor open nanotubes, such as paraxial and azimuthal phase-slip regions, their branching and coexistence with vortices, and allow for control of these states by superimposed dc and ac current stimuli.
Collapse
Affiliation(s)
- Vladimir M Fomin
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany. .,Laboratory of Physics and Engineering of Nanomaterials, Department of Theoretical Physics, Moldova State University, strada A. Mateevici 60, 2009, Chisinau, Republic of Moldova. .,Institute of Engineering Physics for Biomedicine, National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow, 115409, Russia.
| | - Roman O Rezaev
- Tomsk Polytechnic University, Lenin av. 30, Tomsk, 634050, Russia
| | - Oleksandr V Dobrovolskiy
- University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090, Vienna, Austria
| |
Collapse
|
25
|
Utke I, Swiderek P, Höflich K, Madajska K, Jurczyk J, Martinović P, Szymańska I. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.213851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Fang C, Chai Q, Chen Y, Xing Y, Zhou Z. The chiral coating on an achiral nanostructure by the secondary effect in focused ion beam induced deposition. NANOTECHNOLOGY 2022; 33:135301. [PMID: 34905738 DOI: 10.1088/1361-6528/ac4308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Optical metamaterials are widely used in electromagnetic wave modulation due to their sub-wavelength feature sizes. In this paper, a method to plate an achiral nanopillar array with chiral coating by the secondary effect in focused ion beam induced deposition is proposed. Guided by the pattern defined in a bitmap with variable residence time, the beam scan strategy suppresses the interaction between adjacent nanostructures. A uniform chiral coating is formed on the target nanostructure without affecting the adjacent nanostructure, under carefully selected beam parameters and the rotation angle of the sample stage. Energy dispersive x-ray spectroscopy results show that the chiral film has high purity metal, which enables the generation of localized surface plasmon resonances and causes the circular dichroism (CD) under circularly polarized light illumination. Finally, the tailorable CD spectrum of the coated array is verified by the finite difference time domain method.
Collapse
Affiliation(s)
- Chen Fang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Department of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Qing Chai
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Department of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Ye Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Department of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yan Xing
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Department of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Zaifa Zhou
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
27
|
Makarov D, Volkov OM, Kákay A, Pylypovskyi OV, Budinská B, Dobrovolskiy OV. New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101758. [PMID: 34705309 PMCID: PMC11469131 DOI: 10.1002/adma.202101758] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, the primary field, where curvature has been at the heart of research, is the theory of general relativity. In recent studies, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics, chemistry, and biology to mathematics, giving rise to a plethora of emerging domains such as curvilinear nematics, curvilinear studies of cell biology, curvilinear semiconductors, superfluidity, optics, 2D van der Waals materials, plasmonics, magnetism, and superconductivity. Here, the state of the art is summarized and prospects for future research in curvilinear solid-state systems exhibiting such fundamental cooperative phenomena as ferromagnetism, antiferromagnetism, and superconductivity are outlined. Highlighting the recent developments and current challenges in theory, fabrication, and characterization of curvilinear micro- and nanostructures, special attention is paid to perspective research directions entailing new physics and to their strong application potential. Overall, the perspective is aimed at crossing the boundaries between the magnetism and superconductivity communities and drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities. In addition, the perspective should stimulate the development and dissemination of research and development oriented techniques to facilitate rapid transitions from laboratory demonstrations to industry-ready prototypes and eventual products.
Collapse
Affiliation(s)
- Denys Makarov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksii M. Volkov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Attila Kákay
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksandr V. Pylypovskyi
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
- Kyiv Academic UniversityKyiv03142Ukraine
| | - Barbora Budinská
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| | - Oleksandr V. Dobrovolskiy
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| |
Collapse
|
28
|
Yu JC, Abdel-Rahman MK, Fairbrother DH, McElwee-White L. Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48333-48348. [PMID: 34633789 DOI: 10.1021/acsami.1c12327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Focused electron beam-induced deposition (FEBID) and focused ion beam-induced deposition (FIBID) are direct-write fabrication techniques that use focused beams of charged particles (electrons or ions) to create 3D metal-containing nanostructures by decomposing organometallic precursors onto substrates in a low-pressure environment. For many applications, it is important to minimize contamination of these nanostructures by impurities from incomplete ligand dissociation and desorption. This spotlight on applications describes the use of ultra high vacuum surface science studies to obtain mechanistic information on electron- and ion-induced processes in organometallic precursor candidates. The results are used for the mechanism-based design of custom precursors for FEBID and FIBID.
