1
|
Shan CW, Chen Z, Han GC, Feng XZ, Kraatz HB. Electrochemical immuno-biosensors for the detection of the tumor marker alpha-fetoprotein: A review. Talanta 2024; 271:125638. [PMID: 38237279 DOI: 10.1016/j.talanta.2024.125638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein that has many important physiological functions, including transportation, immunosuppression, and induction of apoptosis by T lymphocytes. AFP is closely related to the development of hepatocellular carcinoma and many kinds of tumors, all of which can show high concentrations, so it is used as a positive test indicator for many kinds of tumors. This paper reviews recent advances in the detection of the tumor marker AFP based on three immuno-biosensors: electrochemical (EC), photoelectrochemical (PEC), and electrochemical luminescence (ECL). The electrodes are modified by different materials or homemade composites, different signaling molecules are selected as single probes or dual probes for the detection of AFP. The detection limit was as low as 3 fg/mL, which indicated that the AFP immunosensor had achieved highly sensitive detection. In addition, we also reviewed and summarized the current development status and application prospect of AFP immunoelectrochemical sensors. There are not too many researches on immunosensors based on dual-signal ratios, and the commonly used probes are methylene blue (MB) and ferrocene (Fc). It would be more innovative to have more novel signaling molecules as probes to prepare dual-signal ratio sensors.
Collapse
Affiliation(s)
- Chen-Wei Shan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
2
|
Xu S, Wu XH, Wu L, Zhai JM, Li SJ, Kou Y, Peng W, Zheng QN, Tian JH, Zhang YJ, Li JF. Systematic Optimization of Universal Real-Time Hypersensitive Fast Detection Method for HBsAg in Serum Based on SERS. Anal Chem 2024; 96:6784-6793. [PMID: 38632870 DOI: 10.1021/acs.analchem.4c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma, with HBV surface antigen (HBsAg) being a crucial marker in the clinical detection of HBV. Due to the significant harm and ease of transmission associated with HBV, HBsAg testing has become an essential part of preoperative assessments, particularly for emergency surgeries where healthcare professionals face exposure risks. Therefore, a timely and accurate detection method for HBsAg is urgently needed. In this study, a surface-enhanced Raman scattering (SERS) sensor with a sandwich structure was developed for HBsAg detection. Leveraging the ultrasensitive and rapid detection capabilities of SERS, this sensor enables quick detection results, significantly reducing waiting times. By systematically optimizing critical factors in the detection process, such as the composition and concentration of the incubation solution as well as the modification conditions and amount of probe particles, the sensitivity of the SERS immune assay system was improved. Ultimately, the sensor achieved a sensitivity of 0.00576 IU/mL within 12 min, surpassing the clinical requirement of 0.05 IU/mL by an order of magnitude. In clinical serum assay validation, the issue of false positives was effectively addressed by adding a blocker. The final sensor demonstrated 100% specificity and sensitivity at the threshold of 0.05 IU/mL. Therefore, this study not only designed an ultrasensitive SERS sensor for detecting HBsAg in actual clinical serum samples but also provided theoretical support for similar systems, filling the knowledge gap in existing literature.
Collapse
Affiliation(s)
- Shanshan Xu
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xiao-Hang Wu
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Lin Wu
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jia-Min Zhai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shi-Jun Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yichuan Kou
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Wei Peng
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Qing-Na Zheng
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yue-Jiao Zhang
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
3
|
Yun H, Jeong HJ. Fluorogenic enzyme-linked immunosorbent assay with a dual color variation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123973. [PMID: 38295595 DOI: 10.1016/j.saa.2024.123973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/02/2024]
Abstract
The development of accurate and high-throughput biomarker detection tools is crucial for the diagnosis, monitoring, and treatment of various diseases. In this study, a sensitive fluorogenic enzyme-linked immunosorbent assay (FELISA) using Amplex Red or QuantaBlu fluorescent substrate was developed for the detection of tumor necrosis factor alpha and programmed cell death-ligand 1. The limit of detection of FELISA was in the nanogram order and multiple samples were conveniently assayed within 20 h using FELISA, demonstrating its applicability as a powerful immunoassay tool. FELISA can be widely used for rapid and accurate TNFα and PDL1 detection and applied to various fluorogenic immunoassays against other antigens of interest.
Collapse
Affiliation(s)
- Hanool Yun
- Department of Biological and Chemical Engineering, Hongik University, 2639 Sejong-ro, Sejong-si 30016, South Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, 2639 Sejong-ro, Sejong-si 30016, South Korea.
| |
Collapse
|
4
|
Zhan C, Guan Z, Yu L, Jing T, Jia H, Chen X, Gao R. Microfluidics-aided fabrication of 3D micro-nano hierarchical SERS substrate for rapid detection of dual hepatocellular carcinoma biomarkers. LAB ON A CHIP 2024; 24:528-536. [PMID: 38168831 DOI: 10.1039/d3lc00907f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The simultaneous analysis of trace amounts of dual biomarkers is crucial in the early diagnosis, treatment, and prognosis of hepatocellular carcinoma (HCC). In this study, we prepared SERS-active hydrogel microparticles (SAHMs) with 3D hierarchical gold nanoparticles (AuNPs) micro-nanostructures by microdroplet technology and in situ synthesis, which demonstrated high reproducibility and sensitivity. Compared with traditional 2D SERS substrates, this newly prepared 3D SERS substrate provided a high density of nano-wrinkled structures and numerous AuNPs. Furthermore, a newly designed SERS-active substrate was proposed for the simultaneous microfluidic detection of AFP and AFU. The Raman signals of sandwich immunocomplexes on the surface of the SAHMs were measured for the trace analysis of these biomarkers. The proposed microfluidic platform achieved AFP and AFU detection in the range of 0.1-100 ng mL-1 and 0.01-100 ng mL-1, respectively, which represents a good response. Indeed, this platform is easy to fabricate, of low cost and has short detection time and comparable detection limits to other methods. As far as we know, this is the first study to achieve the simultaneous detection of AFP and AFU on a microfluidic platform. Therefore, we proposed a new simultaneous detection platform for dual HCC biomarkers that shows strong potential for the early diagnosis of HCC.
Collapse
Affiliation(s)
- Changbiao Zhan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zihao Guan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Liandong Yu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Tongmei Jing
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Huakun Jia
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Xiaozhe Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Rongke Gao
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
5
|
Gao Y, Wu Y, Huang P, Wu FY. Colorimetric and photothermal immunosensor for sensitive detection of cancer biomarkers based on enzyme-mediated growth of gold nanostars on polydopamine. Anal Chim Acta 2023; 1279:341775. [PMID: 37827632 DOI: 10.1016/j.aca.2023.341775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Detecting cancer biomarker levels in body fluids is essential for medical diagnosis. Enzyme-linked immunosorbent assay (ELISA) has been broadly used to detect cancer biomarkers. However, colorimetric ELISA based solely on nanoparticles (NPs) are susceptible to environmental influences, which often results in the detection inaccuracy, being limited in clinical applications. In this regard, the dual-mode approach would add signal diversity to the detection, making the results more reliable. RESULTS We present colorimetric and photothermal immunosensor that enables direct reading of the color and temperature of the solution. A core-satellite nanoprobe constructed by polydopamine (PDA) as the core and gold seeds as satellites is rationally designed as the signal reporter. When ascorbic acid is present in the solution, PDA can cooperate with ascorbic acid to reduce chloroauric acid and mediate the growth of gold seeds on the PDA surface, inducing a redshift of the localized surface plasmon resonance peak of the nanosensor and the change in photothermal conversion efficiency. The method is further combined with the sandwiched immunoassay to construct an alkaline phosphatase based colorimetric and photothermal ELISA for the highly sensitive and accurate evaluation and detection of prostate-specific antigen (PSA). The linear range was from 0.05 to 100 ng mL-1 with a detection limit of 6.71 pg mL-1 for the colorimetric detection, while the linear range was from 0.5 to 90 ng mL-1 with a detection limit of 0.13 ng mL-1 in the photothermal analysis. The accurate detection of PSA levels in serum samples was well demonstrated with the dual-mode approach. SIGNIFICANCE The presented immunoassay allows straightforward, sensitive, and selective readout by color and temperature without advanced instrumentation. Particularly, the LOD was much lower than the threshold in clinical trials for PSA. Therefore, this method has a great prospect in the early diagnosis of cancer biomarkers based on a dual-mode multifunctional platform.
