1
|
Xiong K, Xie H, Du Y, Ning X, Zhou W, Wu T, Qu JP. Superhydrophobic Magnetic-Driven Reactor for Microliter Droplet Reaction Interface Visualization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59315-59326. [PMID: 39420760 DOI: 10.1021/acsami.4c13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The development of an efficient, convenient, and cost-effective droplet-driven reactor to observe the reaction microphenomenon is crucial for investigating the chemical reaction and synthesis mechanisms. Herein, an efficient and economical strategy by combining micro-extrusion compression molding (μ-ECM) and surface modification was proposed to fabricate a superhydrophobic magnetic-driven reactor (SMDR) for microliter droplet reaction interface visualization. The wall-like array microstructures with favorable geometric uniformity and the nano-SiO2 coating with uniform dispersion endow the SMDR with robust superhydrophobicity, featuring a contact angle of 159.5 ± 1.0° and a rolling angle of 5.1 ± 0.5°. Due to the uniform dispersion of Fe3O4 in thermoplastic elastomer (TPE), the SMDR possesses sensitive magnetic responsiveness, which can drive droplets to move rapidly, continuously, and losslessly on horizontal and inclined planes, even on a plane with an inclination angle of up to 15°. Interestingly, the SMDR was successfully used to visualize the interface formation and evolution of three simple mixing/reaction processes, which provides a convenient, efficient, and low-cost method for the study of the droplet mixing reaction process and interface visualization.
Collapse
Affiliation(s)
- Kai Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Heng Xie
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
| | - Yu Du
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaowei Ning
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Weilong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ting Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jin-Ping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Tang Z, Xu B, Man X, Liu H. Bioinspired Superhydrophobic Fibrous Materials. SMALL METHODS 2024; 8:e2300270. [PMID: 37312429 DOI: 10.1002/smtd.202300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Indexed: 06/15/2023]
Abstract
Natural fibers with robust water repellency play an important role in adapting organisms to various environments, which has inspired the development of artificial superhydrophobic fibrous materials with applications in self-cleaning, antifogging, water harvesting, heat exchanging, catalytic reactions, and microrobots. However, these highly textured surfaces (micro/nanotextured) suffer from frequent liquid penetration in high humidity and abrasion-induced destruction of the local environment. Herein, bioinspired superhydrophobic fibrous materials are reviewed from the perspective of the dimension scale of fibers. First, the fibrous dimension characteristics of several representative natural superhydrophobic fibrous systems are summarized, along with the mechanisms involved. Then, artificial superhydrophobic fibers are summarized, along with their various applications. Nanometer-scale fibers enable superhydrophobicity by minimizing the liquid-solid contact area. Micrometer-scale fibers are advantageous for enhancing the mechanical stability of superhydrophobicity. Micrometer-scale conical fibrous structures endow a Laplace force with a particular magnitude for self-removing condensed tiny dewdrops in highly humid air and stably trapping large air pockets underwater. Furthermore, several representative surface modification strategies for constructing superhydrophobic fibers are presented. In addition, several conventional applications of superhydrophobic systems are presented. It is anticipated that the review will inspire the design and fabrication of superhydrophobic fibrous systems.
Collapse
Affiliation(s)
- Zhongxue Tang
- School of Physics, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Bojie Xu
- Research Institute for Frontier Science, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Xingkun Man
- School of Physics, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Huan Liu
- Research Institute for Frontier Science, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| |
Collapse
|
4
|
Trinh TND, Do HDK, Nam NN, Dan TT, Trinh KTL, Lee NY. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals (Basel) 2023; 16:937. [PMID: 37513850 PMCID: PMC10385691 DOI: 10.3390/ph16070937] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Droplet-based microfluidics offer great opportunities for applications in various fields, such as diagnostics, food sciences, and drug discovery. A droplet provides an isolated environment for performing a single reaction within a microscale-volume sample, allowing for a fast reaction with a high sensitivity, high throughput, and low risk of cross-contamination. Owing to several remarkable features, droplet-based microfluidic techniques have been intensively studied. In this review, we discuss the impact of droplet microfluidics, particularly focusing on drug screening and development. In addition, we surveyed various methods of device fabrication and droplet generation/manipulation. We further highlight some promising studies covering drug synthesis and delivery that were updated within the last 5 years. This review provides researchers with a quick guide that includes the most up-to-date and relevant information on the latest scientific findings on the development of droplet-based microfluidics in the pharmaceutical field.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thach Thi Dan
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
5
|
Hou Y, Weng D, Zhang Z, Yu Y, Chen L, Wang J. Near-Infrared Light Responsive Surface with Switchable Wettability in Microstructure and Surface Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6276-6286. [PMID: 37083283 DOI: 10.1021/acs.langmuir.3c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Intelligent surfaces with reversibly switchable wettability have recently drawn considerable attention. One typical strategy to obtain such a surface is to change the surface chemistry or the microstructure. Herein, we report a new smart surface for which the wettability was controlled by both the surface chemistry and microstructure. Various wetting states were reversibly and precisely controlled through heating, pressing, NIR irradiation, and oxygen plasma treatment. The excellent shape memory characteristics of shape memory polyurethane (SMPU) and the controlled release of hydrophobic/hydrophilic oxygen-containing functional groups contributed to this ability. Microcapsules were used to design these smart surfaces. They controlled the release of a fluorinated alkyl silane (FAS) through shell melting, changed the surface composition, and played a decisive role in protecting the FAS against hydrolysis and evaporation to ensure that the surface's wettability is recyclable. Controlling of the surface chemistry or microstructure was repeated for at least 19 or 16 cycles, respectively, which indicated excellent repeatability compared to other smart surfaces. Based on the excellent controllability, the surface exhibited multiple functions, such as liquid directional transport and coefficient of friction control. In addition, it maintained this extraordinary ability under harsh environments owing to the great stability of the SMPU and adequate protection of the FAS by the microcapsules. With switchable wettability based on the surface chemistry and microstructure, this work provides a new principle for designing smart surfaces with wettability controlled in two ways.