Collapse
Affiliation(s)
- Jo-Chi Yu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Mohammed K Abdel-Rahman
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218-2685, United States
| | - D Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218-2685, United States
| | - Lisa McElwee-White
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
29
|
Jungwirth F, Porrati F, Schuck AG, Huth M, Barth S. Direct Writing of Cobalt Silicide Nanostructures Using Single-Source Precursors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48252-48259. [PMID: 34592822 DOI: 10.1021/acsami.1c14117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two new precursors for focused electron beam-induced deposition (FEBID) of cobalt silicides have been synthesized and evaluated. The H3SiCo(CO)4 and H2Si(Co(CO)4)2 single-source precursors retain the initial metal ratios and show low sensitivity to changes in the FEBID parameters such as acceleration voltage, beam current, and precursor pressure. The precursors allow the direct writing of material containing ∼55 to 60 at % total metal/metalloid content combined with high growth rates. During the deposition process an average of ∼80% of the carbonyl ligands are cleaved off in these planar deposits. Postgrowth electron curing does not change the deposits' composition, but resistivities decrease after the curing procedure. Temperature-dependent electrical properties indicate the presence of a granular metal for both cured samples and the as-grown Co2Si deposit, while the as-grown CoSi material is on the insulating side of the metal-insulator transition. The observed magnetoresistance behavior is indicative of tunneling magnetoresistance and is substantially reduced upon postgrowth irradiation treatment.
Collapse
Affiliation(s)
- Felix Jungwirth
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Fabrizio Porrati
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Alfons G Schuck
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Michael Huth
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sven Barth
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
30
|
Hinum-Wagner J, Kuhness D, Kothleitner G, Winkler R, Plank H. FEBID 3D-Nanoprinting at Low Substrate Temperatures: Pushing the Speed While Keeping the Quality. NANOMATERIALS 2021; 11:nano11061527. [PMID: 34207654 PMCID: PMC8229455 DOI: 10.3390/nano11061527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
High-fidelity 3D printing of nanoscale objects is an increasing relevant but challenging task. Among the few fabrication techniques, focused electron beam induced deposition (FEBID) has demonstrated its high potential due to its direct-write character, nanoscale capabilities in 3D space and a very high design flexibility. A limitation, however, is the low fabrication speed, which often restricts 3D-FEBID for the fabrication of single objects. In this study, we approach that challenge by reducing the substrate temperatures with a homemade Peltier stage and investigate the effects on Pt based 3D deposits in a temperature range of 5–30 °C. The findings reveal a volume growth rate boost up to a factor of 5.6, while the shape fidelity in 3D space is maintained. From a materials point of view, the internal nanogranular composition is practically unaffected down to 10 °C, followed by a slight grain size increase for even lower temperatures. The study is complemented by a comprehensive discussion about the growth mechanism for a more general picture. The combined findings demonstrate that FEBID on low substrate temperatures is not only much faster, but practically free of drawbacks during high fidelity 3D nanofabrication.
Collapse
Affiliation(s)
- Jakob Hinum-Wagner
- Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria; (J.H.-W.); (D.K.)
| | - David Kuhness
- Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria; (J.H.-W.); (D.K.)
| | - Gerald Kothleitner
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria;
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| | - Robert Winkler
- Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria; (J.H.-W.); (D.K.)
- Correspondence: (R.W.); (H.P.)
| | - Harald Plank
- Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria; (J.H.-W.); (D.K.)
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria;
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
- Correspondence: (R.W.); (H.P.)
| |
Collapse
|
31
|
Rabilloud F, Kopyra J, Abdoul-Carime H. Fragmentation of Nickel(II) and Cobalt(II) Bis(acetylacetonate) Complexes Induced by Slow (<10 eV) Electrons. Inorg Chem 2021; 60:8154-8163. [PMID: 34019425 DOI: 10.1021/acs.inorgchem.1c00795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal acetylacetonate complexes have high potentiality in nanoscale fabrication processes (e.g., focus electron beam-induced deposition) thanks to the versatile character and ease of preparation compounds. In this work, we study and compare the physics and the physicochemistry induced by the interaction of low-energy (<10 eV) electrons with nickel(II) and cobalt(II) bis(acetylacetonate) complexes. The slow particles decompose the molecules via dissociative electron attachment. The nickel(II) and cobalt(II) bis(acetylacetonate) anions and the acetylacetonate negative fragments are the most dominant detected species. The experimental data are completed with density functional theory calculations to provide information on the electronic states of the molecules and the energetics for fragmentation. Finally, it is found that the interaction of low-energy electrons resulting in the decomposition of organometallic complexes in the gas phase is more efficient with the nickel(II) than with the cobalt(II) bis(acetylacetonate) complex. These results are found to be in a relative agreement with the surface experiments.
Collapse
Affiliation(s)
- Franck Rabilloud
- Universite de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, F-69622 Villeurbanne, France
| | - Janina Kopyra
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Hassan Abdoul-Carime
- Universite de Lyon, Université Lyon 1, Institut de Physique des 2 Infinis, CNRS/IN2P3, UMR5822, F-69003 Lyon, France
| |
Collapse
|
32
|
Berger L, Jurczyk J, Madajska K, Szymańska IB, Hoffmann P, Utke I. Room Temperature Direct Electron Beam Lithography in a Condensed Copper Carboxylate. MICROMACHINES 2021; 12:580. [PMID: 34065297 PMCID: PMC8161174 DOI: 10.3390/mi12050580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022]
Abstract
High-resolution metallic nanostructures can be fabricated with multistep processes, such as electron beam lithography or ice lithography. The gas-assisted direct-write technique known as focused electron beam induced deposition (FEBID) is more versatile than the other candidates. However, it suffers from low throughput. This work presents the combined approach of FEBID and the above-mentioned lithography techniques: direct electron beam lithography (D-EBL). A low-volatility copper precursor is locally condensed onto a room temperature substrate and acts as a positive tone resist. A focused electron beam then directly irradiates the desired patterns, leading to local molecule dissociation. By rinsing or sublimation, the non-irradiated precursor is removed, leaving copper-containing structures. Deposits were formed with drastically enhanced growth rates than FEBID, and their composition was found to be comparable to gas-assisted FEBID structures. The influence of electron scattering within the substrate as well as implementing a post-purification protocol were studied. The latter led to the agglomeration of high-purity copper crystals. We present this as a new approach to electron beam-induced fabrication of metallic nanostructures without the need for cryogenic or hot substrates. D-EBL promises fast and easy fabrication results.