Collapse
Affiliation(s)
- Yuting Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yan Wu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330096, China
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
6
|
Shi W, Li K, Zhang Y. The Advancement of Nanomaterials for the Detection of Hepatitis B Virus and Hepatitis C Virus. Molecules 2023; 28:7201. [PMID: 37894681 PMCID: PMC10608909 DOI: 10.3390/molecules28207201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Viral hepatitis is a global health concern mostly caused by hepatitis B virus (HBV) and hepatitis C virus (HCV). The late diagnosis and delayed treatment of HBV and HCV infections can cause irreversible liver damage and the occurrence of cirrhosis and hepatocellular carcinoma. Detecting the presence and activity of HBV and HCV is the cornerstone of the diagnosis and management of related diseases. However, the traditional method shows limitations. The utilization of nanomaterials has been of great significance in the advancement of virus detection technologies due to their unique mechanical, electrical, and optical properties. Here, we categorized and illustrated the novel approaches used for the diagnosis of HBV and HCV.
Collapse
Affiliation(s)
- Wanting Shi
- Interventional Therapy Center of Liver Disease, Beijing You’An Hospital, Capital Medical University, Beijing 100069, China;
| | - Kang Li
- Biomedical Information Center, Beijing You’An Hospital, Capital Medical University, Beijing 100069, China
| | - Yonghong Zhang
- Interventional Therapy Center of Liver Disease, Beijing You’An Hospital, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
7
|
Yao Y, Wang J, Wang Z, Li S, Tan H. Colorimetric immunoassay of carcinoembryonic antigen based on the glucose oxidase/MnO 2 nanosheet cascade reaction with self-supplying oxygen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5351-5359. [PMID: 37800396 DOI: 10.1039/d3ay01425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The detection of carcinoembryonic antigen (CEA) has profound implications in cancer diagnostics and therapeutic monitoring. In this work, we developed a colorimetric immunoassay for the detection of CEA. This assay involves the utilization of zinc(II)-based coordination polymers (ZnCPs) as a host for integrating glucose oxidase (GOx) and anti-carcinoembryonic antigen antibody (anti-CEA), which results in the formation of a detection antibody (anti-CEA/GOx@ZnCPs). The adaptable inclusion properties of ZnCPs enable the preservation of the original catalytic behavior of GOx and antigen capture ability of anti-CEA. Consequently, the anti-CEA/GOx@ZnCPs can act as a detection antibody to facilitate the development of an immunoassay. The combination of anti-CEA/GOx@ZnCPs in the immunoassay triggers a cascade reaction involving GOx and MnO2 nanosheets, leading to the generation of an amplified colorimetric signal through self-supplying oxygen. This colorimetric immunoassay exhibits a linear response ranging from 2 to 180 ng mL-1 CEA and has a detection limit of 50 pg mL-1. The practicality of this colorimetric immunoassay in biological matrices was demonstrated by the successful determination of CEA in serum samples with good recovery and precision. We believe that this study will pave the way to rationally design multifunctional CP-based composites for a wide range of applications in bioanalysis.
Collapse
Affiliation(s)
- Yuanzhi Yao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China.
| | - Jinhong Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Ziqi Wang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China.
| | - Shenghua Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China.
| | - Hongliang Tan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China.
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
8
|
Ju Y, Yang Y, Tang Q, Wang M, Zeng Y, Zhang Z, Zhai Y, Wang H, Li L. Fluorometric detection of alpha-fetoprotein based on the use of a novel organic compound with AIE activity and aptamer-modified magnetic microparticles. Anal Chim Acta 2023; 1278:341692. [PMID: 37709445 DOI: 10.1016/j.aca.2023.341692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Liver cancer is one of the most common cancers in the world, and it seriously threatens human life and health. Alpha-fetoprotein (AFP), as a carcinogenic glycoprotein, is an important serum marker for detecting liver cancer. Therefore, the accurate and sensitive determination of AFP is crucial for the early diagnosis and treatment of liver cancer. To this end, a label-free fluorescence aptasensor for detecting AFP based on the use of a novel organic Compound D with an aggregation-induced emission activity and aptamer-modified magnetic microparticles was constructed. RESULTS Compound D could combine with the complementary short chain of the aptamer (CSC-Apt) of AFP to form the D/CSC-Apt complex and realize the fluorescence enhancement of Compound D. Then, magnetic particles modified by the Apt of AFP (Apt-Fe3O4) were prepared. When AFP (or nontarget substance) and D/CSC-Apt were successively added to the Apt-Fe3O4 solution, Apt-Fe3O4 selectively bound to AFP or the D/CSC-Apt complex. Magnetic separation technology showed the changes in the fluorescence intensity of the supernatant. The research results revealed a good linear relationship between the changes in the fluorescence intensity of the supernatant and concentration of AFP within the concentration range of 10-10000 pg mL-1. The proposed aptasensor could achieve high-sensitivity and high-specificity detection of AFP, and its limit of detection was 3 pg mL-1 (S/N = 3). SIGNIFICANCE AND NOVELTY The sensor combines the advantages of high selectivity of Apt, high sensitivity of fluorescence analysis, AIE effect and good water solubility of Compound D, and rapid separation using magnetic separation technology. And it can be directly used for the detection of AFP in actual serum samples with high accuracy, whereas most of the methods reported in the literature can only detect AFP in spiked serum samples.
Collapse
Affiliation(s)
- Yulong Ju
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yiwen Yang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Qiukai Tang
- Clinical Laboratory, Zhejiang Sian International Hospital, Jiaxing, 314031, Zhejiang, China
| | - Mengqi Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Zulei Zhang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yunyun Zhai
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Hailong Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| |
Collapse
|
9
|
Li R, Fan H, Zhou H, Chen Y, Yu Q, Hu W, Liu GL, Huang L. Nanozyme-Catalyzed Metasurface Plasmon Sensor-Based Portable Ultrasensitive Optical Quantification Platform for Cancer Biomarker Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301658. [PMID: 37358326 PMCID: PMC10460869 DOI: 10.1002/advs.202301658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Indexed: 06/27/2023]
Abstract
Developing plasmonic biosensors that are low-cost, portable, and relatively simple to operate remains challenging. Herein, a novel metasurface plasmon-etch immunosensor is described, namely a nanozyme-linked immunosorbent surface plasmon resonance biosensor, for the ultrasensitive and specific detection of cancer biomarkers. Gold-silver composite nano cup array metasurface plasmon resonance chip and artificial nanozyme-labeled antibody are used in two-way sandwich analyte detection. Changes in the biosensor's absorption spectrum are measured before and after chip surface etching, which can be applied to immunoassays without requiring separation or amplification. The device achieved a limit of alpha-fetoprotein (AFP) detection < 21.74 fM, three orders of magnitude lower than that of commercial enzyme-linked immunosorbent assay kits. Additionally, carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125) are used for quantitative detection to verify the universality of the platform. More importantly, the accuracy of the platform is verified using 60 clinical samples; compared with the hospital results, the three biomarkers achieve high sensitivity (CEA: 95.7%; CA125: 90.9%; AFP: 86.7%) and specificity (CEA: 97.3%; CA125: 93.9%; AFP: 97.8%). Due to its rapidity, ease of use, and high throughput, the platform has the potential for high-throughput rapid detection to facilitate cancer screening or early diagnostic testing in biosensing.