Collapse
Affiliation(s)
- Yacong Hou
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | - Ding Weng
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | - Zheng Zhang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Yu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
6
|
Song Y, Hu Y, Zhang Y, Li G, Wang D, Yang Y, Zhang Y, Zhang Y, Zhu W, Li J, Wu D, Chu J. Flexible Tri-switchable Wettability Surface for Versatile Droplet Manipulations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37248-37256. [PMID: 35938402 DOI: 10.1021/acsami.2c12890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart surfaces with tunable wettability are promising due to their abilities to create diversified functionalities that the fixed surfaces cannot provide. However, limited by imprecise adjustment of structural geometry and almost conventional switching modes of wettability, it is still challenging to achieve the reversible switching between multiple wetting states. Herein, a novel tri-switchable wettability surface with an in situ switching ability is used for the manipulation of a given droplet, which consists of a stretchable substrate and a micron column array. The femtosecond laser direct writing technique is utilized to generate distinct wettability of the two components. Taking the advantage of good tensile properties, the surface morphology is adjusted in a rapid, reversible way to obtain diverse wetting performances from the lotus-like effect to rice-leaf-like anisotropy and then to the rose-petal-like effect. Based on the triplex wetting transition on the same surface, we further developed a multifunctional device to realize a range of in situ manipulations, including the surface self-cleaning, the directional transport of droplets, and the capture, the vertical transport, and release of droplets. This work paves the way for expanding the field of smart surfaces with tunable wettability beyond conventional dual-property wetting behavior and exhibits versatile manipulations of droplets for microfluidic applications.
Collapse
Affiliation(s)
- Yuegan Song
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yachao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guoqiang Li
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Dawei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi Yang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yafeng Zhang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wulin Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Wang W, Lu L, Lu X, Liang Z, Tang B, Xie Y. Laser-induced jigsaw-like graphene structure inspired by Oxalis corniculata Linn. leaf. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00197-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Yang C, Zeng Q, Huang J, Guo Z. Droplet manipulation on superhydrophobic surfaces based on external stimulation: A review. Adv Colloid Interface Sci 2022; 306:102724. [DOI: 10.1016/j.cis.2022.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/01/2022]
|
9
|
Mérai L, Deák Á, Dékány I, Janovák L. Fundamentals and utilization of solid/ liquid phase boundary interactions on functional surfaces. Adv Colloid Interface Sci 2022; 303:102657. [PMID: 35364433 DOI: 10.1016/j.cis.2022.102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
The affinity of macroscopic solid surfaces or dispersed nano- and bioparticles towards liquids plays a key role in many areas from fluid transport to interactions of the cells with phase boundaries. Forces between solid interfaces in water become especially important when the surface texture or particles are in the colloidal size range. Although, solid-liquid interactions are still prioritized subjects of materials science and therefore are extensively studied, the related literature still lacks in conclusive approaches, which involve as much information on fundamental aspects as on recent experimental findings related to influencing the wetting and other wetting-related properties and applications of different surfaces. The aim of this review is to fill this gap by shedding light on the mechanism-of-action and design principles of different, state-of-the-art functional macroscopic surfaces, ranging from self-cleaning, photoreactive or antimicrobial coatings to emulsion separation membranes, as these surfaces are gaining distinguished attention during the ongoing global environmental and epidemic crises. As there are increasing numbers of examples for stimulus-responsive surfaces and their interactions with liquids in the literature, as well, this overview also covers different external stimulus-responsive systems, regarding their mechanistic principles and application possibilities.
Collapse
|
10
|
Hu L, Wang J, Wang Z, Li F, She J, Zhou Y, Zhang Y, Liu Y. Mechanical response of surface wettability of Janus porous membrane and its application in oil-water separation. NANOTECHNOLOGY 2022; 33:245704. [PMID: 35272272 DOI: 10.1088/1361-6528/ac5ca7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Smart surfaces with switchable wettability are widely studied for environmental application. Although a large number of stimulation routes provide broad prospects for the development of smart surfaces, achieving high sensitivity, fast response and recovery, simple operation, security and good stability is still challenging. Herein, a Janus membrane via electrospinning, chemical bath deposition and heat treatment is constructed. By using the hydrophilic ZIF-L nanosheet to functionalize the hydrophobic thermoplastic polyurethane (TPU) substrate, a smart surface utilizes the ZIF-L crack induced by strain in the hydrophilic layer to control surface wettability is obtained. In the range of 0%-100% strain, the wettability of the smart surface presents an obvious change with stretching, and water contact angle of the surface shows a monotonic increase with a maximum tuning range from 47° to 114°. Due to local fusion of the TPU microfibers and good binding between the ZIF-L layer and the TPU substrate after heat treatment, the prepared Janus membrane exhibits consistent and symmetrical hydrophilic-hydrophobic-hydrophilic transition curves in 50 stretching-releasing cycles. Thanks to the porous and asymmetric architecture, the membrane shows good oil-water separation performance, and the separation flux increases with the increase of strain, while the separation efficiency is always higher than 98%. Because of the excellent structural stability, the robust membrane with 100% strain maintains its oil-water separation property for 50 stretching-releasing cycles. This study provides a new perspective for the development of smart material with stimuli responsive surface for oily wastewater purification.
Collapse
Affiliation(s)
- Luyang Hu
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
- Institute for Nano- and Microfluidics, Technische Universität (TU) Darmstadt, Darmstadt, D-64287, Germany
| | - Jingming Wang
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| | - Zhidan Wang
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| | - Fabing Li
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| | - Jing She
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| | - Yufeng Zhou
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Harbin, 150001, People's Republic of China
| | - Yumin Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Harbin, 150001, People's Republic of China
| | - Yin Liu
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| |
Collapse
|
11
|
Liu H, Zhang L, Huang J, Mao J, Chen Z, Mao Q, Ge M, Lai Y. Smart surfaces with reversibly switchable wettability: Concepts, synthesis and applications. Adv Colloid Interface Sci 2022; 300:102584. [PMID: 34973464 DOI: 10.1016/j.cis.2021.102584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
As a growing hot research topic, manufacturing smart switchable surfaces has attracted much attention in the past a few years. The state-of-the-art study on reversibly switchable wettability of smart surfaces has been presented in this systematic review. External stimuli are brought about to render the alteration in chemical conformation and surface morphology to drive the wettability switch. Here, starting from the fundamental theories related to the surfaces wetting principles, highlights on different triggers for switchable wettability, such as pH, light, ions, temperature, electric field, gas, mechanical force, and multi-stimuli are discussed. Different applications that have various wettability requirement are targeted, including oil-water separation, droplets manipulation, patterning, liquid transport, and so on. This review aims to provide a deep insight into responsive interfacial science and offer guidance for smart surface engineering. It ends with a summary of current challenges, future opportunities, and potential solutions on smart switch of wettability on superwetting surfaces.