Collapse
Affiliation(s)
- Luisa Berger
- Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, 3602 Thun, Switzerland; (L.B.); (J.J.)
| | - Jakub Jurczyk
- Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, 3602 Thun, Switzerland; (L.B.); (J.J.)
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katarzyna Madajska
- Department of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (K.M.); (I.B.S.)
| | - Iwona B. Szymańska
- Department of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (K.M.); (I.B.S.)
| | - Patrik Hoffmann
- Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, 3602 Thun, Switzerland;
| | - Ivo Utke
- Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, 3602 Thun, Switzerland; (L.B.); (J.J.)
| |
Collapse
|
33
|
Lengyel J, Pysanenko A, Swiderek P, Heiz U, Fárník M, Fedor J. Water-Assisted Electron-Induced Chemistry of the Nanofabrication Precursor Iron Pentacarbonyl. J Phys Chem A 2021; 125:1919-1926. [PMID: 33651608 DOI: 10.1021/acs.jpca.1c00135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Focused electron beam deposition often requires the use of purification techniques to increase the metal content of the respective deposit. One of the promising methods is adding H2O vapor as a reactive agent during the electron irradiation. However, various contrary effects of such addition have been reported depending on the experimental condition. We probe the elementary electron-induced processes that are operative in a heterogeneous system consisting of iron pentacarbonyl as an organometallic precursor and water. We use an electron beam of controlled energy that interacts with free mixed Fe(CO)5/H2O clusters. These mimic the heterogeneous system and, at the same time, allow direct mass spectrometric analysis of the reaction products. The anionic decomposition pathways are initiated by dissociative electron attachment (DEA), either to Fe(CO)5 or to H2O. The former one proceeds mainly at low electron energies (<3 eV). Comparison of nonhydrated and hydrated conditions reveals that the presence of water actually stabilizes the ligands against dissociation. The latter one proceeds at higher electron energies (>6 eV), where the DEA to H2O forms OH- in the first reaction step. This intermediate reacts with Fe(CO)5, leading to enhanced decomposition, with the desorption of up to three CO ligands. The present results demonstrate that the water action on Fe(CO)5 decomposition is sensitive to the involved electron energy range and depends on the hydration degree.
Collapse
Affiliation(s)
- Jozef Lengyel
- Chair of Physical Chemistry, Department of Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Petra Swiderek
- Institute of Applied and Physical Chemistry, Faculty 2 (Chemistry/Biology), University of Bremen, Leobener Strasse 5, 28359 Bremen, Germany
| | - Ueli Heiz
- Chair of Physical Chemistry, Department of Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Juraj Fedor
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
34
|
Magén C, Pablo-Navarro J, De Teresa JM. Focused-Electron-Beam Engineering of 3D Magnetic Nanowires. NANOMATERIALS 2021; 11:nano11020402. [PMID: 33557442 PMCID: PMC7914621 DOI: 10.3390/nano11020402] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/25/2022]
Abstract
Focused-electron-beam-induced deposition (FEBID) is the ultimate additive nanofabrication technique for the growth of 3D nanostructures. In the field of nanomagnetism and its technological applications, FEBID could be a viable solution to produce future high-density, low-power, fast nanoelectronic devices based on the domain wall conduit in 3D nanomagnets. While FEBID has demonstrated the flexibility to produce 3D nanostructures with almost any shape and geometry, the basic physical properties of these out-of-plane deposits are often seriously degraded from their bulk counterparts due to the presence of contaminants. This work reviews the experimental efforts to understand and control the physical processes involved in 3D FEBID growth of nanomagnets. Co and Fe FEBID straight vertical nanowires have been used as benchmark geometry to tailor their dimensions, microstructure, composition and magnetism by smartly tuning the growth parameters, post-growth purification treatments and heterostructuring.
Collapse
Affiliation(s)
- César Magén
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: ; Tel.: +34-876-555369; Fax: +34-976-762-776
| | - Javier Pablo-Navarro
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
35
|
Expanding 3D Nanoprinting Performance by Blurring the Electron Beam. MICROMACHINES 2021; 12:mi12020115. [PMID: 33499214 PMCID: PMC7911092 DOI: 10.3390/mi12020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022]
Abstract
Additive, direct-write manufacturing via a focused electron beam has evolved into a reliable 3D nanoprinting technology in recent years. Aside from low demands on substrate materials and surface morphologies, this technology allows the fabrication of freestanding, 3D architectures with feature sizes down to the sub-20 nm range. While indispensably needed for some concepts (e.g., 3D nano-plasmonics), the final applications can also be limited due to low mechanical rigidity, and thermal- or electric conductivities. To optimize these properties, without changing the overall 3D architecture, a controlled method for tuning individual branch diameters is desirable. Following this motivation, here, we introduce on-purpose beam blurring for controlled upward scaling and study the behavior at different inclination angles. The study reveals a massive boost in growth efficiencies up to a factor of five and the strong delay of unwanted proximal growth. In doing so, this work expands the design flexibility of this technology.
