1
|
Yan Q, Wu R, Wang J, Zeng T, Yang L. An ultrasensitive sandwich-type electrochemical immunosensor based on rGO-TEPA/ZIF67@ZIF8/Au and AuPdRu for the detection of tumor markers CA72-4. Bioelectrochemistry 2024; 160:108755. [PMID: 38878457 DOI: 10.1016/j.bioelechem.2024.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 09/15/2024]
Abstract
Cancer antigen 72-4 (CA72-4) is an important marker of cancer detection, and accurate detection of CA72-4 is urgently required. Herein, a sandwich-type immunosensor was constructed for detection CA72-4 based on composite nanomaterial as the substrate material and trimetal nanoparticles as the nanoprobe. The composite nanomaterial rGO-TEPA/ZIF67@ZIF8/Au used as a selective bio-recognition element were modified on the glassy carbon electrode (GCE) surface. Meanwhile, the electrochemical nanoprobes were fabricated through the AuPdRu trimeric metal. After the target antigen 72-4 were captured, the nanoprobes were further assembled to form an antibody1 (Ab1)- antigen-antibody2 (Ab2) nanoprobes sandwich-like system on the electrode surface. Then, hybrid the substrate material rGO-TEPA/ZIF67@ZIF8/Au and the AuPdRu trimeric metal nanoprobes efficiently catalyzed the reduction of H2O2 and amplified the electrochemical signals. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and Chronoamperometry (I-T) methods were used to characterize the performance and detection capabilities for CA72-4 of the prepared immunosensors. The results showed that the detection limit was 1.8 × 10-5 U/mL (S/N = 3), and the linear range was 0.001-1000 U/mL. This study provides a new signal amplification strategy for electrochemical sensors and a theoretical basis for the clinical application of immunosensor to detect other tumor markers.
Collapse
Affiliation(s)
- Qinghua Yan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Ruixue Wu
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiaxin Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Tianyi Zeng
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Li Yang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
2
|
Jia W, Lu Q, Tian T, Pan G, Tan R, He B, Liu J. Self-templated fabrication of P-doped CoMoO 4-Co 3O 4 hollow nanocages for the efficient oxygen evolution reaction. NANOSCALE 2024; 16:18076-18085. [PMID: 39257275 DOI: 10.1039/d4nr03347g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Finding reservoir-rich and efficient electrocatalysts for the alkaline oxygen evolution reaction (OER) is crucial for further sustainable energy development. Despite the advantages of high earth abundance, easy availability, and tunable composition, transition-metal oxides are typically considered poor electrocatalysts for the OER. In this study, a composite P-doped CoMoO4-Co3O4 hollow nanocage is deliberately synthesized through a cation-exchange, pyrolysis, and phosphorization approach using an innovative self-template strategy with ZIF-67 as the sacrificial template. Hollow nanocages provide large surface areas and abundant active sites, enhancing electron transfer. Hybridization with other components increases the number of electrochemically reactive sites and optimizes the advantages of different element components. As a result, the P-CoMoO4-Co3O4 hollow nanocage catalyst demonstrates high OER performance, with an overpotential of 279 mV at a current density of 10 mA cm-2. Additionally, P-CoMoO4-Co3O4 catalysts exhibit good dispersibility and excellent long-term stability. Experimental findings and density functional theory (DFT) calculations indicate that the phosphorus-doping effect in various aspects contributes significantly to the superior catalytic activity of P-CoMoO4-Co3O4. This work provides a valuable method for designing cost-effective P doped Co-based bimetal oxide catalysts with outstanding OER performance for industrial applications.
Collapse
Affiliation(s)
- Wenzhi Jia
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Department of Materials Engineering, Huzhou University, Huzhou 313000, China.
| | - Qian Lu
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Department of Materials Engineering, Huzhou University, Huzhou 313000, China.
| | - Tian Tian
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Department of Materials Engineering, Huzhou University, Huzhou 313000, China.
| | - Guoxiang Pan
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Department of Materials Engineering, Huzhou University, Huzhou 313000, China.
| | - Rui Tan
- Warwick Electrochemical Engineering Group, WMG, Energy Innovation Centre, University of Warwick, Warwick, CV4 7AL, UK
| | - Bin He
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Department of Materials Engineering, Huzhou University, Huzhou 313000, China.
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Pan D, Austeria P M, Lee S, Bae HS, He F, Gu GH, Choi W. Integrated electrocatalytic synthesis of ammonium nitrate from dilute NO gas on metal organic frameworks-modified gas diffusion electrodes. Nat Commun 2024; 15:7243. [PMID: 39174506 PMCID: PMC11341735 DOI: 10.1038/s41467-024-51256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
The electrocatalytic conversion of NO offers a promising technology for not only removing the air pollutant but also synthesizing valuable chemicals. We design an integrated-electrocatalysis cell featuring metal organic framework (MOF)-modified gas diffusion electrodes for simultaneous capture of NO and generation of NH4NO3 under low-concentration NO flow conditions. Using 2% NO gas, the modified cathode exhibits a higher NH4+ yield and Faradaic efficiency than an unmodified cathode. Notably, the modified cathode shows a twofold increase in NH4+ production with 20 ppm NO gas supply. Theoretical calculations predict favorable transfer of adsorbed NO from the adsorption layer to the catalyst layer, which is experimentally confirmed by enhanced NO mass transfer from gas to electrolyte across the modified electrode. The adsorption layer-modified anode also exhibits a higher NO3- yield for NO electro-oxidation compared to the unmodified electrode under low NO concentration flow. Among various integrated-cell configurations, a single-chamber setup produces a higher NH4NO3 yield than a double-chamber setup. Furthermore, a higher NO utilization efficiency is obtained with a single-gasline operation mode, where the NO-containing gas flows sequentially from the cathode to the anode.
Collapse
Affiliation(s)
- Donglai Pan
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Muthu Austeria P
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea
| | - Shinbi Lee
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea
| | - Ho-Sub Bae
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Fei He
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea
| | - Geun Ho Gu
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea
| | - Wonyong Choi
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea.
| |
Collapse
|
4
|
Islam S, Abu Nayem SM, Sultana N, Shaheen Shah S, Awal A, Anjum A, Jafar Mazumder MA, Nasiruzzaman Shaikh M, Abdul Aziz M, Saleh Ahammad AJ. Poly[(2-methacryloyloxy)Ethyl]Trimethylammonium Chloride Supported Cobalt Oxide Nanoparticles as an Active Electrocatalyst for Efficient Oxygen Evolution Reaction. Chem Asian J 2024; 19:e202301012. [PMID: 38100493 DOI: 10.1002/asia.202301012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
To combat with energy crisis considering clean energy, oxygen evolution reaction (OER) is crucial to implement electrolytic hydrogen fuel production in real life. Here, straightforward chemical synthesis pathways are followed to prepare cobalt tetraoxide nanoparticles (Co3O4NPs) in an alkaline OER process using poly[(2-methacryloyloxy)ethyl]trimethylammonium chloride (Co3O4NPs@PMTC) as support to prevent aggregation. In material characterization, the X-ray diffraction (XRD) pattern confirms the crystallinity of the synthesized Co3O4NPs@PMTC, and Raman spectroscopy indicates that the Co3O4NPs contain cubic close-packed oxides. The morphological analysis reveals the wrinkle-like disruption which is distributed evenly owing to the folded nanosheet arrays. Energy-dispersive X-ray spectroscopy indicates the presence of a significant number of cobalt atoms in the Co3O4NPs, and elemental mapping analysis demonstrates the composition of the NPs. At a current density of 10 mA cm-2, oxygen is emitted at 1.67 V delivering an overpotential of 440 mV. This unique structure of Co3O4NPs@PMTC provides beneficial functions that are responsible for a large number of active sites and the rapid release of oxygen gas with long-term stability. Through kinetic study, we found a Tafel slope of 48.9 mV dec-1 which proves the catalytic behavior of Co3O4NPs@PMTC is promising toward the OER process.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Nasrin Sultana
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Abdul Awal
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Ahtisham Anjum
- Department of Physics, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad A Jafar Mazumder
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
5
|
Guo Y, Zhao S, Tang X, Yi H. Research progress on metal-organic framework compounds (MOFs) in electrocatalysis. J Environ Sci (China) 2024; 141:261-276. [PMID: 38408827 DOI: 10.1016/j.jes.2023.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 02/28/2024]
Abstract
Metal-organic frameworks (MOFs) have favorable characteristics such as large specific surface area, high porosity, structural diversity, and pore surface modification, giving them great potential for development and attractive prospects in the research area of modern materials electrocatalysis. However, unsatisfactory catalytic activity and poor electronic conductivity are the main challenges facing MOFs. This review focuses on MOF-based materials used in electrocatalysis, based on the types of catalytic reactions that have used MOF-based materials in recent years along with their applications, and also looks at some new electrocatalytic materials and their future development prospects.