Collapse
Affiliation(s)
- Hui Liu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China
| | - Li Zhang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China
| | - Jianying Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou 350116, PR China
| | - Jiajun Mao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, PR China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Qinghui Mao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China.
| | - Mingzheng Ge
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China.
| | - Yuekun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou 350116, PR China.
| |
Collapse
|
12
|
Park JK, Zhang Y, Xu B, Kim S. Pattern transfer of large-scale thin membranes with controllable self-delamination interface for integrated functional systems. Nat Commun 2021; 12:6882. [PMID: 34836961 PMCID: PMC8626417 DOI: 10.1038/s41467-021-27208-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Direct transfer of pre-patterned device-grade nano-to-microscale materials highly benefits many existing and potential, high performance, heterogeneously integrated functional systems over conventional lithography-based microfabrication. We present, in combined theory and experiment, a self-delamination-driven pattern transfer of a single crystalline silicon thin membrane via well-controlled interfacial design in liquid media. This pattern transfer allows the usage of an intermediate or mediator substrate where both front and back sides of a thin membrane are capable of being integrated with standard lithographical processing, thereby achieving deterministic assembly of the thin membrane into a multi-functional system. Implementations of these capabilities are demonstrated in broad variety of applications ranging from electronics to microelectromechanical systems, wetting and filtration, and metamaterials.
Collapse
Affiliation(s)
- Jun Kyu Park
- grid.35403.310000 0004 1936 9991Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Yue Zhang
- grid.27755.320000 0000 9136 933XDepartment of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22903 USA
| | - Baoxing Xu
- grid.27755.320000 0000 9136 933XDepartment of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22903 USA
| | - Seok Kim
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, South Korea. .,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
13
|
Mechanically Switchable Wetting Petal Effect in Self-Patterned Nanocolumnar Films on Poly(dimethylsiloxane). NANOMATERIALS 2021; 11:nano11102566. [PMID: 34685004 PMCID: PMC8538580 DOI: 10.3390/nano11102566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022]
Abstract
Switchable mechanically induced changes in the wetting behavior of surfaces are of paramount importance for advanced microfluidic, self-cleaning and biomedical applications. In this work we show that the well-known polydimethylsiloxane (PDMS) elastomer develops self-patterning when it is coated with nanostructured TiO2 films prepared by physical vapor deposition at glancing angles and subsequently subjected to a mechanical deformation. Thus, unlike the disordered wrinkled surfaces typically created by deformation of the bare elastomer, well-ordered and aligned micro-scaled grooves form on TiO2/PDMS after the first post-deposition bending or stretching event. These regularly patterned surfaces can be reversibly modified by mechanical deformation, thereby inducing a switchable and reversible wetting petal effect and the sliding of liquid droplets. When performed in a dynamic way, this mechanical actuation produces a unique capacity of liquid droplets (water and diiodomethane) transport and tweezing, this latter through their selective capture and release depending on their volume and chemical characteristics. Scanning electron and atomic force microscopy studies of the strained samples showed that a dual-scale roughness, a parallel alignment of patterned grooves and their reversible widening upon deformation, are critical factors controlling this singular sliding behavior and the possibility to tailor their response by the appropriate manufacturing of surface structures.
Collapse
|
14
|
Schubotz S, Honnigfort C, Nazari S, Fery A, Sommer JU, Uhlmann P, Braunschweig B, Auernhammer GK. Memory effects in polymer brushes showing co-nonsolvency effects. Adv Colloid Interface Sci 2021; 294:102442. [PMID: 34118473 DOI: 10.1016/j.cis.2021.102442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022]
Abstract
Densely packed polymer chains grafted to a substrate, especially polymer brushes, have been studied intensively. Of special interest are systems that react to changes in external conditions or"remember" previous conditions. With this focus, we explore the properties of PNiPAAm brushes and relate published work to own results. The co-nonsolvency effect leads to a collapse of a PNiPAAm brush for a certain mixing ratio of ethanol in water. This also influences the wetting behavior of PNiPAAm brushes. We show that through prewetting of a brush with different liquids (water and ethanol), the contact angle of subsequent water drops changes significantly. To explain this change, the swelling of the brush was investigated with spectroscopic ellipsometry and the orientation of the molecules at the surface with sum-frequency generation (SFG). Only little change in swelling was found. The SFG measurements reveal in the ethanol prewetted case a well ordered hydrophobic methyl layer at the interface, which is consistent with the contact angle measurement.
Collapse
Affiliation(s)
- Simon Schubotz
- Leibniz-Institut für Polymerforschung Dresden e.V, Hohe Straße 6, Dresden 01069, Germany; Technische Universität Dresden, Helmholtztraße 10, Dresden 01062, Germany.
| | - Christian Honnigfort
- Institute of Physical Chemistry and Center for Soft Nanoscience, Corrensstraße 28-30, Münster 48149, Germany
| | - Saghar Nazari
- Leibniz-Institut für Polymerforschung Dresden e.V, Hohe Straße 6, Dresden 01069, Germany; Technische Universität Dresden, Helmholtztraße 10, Dresden 01062, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V, Hohe Straße 6, Dresden 01069, Germany; Technische Universität Dresden, Helmholtztraße 10, Dresden 01062, Germany
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden e.V, Hohe Straße 6, Dresden 01069, Germany; Institute for Theoretical Physics, Technische Universität Dresden, 01069 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V, Hohe Straße 6, Dresden 01069, Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry and Center for Soft Nanoscience, Corrensstraße 28-30, Münster 48149, Germany
| | - Günter K Auernhammer
- Leibniz-Institut für Polymerforschung Dresden e.V, Hohe Straße 6, Dresden 01069, Germany; Max-Planck-Institut für Polymerforschung, Ackermannweg 10, Mainz 55128, Germany.