Collapse
|
36
|
Kuhness D, Gruber A, Winkler R, Sattelkow J, Fitzek H, Letofsky-Papst I, Kothleitner G, Plank H. High-Fidelity 3D Nanoprinting of Plasmonic Gold Nanoantennas. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1178-1191. [PMID: 33372522 DOI: 10.1021/acsami.0c17030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The direct-write fabrication of freestanding nanoantennas for plasmonic applications is a challenging task, as demands for overall morphologies, nanoscale features, and material qualities are very high. Within the small pool of capable technologies, three-dimensional (3D) nanoprinting via focused electron beam-induced deposition (FEBID) is a promising candidate due to its design flexibility. As FEBID materials notoriously suffer from high carbon contents, the chemical postgrowth transfer into pure metals is indispensably needed, which can severely harm or even destroy FEBID-based 3D nanoarchitectures. Following this challenge, we first dissect FEBID growth characteristics and then combine individual advantages by an advanced patterning approach. This allows the direct-write fabrication of high-fidelity shapes with nanoscale features in the sub-10 nm range, which allow a shape-stable chemical transfer into plasmonically active Au nanoantennas. The here-introduced strategy is a generic approach toward more complex 3D architectures for future applications in the field of 3D plasmonics.
Collapse
Affiliation(s)
- David Kuhness
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | | | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Jürgen Sattelkow
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Harald Fitzek
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
| | - Ilse Letofsky-Papst
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Gerald Kothleitner
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Harald Plank
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
37
|
de Vera P, Azzolini M, Sushko G, Abril I, Garcia-Molina R, Dapor M, Solov'yov IA, Solov'yov AV. Multiscale simulation of the focused electron beam induced deposition process. Sci Rep 2020; 10:20827. [PMID: 33257728 PMCID: PMC7705715 DOI: 10.1038/s41598-020-77120-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/03/2020] [Indexed: 11/09/2022] Open
Abstract
Focused electron beam induced deposition (FEBID) is a powerful technique for 3D-printing of complex nanodevices. However, for resolutions below 10 nm, it struggles to control size, morphology and composition of the structures, due to a lack of molecular-level understanding of the underlying irradiation-driven chemistry (IDC). Computational modeling is a tool to comprehend and further optimize FEBID-related technologies. Here we utilize a novel multiscale methodology which couples Monte Carlo simulations for radiation transport with irradiation-driven molecular dynamics for simulating IDC with atomistic resolution. Through an in depth analysis of [Formula: see text] deposition on [Formula: see text] and its subsequent irradiation with electrons, we provide a comprehensive description of the FEBID process and its intrinsic operation. Our analysis reveals that simulations deliver unprecedented results in modeling the FEBID process, demonstrating an excellent agreement with available experimental data of the simulated nanomaterial composition, microstructure and growth rate as a function of the primary beam parameters. The generality of the methodology provides a powerful tool to study versatile problems where IDC and multiscale phenomena play an essential role.
Collapse
Affiliation(s)
- Pablo de Vera
- MBN Research Center, Altenhöferallee 3, 60438, Frankfurt am Main, Germany.
- Departamento de Física - Centro de Investigación en Óptica y Nanofísica (CIOyN), Universidad de Murcia, 30100, Murcia, Spain.
| | - Martina Azzolini
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), 38123, Trento, Italy
| | - Gennady Sushko
- MBN Research Center, Altenhöferallee 3, 60438, Frankfurt am Main, Germany
| | - Isabel Abril
- Departament de Física Aplicada, Universitat d'Alacant, 03080, Alacant, Spain
| | - Rafael Garcia-Molina
- Departamento de Física - Centro de Investigación en Óptica y Nanofísica (CIOyN), Universidad de Murcia, 30100, Murcia, Spain
| | - Maurizio Dapor
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), 38123, Trento, Italy
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky Straße 9-11, 26129, Oldenburg, Germany
| | - Andrey V Solov'yov
- MBN Research Center, Altenhöferallee 3, 60438, Frankfurt am Main, Germany
| |
Collapse
|
38
|
Ganjian M, Angeloni L, Mirzaali MJ, Modaresifar K, Hagen CW, Ghatkesar MK, Hagedoorn PL, Fratila-Apachitei LE, Zadpoor AA. Quantitative mechanics of 3D printed nanopillars interacting with bacterial cells. NANOSCALE 2020; 12:21988-22001. [PMID: 32914826 DOI: 10.1039/d0nr05984f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
One of the methods to create sub-10 nm resolution metal-composed 3D nanopillars is electron beam-induced deposition (EBID). Surface nanotopographies (e.g., nanopillars) could play an important role in the design and fabrication of implantable medical devices by preventing the infections that are caused by the bacterial colonization of the implant surface. The mechanical properties of such nanoscale structures can influence their bactericidal efficiency. In addition, these properties are key factors in determining the fate of stem cells. In this study, we quantified the relevant mechanical properties of EBID nanopillars interacting with Staphylococcus aureus (S. aureus) using atomic force microscopy (AFM). We first determined the elastic modulus (17.7 GPa) and the fracture stress (3.0 ± 0.3 GPa) of the nanopillars using the quantitative imaging (QI) mode and contact mode (CM) of AFM. The displacement of the nanopillars interacting with the bacteria cells was measured by scanning electron microscopy (50.3 ± 9.0 nm). Finite element method based simulations were then applied to obtain the force-displacement curve of the nanopillars (considering the specified dimensions and the measured value of the elastic modulus) based on which an interaction force of 88.7 ± 36.1 nN was determined. The maximum von Mises stress of the nanopillars subjected to these forces was also determined (3.2 ± 0.3 GPa). These values were close to the maximum (i.e., fracture) stress of the pillars as measured by AFM, indicating that the nanopillars were close to their breaking point while interacting with S. aureus. These findings reveal unique quantitative data regarding the mechanical properties of nanopillars interacting with bacterial cells and highlight the possibilities of enhancing the bactericidal activity of the investigated EBID nanopillars by adjusting both their geometry and mechanical properties.