Collapse
Affiliation(s)
- Yutong Guo
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Honghong Yi
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
6
|
Li Q, Han Z, Song X, Pan YT, Geng Z, Vahabi H, Realinho V, Yang R. Enhancing char formation of flame retardant epoxy composites: Onigiri-like ZIF-67 modification with carboxymethyl β-cyclodextrin crosslinking. Carbohydr Polym 2024; 333:121980. [PMID: 38494206 DOI: 10.1016/j.carbpol.2024.121980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
To enhance char formation of flame retardant epoxy (EP) composites, carboxymethyl β-cyclodextrin (CM-β-CD) is employed as an etchant for or ZIF-67 derivatives. In the early stage, etching plays a dominant role. The mismatch in size between CM-β-CD opening and ZIF-67 pore leads to the stacking of carboxyl cobalt complexes on the shell. When the reaction time is prolonged, crosslinking occurs between carboxyl and hydroxyl groups. Crosslinked CM-β-CD weakens and eventually stops the etching process. Triethyl phosphate (TEP), an additive to improve flame retardancy, is also absorbed on the shell in this one-pot synthesis. Herin, the synthesis of metal-organic framework (MOF) derivatives can impart multiple functions to MOF. This novel nanohybrid significantly improved flame retardancy of EP composites with only 2.0 wt% loading. The peak heat release rate (pHRR) and total smoke production (TSP) were reduced by 54.8 and 46.9%, respectively. The integrated multi-element system resulted in an expanded and reinforced char layer. This study proposes a simple and precise method for controlling the structure of MOF-carbohydrate hybrids through competition between chemical reactions.
Collapse
Affiliation(s)
- Qianlong Li
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zhengde Han
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xiaoning Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Zhishuai Geng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Vera Realinho
- Poly2 Group, Department of Materials Science and Engineering, School of Industrial, Aerospace and Audiovisual Engineering of Terrassa, Universitat Politècnica de Catalunya (UPC BarcelonaTech), C/de Colom, 11, 08222 Terrassa, Spain
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
7
|
Wang MM, Liu PX, Ye F, Liu LJ, Wen JT, Ni BJ, Luo HW, Wang WK, Xu J. 2D Ni-Co bimetallic oxide nanosheets activate persulfate for targeted conversion of bisphenol A in wastewater into polymers. ENVIRONMENT INTERNATIONAL 2024; 184:108466. [PMID: 38310816 DOI: 10.1016/j.envint.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
The selective removal of targeted pollutants from complex wastewater is challenging. Herein, a novel persulfate (PS)-based advanced oxidation system equipped with a series of two-dimensional (2D) bimetallic oxide nanosheets (NSs) catalysts is developed to selectively degrade bisphenol A (BPA) within mixed pollutants via initiating nonradical-induced polymerization. Results indicate that the Ni0.60Co0.40Ox NSs demonstrate the highest catalytic efficiency among all Ni-Co NSs catalysts. Specifically, BPA degradation rate is 47.34, 27.26, and 9.72 times higher than that of 4-chlorophenol, phenol, and 2,4-dichlorophenol in the mixed solution, respectively. The lower oxidative potential of BPA in relation to the other pollutants renders it the primary target for oxidation within the PDS activation system. PDS molecules combine on the surface of Ni0.60Co0.40Ox NSs to form the surface-activated complex, triggering the generation of BPA monomer radicals through H-abstraction or electron transfer. These radicals subsequently polymerize on the surface of the catalyst through coupling reactions. Importantly, this polymerization process can occur under typical aquatic environmental conditions and demonstrates resistance to background matrices like Cl- and humic acid due to its inherent nonradical attributes. This study offers valuable insights into the targeted conversion of organic pollutants in wastewater into value-added polymers, contributing to carbon recycle and circular economy.
Collapse
Affiliation(s)
- Mei-Mei Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peng-Xi Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Feng Ye
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Li-Juan Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jia-Tai Wen
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Hong-Wei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei-Kang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Juan Xu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
8
|
Sun Y, Liu Z, Liu H, Li F, Li L, Du C, Li J, Xie D, Han G. Enhancing the bifunctional oxygen reduction and evolution activity of CoNC by introducing a trace amount of Fe. Phys Chem Chem Phys 2023; 25:27885-27890. [PMID: 37815353 DOI: 10.1039/d3cp04012g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The potential application of zinc air batteries to tackle the energy shortage and environmental crisis has proposed new requirements of bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Utilizing the special spatial structure of zeolitic imidazolate framework-67 (ZIF-67) as an ideal research platform, the effect of a trace amount of Fe on the composition and structure of as-obtained Fe-CoNC catalysts was investigated. It was revealed that, due to the increased exposed pore structure and metal species located at the near surface, the active sites for the ORR/OER on Fe-CoNC are highly exposed, greatly boosting the activity to the reduction and evolution of oxygen in alkaline media. ZABs with Fe-CoNC have the highest maximum power density of 200 mW cm-2 when operated at current densities as high as 328 mA cm-2, better than not only Fe-free CoNC, but also precious metal-based references with the same catalyst loading.
Collapse
Affiliation(s)
- Yongrong Sun
- Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Zhikai Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Hailu Liu
- Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Fayong Li
- Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Lingfeng Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Chunyu Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jia Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Dong Xie
- Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Guokang Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
9
|
Cao J, Zhou H, Huang C, Wu Q, Yao W. ZIF-8-derived Zn, N-codoped porous carbon as a high-performance piezocatalyst for organic pollutant degradation and hydrogen production. J Colloid Interface Sci 2023; 645:794-805. [PMID: 37172489 DOI: 10.1016/j.jcis.2023.04.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
The development of highly efficient piezocatalysts has attracted widespread attention for energy conversion and pollution abatement. This paper reports for the first time exceptional piezocatalytic properties of a Zn- and N-codoped porous carbon piezocatalyst (Zn-Nx-C) derived from the zeolitic imidazolium framework-8 (ZIF-8) for both hydrogen production and degradation of organic dyes. The Zn-Nx-C catalyst has a high specific surface area of 810.6 m2/g and retains the dodecahedron structure of ZIF-8. Under ultrasonic vibration, the hydrogen production rate of Zn-Nx-C has achieved 6.29 mmol/g/h, surpassing most recently reported piezocatalysts. Additionally, the Zn-Nx-C catalyst demonstrates a 94% degradation efficiency for organic rhodamine B (RhB) dye during 180 min of ultrasonic vibration. This work sheds new light on the potential of ZIF-based materials in the field of piezocatalysis and provides a promising avenue for future developments in the area.