Collapse
Affiliation(s)
- Rui Li
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Hongli Fan
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Hanlin Zhou
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co., Ltd.666 Gaoxin AvenueWuhan430070P. R. China
| | - Youqian Chen
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Qingcai Yu
- School of Life and Health ScienceAnhui Science and Technology UniversityFengyang233100P. R. China
| | - Wenjun Hu
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Gang L. Liu
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Liping Huang
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co., Ltd.666 Gaoxin AvenueWuhan430070P. R. China
| |
Collapse
|
10
|
Zhang T, Yang L, Yan F, Wang K. Vertically-Ordered Mesoporous Silica Film Based Electrochemical Aptasensor for Highly Sensitive Detection of Alpha-Fetoprotein in Human Serum. BIOSENSORS 2023; 13:628. [PMID: 37366993 DOI: 10.3390/bios13060628] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Convenient and rapid detection of alpha fetoprotein (AFP) is vital for early diagnosis of hepatocellular carcinoma. In this work, low-cost (0.22 USD for single sensor) and stable (during 6 days) electrochemical aptasensor was developed for highly sensitive and direct detection of AFP in human serum with the assist of vertically-ordered mesoporous silica films (VMSF). VMSF has silanol groups on the surface and regularly ordered nanopores, which could provide binding sites for further functionalization of recognition aptamer and also confer the sensor with excellent anti-biofouling capacity. The sensing mechanism relies on the target AFP-controlled diffusion of Fe(CN)63-/4- redox electrochemical probe through the nanochannels of VMSF. The resulting reduced electrochemical responses are related to the AFP concentration, allowing the linear determination of AFP with a wide dynamic linear range and a low limit of detection. Accuracy and potential of the developed aptasensor were also demonstrated in human serum by standard addition method.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Luoxiang Yang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fei Yan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
11
|
Sun X, Cui Z. Microbiological Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
12
|
Jia W, Han Y, Mao X, Xu W, Zhang Y. Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Adv 2022; 12:31068-31082. [PMID: 36349046 PMCID: PMC9621307 DOI: 10.1039/d2ra05127c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy threatening human health, and existing diagnostic and therapeutic techniques are facing great challenges. In the last decade or so, nanotechnology has been developed and improved for tumor diagnosis and treatment. For example, nano-intravenous injections have been approved for malignant perivascular epithelioid cell tumors. This article provides a comprehensive review of the applications of nanotechnology in HCC in recent years: (I) in radiological imaging, magnetic resonance imaging (MRI), fluorescence imaging (FMI) and multimodality imaging. (II) For diagnostic applications in HCC serum markers. (III) As embolic agents in transarterial chemoembolization (TACE) or directly as therapeutic drugs. (IV) For application in photothermal therapy and photodynamic therapy. (V) As carriers of chemotherapeutic drugs, targeted drugs, and natural plant drugs. (VI) For application in gene and immunotherapy. Compared with the traditional methods for diagnosis and treatment of HCC, nanoparticles have high sensitivity, reduce drug toxicity and have a long duration of action, and can also be combined with photothermal and photodynamic multimodal combination therapy. These summaries provide insights for the further development of nanotechnology applications in HCC.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - YingHui Han
- Outpatient Department, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - XinYu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - YeWei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
13
|
Lee S, Lee J, Batjikh I, Yu H, Kang SH. Ultrasensitive Hypoxia Sensing at the Single-Molecule Level via Super-Resolution Quantum Dot-Linked Immunosandwich Assay. ACS Sens 2022; 7:1372-1380. [PMID: 35437012 DOI: 10.1021/acssensors.1c02572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activated hypoxia-inducible factor-1alpha (HIF-1α) plays an important role in the adaptive response of tumor cells to oxygen changes through the transcriptional activation of genes that regulate important biological processes required for tumor survival and progression. In this study, we developed an ultrasensitive hypoxia sensor based on read-out with quantum dots on a gold nanodisc (quantum dot-linked immunosandwich assay, QLISA) with excellent selectivity for HIF-1α. The immunoassay platform was established by comparing the immune response results using Qdot525 as a detection nanoprobe instead of a fluorescent dye (Alexa488) (fluorescent-linked immunosandwich assay, FLISA). In addition, using three-dimensional total internal reflection fluorescence microscopy, the platform was optically sectioned along the z-axis at 10 nm intervals to compare the height difference between the nanodisc and the nanoprobe following the QLISA and FLISA procedures and to localize the target location. Here, the super-resolution QLISA (srQLISA)-based hypoxia sensor exhibited high accuracy and precision for the detection of HIF-1α-extracted samples in cancer spheroids compared with the super-resolution FLISA (srFLISA) method. The developed nanobiosensor method demonstrated a wide dynamic linear detection range of 32.2 zM-8.0 pM with a limit of detection of 16 zM under optimal experimental conditions for HIF-1α, an approximate 106-fold enhanced detection sensitivity compared with the conventional enzyme-linked immunosorbent assay method based on absorbance. The detection of HIF-1α using the newly developed srQLISA sensor allows for independently predicting tumor progression and early cancer onset increases in the microvasculature density of tumor lesions.
Collapse
Affiliation(s)
- Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Junghwa Lee
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Indra Batjikh
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Hyunung Yu
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
14
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
15
|
Sun X, Wei X, Liu X, Zhang X, Wu N, Liu J, Wang Y, Chen M, Wang J. Immunolabeling lanthanide nanoparticles for alpha-fetoprotein measurement and cancer cells counting with detection of ICP−MS. Anal Chim Acta 2022; 1201:339639. [DOI: 10.1016/j.aca.2022.339639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
|
16
|
Meng H, Yao N, Zeng K, Zhu N, Wang Y, Zhao B, Zhang Z. A Novel Enzyme-Free Ratiometric Fluorescence Immunoassay Based on Silver Nanoparticles for the Detection of Dibutyl Phthalate from Environmental Waters. BIOSENSORS 2022; 12:125. [PMID: 35200385 PMCID: PMC8869742 DOI: 10.3390/bios12020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
A novel ratiometric fluorescent immunoassay was developed based on silver nanoparticles (AgNPs) for the sensitive determination of dibutyl phthalate (DBP). In the detection system, AgNPs were labeled on the secondary antibody (AgNPs@Ab2) for signal amplification, which aimed to regulate the H2O2 concentrations. When AgNPs-Ab2 and antigen-primary antibody (Ab1) were linked by specific recognition, the blue fluorescence of Scopoletin (SC) could be effectively quenched by the H2O2 added while the red fluorescence of Amplex Red (AR) was generated. Under the optimized conditions, the calculated detection of limit (LOD, 90% inhibition) reached 0.86 ng/mL with a wide linear range of 2.31-66.84 ng/mL, which was approximately eleven times lower than that by HRP-based traditional ELISA with the same antibody. Meanwhile, it could improve the inherent built-in rectification to the environment by the combination of the dual-output ratiometric fluorescence assays with ELISA, which also enhanced the accuracy and precision (recoveries, 87.20-106.62%; CV, 2.57-6.54%), indicating it can be applied to investigate the concentration of DBP in water samples.
Collapse
Affiliation(s)
- Hui Meng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (N.Y.); (K.Z.); (N.Z.); (Y.W.)
| | - Nannan Yao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (N.Y.); (K.Z.); (N.Z.); (Y.W.)
| | - Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (N.Y.); (K.Z.); (N.Z.); (Y.W.)
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (N.Y.); (K.Z.); (N.Z.); (Y.W.)
| | - Yue Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (N.Y.); (K.Z.); (N.Z.); (Y.W.)
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang 212013, China;
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (N.Y.); (K.Z.); (N.Z.); (Y.W.)
| |
Collapse
|
17
|
Wang J, Drelich AJ, Hopkins CM, Mecozzi S, Li L, Kwon G, Hong S. Gold nanoparticles in virus detection: Recent advances and potential considerations for SARS-CoV-2 testing development. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1754. [PMID: 34498423 PMCID: PMC8646453 DOI: 10.1002/wnan.1754] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022]
Abstract
Viruses are infectious agents that pose significant threats to plants, animals, and humans. The current coronavirus disease 2019 pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally and resulted in over 2 million deaths and immeasurable financial losses. Rapid and sensitive virus diagnostics become crucially important in controlling the spread of a pandemic before effective treatment and vaccines are available. Gold nanoparticle (AuNP)-based testing holds great potential for this urgent unmet biomedical need. In this review, we describe the most recent advances in AuNP-based viral detection applications. In addition, we discuss considerations for the design of AuNP-based SARS-CoV-2 testings. Finally, we highlight and propose important parameters to consider for the future development of effective AuNP-based testings that would be critical for not only this COVID-19 pandemic, but also potential future outbreaks. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Jianxin Wang
- Wisconsin Center for NanoBioSystems, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Adam J. Drelich
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Caroline M. Hopkins
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Sandro Mecozzi
- Wisconsin Center for NanoBioSystems, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Lingjun Li
- Wisconsin Center for NanoBioSystems, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Department of ChemistryUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Glen Kwon
- Wisconsin Center for NanoBioSystems, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Seungpyo Hong
- Wisconsin Center for NanoBioSystems, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Yonsei Frontier Lab and Department of PharmacyYonsei UniversitySeoulRepublic of Korea
| |
Collapse
|
18
|
Microbiological Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
19
|
Shao Y, Zhou H, Wu Q, Xiong Y, Wang J, Ding Y. Recent advances in enzyme-enhanced immunosensors. Biotechnol Adv 2021; 53:107867. [PMID: 34774928 DOI: 10.1016/j.biotechadv.2021.107867] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Among the products for rapid detection in different fields, enzyme-based immunosensors have received considerable attention. Recently, great efforts have been devoted to enhancing the output signals of enzymes through different strategies that can significantly improve the sensitivity of enzyme-based immunosensors for the need of practical applications. In this manuscript, the significance of enzyme-based signal transduction patterns in immunoassay and the central role of enzymes in achieving precise control of reaction systems are systematically described. In view of the rapid development of this field, we classify these strategies based on the combination of immune recognition and enzyme amplification into three categories, namely enzyme-based enhancement strategies, combination of the catalytic amplification of enzymes with other signal amplification methods, and substrate-based enhancement strategies. The current focus and future direction of enzyme-based immunoassays are also discussed. This article is not exhaustive, but focuses on the latest advances in different signal generation methods based on enzyme-initiated catalytic reactions and their applications in the detection field, which could provide an accessible introduction of enzyme-based immunosensors for the community with a view to further improving its application efficiency.
