1
|
Pournemati B, Tabesh H, Mehdinavaz Aghdam R, Rezayan AH, Poorkhalil A, Ahmadi Tafti SH, Heirani-Tabasi A, Eyni H, Malekmohamadi M, Boroumand S, Pinna A. An Alginate/Gelatin Injectable Hydrogel Containing Au Nanoparticles for Transplantation of Embryonic Mouse Cardiomyocytes in Myocardial Repair. Macromol Biosci 2024:e2400301. [PMID: 39660406 DOI: 10.1002/mabi.202400301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/11/2024] [Indexed: 12/12/2024]
Abstract
In advancing cardiac tissue engineering (CTE), the development of injectable hydrogels mirroring myocardial properties is pivotal. The designed hydrogels must not only support cardiac cell growth but also have to be conductive to properly promote the functionalities of cardiac cells. Here, a facile approach is developed to incorporate gold nanoparticles (AuNPs) into an injectable hydrogel composed of Alginate (Alg) and Gelatin (Gel). The resultant nanocomposite hydrogel boasts a porous interconnected network and superior conductivity (2.04 × 10-4 S cm-1) compared to the base Alg/Gel hydrogel. Hydrogel hydration and in vitro degradation profiles affirm their suitability as carriers for cardiac cells. Importantly, Alg/Gel+AuNPs hydrogels exhibit no toxicity to mouse Embryonic Cardiac Cells (mECCs) over 7 days, elevating connexin 43 (Cx43) and cardiac troponin T (CTnT) gene expression compared to controls. Then, the Alg/Gel+AuNPs hydrogel is used as a carrier for intramyocardial delivery of mECCs in rats with myocardial infarction. The significant increase in α-Smooth Muscle Actin (α-SMA) and cardiac troponin T (CTnT) expression along with the increase in ejection fraction (EF), smaller infarction size, less fibrosis area confirmed that the hydrogel efficiently promoted the transmission of mechanical and electrical signals between transplanted cells and surrounding tissue.
Collapse
Affiliation(s)
- Behnam Pournemati
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14399, Iran
| | - Hadi Tabesh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14399, Iran
| | - Rouhollah Mehdinavaz Aghdam
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, 14399, Iran
| | - Ali Hossein Rezayan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14399, Iran
| | - Ali Poorkhalil
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14399, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, 14399, Iran
| | - Asieh Heirani-Tabasi
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, 14399, Iran
| | - Hossein Eyni
- Stem Cell and Regenerative Medicine Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 14496, Iran
| | - Marjan Malekmohamadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14399, Iran
| | - Safieh Boroumand
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, 14399, Iran
| | - Alessandra Pinna
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
| |
Collapse
|
2
|
Omidian H, Wilson RL, Dey Chowdhury S. Injectable Biomimetic Gels for Biomedical Applications. Biomimetics (Basel) 2024; 9:418. [PMID: 39056859 PMCID: PMC11274625 DOI: 10.3390/biomimetics9070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Biomimetic gels are synthetic materials designed to mimic the properties and functions of natural biological systems, such as tissues and cellular environments. This manuscript explores the advancements and future directions of injectable biomimetic gels in biomedical applications and highlights the significant potential of hydrogels in wound healing, tissue regeneration, and controlled drug delivery due to their enhanced biocompatibility, multifunctionality, and mechanical properties. Despite these advancements, challenges such as mechanical resilience, controlled degradation rates, and scalable manufacturing remain. This manuscript discusses ongoing research to optimize these properties, develop cost-effective production techniques, and integrate emerging technologies like 3D bioprinting and nanotechnology. Addressing these challenges through collaborative efforts is essential for unlocking the full potential of injectable biomimetic gels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (S.D.C.)
| | | | | |
Collapse
|
3
|
Ahmad N, Bukhari SNA, Hussain MA, Ejaz H, Munir MU, Amjad MW. Nanoparticles incorporated hydrogels for delivery of antimicrobial agents: developments and trends. RSC Adv 2024; 14:13535-13564. [PMID: 38665493 PMCID: PMC11043667 DOI: 10.1039/d4ra00631c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
The prevention and treatment of microbial infections is an imminent global public health concern due to the poor antimicrobial performance of the existing antimicrobial regime and rapidly emerging antibiotic resistance in pathogenic microbes. In order to overcome these problems and effectively control bacterial infections, various new treatment modalities have been identified. To attempt this, various micro- and macro-molecular antimicrobial agents that function by microbial membrane disruption have been developed with improved antimicrobial activity and lesser resistance. Antimicrobial nanoparticle-hydrogels systems comprising antimicrobial agents (antibiotics, biological extracts, and antimicrobial peptides) loaded nanoparticles or antimicrobial nanoparticles (metal or metal oxide) constitute an important class of biomaterials for the prevention and treatment of infections. Hydrogels that incorporate nanoparticles can offer an effective strategy for delivering antimicrobial agents (or nanoparticles) in a controlled, sustained, and targeted manner. In this review, we have described an overview of recent advancements in nanoparticle-hydrogel hybrid systems for antimicrobial agent delivery. Firstly, we have provided an overview of the nanoparticle hydrogel system and discussed various advantages of these systems in biomedical and pharmaceutical applications. Thereafter, different hybrid hydrogel systems encapsulating antibacterial metal/metal oxide nanoparticles, polymeric nanoparticles, antibiotics, biological extracts, and antimicrobial peptides for controlling infections have been reviewed in detail. Finally, the challenges and future prospects of nanoparticle-hydrogel systems have been discussed.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab Lahore 54590 Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Muhammad Usman Munir
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland Brisbane Queens-land 4072 Australia
| | - Muhammad Wahab Amjad
- 6 Center for Ultrasound Molecular Imaging and Therapeutics, School of Medicine, University of Pittsburgh 15213 Pittsburgh Pennsylvania USA
| |
Collapse
|
4
|
Mehrotra S, Dey S, Sachdeva K, Mohanty S, Mandal BB. Recent advances in tailoring stimuli-responsive hybrid scaffolds for cardiac tissue engineering and allied applications. J Mater Chem B 2023; 11:10297-10331. [PMID: 37905467 DOI: 10.1039/d3tb00450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