| |
Collapse
|
15
|
Chen C, Huang Z, Zhu S, Liu B, Li J, Hu Y, Wu D, Chu J. In Situ Electric-Induced Switchable Transparency and Wettability on Laser-Ablated Bioinspired Paraffin-Impregnated Slippery Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100701. [PMID: 34050638 PMCID: PMC8292917 DOI: 10.1002/advs.202100701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 05/18/2023]
Abstract
Switchable wetting and optical properties on a surface is synergistically realized by mechanical or temperature stimulus. Unfortunately, in situ controllable wettability together with programmable transparency on 2D/3D surfaces is rarely explored. Herein, Joule-heat-responsive paraffin-impregnated slippery surface (JR-PISS) is reported by the incorporation of lubricant paraffin, superhydrophobic micropillar-arrayed elastomeric membrane, and embedded transparent silver nanowire thin-film heater. Owing to its good flexibility, in situ controllable locomotion for diverse liquids on planar/curved JR-PISS is unfolded by alternately applying/discharging low electric-trigger of 6 V. Simultaneously, optical visibility can be reversibly converted between opaque and transparent modes. The switching principle is that in the presence of Joule-heat, solid paraffin would be melt and swell within 20 s to enable a slippery surface for decreasing light scattering and frictional force derived from contact angle hysteresis (FCAH ). Once Joule-heat is discharged, undulating rough surface would reconfigure by cold-shrinkage of paraffin within 8 s to render light blockage and high FCAH . Upon its portable merit, in situ thermal management, programmable visibility, as well as steering functionalized droplets by electric-activated JR-PISSs are successfully deployed. Compared with previous Nepenthes-inspired slippery surfaces, the current JR-PISS is more competent for in situ harnessing optical and wetting properties on-demand.
Collapse
Affiliation(s)
- Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230026China
| | - Zhouchen Huang
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230026China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230026China
| | - Bingrui Liu
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230026China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230026China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230026China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230026China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
16
|
The influence of fluorochemical-modified graphene oxide on the gas-wetting alteration of reservoir cores. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Li S, Fan Y, Liu Y, Niu S, Han Z, Ren L. Smart Bionic Surfaces with Switchable Wettability and Applications. JOURNAL OF BIONIC ENGINEERING 2021; 18:473-500. [PMID: 34131422 PMCID: PMC8193597 DOI: 10.1007/s42235-021-0038-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to satisfy the needs of different applications and more complex intelligent devices, smart control of surface wettability will be necessary and desirable, which gradually become a hot spot and focus in the field of interface wetting. Herein, we review interfacial wetting states related to switchable wettability on superwettable materials, including several classical wetting models and liquid adhesive behaviors based on the surface of natural creatures with special wettability. This review mainly focuses on the recent developments of the smart surfaces with switchable wettability and the corresponding regulatory mechanisms under external stimuli, which is mainly governed by the transformation of surface chemical composition and geometrical structures. Among that, various external stimuli such as physical stimulation (temperature, light, electric, magnetic, mechanical stress), chemical stimulation (pH, ion, solvent) and dual or multi-triggered stimulation have been sought out to realize the regulation of surface wettability. Moreover, we also summarize the applications of smart surfaces in different fields, such as oil/water separation, programmable transportation, anti-biofouling, detection and delivery, smart soft robotic etc. Furthermore, current limitations and future perspective in the development of smart wetting surfaces are also given. This review aims to offer deep insights into the recent developments and responsive mechanisms in smart biomimetic surfaces with switchable wettability under external various stimuli, so as to provide a guidance for the design of smart surfaces and expand the scope of both fundamental research and practical applications.
Collapse
Affiliation(s)
- Shuyi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Yuyan Fan
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| |
Collapse
|
18
|
Ng CSX, Tan MWM, Xu C, Yang Z, Lee PS, Lum GZ. Locomotion of Miniature Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003558. [PMID: 33338296 DOI: 10.1002/adma.202003558] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/16/2020] [Indexed: 06/12/2023]
Abstract
Miniature soft robots are mobile devices, which are made of smart materials that can be actuated by external stimuli to realize their desired functionalities. Here, the key advancements and challenges of the locomotion producible by miniature soft robots in micro- to centimeter length scales are highlighted. It is highly desirable to endow these small machines with dexterous locomotive gaits as it enables them to easily access highly confined and enclosed spaces via a noninvasive manner. If miniature soft robots are able to capitalize this unique ability, they will have the potential to transform a vast range of applications, including but not limited to, minimally invasive medical treatments, lab-on-chip applications, and search-and-rescue missions. The gaits of miniature soft robots are categorized into terrestrial, aquatic, and aerial locomotion. Except for the centimeter-scale robots that can perform aerial locomotion, the discussions in this report are centered around soft robots that are in the micro- to millimeter length scales. Under each category of locomotion, prospective methods and strategies that can improve their gait performances are also discussed. This report provides critical analyses and discussions that can inspire future strategies to make miniature soft robots significantly more agile.
Collapse
Affiliation(s)
- Chelsea Shan Xian Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Matthew Wei Ming Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changyu Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zilin Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guo Zhan Lum
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
19
|
Li Y, Wang Y, Wang Q, Liu Z, Tang L, Liang L, Zhang C, Li Q, Xu N, Sun J, Shi W. Achieving the Super Gas-Wetting Alteration by Functionalized Nano-Silica for Improving Fluid Flowing Capacity in Gas Condensate Reservoirs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10996-11006. [PMID: 33634694 DOI: 10.1021/acsami.0c22831] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is well-known that the production of gas-condensate reservoirs is significantly affected by the liquid condensation near the wellbore region. Gas-wetting alteration can be one of the most effective approaches to alleviate condensate accumulation and improve liquid distribution. However, gas well deliverability is still limited because the wettability of cores is altered only from liquid-wetting to intermediate gas-wetting by using traditional chemical stimulation. To solve this bottleneck problem, herein, we developed a fluorine-functionalized nanosilica to achieve super gas-wetting alteration, increasing the contact angles of water and n-hexadecane on the treated core surface from 23 and 0° to 157 and 145°, respectively. The surface free energy reduces rapidly from 67.97 to 0.23 mN/m. The super gas-wetting adsorption layer on the core surface formed by functionalized nanosilica not only increases the surface roughness but also reduces the surface free energy. The core flooding confirms that the required pressure for displacement is apparently reduced. Meanwhile, the core permeability can be dramatically restored after the super gas-wetting alteration. The microscopic visualization is employed to further understand the impact of fluorine-functionalized nanosilica on the fluid flow behavior and mechanism in porous media. The oil saturation in the micromodel decreases sharply from 48.75 to 7.84%, eliminating the "water locking effect" and "Jiamin effect", which indicates that the added functional nanosilica effectively improves fluid flow capacity and may contribute to production in the gas condensate reservoirs. In addition, this work reveals the fluid flow behavior and mechanism in the reservoir in detail, which will expand the better application of this material to many oilfields and other mining engineering systems.