Collapse
Affiliation(s)
- Jing Cao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, PR China
| | - Hong Zhou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, PR China
| | - Cunping Huang
- Aviation Fuels Research Lab, FAA William J. Hughes Technical Center, Atlantic City International Airport, NJ 08405, USA
| | - Qiang Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, PR China
| | - Weifeng Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, PR China; Shanghai Engineering Research Center of Heat-exchange System and Energy Saving, Shanghai University of Electric Power, Shanghai, PR China.
| |
Collapse
|
10
|
Zhou P, Lv J, Huang X, Lu Y, Wang G. Strategies for enhancing the catalytic activity and electronic conductivity of MOFs-based electrocatalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Dai J, Huang Z, Zhang H, Shi H, Arulmani SRB, Liu X, Huang L, Yan J, Xiao T. Promoted Sb removal with hydrogen production in microbial electrolysis cell by ZIF-67-derived modified sulfate-reducing bacteria bio-cathode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158839. [PMID: 36155030 DOI: 10.1016/j.scitotenv.2022.158839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Bio-cathode Microbial electrolysis cell (MEC) has been widely discovered for heavy metals removal and hydrogen production. However, low electron transfer efficiency and heavy metal toxicity limit MEC treatment efficiency. In this study, ZIF-67 was introduced to modify Sulfate-reducing bacteria (SRB) bio-cathode to enhance the bioreduction of sulfate and Antimony (Sb) with hydrogen production in the MEC. ZIF-67 modified bio-cathode was developed from a bio-anode microbial fuel cell (MFC) by operating with an applied voltage of 0.8 V to reverse the polarity. Cyclic voltammetry, linear sweep voltammetry and electrochemical impedance were done to confirm the performance of the ZIF-67 modified SRB bio-cathode. The synergy reduction of sulfate and Sb was accomplished by sulfide metal precipitation reaction from SRB itself. Maximum sulfate reduction rate approached 93.37 % and Sb removal efficiency could reach 92 %, which relies on the amount of sulfide concentration generated by sulfate reduction reaction, with 0.923 ± 0.04 m3 H2/m3 of hydrogen before adding Sb and 0.857 m3 H2/m3 of hydrogen after adding Sb. The hydrogen was mainly produced in this system and the result of gas chromatography (GC) indicated that 73.27 % of hydrogen was produced. Meanwhile the precipitates were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy to confirm Sb2S3 was generated from Sb (V).
Collapse
Affiliation(s)
- Junxi Dai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhongyi Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China.
| | - Huihui Shi
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Samuel Raj Babu Arulmani
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xianjie Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
13
|
Chen JT, Chen SS, Wang ZQ, Yu G, Mao GJ, Fei J, Li CY. Near-Infrared Fluorescent Nanoprobes for Adenosine Triphosphate-Guided Imaging in Cancer and Fatty Liver Mice. Anal Chem 2023; 95:2119-2127. [PMID: 36622664 DOI: 10.1021/acs.analchem.2c05235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adenosine triphosphate (ATP), as an indispensable biomolecule, is the main energy source of cells and is used as a marker for diseases such as cancer and fatty liver. It is of great significance to design a near-infrared fluorescent nanoprobe with excellent performance and apply it to various disease models. Here, a near-infrared fluorescent nanoprobe (ZIF-90@SiR) based on a zeolitic imidazole framework is proposed. The fluorescent nanoprobes are synthesized by encapsulating the dye (SiR) into the framework of ZIF-90. Upon the addition of ATP, the structure of the ZIF-90@SiR nanoprobe is disrupted and SiR is released to generate near-infrared fluorescence at 670 nm. In the process of ATP detection, ZIF-90@SiR shows high sensitivity and good selectivity. Moreover, the ZIF-90@SiR nanoprobe has good biocompatibility due to its low toxicity to cells. It is used for fluorescence imaging of ATP in living cells and thus distinguishing normal cells and cancer cells, as well as distinguishing fatty liver cells. Due to excellent near-infrared fluorescence properties, the ZIF-90@SiR nanoprobe can not only distinguish normal mice and tumor mice but also differentiate normal mice and fatty liver mice for the first time.
Collapse
Affiliation(s)
- Jun-Tao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Si-Si Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo Yu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Junjie Fei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
14
|
Using coupled Ni and Zn oxides based on ZIF8 as efficient electrocatalyst for OER. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Qian X, Cheng J, Jin L, Wang Y, Huang B, Chen J. ZIF-8/Ketjen Black derived ZnO/N/KB composite for separator modification of lithium sulfur batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Nickel sulfide and cobalt-containing carbon nanoparticles formed from ZIF-67@ZIF-8 as advanced electrode materials for high-performance asymmetric supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Xu C, Wang H, Shang Y, Li B, Yu D, Wang Y. Highly efficient Cd(Ⅱ) removal using 3D N-doped carbon derived from MOFs: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129149. [PMID: 35594671 DOI: 10.1016/j.jhazmat.2022.129149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) removal is imperative to ensure the safety of aquatic-ecosystem, yet its effective removal technology has remained elusive by far. To address this concern, three-dimensional N-doped carbon (NC) polyhedrons affording ample porosity is fabricated based upon the thermal carbonization and KOH activation of zeolitic imidazolate framework-8 (ZIF-8) precursor. Thus-derived activated NC (a-NC) adsorbent not only overcomes the inherent instability of ZIF-8 but also harvests a maximum Cd(Ⅱ) adsorption capacity of 370.2 mg g-1, which evidently surpasses those of bare NC counterpart as well as previously reported adsorbents. Impressively, a-NC achieves ca. 100% removal of aqueous Cd(Ⅱ) in a broad working pH range (5-9), and particularly attains stable performances (81-92%) in various realistic water. Theoretical calculations in combination with experimental characterizations further offer mechanistic insight into the enhanced removal exerted by a-NC. Notably, owing to the increased specific surface area (3041 vs. 389 m2 g-1) and enhanced sp2 carbon content (91.7 vs. 68.8%) of a-NC as compared to NC, advanced Cd(Ⅱ) adsorption via a-NC can be exhibited. Our designed a-NC material harnessing favorable recycling capability would be in particular attractive in the realm of practical Cd(Ⅱ) remediation.
Collapse
Affiliation(s)
- Conglei Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yaxin Shang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Beibei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Danning Yu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yifei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
18
|
Wang H, Li X, Su F, Xie J, Xin Y, Zhang W, Liu C, Yao D, Zheng Y. Core-Shell ZIF67@ZIF8 Modified with Phytic Acid as an Effective Flame Retardant for Improving the Fire Safety of Epoxy Resins. ACS OMEGA 2022; 7:21664-21674. [PMID: 35785329 PMCID: PMC9245132 DOI: 10.1021/acsomega.2c01545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 05/14/2023]
Abstract
Despite many important industrial applications, epoxy resin (EP) suffers from high flammability and toxicity emission, extremely hampering their applications. To circumvent the problem, core-shell structured ZIF67@ZIF8 is successfully synthesized and further functionalized with phytic acid (PA) to obtain PA-ZIF67@ZIF8 hybrids. Then, it is used as an efficient flame retardant to reduce the fire risk of EP. The fire test results show a significant reduction in heat and smoke production. Compared with EP, incorporating 5.0 wt % PA-ZIF67@ZIF8 into EP, the peak heat release rate, total heat release, and peak carbon monoxide production are dramatically reduced by 42.2, 33.0, and 41.5%, respectively. Moreover, the EP/PA-ZIF67@ZIF8 composites achieve the UL-94 V-0 rating and the limiting oxygen index increases by 29.3%. These superior fire safety properties are mainly attributed to the excellent dispersion and the catalytic effect of metal oxide and phosphorus-containing compounds. This work provides an efficient strategy for preparing a promising ZIF-based flame retardant for enhancing flame retardancy and smoke toxicity suppression of EP.