Collapse
Affiliation(s)
- Yanna Shao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
20
|
Tsurusawa N, Chang J, Namba M, Makioka D, Yamura S, Iha K, Kyosei Y, Watabe S, Yoshimura T, Ito E. Modified ELISA for Ultrasensitive Diagnosis. J Clin Med 2021; 10:5197. [PMID: 34768717 PMCID: PMC8585087 DOI: 10.3390/jcm10215197] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
An enzyme-linked immunosorbent assay (ELISA) can be used for quantitative measurement of proteins, and improving the detection sensitivity to the ultrasensitive level would facilitate the diagnosis of various diseases. In the present review article, we first define the term 'ultrasensitive'. We follow this with a survey and discussion of the current literature regarding modified ELISA methods with ultrasensitive detection and their application for diagnosis. Finally, we introduce our own newly devised system for ultrasensitive ELISA combined with thionicotinamide adenine dinucleotide cycling and its application for the diagnosis of infectious diseases and lifestyle-related diseases. The aim of the present article is to expand the application of ultrasensitive ELISAs in the medical and biological fields.
Collapse
Affiliation(s)
- Naoko Tsurusawa
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (N.T.); (J.C.); (M.N.); (D.M.); (S.Y.); (K.I.); (Y.K.)
| | - Jyunhao Chang
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (N.T.); (J.C.); (M.N.); (D.M.); (S.Y.); (K.I.); (Y.K.)
| | - Mayuri Namba
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (N.T.); (J.C.); (M.N.); (D.M.); (S.Y.); (K.I.); (Y.K.)
| | - Daiki Makioka
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (N.T.); (J.C.); (M.N.); (D.M.); (S.Y.); (K.I.); (Y.K.)
| | - Sou Yamura
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (N.T.); (J.C.); (M.N.); (D.M.); (S.Y.); (K.I.); (Y.K.)
| | - Kanako Iha
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (N.T.); (J.C.); (M.N.); (D.M.); (S.Y.); (K.I.); (Y.K.)
| | - Yuta Kyosei
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (N.T.); (J.C.); (M.N.); (D.M.); (S.Y.); (K.I.); (Y.K.)
| | - Satoshi Watabe
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
| | - Teruki Yoshimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu 061-0293, Hokkaido, Japan;
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (N.T.); (J.C.); (M.N.); (D.M.); (S.Y.); (K.I.); (Y.K.)
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| |
Collapse
|
21
|
Magnetic separation and enzymatic catalysis conjugated colorimetric immunosensor for Hepatitis B surface antigen detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Ghafary Z, Hallaj R, Salimi A, Mafakheri S. Ultrasensitive fluorescence immunosensor based on mesoporous silica and magnetic nanoparticles: Capture and release strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119749. [PMID: 33862371 DOI: 10.1016/j.saa.2021.119749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 05/12/2023]
Abstract
Herein we designed a novel, highly sensitive, simple and amplified fluorescence immunosensing strategy for hepatitis B virus surface antigen (HBV surface antigen) (HBsAg) as a model based on the construction of a sandwich type probe. The operation mechanism of this immunosensing strategy is implemented by capturing and then stimulation-based-releasing of entrapped dye in the fluorescent capsules. The proposed probe is made by the Fe3O4 magnetic nanoparticle (Fe3O4 MNP) as a probe collector site and the Rhodamine B loaded-mesoporous silica nanoparticle (MSN-Rh.B) as a fluorescent mesoporous capsule and signal amplifier site. Such a methodology is benefited, from the advantages of the high ability of MSNs to be used as a scaffold for efficient dye encapsulation and the magnetic nanoparticles as efficient biological carriers. Under optimal conditions, the fluorescence signal (The fluorescence of solutions was measured using a quartz fluorescence cell (PMT voltage:720, Ex wavelegth:540, Em wavelength:568, All measurements were carried out at room temperature) increased with the increment of HBsAg concentration in the linear dynamic range of 6.1 ag/ml to 0.012 ng/ml with a detection limit (LOD) of 5.7 ag/ml. The relative standard deviation, measured between the resulting fluorescence peaks was obtained by 6.0%.
Collapse
Affiliation(s)
- Zhaleh Ghafary
- Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj, Iran; Nanotechnology Research Center, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj, Iran; Nanotechnology Research Center, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Sudabeh Mafakheri
- Department of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
23
|
Effects of Buffer Concentration on the Sensitivity of Silicon Nanobelt Field-Effect Transistor Sensors. SENSORS 2021; 21:s21144904. [PMID: 34300642 PMCID: PMC8309807 DOI: 10.3390/s21144904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 01/09/2023]
Abstract
In this work, a single-crystalline silicon nanobelt field-effect transistor (SiNB FET) device was developed and applied to pH and biomolecule sensing. The nanobelt was formed using a local oxidation of silicon technique, which is a self-aligned, self-shrinking process that reduces the cost of production. We demonstrated the effect of buffer concentration on the sensitivity and stability of the SiNB FET sensor by varying the buffer concentrations to detect solution pH and alpha fetoprotein (AFP). The SiNB FET sensor was used to detect a solution pH ranging from 6.4 to 7.4; the response current decreased stepwise as the pH value increased. The stability of the sensor was examined through cyclical detection under solutions with different pH; the results were stable and reliable. A buffer solution of varying concentrations was employed to inspect the sensing capability of the SiNB FET sensor device, with the results indicating that the sensitivity of the sensor was negatively dependent on the buffer concentration. For biomolecule sensing, AFP was sensed to test the sensitivity of the SiNB FET sensor. The effectiveness of surface functionalization affected the AFP sensing result, and the current shift was strongly dependent on the buffer concentration. The obtained results demonstrated that buffer concentration plays a crucial role in terms of the sensitivity and stability of the SiNB FET device in chemical and biomolecular sensing.
Collapse
|
24
|
Nano-immunosorbent assay based on Cas12a/crRNA for ultra-sensitive protein detection. Biosens Bioelectron 2021; 190:113450. [PMID: 34197999 DOI: 10.1016/j.bios.2021.113450] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
Apart from the great potential in genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system has recently been widely used in biosensing. However, due to the complex and inefficient signal conversion strategies, most of the works focused on nucleic acid analysis rather than protein biomarkers. Herein, by employing DNA-AuNPs (gold nanoparticles) nanotechnology to activate trans-cleavage activity of CRISPR/Cas12a, a universal signal transduction strategy was established between trans-cleavage of CRISPR/Cas12a and protein analytes. As a result, a sensitive platform was developed for sensing carcinoembryonic antigen (CEA) and prostate specific-antigen (PSA) biomarkers, which was designated as Nano-CLISA (Nano-immunosorbent assay based on Cas12a/crRNA). Nano-CLISA was directly employed to test PSA in clinical samples, indicating its great potential in practical detection. This platform has been used to quantitatively analyze protein at attomolar levels, which was 1000-fold more sensitive than traditional ELISA, and the detection range is 15 times wider than that of traditional ELISA.
Collapse
|
25
|
Taron W, Jamnongkan W, Phetcharaburanin J, Klanrit P, Namwat N, Techasen A, Sithithaworn P, Khuntikeo N, Boonmars T, Loilome W, Ngeontae W. A fluorescence AuNPs-LISA: A new approach for Opisthorchis viverrini (Ov) antigen detection with a simple fluorescent enhancement strategy by surfactant micelle in urine samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119633. [PMID: 33744701 DOI: 10.1016/j.saa.2021.119633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The colorimetric AuNPs-LISA is a new, powerful technique for the detection of Opisthorchis viverrini antigen (OvAg) in urine samples. However, the diagnostic sensitivity of the colorimetric AuNPs-LISA is powerless to screen ultralow concentrations of OvAg in urine samples in cases of early stage liver fluke infection. This work, we aimed to improve the diagnostic sensitivity of the colorimetric AuNPs-LISA by developing a new fluorescence AuNPs-LISA. O-phenylenediamine (OPD) was used as the chromogenic substrate instead of the tetramethylbenzidine (TMB) of the colorimetric AuNPs-LISA. Interestingly, the fluorescence of the OPD oxidation product by the peroxidase-like activity of labelled AuNPs can be extremely enhanced by a non-ionic surfactant, especially the Triton X-100. The proposed assay exhibited a dynamic linear detection of OvAg concentration in the range of 34.18 ng mL-1 to 273.44 ng mL-1 with the limit of detection at 36.97 ng mL-1 which the detection sensitivity enhancement around 1200-fold when comparing with the colorimetric AuNPs-LISA. This model exhibits high diagnosis sensitivity, specificity and accuracy, 91.28%, 91.75%, and 91.59%, respectively, compared to the traditional ELISA. The fluorescence AuNPs-LISA showed excellent potential for the diagnosis of OvAg in urine samples from endemic areas. This will provide an effective tool for the detection, control and elimination of human opisthorchiasis.