Collapse
Affiliation(s)
- Yongfei Li
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yanling Wang
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhonghua Liu
- School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401332, China
| | - Longhao Tang
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Lei Liang
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chuanbao Zhang
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qiang Li
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ning Xu
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinsheng Sun
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenjing Shi
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
20
|
Liu X, Yang F, Guo J, Fu J, Guo Z. New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes. Chem Commun (Camb) 2020; 56:14757-14788. [PMID: 33125006 DOI: 10.1039/d0cc05801g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to manipulate droplets can be utilized to develop various smart sensors or actuators, endowing them with fascinating applications for drug delivery, detection of target analytes, environmental monitoring, intelligent control, and so on. However, the stimuli-responsive superhydrophobic/superhydrophilic materials for normal water droplets cannot satisfy the requirements from some certain circumstances, i.e., liquid lenses and biosensors (detection of various additives in water/blood droplets). Stimuli-responsive wetting/dewetting behaviors of exceptional droplets are open issues and are attracting much attention from across the world. In this perspective article, the unconventional droplets are divided into three categories: ionic or surfactant additives in water droplets, oil droplets, and bubble droplets. We first introduce several classical wettability models of droplets and some methods to achieve wettability transition. The unusual droplet motion is also introduced in detail. There are four main types of locomotion modes, which are vertical rebound motion, lateral motion, self-propulsion motion, and anisotropic wettability controlled sliding behavior. The driving mechanism for the droplet motion is briefly introduced as well. Some approaches to achieve this manipulation goal, such as light irradiation, electronic, magnetic, acid-base, thermal, and mechanical ways will be taken into consideration. Finally, the current researches on unconventional droplets extending to polymer droplets and liquid metal droplets on the surface of special wettability materials are summarized and the prospect of unconventional droplet research directions in the field of on-demand transport application will be proposed.
Collapse
Affiliation(s)
- Xianchen Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Fuchao Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jie Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jing Fu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and School of Chemistry and Environment Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
21
|
Liu C, Zhang L, Zhang X, Jia Y, Di Y, Gan Z. Bioinspired Free-Standing One-Dimensional Photonic Crystals with Janus Wettability for Water Quality Monitoring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40979-40984. [PMID: 32794686 DOI: 10.1021/acsami.0c13618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Materials with specific wettability properties have aroused enormous interest and research for their broad application prospects in chemical reaction, medical diagnosis, biological analysis, etc. Here, inspired by the unique Janus wettability of lotus leaf and Bragg stacks of beetles, we present a free-standing film with Janus wettability and tunable structural color for water quality monitoring. This film is constructed by using a flexible polymer polyurethane (PU) to pack poly(N-isopropyl acrylamide-bis-acrylamide-acrylic acid) (P(NiPAAm-bis-AA))/TiO2 one-dimensional photonic crystals (1DPCs) into a free-standing state with Janus wettability and tunable structural color. The outer top surface of the film could achieve vivid structural color and a superhydrophobic ability; meanwhile, the outer lower surface could achieve a superhydrophilic ability. Owing to the outstanding pH-sensitive property of the P(NiPAAm-bis-AA), the Janus films could switch its structural color under different pH conditions. This imparts the free-standing film with stability and an antirotation property on the air-water interface. Based on this phenomenon, we have demonstrated a Janus wettability film, together with tunable structural color for water quality monitoring, which gives the bioinspired materials high potential applications in environmental protection.
Collapse
Affiliation(s)
- Cihui Liu
- School of Physics and Technology, Nanjing Normal University, Nanjing 210000, People's Republic of China
| | - Lulu Zhang
- School of Physics and Technology, Nanjing Normal University, Nanjing 210000, People's Republic of China
| | - Xinran Zhang
- School of Physics and Technology, Nanjing Normal University, Nanjing 210000, People's Republic of China
| | - Yizhen Jia
- School of Physics and Technology, Nanjing Normal University, Nanjing 210000, People's Republic of China
| | - Yunsong Di
- School of Physics and Technology, Nanjing Normal University, Nanjing 210000, People's Republic of China
| | - Zhixing Gan
- School of Physics and Technology, Nanjing Normal University, Nanjing 210000, People's Republic of China
| |
Collapse
|
22
|
Chang JJ, Martin A, Du C, Pauls AM, Thuo M. Heat‐Free Biomimetic Metal Molding on Soft Substrates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Julia J. Chang
- Iowa State UniversityDepartment of Materials Science and Engineering Ames IA 50014 USA
| | - Andrew Martin
- Iowa State UniversityDepartment of Materials Science and Engineering Ames IA 50014 USA
| | - Chuanshen Du
- Iowa State UniversityDepartment of Materials Science and Engineering Ames IA 50014 USA
| | - Alana M. Pauls
- Iowa State UniversityDepartment of Materials Science and Engineering Ames IA 50014 USA
| | - Martin Thuo
- Iowa State UniversityDepartment of Materials Science and Engineering Ames IA 50014 USA
- Micro-Electronics Research Centre Ames IA 50014 USA
- Iowa State UniversityDepartment of Electrical and Computer Engineering Ames IA 50014 USA
| |
Collapse
|
23
|
Chang JJ, Martin A, Du C, Pauls AM, Thuo M. Heat-Free Biomimetic Metal Molding on Soft Substrates. Angew Chem Int Ed Engl 2020; 59:16346-16351. [PMID: 32671888 DOI: 10.1002/anie.202008621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/27/2022]
Abstract
Fabrication of bio-templated metallic structures is limited by differences in properties, processing conditions, packing, and material state(s). Herein, by using undercooled metal particles, differences in modulus and processing temperatures can be overcome. Adoption of autonomous processes such as self-filtration, capillary pressure, and evaporative concentration leads to enhanced packing, stabilization (jamming) and point sintering with phase change to create solid metal replicas of complex bio-based features. Differentiation of subtle differences between cultivars of the rose flower with reproduction over large areas shows that this biomimetic metal patterning (BIOMAP) is a versatile method to replicate biological features either as positive or negative reliefs irrespective of the substrate. Using rose petal patterns, we illustrate the versatility of bio-templated mapping with undercooled metal particles at ambient conditions, and with unprecedented efficiency for metal structures.