To recapitulate bio-physical properties and functional behaviour of native heart tissues, recent tissue engineering-based approaches are focused on developing smart/stimuli-responsive materials for interfacing cardiac cells. Overcoming the drawbacks of the traditionally used biomaterials, these smart materials portray outstanding mechanical and conductive properties while promoting cell-cell interaction and cell-matrix transduction cues in such excitable tissues. To date, a large number of stimuli-responsive materials have been employed for interfacing cardiac tissues alone or in combination with natural/synthetic materials for cardiac tissue engineering. However, their comprehensive classification and a comparative analysis of the role played by these materials in regulating cardiac cell behaviour and in vivo metabolism are much less discussed. In an attempt to cover the recent advances in fabricating stimuli-responsive biomaterials for engineering cardiac tissues, this review details the role of these materials in modulating cardiomyocyte behaviour, functionality and surrounding matrix properties. Furthermore, concerns and challenges regarding the clinical translation of these materials and the possibility of using such materials for the fabrication of bio-actuators and bioelectronic devices are discussed.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
| | - Kunj Sachdeva
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Mohanty
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
5
|
Abyzova E, Dogadina E, Rodriguez RD, Petrov I, Kolesnikova Y, Zhou M, Liu C, Sheremet E. Beyond Tissue replacement: The Emerging role of smart implants in healthcare. Mater Today Bio 2023; 22:100784. [PMID: 37731959 PMCID: PMC10507164 DOI: 10.1016/j.mtbio.2023.100784] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Smart implants are increasingly used to treat various diseases, track patient status, and restore tissue and organ function. These devices support internal organs, actively stimulate nerves, and monitor essential functions. With continuous monitoring or stimulation, patient observation quality and subsequent treatment can be improved. Additionally, using biodegradable and entirely excreted implant materials eliminates the need for surgical removal, providing a patient-friendly solution. In this review, we classify smart implants and discuss the latest prototypes, materials, and technologies employed in their creation. Our focus lies in exploring medical devices beyond replacing an organ or tissue and incorporating new functionality through sensors and electronic circuits. We also examine the advantages, opportunities, and challenges of creating implantable devices that preserve all critical functions. By presenting an in-depth overview of the current state-of-the-art smart implants, we shed light on persistent issues and limitations while discussing potential avenues for future advancements in materials used for these devices.
Collapse
Affiliation(s)
- Elena Abyzova
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | - Elizaveta Dogadina
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | | - Ilia Petrov
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | | | - Mo Zhou
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | |
Collapse
|
6
|
Alegret N, Dominguez-Alfaro A, Mecerreyes D, Prato M, Mestroni L, Peña B. Neonatal rat ventricular myocytes interfacing conductive polymers and carbon nanotubes. Cell Biol Toxicol 2023; 39:1627-1639. [PMID: 36029423 PMCID: PMC10243189 DOI: 10.1007/s10565-022-09753-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Carbon nanotubes (CNTs) have become promising advanced materials and a new tool to specifically interact with electroresponsive cells. Likewise, conductive polymers (CP) appear promising electroactive biomaterial for proliferation of cells. Herein, we have investigated CNT blends with two different conductive polymers, polypyrrole/CNT (PPy/CNT) and PEDOT/CNT to evaluate the growth, survival, and beating behavior of neonatal rat ventricular myocytes (NRVM). The combination of CP/CNT not only shows excellent biocompatibility on NRVM, after 2 weeks of culture, but also exerts functional effects on networks of cardiomyocytes. NRVMs cultured on CNT-based substrates exhibited improved cellular function, i.e., homogeneous, non-arrhythmogenic, and more frequent spontaneous beating; particularly PEDOT/CNT substrates, which yielded to higher beating amplitudes, thus suggesting a more mature cardiac phenotype. Furthermore, cells presented enhanced structure: aligned sarcomeres, organized and abundant Connexin 43 (Cx43). Finally, no signs of induced hypertrophy were observed. In conclusion, the combination of CNT with CP produces high viability and promotes cardiac functionality, suggesting great potential to generate scaffolding supports for cardiac tissue engineering.
Collapse
Affiliation(s)
- Nuria Alegret
- School of Medicine, Division of Cardiology, Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, CO, 80045, USA.
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, Donostia-San Sebastián, Spain.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain.
| | - Antonio Dominguez-Alfaro
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Electrical Engineering Divison, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
- Department of Chemical and Pharmaceutical Sciences, INSTM Unit of Trieste, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Luisa Mestroni
- School of Medicine, Division of Cardiology, Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, CO, 80045, USA
| | - Brisa Peña
- School of Medicine, Division of Cardiology, Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, CO, 80045, USA.
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Lee M, Kim MC, Lee JY. Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. Int J Nanomedicine 2022; 17:6181-6200. [PMID: 36531116 PMCID: PMC9748845 DOI: 10.2147/ijn.s386763] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/23/2022] [Indexed: 08/28/2023] Open
Abstract
Cardiovascular disease is one of major causes of deaths, and its incidence has gradually increased worldwide. For cardiovascular diseases, several therapeutic approaches, such as drugs, cell-based therapy, and heart transplantation, are currently employed; however, their therapeutic efficacy and/or practical availability are still limited. Recently, biomaterial-based tissue engineering approaches have been recognized as promising for regenerating cardiac function in patients with cardiovascular diseases, including myocardial infarction (MI). In particular, materials mimicking the characteristics of native cardiac tissues can potentially prevent pathological progression and promote cardiac repair of the heart tissues post-MI. The mechanical (softness) and electrical (conductivity) properties of biomaterials as non-biochemical cues can improve the cardiac functions of infarcted hearts by mitigating myocardial cell death and subsequent fibrosis, which often leads to cardiac tissue stiffening and high electrical resistance. Consequently, electrically conductive hydrogels that can provide mechanical strength and augment the electrical activity of the infarcted heart tissue are considered new functional materials capable of mitigating the pathological progression to heart failure and stimulating cardiac regeneration. In this review, we highlight nanomaterial-incorporated hydrogels that can induce cardiac repair after MI. Nanomaterials, including carbon-based nanomaterials and recently discovered two-dimensional nanomaterials, offer great opportunities for developing functional conductive hydrogels owing to their excellent electrical conductivity, large surface area, and ease of modification. We describe recent results using nanomaterial-incorporated conductive hydrogels as cardiac patches and injectable hydrogels for cardiac repair. While further evaluations are required to confirm the therapeutic efficacy and toxicity of these materials, they could potentially be used for the regeneration of other electrically active tissues, such as nerves and muscles.