Collapse
Affiliation(s)
- Wichit Taron
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wassana Jamnongkan
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Paiboon Sithithaworn
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thidarut Boonmars
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| | - Wittaya Ngeontae
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, Thailand; Center of Excellence for Environmental and Hazardous Waste Management (EHWM), Bangkok, Thailand.
| |
Collapse
|
26
|
Chen R, Hu Y, Chen M, An J, Lyu Y, Liu Y, Li D. Naked-Eye Detection of Hepatitis B Surface Antigen Using Gold Nanoparticles Aggregation and Catalase-Functionalized Polystyrene Nanospheres. ACS OMEGA 2021; 6:9828-9833. [PMID: 33869962 PMCID: PMC8047666 DOI: 10.1021/acsomega.1c00507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Developing rapid, efficient, highly sensitive, simple, stable, and low-cost virus marker detection products that are appropriate for basic facilities is of great importance in the early diagnosis and treatment of viruses. Naked-eye detection methods are especially important when medical testing facilities are limited. Polystyrene nanospheres (PSs) with catalytic and specific recognition functions were successfully developed by simultaneously modifying catalase and goat anti-hepatitis B surface antibodies on nanospheres. The modified PSs contributed significantly to the amplification of the signal. Via the specific antigen-antibody reaction, the bifunctional nanospheres could be captured on microplate and then catalyzed the decomposition of hydrogen peroxide to reduce chloroauric acid and synthesize gold nanoparticles (AuNPs). Due to the surface plasmon resonance of AuNPs, the solution color change could be observed with the naked eye and the limit of detection (LOD) was 0.1 ng/mL. Furthermore, the LOD observed with instrumentation was 0.01 ng/mL, which meant that a rapid, efficient, and highly sensitive method for the detection of hepatitis B surface antigens was successfully developed, and neither complex sample pretreatment nor expensive equipment was needed.
Collapse
Affiliation(s)
- Rubing Chen
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Yongqin Hu
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
- Center
for Intelligent Sensing Technology (CIST), College of Optoelectronic
Engineering, Chongqing University, Chongqing 400044, China
| | - Meizhu Chen
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Jia An
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
- Center
for Intelligent Sensing Technology (CIST), College of Optoelectronic
Engineering, Chongqing University, Chongqing 400044, China
| | - Ying Lyu
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Yufei Liu
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
- Center
for Intelligent Sensing Technology (CIST), College of Optoelectronic
Engineering, Chongqing University, Chongqing 400044, China
- Centre
for NanoHealth, College of Science, Swansea
University, Singleton
Park, Swansea SA2 8PP, U.K.
| | - Dongling Li
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| |
Collapse
|
27
|
Wang Y, Zhao X, Zhang M, Sun X, Bai J, Peng Y, Li S, Han D, Ren S, Wang J, Han T, Gao Y, Ning B, Gao Z. Immunosorbent assay based on upconversion nanoparticles controllable assembly for simultaneous detection of three antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124703. [PMID: 33307451 DOI: 10.1016/j.jhazmat.2020.124703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The abuse of antibiotics leads to an increase in resistant strains, which in turn leads to the development of superbugs that pose great difficulties for the treatment of human diseases. A high-throughput and highly sensitive avidin biotin complex immunosorbent assay based on upconversion nanoparticles controllable assembly (ABC-ULISA) for the detection of antibiotics was developed, which enabled accurate quantitative detection in a shorter period of time. Streptavidin and biotin-labeled upconversion nanoparticles form avidin-biotin-upconversion complex, which was then combined with biotinylated antibody to achieve double amplification of the signal, further improving detection sensitivity. Upconversion nanoparticles with 808 nm excitation provide better penetration without the need for an external source. The 96-well enzyme-linked plate was used as a detection platform to meet the high-throughput needs. ABC-ULISA was used to simultaneously detect three antibiotics with a limit of detection of 0.15 ng/mL for sulfamethazine, 0.03 ng/mL for sarafloxacin, and 0.05 ng/mL for tetracycline. The detection limit of ABC-ULISA was much lower than the traditional ELISA and ordinary ULISA. Moreover, ABC-ULISA was also versatile, and the corresponding target can be detected by changing different antibodies. The results were stable and reliable, and the equipment could be miniaturized, which was expected to be commercialized and on-site.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Xudong Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Man Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China; School of Medical Instrument and Food engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xuan Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Jiang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Yifei Gao
- School of chemistry, University of New South Wales, Sydney, Australia
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China.
| |
Collapse
|
28
|
Rong X, Ailing F, Xiaodong L, Jie H, Min L. Monitoring hepatitis B by using point-of-care testing: biomarkers, current technologies, and perspectives. Expert Rev Mol Diagn 2021; 21:195-211. [PMID: 33467927 DOI: 10.1080/14737159.2021.1876565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: Liver diseases caused by hepatitis B virus (HBV) are pandemic infectious diseases that seriously endanger human health, conventional diagnosis methods can not meet the requirements in resource-limited areas. The point of acre detection methods can easily resolve those problems. Herein, we review the most recent advances in POC-based hepatitis B detection methods and present some recommendations for future development. It aims to provide ideas for future research.Areas covered: Epidemiological data on Hepatitis B, conventional diagnostic methods for hepatitis B detection, some latest point of care detection methods for hepatitis B detection and list out the recommendations for future development.Expert opinion: This manuscript summarized traditional biomarkers of different hepatitis B stages and recent-developed POCT platforms (including microfluidic platforms and lateral-flow strips) and discuss the challenges associated with their use. Some emerging biomarkers that can be used in hepatitis B diagnosis are also listed. This manuscript has certain guiding significance to the development of hepatitis B detection.
Collapse
Affiliation(s)
- Xu Rong
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Feng Ailing
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Li Xiaodong
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Hu Jie
- Suzhou DiYinAn Biotech Co., Ltd. & Suzhou Innovation Center for Life Science and Technology, Suzhou, China
| | - Lin Min
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
29
|
Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta 2021; 223:121722. [DOI: 10.1016/j.talanta.2020.121722] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
|
30
|
Kang J, Tahir A, Wang H, Chang J. Applications of nanotechnology in virus detection, tracking, and infection mechanisms. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1700. [PMID: 33511770 PMCID: PMC7995016 DOI: 10.1002/wnan.1700] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022]
Abstract
Viruses are among the most infectious pathogens, responsible for the highest death toll around the world. Lack of effective clinical drug for most of the viruses emphasizes the rapid and accurate diagnosis at early stages of infection to prevent rapid spread of the pathogens. Nanotechnology is an emerging field with applications in various domains, where nano‐biomedical science has many significant contributions such as effective delivery of drugs/therapeutic molecules to specific organs, imaging, sensitive detection of virus, and their accurate tracking in host cells. The nanomaterials reported for virus detection and tracking mainly include magnetic and gold NPs, ZnO/Pt‐Pd, graphene, and quantum dots (QDs). In addition, the single virus tracking technology (SVT) allowed to track the life cycle stages of an individual virus for better understanding of their dynamics within the living cells. Inorganic as well as non‐metallic fluorescent materials share the advantages of high photochemical stability, a wide range of light absorption curves and polychromatic emission. Hence, are considered as potential fluorescent nano‐probes for SVT. However, there are still some challenges: (i) clinical false positive rate of some detection methods is still high; (ii) in the virus tracking process, less adaptability of QDs owing to larger size, flicker, and possible interference with virus function; and (iii) in vivo tracking of a single virus, in real time needs further refinement. In the future, smaller, non‐toxic, and chemically stable nanomaterials are needed to improve the efficiency and accuracy of detection, and monitoring of virus infections to curb the mortalities. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology‐Inspired Nanomaterials > Protein and Virus‐Based Structures
Collapse
Affiliation(s)
- Jun Kang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
31
|
Chen K, Han H, Tuguntaev RG, Wang P, Guo W, Huang J, Gong X, Liang X. Applications and regulatory of nanotechnology‐based innovative
in vitro
diagnostics. VIEW 2020. [DOI: 10.1002/viw.20200091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Kuan Chen
- Center for Medical Device Evaluation National Medical Products Administration Beijing China
| | - Houyu Han
- School of Life Sciences Tianjin University and Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin China
| | - Ruslan G. Tuguntaev
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Peirong Wang
- Center for Medical Device Evaluation National Medical Products Administration Beijing China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Jiayu Huang
- School of Life Sciences Tianjin University and Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin China
| | - Xiaoqun Gong
- School of Life Sciences Tianjin University and Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin China
| | - Xing‐Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology of China Beijing China
- College of Nanoscience and Technology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
32
|
Ji H, Xia C, Xu J, Wu X, Qiao L, Zhang C. A highly sensitive immunoassay of pesticide and veterinary drug residues in food by tandem conjugation of bi-functional mesoporous silica nanospheres. Analyst 2020; 145:2226-2232. [PMID: 32043494 DOI: 10.1039/c9an02430a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel type of enzyme-antibody conjugation using mesoporous silicon nanospheres (MSN) was developed, which amplified the labeling signal and highly increased the sensitivity of enzyme-linked immunosorbent assay (ELISA) for the determination of pesticide and veterinary drug residues in food. First, conjugates were prepared through layer-by-layer immobilization of an enzyme and an antibody on an MSN scaffold. Then the MSN scaffold was employed for labeling and signal amplification to develop a sensitive colorimetric immunoassay through the catalytic oxidation reaction of 5,50-tetramethylbenzidine (TMB). When this MSN-based ELISA was applied to detect chloramphenicol, avermectin, tetracycline and streptomycin in food samples, it provided linear ranges of 0.025 ng ml-1-25 ng ml-1, 0.05 ng ml-1-10 ng ml-1, 0.025 ng ml-1-10 ng ml-1 and 0.05 ng ml-1-25 ng ml-1, respectively, with low detection limits down to 0.011 ng mL-1, 0.134 ng mL-1, 0.015 ng ml-1 and 0.106 ng ml-1, respectively. For avermectin, it provided a 16.7-fold decrease of the limit of detection in contrast to that of standard ELISA without the loss of method specificity and accuracy. This novel immunoassay was hypersensitive, simple and easy-to-use, which made it high potential in applying for the accurate analysis of harmful substances in food.