Collapse
Affiliation(s)
- Julia J Chang
- Iowa State University, Department of Materials Science and Engineering, Ames, IA, 50014, USA
| | - Andrew Martin
- Iowa State University, Department of Materials Science and Engineering, Ames, IA, 50014, USA
| | - Chuanshen Du
- Iowa State University, Department of Materials Science and Engineering, Ames, IA, 50014, USA
| | - Alana M Pauls
- Iowa State University, Department of Materials Science and Engineering, Ames, IA, 50014, USA
| | - Martin Thuo
- Iowa State University, Department of Materials Science and Engineering, Ames, IA, 50014, USA.,Micro-Electronics Research Centre, Ames, IA, 50014, USA.,Iowa State University, Department of Electrical and Computer Engineering, Ames, IA, 50014, USA
| |
Collapse
|
24
|
McCune JA, Mommer S, Parkins CC, Scherman OA. Design Principles for Aqueous Interactive Materials: Lessons from Small Molecules and Stimuli-Responsive Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906890. [PMID: 32227391 DOI: 10.1002/adma.201906890] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Interactive materials are at the forefront of current materials research with few examples in the literature. Researchers are inspired by nature to develop materials that can modulate and adapt their behavior in accordance with their surroundings. Stimuli-responsive systems have been developed over the past decades which, although often described as "smart," lack the ability to act autonomously. Nevertheless, these systems attract attention on account of the resultant materials' ability to change their properties in a predicable manner. These materials find application in a plethora of areas including drug delivery, artificial muscles, etc. Stimuli-responsive materials are serving as the precursors for next-generation interactive materials. Interest in these systems has resulted in a library of well-developed chemical motifs; however, there is a fundamental gap between stimuli-responsive and interactive materials. In this perspective, current state-of-the-art stimuli-responsive materials are outlined with a specific emphasis on aqueous macroscopic interactive materials. Compartmentalization, critical for achieving interactivity, relies on hydrophobic, hydrophilic, supramolecular, and ionic interactions, which are commonly present in aqueous systems and enable complex self-assembly processes. Relevant examples of aqueous interactive materials that do exist are given, and design principles to realize the next generation of materials with embedded autonomous function are suggested.
Collapse
Affiliation(s)
- Jade A McCune
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Stefan Mommer
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher C Parkins
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
25
|
Zuo Y, Zheng L, Zhao C, Liu H. Micro-/Nanostructured Interface for Liquid Manipulation and Its Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903849. [PMID: 31482672 DOI: 10.1002/smll.201903849] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/12/2019] [Indexed: 05/09/2023]
Abstract
Understanding the relationship between liquid manipulation and micro-/nanostructured interfaces has gained much attention due to the wide potential applications in many fields, such as chemical and biomedical assays, environmental protection, industry, and even daily life. Much work has been done to construct various materials with interfacial liquid manipulation abilities, leading to a range of interesting applications. Herein, different fabrication methods from the top-down approach to the bottom-up approach and subsequent surface modifications of micro-/nanostructured interfaces are first introduced. Then, interactions between the surface and liquid, including liquid wetting, liquid transportation, and a number of corresponding models, together with the definition of hydrophilic/hydrophobic, oleophilic/olephobic, the definition and mechanism of superwetting, including superhydrophobicity, superhydrophilicity, and superoleophobicity, are presented. The micro-/nanostructured interface, with major applications in self-cleaning, antifogging, anti-icing, anticorrosion, drag-reduction, oil-water separation, water collection, droplet (micro)array, and surface-directed liquid transport, is summarized, and the mechanisms underlying each application are discussed. Finally, the remaining challenges and future perspectives in this area are included.
Collapse
Affiliation(s)
- Yinxiu Zuo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liuzheng Zheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
26
|
Calais T, Valdivia y Alvarado P. Advanced functional materials for soft robotics: tuning physicochemical properties beyond rigidity control. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/ab4f9d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Wu S, Zhou L, Chen C, Shi LA, Zhu S, Zhang C, Meng D, Huang Z, Li J, Hu Y, Wu D. Photothermal Actuation of Diverse Liquids on an Fe 3O 4-Doped Slippery Surface for Electric Switching and Cell Culture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13915-13922. [PMID: 31566979 DOI: 10.1021/acs.langmuir.9b02068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The photoinduced manipulation of liquids on a slippery lubricant-infused porous surface (SLIPS) has attracted a tremendous amount of attention because of its merits of contactless stimulation and excellent spatial and temporal control. However, tedious fabrication methods by a combination of template transfer and fluorination for a photothermal-material-doped SLIPS and the lack of deeper systematically quantitative analysis with respect to droplet hydrokinetics are greatly perplexing in both academic research and industrial applications. Here we demonstrate a kind of Fe3O4-doped SLIPS by one-step femtosecond laser cross-scanning, which can readily steer diverse liquids toward arbitrary directions with a fast velocity of up to 1.15 mm/s in the presence of a unilateral NIR stimulus. The underlying mechanism is that the wettability gradient force (Fwet-grad) induced by the temperature gradient arising from asymmetric near-infrared-irradiation (NIR) loading would be generated within 1 s to actuate a targeted droplet's sliding behavior. Through tuning the NIR irradiating sites, we can slide a targeted droplet with controllable directions and routes. On the basis of fundamental physics, we have quantitatively analyzed the relationship among Fe3O4-doped content, lubricant rheological performance, droplet wettability variations, Fwet-grad, and the sliding velocity for diverse liquid species. Accordingly, we can remotely steer liquid droplets to realize the on-off state of an electrical circuit on demand, the droplet fusion of a microfluidic reactor, and the culture/inhibition of biological cells.
Collapse
|
28
|
Yang H, Xu K, Xu C, Fan D, Cao Y, Xue W, Pang J. Femtosecond Laser Fabricated Elastomeric Superhydrophobic Surface with Stretching-Enhanced Water Repellency. NANOSCALE RESEARCH LETTERS 2019; 14:333. [PMID: 31650340 PMCID: PMC6813406 DOI: 10.1186/s11671-019-3140-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/26/2019] [Indexed: 05/26/2023]
Abstract
Highly stretchable and robust superhydrophobic surfaces have attracted tremendous interest due to their broad application prospects. In this work, silicone elastomers were chosen to fabricate superhydrophobic surfaces with femtosecond laser texturing method, and high stretchability and tunable adhesion of the superhydrophobic surfaces were demonstrated successfully. To our best knowledge, it is the first time flexible superhydrophobic surfaces with a bearable strain up to 400% are fabricated by simple laser ablation. The test also shows that the strain brings no decline of water repellency but an enhancement to the superhydrophobic surfaces. In addition, a stretching-induced transition from "petal" state to "lotus" state of the laser-textured surface was also demonstrated by non-loss transportation of liquid droplets. Our results manifest that femtosecond laser ablating silicone elastomer could be a promising way for fabricating superhydrophobic surface with distinct merits of high stretchability, tunable adhesion, robustness, and non-fluorination, which is potentially useful for microfluidics, biomedicine, and liquid repellent skin.