Collapse
Affiliation(s)
- Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Min Chul Kim
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Huang S, Hong X, Zhao M, Liu N, Liu H, Zhao J, Shao L, Xue W, Zhang H, Zhu P, Guo R. Nanocomposite hydrogels for biomedical applications. Bioeng Transl Med 2022; 7:e10315. [PMID: 36176618 PMCID: PMC9471997 DOI: 10.1002/btm2.10315] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials' unique structures at the nanometer level determine their incredible functions, and based on this, they can be widely used in the field of nanomedicine. However, nanomaterials do possess disadvantages that cannot be ignored, such as burst release, rapid elimination, and poor bioadhesion. Hydrogels are scaffolds with three-dimensional structures, and they exhibit good biocompatibility and drug release capacity. Hydrogels are also associated with disadvantages for biomedical applications such as poor anti-tumor capability, weak bioimaging capability, limited responsiveness, and so on. Incorporating nanomaterials into the 3D hydrogel network through physical or chemical covalent action may be an effective method to avoid their disadvantages. In nanocomposite hydrogel systems, multifunctional nanomaterials often work as the function core, giving the hydrogels a variety of properties (such as photo-thermal conversion, magnetothermal conversion, conductivity, targeting tumor, etc.). While, hydrogels can effectively improve the retention effect of nanomaterials and make the nanoparticles have good plasticity to adapt to various biomedical applications (such as various biosensors). Nanocomposite hydrogel systems have broad application prospects in biomedicine. In this review, we comprehensively summarize and discuss the most recent advances of nanomaterials composite hydrogels in biomedicine, including drug and cell delivery, cancer treatment, tissue regeneration, biosensing, and bioimaging, and we also briefly discussed the current situation of their commoditization in biomedicine.
Collapse
Affiliation(s)
- Shanghui Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Xiangqian Hong
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro‐Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)College of Physics and Optoelectronic Engineering, Shenzhen UniversityShenzhenChina
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen UniversityShenzhenChina
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Jun Zhao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen UniversityShenzhenChina
- Department of OphthalmologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Longquan Shao
- Stomatological Hospital, Southern Medical UniversityGuangzhouChina
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro‐Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)College of Physics and Optoelectronic Engineering, Shenzhen UniversityShenzhenChina
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| |
Collapse
|
9
|
Scott L, Elídóttir K, Jeevaratnam K, Jurewicz I, Lewis R. Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis. Ann N Y Acad Sci 2022; 1515:105-119. [PMID: 35676231 PMCID: PMC9796457 DOI: 10.1111/nyas.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electrical conductivity is of great significance to cardiac tissue engineering and permits the use of electrical stimulation in mimicking cardiac pacing. The development of biomaterials for tissue engineering can incorporate physical properties that are uncommon to standard cell culture and can facilitate improved cardiomyocyte function. In this review, the PICOT question asks, "How has the application of external electrical stimulation in conductive scaffolds for tissue engineering affected cardiomyocyte behavior in in vitro cell culture?" The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, with predetermined inclusion and quality appraisal criteria, were used to assess publications from PubMed, Web of Science, and Scopus. Results revealed carbon nanotubes to be the most common conductive agent in biomaterials and rodent-sourced cell types as the most common cardiomyocytes used. To assess cardiomyocytes, immunofluorescence was used most often, utilizing proteins, such as connexin 43, cardiac α-actinin, and cardiac troponins. It was determined that the modal average stimulation protocol comprised 1-3 V square biphasic 50-ms pulses at 1 Hz, applied toward the end of cell culture. The addition of electrical stimulation to in vitro culture has exemplified it as a powerful tool for cardiac tissue engineering and brings researchers closer to creating optimal artificial cardiac tissue constructs.
Collapse
Affiliation(s)
- Louie Scott
- School of Veterinary MedicineUniversity of SurreyGuildfordUK
| | | | | | | | - Rebecca Lewis
- School of Veterinary MedicineUniversity of SurreyGuildfordUK
| |
Collapse
|
10
|
Dickerson DA. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites. Adv Biol (Weinh) 2022; 7:e2200067. [PMID: 35999488 DOI: 10.1002/adbi.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Indexed: 11/10/2022]
Abstract
A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.
Collapse
Affiliation(s)
- Darryl A. Dickerson
- Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler St Miami FL 33174 USA
| |
Collapse
|
11
|
Pournemati B, Tabesh H, Jenabi A, Mehdinavaz Aghdam R, Hossein Rezayan A, Poorkhalil A, Ahmadi Tafti SH, Mottaghy K. Injectable conductive nanocomposite hydrogels for cardiac tissue engineering: Focusing on carbon and metal-based nanostructures. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Atomic Force Microscopy (AFM) Applications in Arrhythmogenic Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23073700. [PMID: 35409059 PMCID: PMC8998711 DOI: 10.3390/ijms23073700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disorder characterized by progressive replacement of cardiomyocytes by fibrofatty tissue, ventricular dilatation, cardiac dysfunction, arrhythmias, and sudden cardiac death. Interest in molecular biomechanics for these disorders is constantly growing. Atomic force microscopy (AFM) is a well-established technic to study the mechanobiology of biological samples under physiological and pathological conditions at the cellular scale. However, a review which described all the different data that can be obtained using the AFM (cell elasticity, adhesion behavior, viscoelasticity, beating force, and frequency) is still missing. In this review, we will discuss several techniques that highlight the potential of AFM to be used as a tool for assessing the biomechanics involved in ACM. Indeed, analysis of genetically mutated cells with AFM reveal abnormalities of the cytoskeleton, cell membrane structures, and defects of contractility. The higher the Young’s modulus, the stiffer the cell, and it is well known that abnormal tissue stiffness is symptomatic of a range of diseases. The cell beating force and frequency provide information during the depolarization and repolarization phases, complementary to cell electrophysiology (calcium imaging, MEA, patch clamp). In addition, original data is also presented to emphasize the unique potential of AFM as a tool to assess fibrosis in cardiac tissue.