Collapse
Affiliation(s)
- Mahya Ganjian
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rohdenburg M, Fröch JE, Martinović P, Lobo CJ, Swiderek P. Combined Ammonia and Electron Processing of a Carbon-Rich Ruthenium Nanomaterial Fabricated by Electron-Induced Deposition. MICROMACHINES 2020; 11:mi11080769. [PMID: 32806527 PMCID: PMC7466110 DOI: 10.3390/mi11080769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023]
Abstract
Ammonia (NH3)-assisted purification of deposits fabricated by focused electron beam-induced deposition (FEBID) has recently been proven successful for the removal of halide contaminations. Herein, we demonstrate the impact of combined NH3 and electron processing on FEBID deposits containing hydrocarbon contaminations that stem from anionic cyclopentadienyl-type ligands. For this purpose, we performed FEBID using bis(ethylcyclopentadienyl)ruthenium(II) as the precursor and subjected the resulting deposits to NH3 and electron processing, both in an environmental scanning electron microscope (ESEM) and in a surface science study under ultrahigh vacuum (UHV) conditions. The results provide evidence that nitrogen from NH3 is incorporated into the carbon content of the deposits which results in a covalent nitride material. This approach opens a perspective to combine the promising properties of carbon nitrides with respect to photocatalysis or nanosensing with the unique 3D nanoprinting capabilities of FEBID, enabling access to a novel class of tailored nanodevices.
Collapse
Affiliation(s)
- Markus Rohdenburg
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;
- Correspondence: (M.R.); (P.S.); Tel.: +49-421-218-63203 (M.R.); +49-421-218-63200 (P.S.)
| | - Johannes E. Fröch
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.E.F.); (C.J.L.)
| | - Petra Martinović
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;
| | - Charlene J. Lobo
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.E.F.); (C.J.L.)
| | - Petra Swiderek
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;
- Correspondence: (M.R.); (P.S.); Tel.: +49-421-218-63203 (M.R.); +49-421-218-63200 (P.S.)
| |
Collapse
|
40
|
Rohdenburg M, Boeckers H, Brewer CR, McElwee-White L, Swiderek P. Efficient NH 3-based process to remove chlorine from electron beam deposited ruthenium produced from (η 3-C 3H 5)Ru(CO) 3Cl. Sci Rep 2020; 10:10901. [PMID: 32616780 PMCID: PMC7331610 DOI: 10.1038/s41598-020-67803-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/12/2020] [Indexed: 11/09/2022] Open
Abstract
The fabrication of Ru nanostructures by focused electron beam induced deposition (FEBID) requires suitable precursor molecules and processes to obtain the pure metal. So far this is problematic because established organometallic Ru precursors contain large organic ligands, such as cyclopentadienyl anions, that tend to become embedded in the deposit during the FEBID process. Recently, (η3-C3H5)Ru(CO)3X (X = Cl, Br) has been proposed as an alternative precursor because CO can easily desorb under electron exposure. However, allyl and Cl ligands remain behind after electron irradiation and the removal of the halide requires extensive electron exposures. Auger electron spectroscopy is applied to demonstrate a postdeposition purification process in which NH3 is used as a reactant that enhances the removal of Cl from deposits formed by electron irradiation of thin condensed layers of (η3-C3H5)Ru(CO)3Cl. The loss of CO from the precursor during electron-induced decomposition enables a reaction between NH3 and the Cl ligands that produces HCl. The combined use of electron-stimulated desorption experiments and thermal desorption spectrometry further reveals that thermal reactions contribute to the loss of CO in the FEBID process but remove only minor amounts of the allyl and Cl ligands.