Collapse
Affiliation(s)
- Hanxu Ji
- National Center of Supervision Inspection on Processed Food & Food Additives Quality, Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, 210019, Nanjing, China
| | - Chenxi Xia
- National Center of Supervision Inspection on Processed Food & Food Additives Quality, Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, 210019, Nanjing, China
| | - JingJing Xu
- National Center of Supervision Inspection on Processed Food & Food Additives Quality, Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, 210019, Nanjing, China
| | - XiaoXiao Wu
- National Center of Supervision Inspection on Processed Food & Food Additives Quality, Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, 210019, Nanjing, China
| | - Ling Qiao
- National Center of Supervision Inspection on Processed Food & Food Additives Quality, Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, 210019, Nanjing, China
| | - Chi Zhang
- National Center of Supervision Inspection on Processed Food & Food Additives Quality, Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, 210019, Nanjing, China and Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China.
| |
Collapse
|
33
|
Dai Y, Han B, Dong L, Zhao J, Cao Y. Recent advances in nanomaterial-enhanced biosensing methods for hepatocellular carcinoma diagnosis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Wang X, Wang H, Tang J, Wang S, Shi D, Shen H. Poly(amino acid) Multilayers Modified Dendritic Mesoporous Silica Nanoparticles Achieve Effective Enzyme Stability for Ultrasensitive Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37906-37913. [PMID: 32804477 DOI: 10.1021/acsami.0c11523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is one of the most common techniques in biomedical detection; however, the poor sensitivity in early diagnosis for some diseases seriously limits its application. In this work, we developed an ultrasensitive ELISA system that is based on horseradish peroxidase (HRP)-loaded dendritic mesoporous silica nanoparticles (DMSN) modified with poly(amino acid) multilayers (defined as DSHP). A large amount of HRP adsorption was achieved in center-radial mesoporous channels of DMSN because of the high specific surface area and large pore size, leading to significant signal amplification. Additionally, DSHP could not only effectively maintain HRP activity for at least 10 days but also provide preferable protection for HRP activity even at high temperatures or a wide pH range. Moreover, the DSHP system exhibited admirable signal amplification performance with a limit of detection of 0.667 fM and a wide detectable range from 6.67 × 10-4 to 6.67 × 105 pM, whose sensitivity was 104 times higher than that of the conventional ELISA. We believe that the DSHP will offer a new strategy for signal amplification of the ELISA system in clinical diagnosis.
Collapse
Affiliation(s)
- Xuewei Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jinlong Tang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Shihui Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Dongjian Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Heyun Shen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
35
|
Design of aptamer-based sensing platform using gold nanoparticles functionalized reduced graphene oxide for ultrasensitive detection of Hepatitis B virus. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01292-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Alipour E, Shariatpanahi SP, Ghourchian H, Piro B, Fathipour M, Boutorabi SM, Znoyko SL, Nikitin PI. Designing a magnetic inductive micro-electrode for virus monitoring: modelling and feasibility for hepatitis B virus. Mikrochim Acta 2020; 187:463. [PMID: 32686021 DOI: 10.1007/s00604-020-04429-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
A simple model is designed for an inductive immunosensor in which the magnetic particles are attached to the bioreceptors to form a sandwich on the surface of an inductor. The inductor consists of a coil covered on a silicon oxide wafer. The coil comprises 250 turns of a planar gold wire, which is approximately 200 nm thick and 392 mm long, placed in a circle with a diameter of 2 mm. The model is well characterised by controlling the geometrical and electrical parameters and also the permeability of the magnetic material. To evaluate the feasibility of the model for virus monitoring, a novel inductive immunosensor is designed and for the first time applied for the detection of hepatitis B surface antigen (HBsAg). At first, Fab' segment of primary anti-HBsAg is immobilised on the coil. Then, the coil is exposed to HBsAg and the complex is introduced to a secondary antibody conjugated with magnetic particles to form an immune-sandwich. Finally, the influence of magnetic particles on the coil inductance is recorded and used as a signal for HBsAg detection. The magnetic inductive immunosensor showed specific responses toward HBsAg with the detection limit of 1 ng mL-1, linear range of 1 to 200 ng mL-1, and a sensitivity of 6 × 10-4 mL ng-1. The experimental results showed a very good agreement with simulation data indicating the compatibility of sensor sensitivity to the expected theoretical values. Graphical abstract.
Collapse
Affiliation(s)
- Elias Alipour
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, P. O. Box 13145-1384, Tehran, Iran
| | - Seyed Peyman Shariatpanahi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, P. O. Box 13145-1384, Tehran, Iran
| | - Hedayatollah Ghourchian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, P. O. Box 13145-1384, Tehran, Iran.
| | - Benoit Piro
- Université de Paris, ITODYS, CNRS, F-75006, Paris, France
| | - Morteza Fathipour
- MEMS & NEMES Laboratory, Department of Electrical and Computer Engineering, University of Tehran, North kargar Ave., Tehran, Iran
| | | | - Sergey L Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, Moscow, Russia, 119991
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, Moscow, Russia, 119991
| |
Collapse
|
37
|
Hu X, Wei Z, Sun C, Long Y, Zheng H. Bifunctional antibody and copper-based metal-organic framework nanocomposites for colorimetric α-fetoprotein sensing. Mikrochim Acta 2020; 187:465. [PMID: 32691158 DOI: 10.1007/s00604-020-04427-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/05/2020] [Indexed: 02/06/2023]
Abstract
Cu2+ are found to greatly reduce the photoinduced oxidase activity of fluorescein and then inhibit the chromogenic reaction catalyzed by fluorescein. A simple colorimetric assay for Cu2+ is established. Based on this, bifunctional nanocomposites of α-fetoprotein (AFP) antibody (Ab) and copper-based metal-organic framework (Ab2@Cu-MOF) are synthesized by the simple self-assembly of AFP Ab2, Cu2+, and 4,4'-dipyridyl: the binding site of AFP Ab2 exposed on the surface of the nanocomposites can specifically recognize AFP antigen; Cu2+ in nanocomposites can inhibit the visible light-induced activity of fluorescein. The structure of Ab2@Cu-MOF disintegrate and Cu2+ is released in an acetate buffer solution. The higher the amount of AFP antigens, the more significant the inhibitory effect. Thus, the Ab2@Cu-MOF immunoassay for AFP determination is established using 3,3',5,5'-tetramethylbenzidine as chromogenic substrate with a detection limit of 35 pg.mL-1. This simple, cheap, and sensitive method sheds substantial light on practical clinical diagnosis. Meanwhile, the mechanism of inhibition is revealed to facilitate the targeted selection of enzyme regulators. Graphical abstract Diagrammatic illustration of Cu2+ detection (part a) and Ab2@Cu-MOF immunoassay for sensing α-fetoprotein based on the synthesized Ab2@Cu-MOF nanocomposites (parts a and b).