Collapse
Affiliation(s)
- Huan Yang
- Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou, 325035 China
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118 China
| | - Kaichen Xu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576 Singapore
| | - Changwen Xu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Dianyuan Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Yu Cao
- Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou, 325035 China
| | - Wei Xue
- Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou, 325035 China
| | - Jihong Pang
- Zhejiang Key Laboratory of Laser Processing Robot, College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou, 325035 China
| |
Collapse
|
29
|
Zhang Y, Jiao Y, Chen C, Zhu S, Li C, Li J, Hu Y, Wu D, Chu J. Reversible Tuning between Isotropic and Anisotropic Sliding by One-Direction Mechanical Stretching on Microgrooved Slippery Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10625-10630. [PMID: 31291116 DOI: 10.1021/acs.langmuir.9b01035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dynamically responsive liquid-infused interfacial materials have broad technological implications in manipulating droplet motions. However, present works are mainly about reversible tuning of the isotropic slippery surface; the reversible switching between isotropic and anisotropic sliding has not been deeply explored. Here, we report a kind of liquid-infused elastic-grooved surface (LIEGS) by femtosecond laser ablation and realize reversible switching between isotropic and anisotropic sliding by one-direction mechanical stretching. Under mechanical stretching and strain release, droplet motion can be reversibly switched between the sliding and pinned states along the perpendicular direction to the grooves, whereas the droplet keeps sliding along the parallel direction to the grooves. The mechanism of reversible switching mainly contributes to the decrease of film thickness during the stretching process in which the film thickness decreases from 13 to 4 μm with the increase of the strain from 0 to 60%. Finally, we demonstrate the real-time flexible control over a droplet sliding/pinned on the strain-changing LIEGS.
Collapse
Affiliation(s)
- Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Yunlong Jiao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Chuanzong Li
- School of Instrument Science and Opto-electronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
30
|
Chen C, Huang Z, Jiao Y, Shi LA, Zhang Y, Li J, Li C, Lv X, Wu S, Hu Y, Zhu W, Wu D, Chu J, Jiang L. In Situ Reversible Control between Sliding and Pinning for Diverse Liquids under Ultra-Low Voltage. ACS NANO 2019; 13:5742-5752. [PMID: 31051072 DOI: 10.1021/acsnano.9b01180] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thermally responsive paraffin-infused slippery surfaces have demonstrated intriguing performance in manipulating the behaviors of versatile droplets. However, present methods have been limited to ex situ rigid heat sources with a high voltage of 220 V or certain specific photothermal materials, which greatly hinders its practical applications. To solve this problem, an intelligent droplet motion control actuator (DMCA) composed of paraffin wax, hydrophobic micropillar-arrayed ZnO film, and a flexible transparent silver nanowire heater (SNWH) is reported in this work. Due to the good portability of DMCA, in situ switchable wettability for several liquid droplets with different surface tensions can be achieved by simply loading and unloading Joule heat at an ultra-low voltage (12 V). The relationship among sliding velocity and droplet volume and inclined angles was quantitatively investigated. By virtue of the flexible and mechanical endurance, this smart DMCA is dramatically functional for droplet motion manipulation ( e.g., reversible control between sliding and pinning) on complex 3D surfaces. Significantly, an impressive self-healing ability within 22 s is also demonstrated through the in situ application of Joule heat on the scratched DMCA, which renders its practical usability in various harsh conditions. This work provides insights for designing intelligent, flexible, and portable actuators dealing with the challenges of smart temperature-responsive surfaces.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chuanzong Li
- School of Instrument Science and Optoelectronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Xiaodong Lv
- School of Instrument Science and Optoelectronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Sizhu Wu
- School of Instrument Science and Optoelectronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | | | | | | | | | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
31
|
Wang Y, Lai H, Cheng Z, Zhang H, Zhang E, Lv T, Liu Y, Jiang L. Gecko toe pads inspired in situ switchable superhydrophobic shape memory adhesive film. NANOSCALE 2019; 11:8984-8993. [PMID: 31017157 DOI: 10.1039/c9nr00154a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, smart adhesive superhydrophobic surfaces have attracted much attention. However, it is still a challenge to obtain a superhydrophobic surface with shape memory adhesive performance. Herein, inspired by the special back-scrolling/unfolding ability of gecko toe pads and corresponding tunable adhesion, we report such a film produced by sticking a layer of superhydrophobic pillar structured polyurethane (s-PU) onto a shape memory polyurethane-cellulose nanofiber (PU-CNF) substrate to mimic the hair-like skin structure and underlying muscle of the gecko toe pads, respectively. Similar to the muscle of the gecko toe pads, the excellent shape memory effect of the PU-CNF substrate can help the obtained film to memorize and repeatedly display different shapes and solid/water contact models. Thus reversible switching between multiple states from the low-adhesive rolling performance to the high-adhesive pinning performance can be realized. Meanwhile, based on its smart wetting performance, not only the traditional in situ capture/release of one microdroplet, but also the step-by-step release of different droplets can be realized on our film. This work reports a new superhydrophobic shape memory adhesive film, which offers a novel strategy for surface adhesion control and meanwhile opens a new road for applications in controlled droplet manipulation.