Collapse
|
19
|
Luo Q, Huang X, Deng Q, Zhao X, Liao H, Deng H, Dong F, Zhang T, Shi L, Jiang J. Novel 3D cross-shaped Zn/Co bimetallic zeolite imidazolate frameworks for simultaneous removal Cr(VI) and Congo Red. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40041-40052. [PMID: 35112246 DOI: 10.1007/s11356-021-18272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The photocatalytic properties of Zn/Co zeolite imidazolate frameworks (ZIF-ZnCo) prepared by various Zn/Co ratio are of significantly diversity due to the morphology structure of the ZIF-ZnCo. Thereinto, the prepared ZIF-ZnCO-8:1 is excellent capability by virtue of its 3D cross-shaped structure. Spectral test results show that as-prepared novel 3D cross-shaped ZIF-ZnCo has a lower recombination rate of electron and hole pairs than the lamellar and dodecahedral, thus improving the photocatalytic ability. The photocatalytic ability of 3D cross-shaped ZIF-ZnCo was carefully investigated for removing mixed solution of Congo Red (CR) and Cr(VI). The photocatalytic reduction ability of 3D cross-shaped ZIF-ZnCo was 22% higher than ZIF-8 for Cr(VI). Meanwhile, CR was altogether removed at dark processing and Cr(VI) was removed 70% after dark processing 120 min and photocatalytic 240 min. Therefore, the high adsorption and photocatalytic capacity denote the potential application of 3D cross-shaped ZIF-ZnCo.
Collapse
Affiliation(s)
- Qin Luo
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Xiaofeng Huang
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Qiulin Deng
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China.
- State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Post-Doctoral Scientific Research Station of Wengfu (Group) Co., Ltd., 3491 Baijin Road, Guiyang, 550016, People's Republic of China.
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, School of Chemical Engineering, Huaiyin Institute of Technology, Jiangsu Province, Huaian, 223003, People's Republic of China.
| | - Xueyuan Zhao
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Huiwei Liao
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Hongquan Deng
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Faqin Dong
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Post-Doctoral Scientific Research Station of Wengfu (Group) Co., Ltd., 3491 Baijin Road, Guiyang, 550016, People's Republic of China
| | - Lianjun Shi
- State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Post-Doctoral Scientific Research Station of Wengfu (Group) Co., Ltd., 3491 Baijin Road, Guiyang, 550016, People's Republic of China
| | - Jinlong Jiang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, School of Chemical Engineering, Huaiyin Institute of Technology, Jiangsu Province, Huaian, 223003, People's Republic of China
| |
Collapse
|
20
|
Cui B, Fu G. Process of metal-organic framework (MOF)/covalent-organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage. NANOSCALE 2022; 14:1679-1699. [PMID: 35048101 DOI: 10.1039/d1nr07614k] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fossil-fuel shortage and severe environmental issues have posed ever-increasing demands on clean and renewable energy sources, for which the exploration of electrocatalysts has been a big challenge toward energy transfer and storage. Some indispensable features of electrocatalysts, such as large surface area, controlled structure, high porosity, and effective functionalization, have been proved to be critical for the improvement of electrocatalytic activities. Recently, the rapid expansion of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and porous-organic polymers has provided extensive opportunities for the development of various electrocatalysts. Moreover, combining diverse descriptions of porous-organic frameworks (such as MOFs and COFs) can generate amazing and fantastic properties, affording the formed MOF/COF (including core-shell MOF@MOF and MOF@COF and layer-on-layer MOF-on-MOF or COF-on-MOF) heterostructures wide applications in diverse fields, especially in clean energy and energy transfer. To further boosts electronic conductivity, catalytic performances, and energy storage abilities, these MOF/COF hybrid materials have been widely utilized as versatile precursors for the manufacture of transition metal catalysts embedded within mesoporous carbon nitrides (M@CNx) and porous carbon nitride frameworks (CNx) via a facile pyrolysis process. Given that these M@CNx and CNx hybrids are composed of abundant catalytic centers, rich functionalities, and large specific surface areas, vast applications in energy transfer and energy storage fields can be realized. In this mini-review, we summarize the preparation strategies of MOF/COF-based hybrids, as well as their derivatives, nanostructure formation mechanism of M@CNx and CNx hybrids from MOF/COF-based hybrid materials, and their applications as catalysts for driving diverse reactions and electrode materials for energy storage. Further, current challenges and future prospects of applying these derivatives into energy conversion and storage devices are also discussed.
Collapse
Affiliation(s)
- Bingbing Cui
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, China.
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, China.
| |
Collapse
|
21
|
Controllable Preparation of Fe3O4@RF and Its Evolution to Yolk–Shell-Structured Fe@C Composite Microspheres with High Microwave Absorbing Performance. COATINGS 2022. [DOI: 10.3390/coatings12010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Fe3O4@RF microspheres with different phenolic (RF) layer thicknesses are prepared by adjusting the polymerization time. With the prepared Fe3O4@RF as the precursor, Fe@C composite microspheres with rattle-like morphology are obtained through one-step controlled carbonization. This method simplifies the preparation of rattle-shaped microspheres from sandwich microspheres. Fe@C microspheres exhibit excellent microwave absorbing properties. The morphology and composition of the product are investigated depending on the effects of carbonization temperature, time and thickness of the RF layer. When the carbonization temperature is 700 °C, the carbonization time is 12 h and the polymer shell thickness is 62 nm, the inner hollow Fe3O4 is completely reduced to Fe. The absorption properties of the materials are compared before and after the reduction of Fe3O4. Both Fe@C-12 and Fe3O4@C-700 show excellent absorbing properties. When the filler content is 50%, the maximum reflection loss (RLmax) of the rattle-shaped Fe@C microspheres is −50.15 dB, and the corresponding matching thickness is 3.5 mm. At a thickness of 1.7 mm, the RLmax of Fe3O4@C-700 is −44.42 dB, which is slightly worse than that of Fe@C-12. Both dielectric loss and magnetic loss play a vital role in electromagnetic wave absorption. This work prepares rattle-shaped absorbing materials in a simple way, which has significance for guiding the construction of rattle-shaped materials.
Collapse
|
22
|
Liu G, Pan G, Dang Q, Li R, Li L, Yang C, Yu Y. Hollow Covalent Organic Framework Cages with Zn Ion‐Implantation Promoting Photocatalytic H2 Evolution. ChemCatChem 2022. [DOI: 10.1002/cctc.202101800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guoyu Liu
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Guodong Pan
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Qiang Dang
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Rui Li
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Liuyi Li
- Fuzhou University College of Materials Science and Engineering 2 Xue Yuan Road, University Town, Fuzhou Fuzhou CHINA
| | - Chengkai Yang
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Yan Yu
- Fuzhou University College of Materials Science and Engineering CHINA
| |
Collapse
|
23
|
Pyrolysis-derived materials of Mn-doped ZIF-67 for the electrochemical detection of o-nitrophenol. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Li M, Xu Z, Chen Y, Shen G, Wang X, Dai B. MOFs-Derived Zn-Based Catalysts in Acetylene Acetoxylation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:98. [PMID: 35010047 PMCID: PMC8746958 DOI: 10.3390/nano12010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Metal-organic frameworks (MOFs)-derived materials with a large specific surface area and rich pore structures are favorable for catalytic performance. In this work, MOFs are successfully prepared. Through pyrolysis of MOFs under nitrogen gas, zinc-based catalysts with different active sites for acetylene acetoxylation are obtained. The influence of the oxygen atom, nitrogen atom, and coexistence of oxygen and nitrogen atoms on the structure and catalytic performance of MOFs-derived catalysts was investigated. According to the results, the catalysts with different catalytic activity are Zn-O-C (33%), Zn-O/N-C (27%), and Zn-N-C (12%). From the measurements of X-ray photoelectron spectroscopy (XPS), it can be confirmed that the formation of different active sites affects the electron cloud density of zinc. The electron cloud density of zinc affects the ability to attract CH3COOH, which makes catalysts different in terms of catalytic activity.