Collapse
Affiliation(s)
- Xuemei Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Zixuan Wei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Chaoqun Sun
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Yijuan Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
38
|
Xu J, Miao H, Wang J, Pan G. Molecularly Imprinted Synthetic Antibodies: From Chemical Design to Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906644. [PMID: 32101378 DOI: 10.1002/smll.201906644] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/27/2020] [Indexed: 05/25/2023]
Abstract
Billions of dollars are invested into the monoclonal antibody market every year to meet the increasing demand in clinical diagnosis and therapy. However, natural antibodies still suffer from poor stability and high cost, as well as ethical issues in animal experiments. Thus, developing antibody substitutes or mimics is a long-term goal for scientists. The molecular imprinting technique presents one of the most promising strategies for antibody mimicking. The molecularly imprinted polymers (MIPs) are also called "molecularly imprinted synthetic antibodies" (MISAs). The breakthroughs of key technologies and innovations in chemistry and material science in the last decades have led to the rapid development of MISAs, and their molecular affinity has become comparable to that of natural antibodies. Currently, MISAs are undergoing a revolutionary transformation of their applications, from initial adsorption and separation to the rising fields of biomedicine. Herein, the fundamental chemical design of MISAs is examined, and then current progress in biomedical applications is the focus. Meanwhile, the potential of MISAs as qualified substitutes or even to transcend the performance of natural antibodies is discussed from the perspective of frontier needs in biomedicines, to facilitate the rapid development of synthetic artificial antibodies.
Collapse
Affiliation(s)
- Jingjing Xu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
- Sino-European School of Technology of Shanghai University, Shanghai University, Shanghai, CN-200444, P. R. China
| | - Haohan Miao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Jixiang Wang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| |
Collapse
|
39
|
Duan Y, Wu W, Zhao Q, Liu S, Liu H, Huang M, Wang T, Liang M, Wang Z. Enzyme-Antibody-Modified Gold Nanoparticle Probes for the Ultrasensitive Detection of Nucleocapsid Protein in SFTSV. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124427. [PMID: 32575570 PMCID: PMC7344430 DOI: 10.3390/ijerph17124427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022]
Abstract
As humans and climate change continue to alter the landscape, novel disease risk scenarios have emerged. Sever fever with thrombocytopenia syndrome (SFTS), an emerging tick-borne infectious disease first discovered in rural areas of central China in 2009, is caused by a novel bunyavirus (SFTSV). The potential for SFTS to spread to other countries in combination with its high fatality rate, possible human-to-human transmission, and extensive prevalence among residents and domesticated animals in endemic regions make the disease a severe threat to public health. Because of the lack of preventive vaccines or useful antiviral drugs, diagnosis of SFTS is the key to prevention and control of the SFTSV infection. The development of serological detection methods will greatly improve our understanding of SFTSV ecology and host tropism. We describe a highly sensitive protein detection method based on gold nanoparticles (AuNPs) and enzyme-linked immunosorbent assay (ELISA)—AuNP-based ELISA. The optical sensitivity enhancement of this method is due to the high loading efficiency of AuNPs to McAb. This enhances the concentration of the HRP enzyme in each immune sandwich structure. The detection limit of this method to the nucleocapsid protein (NP) of SFTSV was 0.9 pg mL−1 with good specificity and reproducibility. The sensitivity of AuNP-based ELISA was higher than that of traditional ELISA and was comparable to real-time quantitative polymerase chain reaction (qRT-PCR). The probes are stable for 120 days at 4 °C. This can be applied to diagnosis and hopefully can be developed into a commercial ELISA kit. The ultrasensitive detection of SFTSV will increase our understanding of the distribution and spread of SFTSV, thus helping to monitor the changes in tick-borne pathogen SFTSV risk in the environment.
Collapse
Affiliation(s)
- Yuqin Duan
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.D.); (Q.Z.); (S.L.); (H.L.); (M.H.); (T.W.)
| | - Wei Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100000, China;
| | - Qiuzi Zhao
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.D.); (Q.Z.); (S.L.); (H.L.); (M.H.); (T.W.)
| | - Sihua Liu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.D.); (Q.Z.); (S.L.); (H.L.); (M.H.); (T.W.)
| | - Hongyun Liu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.D.); (Q.Z.); (S.L.); (H.L.); (M.H.); (T.W.)
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.D.); (Q.Z.); (S.L.); (H.L.); (M.H.); (T.W.)
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (Y.D.); (Q.Z.); (S.L.); (H.L.); (M.H.); (T.W.)
| | - Mifang Liang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100000, China;
- Correspondence: (M.L.); (Z.W.)
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Correspondence: (M.L.); (Z.W.)
| |
Collapse
|
40
|
Su Y, Xue T, Wu L, Hu Y, Wang J, Xu Q, Chen Y, Lin Z. Label-free detection of biomarker alpha fetoprotein in serum by ssDNA aptamer functionalized magnetic nanoparticles. NANOTECHNOLOGY 2020; 31:095104. [PMID: 31726443 DOI: 10.1088/1361-6528/ab57f7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the clinic, with the characteristics of occult onset, rapid progression, and high degree of malignancy. Alpha fetoprotein (AFP) is the most important biomarker of HCC, which is widely used in early screening, diagnosis, and prognosis observation. A series of immunoassays have been developed and frequently used in the detection of AFP based on antibodies. Unfortunately, the shortcomings of antibodies, such as thermal unstable and fluctuant activity by batches, lead to the inaccuracy in the detection of AFP. In this study, aptamers instead of antibodies were adopted as the specific recognition element for AFP, aiming to seek an alternative strategy to immunoassays. An AFP-specific ssDNA aptamer was grafted to magnetic nanoparticles (Fe3O4@SiO2) via avidin-biotin interaction, and the resultant aptamer functionalized magnetic nanoparticles (Ap-MNPs) were adequately characterized and tested. The Ap-MNPs in solution exhibited a fast response to the outer magnetic field, and can be completely separated in several minutes. It was found that Ap-MNPs have good specificity to the target AFP, as the recovery of AFP (87.0%) was much higher than the competitive proteins IgG (38.9%), HSA (18.5%), and FIB (11.4%). A convenient and efficient label-free detection method of AFP in serum was developed based on Ap-MNPs in combination with high-performance liquid chromatography. The linearity of this method was over a range of 1-50 μg ml-1 with a correlation coefficient of 0.9999, and the limit of detection was 0.27 μg ml-1. This study indicated that aptamers are an ideal tool for the recognition and detection of biomarkers, and thus will find wide applications in clinical practice.
Collapse
Affiliation(s)
- Yu Su
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liao J, Peng S, Long M, Zhang Y, Yang H, Zhang Y, Huang J. Nano-Bio interactions of clay nanotubes with colon cancer cells. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Chen L, Wang X, Zhang Q, Li Z, Kang Q, Shen D. A ratiometric electrochemiluminescence method using a single luminophore of porous g-C3N4 for the ultrasensitive determination of alpha fetoprotein. Analyst 2020; 145:2389-2397. [DOI: 10.1039/c9an02470k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this work, we report a simple ratiometric electrochemiluminescence method for ultra-sensitive immunoanalysis.