Collapse
Affiliation(s)
- Yongzhen Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Three-Dimensionally Structured Flexible Fog Harvesting Surfaces Inspired by Namib Desert Beetles. MICROMACHINES 2019; 10:mi10030201. [PMID: 30909375 PMCID: PMC6470850 DOI: 10.3390/mi10030201] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022]
Abstract
Fog harvesting of the Namib desert beetles has inspired many researchers to design artificial fog harvesting hybrid surfaces, which commonly involve flat hydrophilic patterns on hydrophobic surfaces. However, relatively less interest has been shown in the bumpy topography of the Namib desert beetle’s dorsal surface as well as its curved body shape when designing artificial hybrid surfaces. In this work, we explore a fog harvesting flexible hybrid surface that has a superhydrophilic 3D copper oxide pattern on a hydrophobic rough elastomer background surface enabled by transferring a copper layer from a prepared donor substrate to a receiving elastomer substrate. The water collection rates of the hybrid surface and control samples are measured, and the results reveal the advantages of 3D bumpy structures on a curved shape surface to facilitate fog harvesting, particularly in more unfavorable fog stream conditions. The curved 3D bumpy hybrid surface exhibits an over 16 times higher water collection rate than the flat 2D hybrid surface in the fog stream in parallel to the hybrid surface. This work provides an improved understanding of the role of the Namib desert beetle’s bumpy dorsal surface and curved body shape, and offers an insight into the design of novel surfaces with enhanced fog harvesting performance.
Collapse
|
33
|
Wang Y, Lai H, Cheng Z, Zhang H, Liu Y, Jiang L. Smart Superhydrophobic Shape Memory Adhesive Surface toward Selective Capture/Release of Microdroplets. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10988-10997. [PMID: 30835429 DOI: 10.1021/acsami.9b00278] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controllable manipulation of microdroplets is significant for the microfluidics, biomedical areas, microreactors, and so on; however, until now, reports about no-loss and selective capture/release of different microdroplets are still rare. Herein, we report a new superhydrophobic shape memory adhesive surface that can solve this problem. The surface is prepared by sticking a pillar-structured superhydrophobic polyurethane layer onto a shape memory polyurethane-cellulose nanofiber (PU-CNF) layer. Because of the good shape memory performance of the PU-CNF layer, the obtained surface can memorize and display various microstructure arrangements during the stretching/releasing process. Meanwhile, multiple superhydrophobic adhesive states from low-adhesive rolling performance to high-adhesive pinning performance can be observed on the surface, and all these adhesive states can be reversibly controlled between each other. Based on the smart shape memory ability in surface adhesion, not only traditional in situ capture/release of one microdroplet but also selective capture and release of different microdroplets can be realized. This work reports a new superhydrophobic shape memory adhesive surface; it is envisioned that this smart surface would be a powerful platform for microfluidics systems, complex droplet transportation, biological analysis, and so on.
Collapse
Affiliation(s)
| | | | - Zhongjun Cheng
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | | | | | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
34
|
Chen C, Liu M, Zhang L, Hou Y, Yu M, Fu S. Mimicking from Rose Petal to Lotus Leaf: Biomimetic Multiscale Hierarchical Particles with Tunable Water Adhesion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7431-7440. [PMID: 30699291 DOI: 10.1021/acsami.8b21494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water-droplet adhesions of the coatings constructed by all-polymer multiscale hierarchical particles (MHPs) were finely adjusted within the range from highly adhesive to self-cleanable. The MHPs were synthesized via thermal-induced polymerization of the reactants absorbed into self-made hollow reactors and in situ capping of nanocomplexes onto the reactors' shell simultaneously. The dynamic wettability of the prepared MHPs was tuned between water-droplet sliding and water-droplet adhering by simply controlling the type of capped nanocomplexes. Water-adhesive force changed in the range from 31.28 to 89.34 μN. In addition, the raspberry-like particles (MHPs without nanocomplex capping) were used to construct superhydrophobic rose-petal-like surface with a high water-adhesive force, which can be applied in microdroplet transportation without loss. The MHPs with appropriate nanocomplex capping were used to fabricate superhydrophobic lotus-leaf-like fabric, exhibiting excellent antifouling property and superior mechanical stability. We believe that the prepared superhydrophobic MHPs with diverse water-adhesive forces are promising in potential academic research and industrial applications.
Collapse
Affiliation(s)
- Cheng Chen
- Jiangsu Engineering Research Center For Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile , Jiangnan University, Ministry of Education , Wuxi , Jiangsu 214122 , China
| | - Mingming Liu
- Jiangsu Engineering Research Center For Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile , Jiangnan University, Ministry of Education , Wuxi , Jiangsu 214122 , China
| | - Liping Zhang
- Jiangsu Engineering Research Center For Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile , Jiangnan University, Ministry of Education , Wuxi , Jiangsu 214122 , China
| | - Yuanyuan Hou
- Jiangsu Engineering Research Center For Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile , Jiangnan University, Ministry of Education , Wuxi , Jiangsu 214122 , China
| | - Mengnan Yu
- Jiangsu Engineering Research Center For Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile , Jiangnan University, Ministry of Education , Wuxi , Jiangsu 214122 , China
| | - Shaohai Fu
- Jiangsu Engineering Research Center For Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile , Jiangnan University, Ministry of Education , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
35
|
Yang C, Wu L, Li G. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20150-20158. [PMID: 29806941 DOI: 10.1021/acsami.8b04190] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A smart, magnetically responsive superhydrophobic surface was facilely prepared by combining spray coating and magnetic-field-directed self-assembly. The surface comprised a dense array of magnetorheological elastomer micropillars (MREMPs). Benefitting from the magnetic field-stiffening effect of the MREMPs, the surface exhibited reversible switching of the wettability and adhesion that was responsive to an on/off magnetic field. The wettability and adhesion properties of the surfaces with MREMPs were investigated under different magnetic fields. The results revealed that the adhesion force and sliding behaviors of these surfaces were strongly dependent on the intensity of the applied magnetic field and the mixing ratio of poly(dimethylsiloxane) (PDMS), iron particles, and solvent (in solution) used for preparation of the magnetically responsive superhydrophobic surfaces. The adhesion transition was attributed to the tunable mechanical properties of the MREMPs, which was easily controlled by an external magnetic field. It was also demonstrated that the magnetically responsive superhydrophobic surface can be used as a "mechanical hand" for no-loss liquid droplet transportation. This magnetically responsive superhydrophobic surface not only provides a novel interface for microfluidic control and droplet transportation, but also opens up new avenues for achieving smart liquid-repellent skin, programmable fluid collection and transport, and smart microfluidic devices.
Collapse
Affiliation(s)
- Chao Yang
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education , Chongqing University , Chongqing 400044 , China
| | - Lei Wu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Gang Li
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education , Chongqing University , Chongqing 400044 , China
| |
Collapse
|