Collapse
Affiliation(s)
- Mengli Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; (M.L.); (Z.X.); (Y.C.); (G.S.)
| | - Zhuang Xu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; (M.L.); (Z.X.); (Y.C.); (G.S.)
| | - Yuhao Chen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; (M.L.); (Z.X.); (Y.C.); (G.S.)
| | - Guowang Shen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; (M.L.); (Z.X.); (Y.C.); (G.S.)
| | - Xugen Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; (M.L.); (Z.X.); (Y.C.); (G.S.)
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832000, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; (M.L.); (Z.X.); (Y.C.); (G.S.)
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832000, China
| |
Collapse
|
25
|
Zhang L, Jin Z, Tsubaki N. Zeolitic Imidazolate Framework-67-Derived P-Doped Hollow Porous Co 3O 4 as a Photocatalyst for Hydrogen Production from Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50996-51007. [PMID: 34677052 DOI: 10.1021/acsami.1c14987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a part of photocatalytic water splitting, the design of low-cost, high-activity catalysts plays an essential role in the development of photocatalytic water splitting. Metal oxides have the advantages of a wide range of sources, many varieties, and easy preparation. Doping engineering on their surface can construct new active sites and adjust their catalytic activity. In this work, a new strategy was developed through anion hybridization to regulate electron delocalization. Using one of the cobalt-based zeolitic imidazole skeletons (ZIF-67) as a precursor material, a two-step calcination method was used to prepare a P-doped Co3O4 mixed anion composite photocatalyst. The hydrogen production rate of P@Co3O4 is 39 times that of ZIF-67 and 6.8 times that of Co3O4. Through density functional theory (DFT) calculations, the electron delocalization state of the sample surface is predicted and the reaction energy barrier is reduced to promote the process of the hydrogen evolution reaction (HER). The special O(δ-)-Co(δ+)-P(δ-) surface bonding state promotes the bridging of isolated electronic states and provides active sites for the adsorption and activation of reaction substrates. The improved electron transport pathway and the synergy between the catalytic sites under the high electron transport rate are the main reasons for the enhanced photocatalytic hydrogen evolution activity. This strategy, including changing the surface bond state and optimizing the structure and composition of the catalyst not only provides a new method for preparing other MOF-derived nanomaterials with porous structures but also inspires the reasonable development of other MOF-based advanced photocatalysts.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P. R. China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| |
Collapse
|
26
|
Cui Y, Liu Z, Li X, Ren J, Wang Y, Zhang Q, Zhang B. MOF-derived yolk-shell Co@ZnO/Ni@NC nanocage: Structure control and electromagnetic wave absorption performance. J Colloid Interface Sci 2021; 600:99-110. [DOI: 10.1016/j.jcis.2021.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
|
27
|
Kong L, Li Z, Zhang H, Zhang M, Zhu J, Deng M, Chen Z, Ling Y, Zhou Y. Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Fan W, Liu X, Wu J, Liu Q, Ding L, Liu X. Development of a Novel Silver‐based Sensing Platform for Detecting Superoxide Anion Released from HeLa Cells Directly. ELECTROANAL 2021. [DOI: 10.1002/elan.202100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weizhou Fan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Xiaohong Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Jinsheng Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Qian Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Lan Ding
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| |
Collapse
|
29
|
Ni-N-Doped Carbon-Modified Reduced Graphene Oxide Catalysts for Electrochemical CO2 Reduction Reaction. Catalysts 2021. [DOI: 10.3390/catal11050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is eliciting considerable attention in relation to the carbon cycle and carbon neutrality. As for the practical application of CO2RR, the electrocatalyst is a crucial factor, but, even so, designing and synthesizing an excellent catalyst remains a significant challenge. In this paper, the coordination compound of Ni ions and dimethylglyoxime (DMG) was employed as a precursor to modify reduced graphene oxide (rGO) for CO2RR. The textural properties and chemical bonds of as-obtained rGO, N–C–rGO, Ni–rGO, Ni–N–C, and Ni–N–C–rGO materials were investigated in detail, and the role of Ni, N–C, and rGO in the CO2RR were researched and confirmed. Among all the catalysts, the Ni–N–C–rGO showed the optimal catalytic activity and selectivity with a high current density of 10 mA cm−2 and FE(CO)% of 85% at −0.87 V vs. RHE. In addition, there was no obvious decrease in activity for 10 h. Therefore, the Ni–N–C–rGO is a promising catalyst for CO2RR to CO.
Collapse
|
30
|
Zhan Y, Yu SZ, Luo SH, Feng J, Wang Q. Nitrogen-Coordinated CoS 2@NC Yolk-Shell Polyhedrons Catalysts Derived from a Metal-Organic Framework for a Highly Reversible Li-O 2 Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17658-17667. [PMID: 33826308 DOI: 10.1021/acsami.1c02564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition-metal sulfides (TMS) are one of the most promising cathode catalysts for Li-O2 batteries (LOBs) owing to their excellent stabilities and inherent metallicity. In this work, a highly efficient mode has been used to synthesize Co@CNTs [pyrolysis products of metal-organic frameworks (MOFs)]-derived CoS2(CoS)@NC. Benefiting from the special yolk-shell hierarchical porous morphology, the existence of Co-N bonds, and dual-function catalytic activity (ORR/OER) of the open metal sites contributed by MOFs, the CoS2@NC-400/AB electrode illustrated excellent charge-discharge cycling for up to nearly 100 times at a current density of 0.1 mA cm-2 under a limited capacity of 500 mA h g-1 (based on the total weight of CoS2@NC and AB) with a high discharge voltage plateau and a low charge cut-off voltage. Meanwhile, the average transferred electron number (n) is around 3.7 per O2 molecule for CoS2@NC-400, which is the chief approach for a four-electron pathway of the ORR under alkaline media. Therefore, we believe that the novel CoS2@NC-400/AB electrode could serve as an excellent catalyst in the LOBs.
Collapse
Affiliation(s)
- Yang Zhan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Shun-Zhi Yu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China
| | - Shao-Hua Luo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China
| | - Jian Feng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Qing Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China
| |
Collapse
|
31
|
Zhou C, Cui K, Liu Y, Hao S, Zhang L, Ge S, Yu J. Ultrasensitive Microfluidic Paper-Based Electrochemical/Visual Analytical Device via Signal Amplification of Pd@Hollow Zn/Co Core-Shell ZIF67/ZIF8 Nanoparticles for Prostate-Specific Antigen Detection. Anal Chem 2021; 93:5459-5467. [PMID: 33755444 DOI: 10.1021/acs.analchem.0c05134] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An effective signal amplification strategy is essential to enhance the analytical performance of microfluidic paper-based analytical devices (μPADs) for tracing biomarkers. Here, a simple but efficient approach with superior electrocatalytic performance of Pd@hollow Zn/Co core-shell ZIF67/ZIF8 nanoparticles for regulating the efficacious signal amplification process was utilized to realize the detection of prostate-specific antigen (PSA). By rationally designing the core-shell structure of ZIF67/ZIF8 with hollow characteristics on the nanoscale and introducing the noble metal element Pd into the cavity, the diffusion limitation and porous confinement reduction of the obtained nanomaterials with uniform morphology and satisfactory chemical stability could be realized, which endowed it with better catalytic performance than solid metal-organic frameworks (MOFs) and ensured effective signal amplification of H2O2 reduction for achieving enhanced electrochemical signals. Moreover, with the assistance of signal probes, the remaining H2O2 could flow to the color area to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine to form a colored product by changing the spatial configuration of the μPAD, thus realizing the visual detection of PSA. On the basis of this novel analytical device, dual-mode ultrasensitive detection of PSA could be achieved with a lower limit of detection of 0.78 pg/mL (S/N = 3) and a wider linear range from 5 pg/mL to 50 ng/mL. This work provided the opportunity of introducing the noble metal element Pd into the cavity of the MOF hollow structure to improve its electrocatalytic efficiency and construct a high-performance μPAD for clinical detection of other biomarkers.