Collapse
|
14
|
Chopra H, Bibi S, Mishra AK, Tirth V, Yerramsetty SV, Murali SV, Ahmad SU, Mohanta YK, Attia MS, Algahtani A, Islam F, Hayee A, Islam S, Baig AA, Emran TB. Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases. JOURNAL OF NANOMATERIALS 2022; 2022:1-25. [DOI: 10.1155/2022/4155729] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cardiovascular diseases (CVDs) are a primary cause of death globally. A few classic and hybrid treatments exist to treat CVDs. However, they lack in both safety and effectiveness. Thus, innovative nanomaterials for disease diagnosis and treatment are urgently required. The tiny size of nanomaterials allows them to reach more areas of the heart and arteries, making them ideal for CVDs. Atherosclerosis causes arterial stenosis and reduced blood flow. The most common treatment is medication and surgery to stabilize the disease. Nanotechnologies are crucial in treating vascular disease. Nanomaterials may be able to deliver medications to lesion sites after being infused into the circulation. Newer point-of-care devices have also been considered together with nanomaterials. For example, this study will look at the use of nanomaterials in imaging, diagnosing, and treating CVDs.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091 Yunnan, China
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha, 61413 Asir, P.O. Box No. 9004, Saudi Arabia
| | - Sree Vandana Yerramsetty
- Department of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613402, India
| | - Sree Varshini Murali
- Department of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613402, India
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha, 61413 Asir, P.O. Box No. 9004, Saudi Arabia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdul Hayee
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
15
|
Zhang Z, Jiang W, Xie X, Liang H, Chen H, Chen K, Zhang Y, Xu W, Chen M. Recent Developments of Nanomaterials in Hydrogels: Characteristics, Influences, and Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202103528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zongzheng Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Wenqing Jiang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Xinmin Xie
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Haiqing Liang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Hao Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Kun Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Ying Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Wenlong Xu
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Mengjun Chen
- School of Qilu Transportation Shandong University Jinan 250002 China
| |
Collapse
|
16
|
Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells 2021; 10:cells10102538. [PMID: 34685518 PMCID: PMC8533887 DOI: 10.3390/cells10102538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Myocardium Infarction (MI) is one of the foremost cardiovascular diseases (CVDs) causing death worldwide, and its case numbers are expected to continuously increase in the coming years. Pharmacological interventions have not been at the forefront in ameliorating MI-related morbidity and mortality. Stem cell-based tissue engineering approaches have been extensively explored for their regenerative potential in the infarcted myocardium. Recent studies on microfluidic devices employing stem cells under laboratory set-up have revealed meticulous events pertaining to the pathophysiology of MI occurring at the infarcted site. This discovery also underpins the appropriate conditions in the niche for differentiating stem cells into mature cardiomyocyte-like cells and leads to engineering of the scaffold via mimicking of native cardiac physiological conditions. However, the mode of stem cell-loaded engineered scaffolds delivered to the site of infarction is still a challenging mission, and yet to be translated to the clinical setting. In this review, we have elucidated the various strategies developed using a hydrogel-based system both as encapsulated stem cells and as biocompatible patches loaded with cells and applied at the site of infarction.
Collapse
|
17
|
Testa G, Di Benedetto G, Passaro F. Advanced Technologies to Target Cardiac Cell Fate Plasticity for Heart Regeneration. Int J Mol Sci 2021; 22:ijms22179517. [PMID: 34502423 PMCID: PMC8431232 DOI: 10.3390/ijms22179517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
The adult human heart can only adapt to heart diseases by starting a myocardial remodeling process to compensate for the loss of functional cardiomyocytes, which ultimately develop into heart failure. In recent decades, the evolution of new strategies to regenerate the injured myocardium based on cellular reprogramming represents a revolutionary new paradigm for cardiac repair by targeting some key signaling molecules governing cardiac cell fate plasticity. While the indirect reprogramming routes require an in vitro engineered 3D tissue to be transplanted in vivo, the direct cardiac reprogramming would allow the administration of reprogramming factors directly in situ, thus holding great potential as in vivo treatment for clinical applications. In this framework, cellular reprogramming in partnership with nanotechnologies and bioengineering will offer new perspectives in the field of cardiovascular research for disease modeling, drug screening, and tissue engineering applications. In this review, we will summarize the recent progress in developing innovative therapeutic strategies based on manipulating cardiac cell fate plasticity in combination with bioengineering and nanotechnology-based approaches for targeting the failing heart.
Collapse
Affiliation(s)
- Gianluca Testa
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
- Interdepartmental Center for Nanotechnology Research—NanoBem, University of Molise, 86100 Campobasso, Italy
| | - Giorgia Di Benedetto
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80138 Naples, Italy;
| | - Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80138 Naples, Italy;
- Correspondence:
| |
Collapse
|
18
|
Ul Haq A, Carotenuto F, Di Nardo P, Francini R, Prosposito P, Pescosolido F, De Matteis F. Extrinsically Conductive Nanomaterials for Cardiac Tissue Engineering Applications. MICROMACHINES 2021; 12:914. [PMID: 34442536 PMCID: PMC8402139 DOI: 10.3390/mi12080914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/09/2023]
Abstract
Myocardial infarction (MI) is the consequence of coronary artery thrombosis resulting in ischemia and necrosis of the myocardium. As a result, billions of contractile cardiomyocytes are lost with poor innate regeneration capability. This degenerated tissue is replaced by collagen-rich fibrotic scar tissue as the usual body response to quickly repair the injury. The non-conductive nature of this tissue results in arrhythmias and asynchronous beating leading to total heart failure in the long run due to ventricular remodelling. Traditional pharmacological and assistive device approaches have failed to meet the utmost need for tissue regeneration to repair MI injuries. Engineered heart tissues (EHTs) seem promising alternatives, but their non-conductive nature could not resolve problems such as arrhythmias and asynchronous beating for long term in-vivo applications. The ability of nanotechnology to mimic the nano-bioarchitecture of the extracellular matrix and the potential of cardiac tissue engineering to engineer heart-like tissues makes it a unique combination to develop conductive constructs. Biomaterials blended with conductive nanomaterials could yield conductive constructs (referred to as extrinsically conductive). These cell-laden conductive constructs can alleviate cardiac functions when implanted in-vivo. A succinct review of the most promising applications of nanomaterials in cardiac tissue engineering to repair MI injuries is presented with a focus on extrinsically conductive nanomaterials.
Collapse
Affiliation(s)
- Arsalan Ul Haq
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.C.); (P.D.N.); (F.P.)