Collapse
Affiliation(s)
- Lu Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Xuemei Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Qiao Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Zhe Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Qi Kang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Dazhong Shen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| |
Collapse
|
43
|
Kumar AR, Shanmugasundaram KB, Li J, Zhang Z, Ibn Sina AA, Wuethrich A, Trau M. Ultrasensitive melanoma biomarker detection using a microchip SERS immunoassay with anisotropic Au–Ag alloy nanoboxes. RSC Adv 2020; 10:28778-28785. [PMID: 35520058 PMCID: PMC9055796 DOI: 10.1039/d0ra05032f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022] Open
Abstract
The detection of circulating biomarkers in liquid biopsies has the potential to provide a non-invasive route for earlier cancer diagnosis and treatment management. Melanoma chondroitin sulfate proteoglycan (MCSP) is a membrane protein characteristic for melanoma cell migration and tissue invasion with its soluble form (sMCSP) serving as a potential promising diagnostic surrogate. However, at the initial disease stage, the detection of sMCSP is challenging because of its low abundance and the required high specificity to analyze sMCSP in complex bodily fluids. Herein, we report a highly sensitive and high-throughput microchip that enables Surface Enhanced Raman Spectroscopy (SERS) immunoassay for parallel detection of up to 28 samples. Key to assay speed and sensitivity is the stimulation of an alternating current-induced nanofluidic mixing that improves target-sensor collision and displacement of non-specific molecules. Anisotropic Au–Ag alloy nanoboxes (NB's) with strong plasmonic hot spots provide single SERS particle sensitivity that enables ultrasensitive sMCSP detection of as low as 0.79 pM (200 pg ml−1). As a proof of concept study, we investigate the assay performance in simulated melanoma patient samples. The detection of circulating biomarkers in liquid biopsies has the potential to provide a non-invasive route for earlier cancer diagnosis and treatment management.![]()
Collapse
Affiliation(s)
- Aswin Raj Kumar
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Karthik Balaji Shanmugasundaram
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Junrong Li
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Zhen Zhang
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Abu Ali Ibn Sina
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| |
Collapse
|
44
|
Liu R, Ye X, Cui T. Recent Progress of Biomarker Detection Sensors. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7949037. [PMID: 33123683 PMCID: PMC7585038 DOI: 10.34133/2020/7949037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Early cancer diagnosis and treatment are crucial research fields of human health. One method that has proven efficient is biomarker detection which can provide real-time and accurate biological information for early diagnosis. This review presents several biomarker sensors based on electrochemistry, surface plasmon resonance (SPR), nanowires, other nanostructures, and, most recently, metamaterials which have also shown their mechanisms and prospects in application in recent years. Compared with previous reviews, electrochemistry-based biomarker sensors have been classified into three strategies according to their optimizing methods in this review. This makes it more convenient for researchers to find a specific fabrication method to improve the performance of their sensors. Besides that, as microfabrication technologies have improved and novel materials are explored, some novel biomarker sensors-such as nanowire-based and metamaterial-based biomarker sensors-have also been investigated and summarized in this review, which can exhibit ultrahigh resolution, sensitivity, and limit of detection (LoD) in a more complex detection environment. The purpose of this review is to understand the present by reviewing the past. Researchers can break through bottlenecks of existing biomarker sensors by reviewing previous works and finally meet the various complex detection needs for the early diagnosis of human cancer.
Collapse
Affiliation(s)
- Ruitao Liu
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Xiongying Ye
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
45
|
Lv S, Zhang K, Zhu L, Tang D, Niessner R, Knopp D. H2-Based Electrochemical Biosensor with Pd Nanowires@ZIF-67 Molecular Sieve Bilayered Sensing Interface for Immunoassay. Anal Chem 2019; 91:12055-12062. [DOI: 10.1021/acs.analchem.9b03177] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shuzhen Lv
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Kangyao Zhang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Ling Zhu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Reinhard Niessner
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universität München, Marchioninistrasse 17, München D-81377, Germany
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universität München, Marchioninistrasse 17, München D-81377, Germany
| |
Collapse
|
46
|
Gu T, Gu M, Liu YL, Dong Y, Zhu LB, Li Z, Wang GL, Zhao WW. In situ chemical redox and functionalization of graphene oxide: toward new cathodic photoelectrochemical bioanalysis. Chem Commun (Camb) 2019; 55:10072-10075. [PMID: 31378796 DOI: 10.1039/c9cc03877a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This report outlines the first exploration of graphene oxide (GO) itself as a light harvesting material with an innovative in situ chemical redox and functionalization (CRF) strategy for versatile and high-throughput cathodic photoelectrochemical (PEC) bioanalysis.
Collapse
Affiliation(s)
- Tiantian Gu
- International Joint Research Center for Photoresponsive Molecules and Materials, Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pang B, Zheng Y, Wang J, Liu Y, Song X, Li J, Yao S, Fu K, Xu K, Zhao C, Li J. Colorimetric detection of Staphylococcus aureus using gold nanorods labeled with yolk immunoglobulin and urease, magnetic beads, and a phenolphthalein impregnated test paper. Mikrochim Acta 2019; 186:611. [DOI: 10.1007/s00604-019-3722-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022]
|
48
|
Peng H, Huang Z, Wu W, Liu M, Huang K, Yang Y, Deng H, Xia X, Chen W. Versatile High-Performance Electrochemiluminescence ELISA Platform Based on a Gold Nanocluster Probe. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24812-24819. [PMID: 31241892 DOI: 10.1021/acsami.9b08819] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This report outlines a versatile high-performance electrochemiluminescence (ECL) enzyme-linked immunosorbent assay (ELISA) platform, which combines the merits of high-quantum-yield Au nanocluster (AuNC) probe-based ECL technology, the efficient ECL-resonance energy-transfer (ECL-RET) strategy, and highly sensitive and specific ELISA technology. The ECL detection procedure was performed on a recyclable MnO2/AuNC-modified glassy carbon electrode interface by taking advantage of the ECL-RET between the AuNC probe and MnO2 nanomaterials (NMs) to quench the ECL intensity. The etching of MnO2 NMs by the product of ALP-based ELISA recovers the ECL signal. Notably, the ELISA process and the ECL detection procedure in this system are independent. Thus, the ECL-ELISA system can effectively avoid the influence of complex biological samples, and the ECL efficiency of the AuNC probe can be used readily. As demonstrated on TNF-α, because of the abovementioned characteristics, the ECL-ELISA platform presented an extremely wide dynamic range, with a detection limit of 2 orders lower than ELISA. Moreover, the system was also applicable for ultrahigh sensitive detection of various disease-related proteins and able to detect trace biomarkers in real serum samples. Therefore, this multifunctional ECL assay platform is versatile, facile, ultrasensitive, recyclable, and sufficiently straightforward for trace biomarker detection in complex biological samples. This approach not only enriches the foundational study of ECL devices but also greatly expands the potential application of ECL sensors in biological testing and clinical high-throughput diagnosis.
Collapse
Affiliation(s)
- Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Weihua Wu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Mingkai Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials , Jiangsu Normal University , Xuzhou 221116 , China
| | - Kaiyuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Yu Yang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Xinghua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| |
Collapse
|
49
|
Carbon nanotube-based lateral flow immunoassay for ultrasensitive detection of proteins: application to the determination of IgG. Mikrochim Acta 2019; 186:436. [DOI: 10.1007/s00604-019-3508-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
|
50
|
Ma F, Yuan CW, Liu JN, Cao JH, Wu DY. Colorimetric Immunosensor Based on Au@g-C 3N 4-Doped Spongelike 3D Network Cellulose Hydrogels for Detecting α-Fetoprotein. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19902-19912. [PMID: 31074952 DOI: 10.1021/acsami.9b06769] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A colorimetric immunoassay is a powerful tool for detecting tumor markers, with outstanding advantages of visualization and convenience. This study designed a colorimetric immunoassay using the antibody/antigen to control the catalytic activity to be "switched on/off". This system, where Au NPs (18.5 ± 3.9 nm) were loaded on the g-C3N4 nanosheets that were fixed in a three-dimensional porous cellulose hydrogel, was used as a binding site for the antibody/antigen. After being incubated with an antibody of a cancer marker, the turned-off catalytic sites on Au NPs in Au@g-C3N4/microcrystalline cellulose hydrogels would not be "turned on" until the corresponding antigen was added. The number of the recovered Au active sites was related to the amount of the antigen added. The Fourier transform infrared and X-ray photoelectron spectroscopy measurements did not detect the existence of Au-S bonds. Catalyzed by the turned-on Au NPs, 4-nitrophenol was reduced to 4-aminophenol accompanied by a color fading. The color and the absorption spectrum changes in the process were used as the colorimetric quantitative basis for immunoassays. The colorimetric immunoassay showed a linear relationship with the liver cancer marker (α-fetoprotein, AFP) in the range of 0.1-10 000 ng/mL with the detection limit of 0.46 ng/mL. In addition, 4-nitrophenol had a significant color fading when the AFP concentration exceeded the healthy human threshold. The clinical patient's serum test results obtained from the developed colorimetric immunosensor were consistent with those obtained from the commercial enzyme-linked immunosorbent assay. Furthermore, the immunosensor exhibited a good selectivity, repeatability, and stability, which demonstrated its potential for practical diagnostic application.
Collapse
Affiliation(s)
- Fang Ma
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , 29 Zhong-guan-cun East Road , Haidian District, Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Chun-Wang Yuan
- Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital , Capital Medical University , 08 Xitoutiao, Youwai Street , Fengtai District, Beijing 100069 , P. R. China
| | - Jian-Ni Liu
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , 29 Zhong-guan-cun East Road , Haidian District, Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jian-Hua Cao
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , 29 Zhong-guan-cun East Road , Haidian District, Beijing 100190 , P. R. China
| | - Da-Yong Wu
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , 29 Zhong-guan-cun East Road , Haidian District, Beijing 100190 , P. R. China
| |
Collapse
|