Collapse
Affiliation(s)
- Chenxi Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yue Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
32
|
Zhang Y, Sun Y, Cai Z, You S, Li X, Zhang Y, Yu Y, Ren N, Zou J. Stable CuO with variable valence states cooperated with active Co 2+ as catalyst/co-catalyst for oxygen reduction/methanol oxidation reactions. J Colloid Interface Sci 2021; 593:345-358. [PMID: 33744543 DOI: 10.1016/j.jcis.2021.02.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 01/27/2023]
Abstract
Catalysts/co-catalysts for cathodic oxygen reduction and anodic methanol oxidation reactions (ORR/MOR) play the major roles in promoting the commercialization of direct methanol fuel cells. Herein, bimetallic zeolite-imidazolate-frameworks (CoZn-ZIFs) is used as precursor to synthesize Co3O4@NPC/CuO composites as catalysts for ORR and Pt supports/co-catalysts for MOR. The ORR activity (E1/2 = 0.83 V) and long-term stability (activity retention of 85.5% after 30,000 s) of Co3O4@NPC/CuO-400 (400 °C) dodecahedron are better than those of commercial Pt/C (10 wt%) in alkaline electrolytes. The surface CuO with variable valence states (Cu0 and Cu2+) can be used as both the active component for ORR and the protective layer for Co3O4 to enhance catalytic stability. Partial removal of CoOx from carbon framework promotes the exposure of highly active sites (Co2+) on the Co3O4. For MOR, the mass activity of Pt-Co3O4@NPC/CuO-400 (5 wt%) (1947 mA mgPt-1) is much higher than that of Pt/C (751 mA mgPt-1), mainly attributing to that the Pt active sites are uniformly dispersed on Co3O4@NPC/CuO support. The strong interaction between Pt and CuO can reduce the bond strength of Pt-CO to enhance CO resistance. Co3O4 can activate H2O molecules to provide sufficient OH- species to promote MOR. This study provides a new idea for preparation of active ORR catalysts and MOR co-catalyst from bimetallic ZIFs.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yubo Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zhuang Cai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xuerui Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yanhong Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Yang Yu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
33
|
Zeng L, Cao B, Wang X, Liu H, Shang J, Lang J, Cao X, Gu H. Ultrathin amorphous iron-doped cobalt-molybdenum hydroxide nanosheets for advanced oxygen evolution reactions. NANOSCALE 2021; 13:3153-3160. [PMID: 33527975 DOI: 10.1039/d0nr08408e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing the highly efficient and low-cost electrocatalysts for the oxygen evolution reactions (OERs), as vital half reactions of water splitting, is crucial for renewable energy technology. The electrocatalysts based on multi-component and hierarchically structured non-noble metal hydr(oxy)oxide materials are of great prospects. Herein, we report an efficient strategy at low temperatures for synthesizing amorphous iron-doped cobalt-molybdenum ultrathin hydroxide (Fe-CoMo UH) nanosheets. Benefiting from the ultrathin amorphous structure and multi-metal coordination, Fe-CoMo UH nanosheets exhibit outstanding performance for OERs with a low overpotential of 245 mV at 10 mA cm-2, a small Tafel slope of 37 mV dec-1 and an excellent stability for 90 h. The mass activity of Fe-CoMo UH is higher than that of commercial Ir/C and most of the transition metal hydroxide catalysts. This work provides a feasible consideration for the construction of promising efficient non-noble metal catalysts.
Collapse
Affiliation(s)
- Lingjian Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Jiangsu, 215123, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Qu B, Han Y, Li J, Wang Q, Zhao B, Peng X, Zhang R. Design of ZIF-based hybrid nanoparticles with hyaluronic acid-augmented ROS behavior for dual-modality PA/NIR-II FL imaging. RSC Adv 2021; 11:5044-5054. [PMID: 35424429 PMCID: PMC8694529 DOI: 10.1039/d0ra09545a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 01/09/2023] Open
Abstract
Photoacoustic (PA) imaging has emerged as a promising bio-imaging technique due to its non-invasive visualization of lesions at great penetration depths. Fluorescence (FL) imaging in the second near-infrared window (NIR-II, 1000-1700 nm) achieves a higher imaging resolution and lower background signals compared to NIR-I. However, the single imaging method possesses its own disadvantages. Thus, we have demonstrated ZIF-8-IR820-MnPc-HA nanoparticles (ZIMH NPs) that can achieve visualization and localization of tumors in mice models with the help of a dual-modality PA/NIR-II FL imaging performance. Meanwhile, these excellent nanoparticles also induce the efficient generation of singlet oxygen (1O2) upon 808 nm laser illumination, and display excellent photodynamic therapy efficacy in cells, further indicating their potential application for in vivo PDT. In ZIMH NPs, hyaluronic acid (HA) impressively acts as a "sponge", enhancing the generation of 1O2 and facilitating the cellular therapeutic effects. We believe that ZIF-8-IR820-MnPc-HA NPs present a brand-new strategy for the exploration of efficient PDT photosensitizers with dual-modality imaging performance for use in various biomedical applications.
Collapse
Affiliation(s)
- Botao Qu
- Department of Medical Imaging, First Clinical Medical College of Shanxi Medical University Taiyuan 030001 P. R. China
| | - Yahong Han
- Department of Medical Imaging, First Clinical Medical College of Shanxi Medical University Taiyuan 030001 P. R. China
- Department of Radiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Department of Affiliated Bethune Hospital of Shanxi Medical University Taiyuan 030001 P. R. China
| | - Juan Li
- Department of Medical Imaging, First Clinical Medical College of Shanxi Medical University Taiyuan 030001 P. R. China
| | - Qian Wang
- Department of Medical Imaging, First Clinical Medical College of Shanxi Medical University Taiyuan 030001 P. R. China
| | - Bingyu Zhao
- Department of Medical Imaging, First Clinical Medical College of Shanxi Medical University Taiyuan 030001 P. R. China
| | - Xiaoyang Peng
- Department of Medical Imaging, First Clinical Medical College of Shanxi Medical University Taiyuan 030001 P. R. China
| | - Ruiping Zhang
- Department of Radiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Department of Affiliated Bethune Hospital of Shanxi Medical University Taiyuan 030001 P. R. China
| |
Collapse
|
35
|
Gupta SSR, Lakshmi Kantam M. Finely dispersed CuO on nitrogen-doped carbon hollow nanospheres for selective oxidation of sp 3 C–H bonds. NEW J CHEM 2021. [DOI: 10.1039/d1nj02406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective oxidation of sp3 C–H bonds has been demonstrated using a novel nanocomposite, CuO/N-C-HNSs, as the catalyst.
Collapse
Affiliation(s)
- Shyam Sunder R. Gupta
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai – 400019, Maharashtra, India
| | - Mannepalli Lakshmi Kantam
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai – 400019, Maharashtra, India
| |
Collapse
|
36
|
Darawsheh MD, Mazarío J, Lopes CW, Giménez-Marqués M, Domine ME, Meira DM, Martínez J, Mínguez Espallargas G, Oña-Burgos P. MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis*. Chemistry 2020; 26:13659-13667. [PMID: 32521073 DOI: 10.1002/chem.202001895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Indexed: 11/09/2022]
Abstract
Metal-organic framework (MOF)-driven synthesis is considered as a promising alternative for the development of new catalytic materials with well-designed active sites. This synthetic approach is used here to gradually transform a new bimetallic MOF, with Pd and Fe as the metal components, by the in situ generation of aniline under mild conditions. This methodology results in a compositionally homogeneous nanocomposite formed by Fe-doped Pd nanoparticles that, in turn, are supported on iron oxide-doped carbon. The nanocomposite has been fully characterized by several techniques such as IR and Raman spectroscopy, TEM, XPS, and XAS. The performance of this nanocomposite as an heterogeneous catalyst for hydrogenation of nitroarenes and nitrobenzene coupling with benzaldehyde has been evaluated, proving it to be an efficient and reusable catalyst.