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
| | - Felicia Carotenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.C.); (P.D.N.); (F.P.)
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
| | - Paolo Di Nardo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.C.); (P.D.N.); (F.P.)
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
- L.L. Levshin Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Roberto Francini
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Paolo Prosposito
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Francesca Pescosolido
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.C.); (P.D.N.); (F.P.)
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
| | - Fabio De Matteis
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
19
|
Trombino S, Curcio F, Cassano R, Curcio M, Cirillo G, Iemma F. Polymeric Biomaterials for the Treatment of Cardiac Post-Infarction Injuries. Pharmaceutics 2021; 13:1038. [PMID: 34371729 PMCID: PMC8309168 DOI: 10.3390/pharmaceutics13071038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac regeneration aims to reconstruct the heart contractile mass, preventing the organ from a progressive functional deterioration, by delivering pro-regenerative cells, drugs, or growth factors to the site of injury. In recent years, scientific research focused the attention on tissue engineering for the regeneration of cardiac infarct tissue, and biomaterials able to anatomically and physiologically adapt to the heart muscle have been proposed as valuable tools for this purpose, providing the cells with the stimuli necessary to initiate a complete regenerative process. An ideal biomaterial for cardiac tissue regeneration should have a positive influence on the biomechanical, biochemical, and biological properties of tissues and cells; perfectly reflect the morphology and functionality of the native myocardium; and be mechanically stable, with a suitable thickness. Among others, engineered hydrogels, three-dimensional polymeric systems made from synthetic and natural biomaterials, have attracted much interest for cardiac post-infarction therapy. In addition, biocompatible nanosystems, and polymeric nanoparticles in particular, have been explored in preclinical studies as drug delivery and tissue engineering platforms for the treatment of cardiovascular diseases. This review focused on the most employed natural and synthetic biomaterials in cardiac regeneration, paying particular attention to the contribution of Italian research groups in this field, the fabrication techniques, and the current status of the clinical trials.
Collapse
Affiliation(s)
| | | | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.T.); (F.C.); (G.C.); (F.I.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.T.); (F.C.); (G.C.); (F.I.)
| | | | | |
Collapse
|
20
|
Scott L, Jurewicz I, Jeevaratnam K, Lewis R. Carbon Nanotube-Based Scaffolds for Cardiac Tissue Engineering-Systematic Review and Narrative Synthesis. Bioengineering (Basel) 2021; 8:80. [PMID: 34207645 PMCID: PMC8228669 DOI: 10.3390/bioengineering8060080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is currently the top global cause of death, however, research into new therapies is in decline. Tissue engineering is a solution to this crisis and in combination with the use of carbon nanotubes (CNTs), which have drawn recent attention as a biomaterial, could facilitate the development of more dynamic and complex in vitro models. CNTs' electrical conductivity and dimensional similarity to cardiac extracellular proteins provide a unique opportunity to deliver scaffolds with stimuli that mimic the native cardiac microenvironment in vitro more effectively. This systematic review aims to evaluate the use and efficacy of CNTs for cardiac tissue scaffolds and was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Three databases were searched: PubMed, Scopus, and Web of Science. Papers resulting from these searches were then subjected to analysis against pre-determined inclusion and quality appraisal criteria. From 249 results, 27 manuscripts met the criteria and were included in this review. Neonatal rat cardiomyocytes were most commonly used in the experiments, with multi-walled CNTs being most common in tissue scaffolds. Immunofluorescence was the experimental technique most frequently used, which was employed for the staining of cardiac-specific proteins relating to contractile and electrophysiological function.
Collapse
Affiliation(s)
- Louie Scott
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| | - Izabela Jurewicz
- Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK;
| | - Kamalan Jeevaratnam
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| | - Rebecca Lewis
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| |
Collapse
|
21
|
Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J Control Release 2021; 335:216-236. [PMID: 34022323 DOI: 10.1016/j.jconrel.2021.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Although traditional therapeutic agents including various bioactive species such as growth factors, stem cells, and nucleic acids have demonstrated somewhat usefulness for the restoration of cardiac functions, the therapeutic efficiency remains unsatisfactory most likely due to the off-target-associated side effects and low localized retention of the used therapeutic agents in the infarcted myocardium, which constitutes a substantial barrier for the effective treatment of MI. Injectable hydrogels are regarded as a minimally invasive technology that can overcome the clinical and surgical limitations of traditional stenting by a modulated sol-gel transition and localized transport of a variety of encapsulated cargoes, leading to enhanced therapeutic efficiency and improved patient comfort and compliance. However, the design of injectable hydrogels for myocardial repair and the mechanism of action of bioactive substance-loaded hydrogels for MI repair remain unclear. To elucidate these points, we summarized the recent progresses made on the use of injectable hydrogels for encapsulation of various therapeutic substances for MI treatment with an emphasis on the mechanism of action of hydrogel systems for myocardial repair. Specifically, the pathogenesis of MI and the rational design of injectable hydrogels for myocardial repair were presented. Next, the mechanisms of various biotherapeutic substance-loaded injectable hydrogels for myocardial repair was discussed. Finally, the potential challenges and future prospects for the use of injectable hydrogels for MI treatment were proposed for the purpose of drawing theoretical guidance on the development of novel therapeutic strategies for efficient treatment of MI.
Collapse
|
22
|
Gómez IJ, Vázquez Sulleiro M, Mantione D, Alegret N. Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art. Polymers (Basel) 2021; 13:745. [PMID: 33673680 PMCID: PMC7957790 DOI: 10.3390/polym13050745] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Carbon nanomaterials are at the forefront of the newest technologies of the third millennium, and together with conductive polymers, represent a vast area of indispensable knowledge for developing the devices of tomorrow. This review focusses on the most recent advances in the field of conductive nanotechnology, which combines the properties of carbon nanomaterials with conjugated polymers. Hybrid materials resulting from the embedding of carbon nanotubes, carbon dots and graphene derivatives are taken into consideration and fully explored, with discussion of the most recent literature. An introduction into the three most widely used conductive polymers and a final section about the most recent biological results obtained using carbon nanotube hybrids will complete this overview of these innovative and beyond belief materials.