Collapse
Affiliation(s)
- Markus Rohdenburg
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359, Bremen, Germany.
| | - Hannah Boeckers
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359, Bremen, Germany
| | - Christopher R Brewer
- Department of Chemistry, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Lisa McElwee-White
- Department of Chemistry, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Petra Swiderek
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359, Bremen, Germany.
| |
Collapse
|
41
|
Utke I, Michler J, Winkler R, Plank H. Mechanical Properties of 3D Nanostructures Obtained by Focused Electron/Ion Beam-Induced Deposition: A Review. MICROMACHINES 2020; 11:E397. [PMID: 32290292 PMCID: PMC7231341 DOI: 10.3390/mi11040397] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
This article reviews the state-of-the -art of mechanical material properties and measurement methods of nanostructures obtained by two nanoscale additive manufacturing methods: gas-assisted focused electron and focused ion beam-induced deposition using volatile organic and organometallic precursors. Gas-assisted focused electron and ion beam-induced deposition-based additive manufacturing technologies enable the direct-write fabrication of complex 3D nanostructures with feature dimensions below 50 nm, pore-free and nanometer-smooth high-fidelity surfaces, and an increasing flexibility in choice of materials via novel precursors. We discuss the principles, possibilities, and literature proven examples related to the mechanical properties of such 3D nanoobjects. Most materials fabricated via these approaches reveal a metal matrix composition with metallic nanograins embedded in a carbonaceous matrix. By that, specific material functionalities, such as magnetic, electrical, or optical can be largely independently tuned with respect to mechanical properties governed mostly by the matrix. The carbonaceous matrix can be precisely tuned via electron and/or ion beam irradiation with respect to the carbon network, carbon hybridization, and volatile element content and thus take mechanical properties ranging from polymeric-like over amorphous-like toward diamond-like behavior. Such metal matrix nanostructures open up entirely new applications, which exploit their full potential in combination with the unique 3D additive manufacturing capabilities at the nanoscale.
Collapse
Affiliation(s)
- Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Harald Plank
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
| |
Collapse
|
42
|
Compartmentalization of gold nanoparticle clusters in hollow silica spheres and their assembly induced by an external electric field. J Colloid Interface Sci 2020; 566:202-210. [DOI: 10.1016/j.jcis.2020.01.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
|
43
|
Zhao D, Chang B, Beleggia M. Electron-Beam Patterning of Vapor-Deposited Solid Anisole. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6436-6441. [PMID: 31942796 DOI: 10.1021/acsami.9b19778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The emerging ice lithography (IL) nanofabrication technology differs from conventional electron-beam lithography by working at cryogenic temperatures and using vapor-deposited organic molecules, such as solid water and alkanes, as e-beam resists. In this paper, we systematically investigate e-beam patterning of frozen anisole and assess its performance as an e-beam resist in IL. Dose curves reveal that anisole has a very low contrast of ∼1, with a very weak dependence on primary beam energy in the investigated range of 5-20 keV. The minimum line width of 60 nm is attainable at 20 keV, limited by stage vibration in our apparatus. Notably, various solid states of anisole have been observed and we can control the deposited anisole from crystalline to amorphous state by decreasing the deposition temperature. The critical temperature for forming an amorphous film is 130 K in the vacuum of a microscope chamber. Smooth patterns with a surface roughness of ∼0.7 nm are achieved in the as-deposited amorphous solid anisole. As a proof of principle of 3D fabrication, we finally fabricate nanoscale patterns on exotic silicon micropillars with a high aspect ratio using this resist.
Collapse
Affiliation(s)
- Ding Zhao
- DTU Nanolab, National Centre for Nano Fabrication and Characterization , Technical University of Denmark , Kongens Lyngby 2800 , Denmark
| | - Bingdong Chang
- DTU Nanolab, National Centre for Nano Fabrication and Characterization , Technical University of Denmark , Kongens Lyngby 2800 , Denmark
| | - Marco Beleggia
- DTU Nanolab, National Centre for Nano Fabrication and Characterization , Technical University of Denmark , Kongens Lyngby 2800 , Denmark
| |
Collapse
|
44
|
Skoric L, Sanz-Hernández D, Meng F, Donnelly C, Merino-Aceituno S, Fernández-Pacheco A. Layer-by-Layer Growth of Complex-Shaped Three-Dimensional Nanostructures with Focused Electron Beams. NANO LETTERS 2020; 20:184-191. [PMID: 31869235 DOI: 10.1021/acs.nanolett.9b03565] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The fabrication of three-dimensional (3D) nanostructures is of great interest to many areas of nanotechnology currently challenged by fundamental limitations of conventional lithography. One of the most promising direct-write methods for 3D nanofabrication is focused electron beam-induced deposition (FEBID), owing to its high spatial resolution and versatility. Here we extend FEBID to the growth of complex-shaped 3D nanostructures by combining the layer-by-layer approach of conventional macroscopic 3D printers and the proximity effect correction of electron beam lithography. This framework is based on the continuum FEBID model and is capable of adjusting for a wide range of effects present during deposition, including beam-induced heating, defocusing, and gas flux anisotropies. We demonstrate the capabilities of our platform by fabricating free-standing nanowires, surfaces with varying curvatures and topologies, and general 3D objects, directly from standard stereolithography (STL) files and using different precursors. Real 3D nanoprinting as demonstrated here opens up exciting avenues for the study and exploitation of 3D nanoscale phenomena.