Collapse
Affiliation(s)
- Mohanad D Darawsheh
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Jaime Mazarío
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Christian W Lopes
- Laboratory of Reactivity and Catalysis-Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501970, Porto Alegre, Brazil
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Marcelo E Domine
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Debora M Meira
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA.,Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Jordan Martínez
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Pascual Oña-Burgos
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain.,Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almería, 04120, Spain
| |
Collapse
|
37
|
Zhao YT, Chen XX, Jiang WL, Li Y, Fei J, Li CY. Near-Infrared Fluorescence MOF Nanoprobe for Adenosine Triphosphate-Guided Imaging in Colitis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47840-47847. [PMID: 32981314 DOI: 10.1021/acsami.0c13003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adenosine triphosphate (ATP) is mainly produced in mitochondria and plays an important role in lots of pathological processes such as colitis. Unfortunately, to date, few suitable fluorescence probes have been developed for monitoring the ATP level in colitis. Herein, a fluorescence nanoprobe named NIR@ZIF-90 is proposed and prepared by encapsulating a rhodamine-based near-infrared (NIR) dye into zeolitic imidazolate frameworks (ZIF-90). The nanoprobe is nonfluorescent because the emission of NIR is suppressed by the encapsulation, while in the presence of ATP, the framework of ZIF-90 is dissembled to release NIR and thus NIR fluorescence at 750 nm is observed. The nanoprobe shows high sensitivity to ATP with a 72-fold increase and excellent selectivity to ATP over other nucleotides. Moreover, with low cytotoxicity and good mitochondria-targeted ability, NIR@ZIF-90 is used to image ATP in colorectal cancer cells (HCT116). In addition, due to the NIR emission, the nanoprobe is further employed to successfully monitor the ATP level in a colitis mouse model. To the best of our knowledge, the nanoprobe is the first example to study colitis in vivo with the guidance of ATP, which will provide an efficient tool for understanding colitis.
Collapse
Affiliation(s)
- Yi-Ting Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Xi-Xi Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Junjie Fei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
38
|
Meng H, Liu Y, Liu H, Pei S, Yuan X, Li H, Zhang Y. ZIF67@MFC-Derived Co/N-C@CNFs Interconnected Frameworks with Graphitic Carbon-Encapsulated Co Nanoparticles as Highly Stable and Efficient Electrocatalysts for Oxygen Reduction Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41580-41589. [PMID: 32815712 DOI: 10.1021/acsami.0c12069] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Development of nonprecious metal catalysts for oxygen reduction reaction (ORR) to reduce or eliminate Pt-based electrocatalysts is of great importance for fuel cells. Herein, Co/N-codoped carbon with carbon nanofiber (CNF) interconnected three-dimensional (3D) frameworks and graphitic carbon-encapsulated Co nanoparticles were designed and successfully prepared via the in situ growth of zeolitic imidazolate framework-67 (ZIF67) with biomass nano-microfibrillar cellulose (MFC) and then pyrolysis. The catalyst (Co/N-C@CNFs) exhibited outstanding long-term catalytic durability with 92.7% current retention after 70 000 s, which was much higher than that of commercial Pt/C in alkaline media. The support and connection of CNFs to Co/N-C frameworks and the protection of Co nanoparticles by graphite layers contribute to their impressive long-term catalytic stability. Meanwhile, Co/C-N@CNFs displayed excellent ORR catalytic performance (E0 = 0.952 V vs RHE, E1/2 = 0.852 V vs RHE, and n: 4.2) in alkaline media. This strategy provides new insights into developing advanced nonprecious metal carbon-based catalysts for ORR.
Collapse
Affiliation(s)
- Hongjie Meng
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yiming Liu
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haoran Liu
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Supeng Pei
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Xianxia Yuan
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hong Li
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongming Zhang
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- State Key Laboratory of Fluorinated Functional Membrane Materials, Shandong Huaxia Shenzhou New Material Co. Ltd., Zibo 256401, P. R. China
| |
Collapse
|
39
|
Hafezi Kahnamouei M, Shahrokhian S. Mesoporous Nanostructured Composite Derived from Thermal Treatment CoFe Prussian Blue Analogue Cages and Electrodeposited NiCo-S as an Efficient Electrocatalyst for an Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16250-16263. [PMID: 32096627 DOI: 10.1021/acsami.9b21403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing effective and priceless electrocatalysts is an indispensable requirement for advancing the efficiency of water splitting to get clean and sustainable fuels. Herein, we reported a feasible strategy for preparing a trimetallic (NiCoFe) superior electrocatalyst with a novel open-cage/3D frame-like structure for an oxygen evolution reaction (OER). It is prepared by consequent thermal treatments of a CoFe Prussian blue analogue frame/cage-like structure under an argon (CoFeA-TT) atmosphere and then electrochemical deposition of nickel-cobalt sulfide nanosheets as a shell layer on it. The electrochemical measurements demonstrated that the deposition of NiCo-S on CoFeA-TT (NiCo-S@CoFeA-TT) has the best catalytic performance and can drive the benchmark current density of 10 mA cm-2 at a low overpotential of 268 mV with a Tafel slope of 62 mV dec-1 and an excellent long-term catalytic stability in an alkaline medium. Its outstanding electrocatalytic performances are endowed from frame/cage-like structures, highly exposed active sites, accelerated mass and electron transport, and the synergistic effect of multiple hybrid components. The NiCo-S@CoFeA-TT showed a better performance than most advanced nonprecious catalysts and the noble commercial RuO2 catalyst. This study exhibited an effective and efficient procedure to design 3D porous architecture catalysts for the energy-relevant electrocatalysis reaction.
Collapse
Affiliation(s)
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran 11155-9516, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Avenue, Tehran 11155-9516, Iran
| |
Collapse
|
40
|
Cai Z, Yamada I, Yagi S. ZIF-Derived Co 9-xNi xS 8 Nanoparticles Immobilized on N-Doped Carbons as Efficient Catalysts for High-Performance Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5847-5856. [PMID: 31944103 DOI: 10.1021/acsami.9b19268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bimetallic sulfides have been attracting considerable attention because of their high catalytic activities for oxygen reduction reaction (ORR) and oxygen evolution reaction; thus, they are considered efficient catalysts for important energy conversion devices such as fuel cells and metal-air batteries. Here, the catalytic activity of a novel catalyst composed of Co9-xNixS8 nanoparticles immobilized on N-doped carbons (Co9-xNixS8/NC) is reported. The catalyst is synthesized using a Ni-adsorbed Co-Zn zeolitic imidazolate framework (ZIF) precursor (NiCoZn-ZIF). Because of the porous structure of ZIF and the high intrinsic activity of the bimetallic sulfide nanoparticles, the Co9-xNixS8/NC catalyst exhibits high half-wave potential 0.86 V versus reversible hydrogen electrode for ORR and outstanding bifunctional catalytic performance. When Co9-xNixS8/NC is applied as a cathode catalyst in zinc-air batteries, considerably higher power density of about 75 mW cm-2 and discharge voltage are achieved compared to those of batteries with commercial Pt/C and other ZIF-derived catalysts. The zinc-air battery with the Co9-xNixS8/NC catalyst shows a high cyclability more than 170 cycles for 60 h with almost negligible decline at 10 mA cm-2. Our work provides a new insight into the design of bimetallic sulfide composites with high catalytic activities.