Collapse
Affiliation(s)
- I. Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| | | | - Daniele Mantione
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR 5629), Université de Bordeaux, Bordeaux INP, CNRS F, 33607 Pessac, France
| | - Nuria Alegret
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
23
|
Mueller AC, Piper M, Goodspeed A, Bhuvane S, Williams JS, Bhatia S, Phan AV, Van Court B, Zolman KL, Peña B, Oweida AJ, Zakem S, Meguid C, Knitz MW, Darragh L, Bickett TE, Gadwa J, Mestroni L, Taylor MRG, Jordan KR, Dempsey P, Lucia MS, McCarter MD, Chiaro MD, Messersmith WA, Schulick RD, Goodman KA, Gough MJ, Greene CS, Costello JC, Neto AG, Lagares D, Hansen KC, Van Bokhoven A, Karam SD. Induction of ADAM10 by Radiation Therapy Drives Fibrosis, Resistance, and Epithelial-to-Mesenchyal Transition in Pancreatic Cancer. Cancer Res 2021; 81:3255-3269. [PMID: 33526513 DOI: 10.1158/0008-5472.can-20-3892] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Stromal fibrosis activates prosurvival and proepithelial-to-mesenchymal transition (EMT) pathways in pancreatic ductal adenocarcinoma (PDAC). In patient tumors treated with neoadjuvant stereotactic body radiation therapy (SBRT), we found upregulation of fibrosis, extracellular matrix (ECM), and EMT gene signatures, which can drive therapeutic resistance and tumor invasion. Molecular, functional, and translational analysis identified two cell-surface proteins, a disintegrin and metalloprotease 10 (ADAM10) and ephrinB2, as drivers of fibrosis and tumor progression after radiation therapy (RT). RT resulted in increased ADAM10 expression in tumor cells, leading to cleavage of ephrinB2, which was also detected in plasma. Pharmacologic or genetic targeting of ADAM10 decreased RT-induced fibrosis and tissue tension, tumor cell migration, and invasion, sensitizing orthotopic tumors to radiation killing and prolonging mouse survival. Inhibition of ADAM10 and genetic ablation of ephrinB2 in fibroblasts reduced the metastatic potential of tumor cells after RT. Stimulation of tumor cells with ephrinB2 FC protein reversed the reduction in tumor cell invasion with ADAM10 ablation. These findings represent a model of PDAC adaptation that explains resistance and metastasis after RT and identifies a targetable pathway to enhance RT efficacy. SIGNIFICANCE: Targeting a previously unidentified adaptive resistance mechanism to radiation therapy in PDAC tumors in combination with radiation therapy could increase survival of the 40% of PDAC patients with locally advanced disease.See related commentary by Garcia Garcia et al., p. 3158 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3255/F1.large.jpg.
Collapse
Affiliation(s)
- Adam C Mueller
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Comprehensive Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Shiv Bhuvane
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Jason S Williams
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andy V Phan
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kathryn L Zolman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Brisa Peña
- Department of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Ayman J Oweida
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sara Zakem
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Cheryl Meguid
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Laurel Darragh
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Thomas E Bickett
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Luisa Mestroni
- Department of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Matthew R G Taylor
- Department of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly R Jordan
- Human Immune Monitoring Shared Resource, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Peter Dempsey
- Department of Gastroenterology, Hepatology and Nutrition, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - M Scott Lucia
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Martin D McCarter
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Marco Del Chiaro
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Wells A Messersmith
- Department of Medical Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Richard D Schulick
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Karyn A Goodman
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Radiation Oncology, Mount Sinai Hospital, New York, New York
| | | | - Casey S Greene
- Center for Health Artificial Intelligence, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado Comprehensive Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Antonio Galveo Neto
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Adrie Van Bokhoven
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
24
|
Mousavi A, Vahdat S, Baheiraei N, Razavi M, Norahan MH, Baharvand H. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering. ACS Biomater Sci Eng 2020; 7:55-82. [PMID: 33320525 DOI: 10.1021/acsbiomaterials.0c01422] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for discussion. In the present review, we classify and summarize the unique properties of conductive biomaterials considered beneficial for cardiac tissue engineering. We attempt to cover recent advances in conductive biomaterials with a particular focus on their effects on cardiac cell functions and proposed mechanisms of action. Finally, current problems, limitations, challenges, and suggested solutions for applications of these biomaterials are presented.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Sadaf Vahdat
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Department of Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, México
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
25
|
R. Amin D, Sink E, Narayan SP, Abdel-Hafiz M, Mestroni L, Peña B. Nanomaterials for Cardiac Tissue Engineering. Molecules 2020; 25:E5189. [PMID: 33171802 PMCID: PMC7664640 DOI: 10.3390/molecules25215189] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
End stage heart failure is a major cause of death in the US. At present, organ transplant and left-ventricular assist devices remain the only viable treatments for these patients. Cardiac tissue engineering presents the possibility of a new option. Nanomaterials such as gold nanorods (AuNRs) and carbon nanotubes (CNTs) present unique properties that are beneficial for cardiac tissue engineering approaches. In particular, these nanomaterials can modulate electrical conductivity, hardness, and roughness of bulk materials to improve tissue functionality. Moreover, they can deliver bioactive cargo to affect cell phenotypes. This review covers recent advances in the use of nanomaterials for cardiac tissue engineering.
Collapse
Affiliation(s)
- Devang R. Amin
- Department of Internal Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (D.R.A.); (E.S.)
| | - Eric Sink
- Department of Internal Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (D.R.A.); (E.S.)
| | - Suguna P. Narayan
- Department of Pathology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Mostafa Abdel-Hafiz
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, CO 80045, USA;
| | - Luisa Mestroni
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA;
| | - Brisa Peña
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, CO 80045, USA;
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA;
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
26
|
Garrido M, Gualandi L, Di Noja S, Filippini G, Bosi S, Prato M. Synthesis and applications of amino-functionalized carbon nanomaterials. Chem Commun (Camb) 2020; 56:12698-12716. [PMID: 33016290 DOI: 10.1039/d0cc05316c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon-based nanomaterials (CNMs) have attracted considerable attention in the scientific community both from a scientific and an industrial point of view. Fullerenes, carbon nanotubes (CNTs), graphene and carbon dots (CDs) are the most popular forms and continue to be widely studied. However, the general poor solubility of many of these materials in most common solvents and their strong tendency to aggregate remains a major obstacle in practical applications. To solve these problems, organic chemistry offers formidable help, through the exploitation of tailored approaches, especially when aiming at the integration of nanostructures in biological systems. According to our experience with carbon-based nanostructures, the introduction of amino groups is one of the best trade-offs for the preparation of functionalized nanomaterials. Indeed, amino groups are well-known for enhancing the dispersion, solubilization, and processability of materials, in particular of CNMs. Amino groups are characterized by basicity, nucleophilicity, and formation of hydrogen or halogen bonding. All these features unlock new strategies for the interaction between nanomaterials and other molecules. This integration can occur either through covalent bonds (e.g., via amide coupling) or in a supramolecular fashion. In the present Feature Article, the attention will be focused through selected examples of our approach to the synthetic pathways necessary for the introduction of amino groups in CNMs and the subsequent preparation of highly engineered ad hoc nanostructures for practical applications.