Collapse
Affiliation(s)
- Luka Skoric
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , CB3 0HE , Cambridge , United Kingdom
| | - Dédalo Sanz-Hernández
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , CB3 0HE , Cambridge , United Kingdom
| | - Fanfan Meng
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , CB3 0HE , Cambridge , United Kingdom
| | - Claire Donnelly
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , CB3 0HE , Cambridge , United Kingdom
| | - Sara Merino-Aceituno
- Faculty of Mathematics , University of Vienna , Oskar-Morgenstern-Platz 1 , 1090 , Vienna , Austria
| | - Amalio Fernández-Pacheco
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , CB3 0HE , Cambridge , United Kingdom
- SUPA, School of Physics and Astronomy , University of Glasgow , Kelvin Building, G12 8QQ , Glasgow , Scotland, United Kingdom
| |
Collapse
|
45
|
Plank H, Winkler R, Schwalb CH, Hütner J, Fowlkes JD, Rack PD, Utke I, Huth M. Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review. MICROMACHINES 2019; 11:E48. [PMID: 31906005 PMCID: PMC7019982 DOI: 10.3390/mi11010048] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022]
Abstract
Scanning probe microscopy (SPM) has become an essential surface characterization technique in research and development. By concept, SPM performance crucially depends on the quality of the nano-probe element, in particular, the apex radius. Now, with the development of advanced SPM modes beyond morphology mapping, new challenges have emerged regarding the design, morphology, function, and reliability of nano-probes. To tackle these challenges, versatile fabrication methods for precise nano-fabrication are needed. Aside from well-established technologies for SPM nano-probe fabrication, focused electron beam-induced deposition (FEBID) has become increasingly relevant in recent years, with the demonstration of controlled 3D nanoscale deposition and tailored deposit chemistry. Moreover, FEBID is compatible with practically any given surface morphology. In this review article, we introduce the technology, with a focus on the most relevant demands (shapes, feature size, materials and functionalities, substrate demands, and scalability), discuss the opportunities and challenges, and rationalize how those can be useful for advanced SPM applications. As will be shown, FEBID is an ideal tool for fabrication / modification and rapid prototyping of SPM-tipswith the potential to scale up industrially relevant manufacturing.
Collapse
Affiliation(s)
- Harald Plank
- Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria;
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
| | - Robert Winkler
- Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria;
| | | | - Johanna Hütner
- GETec Microscopy GmbH, 1220 Vienna, Austria; (C.H.S.); (J.H.)
| | - Jason D. Fowlkes
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (J.D.F.); (P.D.R.)
- Materials Science and Engineering, The University of Tennessee, Knoxville, Knoxville, TN 37996, USA
| | - Philip D. Rack
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (J.D.F.); (P.D.R.)
- Materials Science and Engineering, The University of Tennessee, Knoxville, Knoxville, TN 37996, USA
| | - Ivo Utke
- Mechanics of Materials and Nanostructures Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland;
| | - Michael Huth
- Physics Institute, Goethe University Frankfurt, 60323 Frankfurt am Main, Germany;
| |
Collapse
|
46
|
Huth M, Porrati F, Gruszka P, Barth S. Temperature-Dependent Growth Characteristics of Nb- and CoFe-Based Nanostructures by Direct-Write Using Focused Electron Beam-Induced Deposition. MICROMACHINES 2019; 11:mi11010028. [PMID: 31881650 PMCID: PMC7019710 DOI: 10.3390/mi11010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
Focused electron and ion beam-induced deposition (FEBID/FIBID) are direct-write techniques with particular advantages in three-dimensional (3D) fabrication of ferromagnetic or superconducting nanostructures. Recently, two novel precursors, HCo3Fe(CO)12 and Nb(NMe3)2(N-t-Bu), were introduced, resulting in fully metallic CoFe ferromagnetic alloys by FEBID and superconducting NbC by FIBID, respectively. In order to properly define the writing strategy for the fabrication of 3D structures using these precursors, their temperature-dependent average residence time on the substrate and growing deposit needs to be known. This is a prerequisite for employing the simulation-guided 3D computer aided design (CAD) approach to FEBID/FIBID, which was introduced recently. We fabricated a series of rectangular-shaped deposits by FEBID at different substrate temperatures between 5 °C and 24 °C using the precursors and extracted the activation energy for precursor desorption and the pre-exponential factor from the measured heights of the deposits using the continuum growth model of FEBID based on the reaction-diffusion equation for the adsorbed precursor.
Collapse
|
47
|
Fowlkes JD, Winkler R, Mutunga E, Rack PD, Plank H. Simulation Informed CAD for 3D Nanoprinting. MICROMACHINES 2019; 11:mi11010008. [PMID: 31861480 PMCID: PMC7020084 DOI: 10.3390/mi11010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
A promising 3D nanoprinting method, used to deposit nanoscale mesh style objects, is prone to non-linear distortions which limits the complexity and variety of deposit geometries. The method, focused electron beam-induced deposition (FEBID), uses a nanoscale electron probe for continuous dissociation of surface adsorbed precursor molecules which drives highly localized deposition. Three dimensional objects are deposited using a 2D digital scanning pattern—the digital beam speed controls deposition into the third, or out-of-plane dimension. Multiple computer-aided design (CAD) programs exist for FEBID mesh object definition but rely on the definition of nodes and interconnecting linear nanowires. Thus, a method is needed to prevent non-linear/bending nanowires for accurate geometric synthesis. An analytical model is derived based on simulation results, calibrated using real experiments, to ensure linear nanowire deposition to compensate for implicit beam heating that takes place during FEBID. The model subsequently compensates and informs the exposure file containing the pixel-by-pixel scanning instructions, ensuring nanowire linearity by appropriately adjusting the patterning beam speeds. The derivation of the model is presented, based on a critical mass balance revealed by simulations and the strategy used to integrate the physics-based analytical model into an existing 3D nanoprinting CAD program is overviewed.