Collapse
Affiliation(s)
- Zuocheng Cai
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan
| | - Ikuya Yamada
- Department of Materials Science, Graduate School of Engineering , Osaka Prefecture University , 1-2 Gakuen-cho , Naka-ku, Sakai , Osaka 599-8570 , Japan
| | - Shunsuke Yagi
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan
| |
Collapse
|
41
|
Yi Y, Zhao W, Zeng Z, Wei C, Lu C, Shao Y, Guo W, Dou S, Sun J. ZIF-8@ZIF-67-Derived Nitrogen-Doped Porous Carbon Confined CoP Polyhedron Targeting Superior Potassium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906566. [PMID: 31971671 DOI: 10.1002/smll.201906566] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Potassium ion batteries (KIB) have become a compelling energy-storage system owing to their cost effectiveness and the high abundance of potassium in comparison with lithium. However, its practical applications have been thwarted by a series of challenges, including marked volume expansion and sluggish reaction kinetics caused by the large radius of potassium ions. In line with this, the exploration of reliable anode materials affording high electrical conductivity, sufficient active sites, and structural robustness is the key. The synthesis of ZIF-8@ZIF-67 derived nitrogen-doped porous carbon confined CoP polyhedron architectures (NC@CoP/NC) to function as innovative KIB anode materials is reported. Such composites enable an outstanding rate performance to harvest a capacity of ≈200 mAh g-1 at 2000 mA g-1 . Additionally, a high cycling stability can be gained by maintaining a high capacity retention of 93% after 100 cycles at 100 mA g-1 . Furthermore, the potassium ion storage mechanism of the NC@CoP/NC anode is systematically probed through theoretical simulations and experimental characterization. This contribution may offer an innovative and feasible route of emerging anode design toward high performance KIBs.
Collapse
Affiliation(s)
- Yuyang Yi
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Zhihan Zeng
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Chaohui Wei
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Chen Lu
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yuanlong Shao
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
42
|
Wang P, Liu X, Yan Y, Cao J, Feng J, Qi J. Exploring CoP core–shell nanosheets by Fe and Zn dual cation doping as efficient electrocatalysts for overall water splitting. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02425e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fe and Zn dual-doped core–shell CoP nanosheets have been explored and exhibit highly efficient overall water splitting.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xuefeng Liu
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yaotian Yan
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jian Cao
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Jicai Feng
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Junlei Qi
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
43
|
Miao Z, Liu W, Zhao Y, Wang F, Meng J, Liang M, Wu X, Zhao J, Zhuo S, Zhou J. Zn-Modified Co@N–C composites with adjusted Co particle size as catalysts for the efficient electroreduction of CO2. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02203a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Zn-Co@N–C composites are developed by direct annealing of Zn–Co ZIF materials. The size of Co particles could be adjusted by the introduced Zn species. The activity in CO2RR is gradually improved with the decrease of Co particle size.
Collapse
Affiliation(s)
- Zhichao Miao
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Weiqi Liu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Yuzhen Zhao
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Fangyuan Wang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Jian Meng
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Manfen Liang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Xiaozhong Wu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Jinping Zhao
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| |
Collapse
|
44
|
Shi W, E S, Wang MM, Li TZ, Yang T, Liu SR, Chen ML, Wang JH. Facile synthesis of metal-organic framework-derived SiW 12@Co 3O 4 and its peroxidase-like activity in colorimetric assay. Analyst 2019; 144:5455-5461. [PMID: 31432811 DOI: 10.1039/c9an01262a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past few years, artificial enzymes have attracted enormous attention due to their high stabilities and cost-effective productions. In this work, metal-organic framework-derived SiW12@Co3O4 was synthesized in large quantities by stirring the mixture at ambient temperature and calcination. The obtained SiW12@Co3O4 exhibited a highly inherent peroxidase-like activity and excellent stability. Kinetic studies demonstrated that the synthesized SiW12@Co3O4 had a strong binding affinity to 3,3',5,5'-tetramethylbenzidine (TMB), stronger than HRP had. Specifically, the peroxidase-like activity of SiW12@Co3O4 in an aqueous solution was well maintained after incubation at an elevated temperature, at an extreme pH and for a long time. A SiW12@Co3O4-based method was further developed for H2O2 and one-pot glucose detection with good sensitivity and reliability. The facile synthesis approach is expected to facilitate the practical use of metal-organic frameworks and their derivatives as enzyme mimics in the future.
Collapse
Affiliation(s)
- Wei Shi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box332, Shenyang 110819, China.
| | - Shuang E
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box332, Shenyang 110819, China.
| | - Meng-Meng Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box332, Shenyang 110819, China.
| | - Tian-Ze Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box332, Shenyang 110819, China.
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box332, Shenyang 110819, China.
| | - Shao-Rong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box332, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box332, Shenyang 110819, China.
| |
Collapse
|
45
|
Liu W, Miao Z, Li Z, Wu X, Zhou P, Zhao J, Zhao H, Si W, Zhou J, Zhuo S. Electroreduction of CO2 catalyzed by Co@N-C materials. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Chen X, Wang S, Wang Y, Yang Z, Liu S, Gao J, Su Z, Zhu P, Zhao X, Wang G. Nitrogen-Doped Mesoporous Carbon Layer with Embedded Co/CoOx Nanoparticles Coated on CNTs for Oxygen Reduction Reaction in Zn–Air Battery. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00527-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Nitrogen-doped hierarchically porous carbon nanopolyhedras derived from core-shell ZIF-8@ZIF-8 single crystals for enhanced oxygen reduction reaction. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
López-Cabrelles J, Romero J, Abellán G, Giménez-Marqués M, Palomino M, Valencia S, Rey F, Mínguez Espallargas G. Solvent-Free Synthesis of ZIFs: A Route toward the Elusive Fe(II) Analogue of ZIF-8. J Am Chem Soc 2019; 141:7173-7180. [DOI: 10.1021/jacs.9b02686] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Javier López-Cabrelles
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Jorge Romero
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestraße 42, 91054 Erlangen, Germany
- Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Dr.-Mack Straße 81, 90762 Fürth, Germany
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Miguel Palomino
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València−Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Susana Valencia
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València−Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Fernando Rey
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València−Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| |
Collapse
|
49
|
Zhang J, Wang D, Li Y. Ratiometric Electrochemical Sensors Associated with Self-Cleaning Electrodes for Simultaneous Detection of Adrenaline, Serotonin, and Tryptophan. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13557-13563. [PMID: 30873830 DOI: 10.1021/acsami.8b22572] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemical sensors have long suffered from issues such as nonspecific adsorption, poor anti-interference ability, and internal and external disturbances. To address these challenges, we developed a facile electrochemical method, which integrated a ratiometric strategy with self-cleaning electrodes. In the novel sensing system, the self-cleaning electrode was realized via forming a hydrophobic layer on carbonized ZIF-67@ZIF-8 (cZIF) by polydimethylsiloxane (PDMS) precursor vaporization. As for ratiometry, it is worth to mention that the measurements were conducted by adding an interior reference (methylene blue) directly into electrolyte solution, which is more facile and flexible to operate compared with conventional ones. Sensing performance of the self-cleaning electrode as well as the newly established ratiometric strategy was explored fully, and it turned out that PDMS@cZIF nanocomposites provided decent electrocatalytic ability, superhydrophobic property, and stability. Furthermore, the ratiometric strategy significantly elevated the robustness and reproducibility of electrochemical sensing. Simultaneous detection of Adr, 5-HT, and Trp was performed under the optimum experimental conditions with wide linear ranges and low detection limits. Finally, the original ratiometric electrochemical sensor was successfully applied for monitoring the three target molecules in biological samples.
Collapse
Affiliation(s)
- Junjie Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy , Shihezi University , Shihezi 832000 , China
| | - Dongyang Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering , Shihezi University , Shihezi 832003 , China
| | - Yingchun Li
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy , Shihezi University , Shihezi 832000 , China
- College of Science , Harbin Institute of Technology , Shenzhen 518055 , China
| |
Collapse
|
50
|
Wang H, Wu B, Cai Y, Zhou C, Feng N, Liu G, Chen C, Wan H, Wang L, Guan G. Core–Shell-Structured Co–Z@TiO2 Catalysts Derived from ZIF-67 for Efficient Production of C5+ Hydrocarbons in Fischer–Tropsch Synthesis. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Bingxia Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Yuan Cai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Chengwei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Nengjie Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Geng Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Chong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Hui Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Lei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Guofeng Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| |
Collapse
|