Collapse
Affiliation(s)
- Marina Garrido
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Lorenzo Gualandi
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Simone Di Noja
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy. and Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia San Sebastián, Spain and Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
| |
Collapse
|
27
|
Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle-hydrogel superstructures for biomedical applications. J Control Release 2020; 324:505-521. [PMID: 32464152 PMCID: PMC7429280 DOI: 10.1016/j.jconrel.2020.05.041] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
The incorporation of nanoparticles into hydrogels yields novel superstructures that have become increasingly popular in biomedical research. Each component of these nanoparticle-hydrogel superstructures can be easily modified, resulting in platforms that are highly tunable and inherently multifunctional. The advantages of the nanoparticle and hydrogel constituents can be synergistically combined, enabling these superstructures to excel in scenarios where employing each component separately may have suboptimal outcomes. In this review, the synthesis and fabrication of different nanoparticle-hydrogel superstructures are discussed, followed by an overview of their use in a range of applications, including drug delivery, detoxification, immune modulation, and tissue engineering. Overall, these platforms hold significant clinical potential, and it is envisioned that future development along these lines will lead to unique solutions for addressing areas of pressing medical need.
Collapse
Affiliation(s)
- Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiyoung Heo
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
Del Favero G, Kraegeloh A. Integrating Biophysics in Toxicology. Cells 2020; 9:E1282. [PMID: 32455794 PMCID: PMC7290780 DOI: 10.3390/cells9051282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Integration of biophysical stimulation in test systems is established in diverse branches of biomedical sciences including toxicology. This is largely motivated by the need to create novel experimental setups capable of reproducing more closely in vivo physiological conditions. Indeed, we face the need to increase predictive power and experimental output, albeit reducing the use of animals in toxicity testing. In vivo, mechanical stimulation is essential for cellular homeostasis. In vitro, diverse strategies can be used to model this crucial component. The compliance of the extracellular matrix can be tuned by modifying the stiffness or through the deformation of substrates hosting the cells via static or dynamic strain. Moreover, cells can be cultivated under shear stress deriving from the movement of the extracellular fluids. In turn, introduction of physical cues in the cell culture environment modulates differentiation, functional properties, and metabolic competence, thus influencing cellular capability to cope with toxic insults. This review summarizes the state of the art of integration of biophysical stimuli in model systems for toxicity testing, discusses future challenges, and provides perspectives for the further advancement of in vitro cytotoxicity studies.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna Währinger Straße 38-40, 1090 Vienna, Austria
| | - Annette Kraegeloh
- INM—Leibniz-Institut für Neue Materialien GmbH, Campus D2 2, 66123 Saarbrücken, Germany;
| |
Collapse
|
29
|
Veerubhotla K, Lee CH. Emerging Trends in Nanocarbon‐Based Cardiovascular Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Krishna Veerubhotla
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| | - Chi H. Lee
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| |
Collapse
|
30
|
Bardill JR, Park D, Marwan AI. Improved Coverage of Mouse Myelomeningocele With a Mussel Inspired Reverse Thermal Gel. J Surg Res 2020; 251:262-274. [PMID: 32197182 DOI: 10.1016/j.jss.2020.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/09/2020] [Accepted: 01/31/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Myelomeningocele (MMC) is an open neural tube defect of the spinal column. Our laboratory previously introduced a reverse thermal gel (RTG) as the first in situ forming patch for in utero MMC application. To overcome the challenges of anchoring the RTG in the wet amniotic environment to improve MMC coverage, we modified the RTG to mimic the underwater adhesive properties of mussels. We have separated this study into three separate hypotheses-based components: CONCLUSIONS: The DRTG demonstrates increased elasticity, cellular scaffolding properties, and improved MMC coverage in the Grhl3 mouse model. Future studies will be translated to the preclinical ovine model to evaluate this novel gel.
Collapse
Affiliation(s)
- James R Bardill
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; Division of Pediatric Surgery, Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.
| | | |
Collapse
|
31
|
Rocker AJ, Lee DJ, Shandas R, Park D. Injectable Polymeric Delivery System for Spatiotemporal and Sequential Release of Therapeutic Proteins To Promote Therapeutic Angiogenesis and Reduce Inflammation. ACS Biomater Sci Eng 2020; 6:1217-1227. [PMID: 33464833 DOI: 10.1021/acsbiomaterials.9b01758] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myocardial infarction (MI) causes cardiac cell death, induces persistent inflammatory responses, and generates harmful pathological remodeling, which leads to heart failure. Biomedical approaches to restore blood supply to ischemic myocardium, via controlled delivery of angiogenic and immunoregulatory proteins, may present an efficient treatment option for coronary artery disease (CAD). Vascular endothelial growth factor (VEGF) is necessary to initiate neovessel formation, while platelet-derived growth factor (PDGF) is needed later to recruit pericytes, which stabilizes new vessels. Anti-inflammatory cytokines like interleukin-10 (IL-10) can help optimize cardiac repair and limit the damaging effects of inflammation following MI. To meet these angiogenic and anti-inflammatory needs, an injectable polymeric delivery system composed of encapsulating micelle nanoparticles embedded in a sulfonated reverse thermal gel was developed. The sulfonate groups on the thermal gel electrostatically bind to VEGF and IL-10, and their specific binding affinities control their release rates, while PDGF-loaded micelles are embedded in the gel to provide the sequential release of the growth factors. An in vitro release study was performed, which demonstrated the sequential release capabilities of the delivery system. The ability of the delivery system to induce new blood vessel formation was analyzed in vivo using a subcutaneous injection mouse model. Histological assessment was used to quantify blood vessel formation and an inflammatory response, which showed that the polymeric delivery system significantly increased functional and mature vessel formation while reducing inflammation. Overall, the results demonstrate the effective delivery of therapeutic proteins to promote angiogenesis and limit inflammatory responses.