Collapse
Affiliation(s)
- Jason D. Fowlkes
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA;
- Bredesen Center for Interdisciplinary Research, The University of Tennessee, Knoxville, TN 37996, USA;
- Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: ; Tel.: +865-223-2902
| | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Eva Mutunga
- Bredesen Center for Interdisciplinary Research, The University of Tennessee, Knoxville, TN 37996, USA;
| | - Philip D. Rack
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA;
- Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA
| | - Harald Plank
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
| |
Collapse
|
48
|
Pablo-Navarro J, Sangiao S, Magén C, de Teresa JM. Diameter modulation of 3D nanostructures in focused electron beam induced deposition using local electric fields and beam defocus. NANOTECHNOLOGY 2019; 30:505302. [PMID: 31491780 DOI: 10.1088/1361-6528/ab423c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Focused electron beam induced deposition (FEBID) is a leading nanolithography technique in terms of resolution and the capability for three-dimensional (3D) growth of functional nanostructures. However, FEBID still presents some limitations with respect to the precise control of the dimensions of the grown nano-objects as well as its use on insulating substrates. In the present work, we overcome both limitations by employing electrically-biased metal structures patterned on the surface of insulating substrates. Such patterned metal structures serve for charge dissipation and also allow the application of spatially-dependent electric fields. We demonstrate that such electric fields can dramatically change the dimensions of the growing 3D nanostructures by acting on the primary electron beam and the generated secondary electrons. In the performed experiments, the diameter of Pt-C and W-C vertical nanowires grown on quartz, MgO and amorphous SiO2 is tuned by application of moderate voltages (up to 200 V) on the patterned metal microstructures during growth, achieving diameters as small as 50 nm. We identify two competing effects arising from the generated electric fields: a slight change in the primary beam focus point and a strong action on the secondary electrons. Beam defocus is exploited to achieve the in situ modulation of the diameter of 3D FEBID structures during growth.
Collapse
Affiliation(s)
- Javier Pablo-Navarro
- Laboratorio de Microscopías Avanzadas (LMA)-Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | | | | | | |
Collapse
|
49
|
Späth A. Additive Nano-Lithography with Focused Soft X-rays: Basics, Challenges, and Opportunities. MICROMACHINES 2019; 10:E834. [PMID: 31801198 PMCID: PMC6953100 DOI: 10.3390/mi10120834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022]
Abstract
Focused soft X-ray beam induced deposition (FXBID) is a novel technique for direct-write nanofabrication of metallic nanostructures from metal organic precursor gases. It combines the established concepts of focused electron beam induced processing (FEBIP) and X-ray lithography (XRL). The present setup is based on a scanning transmission X-ray microscope (STXM) equipped with a gas flow cell to provide metal organic precursor molecules towards the intended deposition zone. Fundamentals of X-ray microscopy instrumentation and X-ray radiation chemistry relevant for FXBID development are presented in a comprehensive form. Recently published proof-of-concept studies on initial experiments on FXBID nanolithography are reviewed for an overview on current progress and proposed advances of nanofabrication performance. Potential applications and advantages of FXBID are discussed with respect to competing electron/ion based techniques.
Collapse
Affiliation(s)
- Andreas Späth
- Friedrich-Alexander-University Erlangen-Nuremberg, Physical Chemistry II, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
50
|
Comparison between Focused Electron/Ion Beam-Induced Deposition at Room Temperature and under Cryogenic Conditions. MICROMACHINES 2019; 10:mi10120799. [PMID: 31766480 PMCID: PMC6952801 DOI: 10.3390/mi10120799] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 11/17/2022]
Abstract
In this contribution, we compare the performance of Focused Electron Beam-induced Deposition (FEBID) and Focused Ion Beam-induced Deposition (FIBID) at room temperature and under cryogenic conditions (the prefix “Cryo” is used here for cryogenic). Under cryogenic conditions, the precursor material condensates on the substrate, forming a layer that is several nm thick. Its subsequent exposure to a focused electron or ion beam and posterior heating to 50 °C reveals the deposit. Due to the extremely low charge dose required, Cryo-FEBID and Cryo-FIBID are found to excel in terms of growth rate, which is typically a few hundred/thousand times higher than room-temperature deposition. Cryo-FIBID using the W(CO)6 precursor has demonstrated the growth of metallic deposits, with resistivity not far from the corresponding deposits grown at room temperature. This paves the way for its application in circuit edit and the fast and direct growth of micro/nano-electrical contacts with decreased ion damage. The last part of the contribution is dedicated to the comparison of these techniques with other charge-based lithography techniques in terms of the charge dose required and process complexity. The comparison indicates that Cryo-FIBID is very competitive and shows great potential for future lithography developments.
Collapse
|