Collapse
Affiliation(s)
- Adam J Rocker
- Department of Bioengineering, University of Colorado Denver
- Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| | - David J Lee
- Department of Bioengineering, University of Colorado Denver
- Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver
- Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver
- Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| |
Collapse
|
32
|
Pertici V, Trimaille T, Gigmes D. Inputs of Macromolecular Engineering in the Design of Injectable Hydrogels Based on Synthetic Thermoresponsive Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b00705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vincent Pertici
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| | - Thomas Trimaille
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| | - Didier Gigmes
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| |
Collapse
|
33
|
Dominguez-Alfaro A, Alegret N, Arnaiz B, González-Domínguez JM, Martin-Pacheco A, Cossío U, Porcarelli L, Bosi S, Vázquez E, Mecerreyes D, Prato M. Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering. ACS Biomater Sci Eng 2019; 6:1269-1278. [DOI: 10.1021/acsbiomaterials.9b01316] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Antonio Dominguez-Alfaro
- Carbon Bionanotechnology Group, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Nuria Alegret
- Carbon Bionanotechnology Group, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Cardiovascular Institute, School of Medicine, UC Denver Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Blanca Arnaiz
- Carbon Bionanotechnology Group, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Jose M. González-Domínguez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Ana Martin-Pacheco
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Unai Cossío
- Radioimaging and Image Analysis Platform, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Luca Porcarelli
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Ester Vázquez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Maurizio Prato
- Carbon Bionanotechnology Group, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
34
|
Hajipour MJ, Mehrani M, Abbasi SH, Amin A, Kassaian SE, Garbern JC, Caracciolo G, Zanganeh S, Chitsazan M, Aghaverdi H, Shahri SMK, Ashkarran A, Raoufi M, Bauser-Heaton H, Zhang J, Muehlschlegel JD, Moore A, Lee RT, Wu JC, Serpooshan V, Mahmoudi M. Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chem Rev 2019; 119:11352-11390. [PMID: 31490059 PMCID: PMC7003249 DOI: 10.1021/acs.chemrev.8b00323] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adult myocardium has a limited regenerative capacity following heart injury, and the lost cells are primarily replaced by fibrotic scar tissue. Suboptimal efficiency of current clinical therapies to resurrect the infarcted heart results in injured heart enlargement and remodeling to maintain its physiological functions. These remodeling processes ultimately leads to ischemic cardiomyopathy and heart failure (HF). Recent therapeutic approaches (e.g., regenerative and nanomedicine) have shown promise to prevent HF postmyocardial infarction in animal models. However, these preclinical, clinical, and technological advancements have yet to yield substantial enhancements in the survival rate and quality of life of patients with severe ischemic injuries. This could be attributed largely to the considerable gap in knowledge between clinicians and nanobioengineers. Development of highly effective cardiac regenerative therapies requires connecting and coordinating multiple fields, including cardiology, cellular and molecular biology, biochemistry and chemistry, and mechanical and materials sciences, among others. This review is particularly intended to bridge the knowledge gap between cardiologists and regenerative nanomedicine experts. Establishing this multidisciplinary knowledge base may help pave the way for developing novel, safer, and more effective approaches that will enable the medical community to reduce morbidity and mortality in HF patients.
Collapse
Affiliation(s)
| | - Mehdi Mehrani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Amin
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Science Tehran, Iran
| | | | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, 00161, Rome, Italy
| | - Steven Zanganeh
- Department of Radiology, Memorial Sloan Kettering, New York, NY 10065, United States
| | - Mitra Chitsazan
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Science Tehran, Iran
| | - Haniyeh Aghaverdi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyed Mehdi Kamali Shahri
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Aliakbar Ashkarran
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mohammad Raoufi
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering, University of Siegen, Siegen, Germany
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jochen D. Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Department of Medicine, Division of Cardiology, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts, United States
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Connors Center for Women’s Health & Gender Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
35
|
Slepchenkov MM, Gerasimenko AY, Telyshev DV, Glukhova OE. Protein-Polymer Matrices with Embedded Carbon Nanotubes for Tissue Engineering: Regularities of Formation and Features of Interaction with Cell Membranes. MATERIALS 2019; 12:ma12193083. [PMID: 31546631 PMCID: PMC6803951 DOI: 10.3390/ma12193083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022]
Abstract
This paper reveals the mechanism of nanowelding a branched network of single-walled carbon nanotubes (SWCNTs) used as a framework for the formation of protein-polymer matrices with albumin, collagen, and chitosan. It is shown that the introduction of certain point defects into the structure of SWCNTs (single vacancy, double vacancy, Stone-Wales defect, and a mixed defect) allows us to obtain strong heating in defective regions as compared to ideal SWCNTs. The wavelengths at which absorption reaches 50% are determined. Non-uniform absorption of laser radiation along with inefficient heat removal in defective regions determines the formation of hot spots, in which nanowelding of SWCNTs is observed even at 0.36 nm between contacting surfaces. The regularities of formation of layered protein-polymer matrices and the features of their interaction with cell membrane are revealed. All studies are carried out in silico using high-precision quantum approaches.
Collapse
Affiliation(s)
- Michael M Slepchenkov
- Department of Physics, Saratov State University, Astrakhanskaya street 83, Saratov 410012, Russia.
| | - Alexander Yu Gerasimenko
- Laboratory of Biomedical Nanotechnology, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, Moscow 119991, Russia.
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, Moscow 124498, Russia.
| | - Dmitry V Telyshev
- Laboratory of Biomedical Nanotechnology, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, Moscow 119991, Russia.
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, Moscow 124498, Russia.
| | - Olga E Glukhova
- Department of Physics, Saratov State University, Astrakhanskaya street 83, Saratov 410012, Russia.
- Laboratory of Biomedical Nanotechnology, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, Moscow 119991, Russia.
| |
Collapse
|
36
|
Zhao G, Bao X, Huang G, Xu F, Zhang X. Differential Effects of Directional Cyclic Stretching on the Functionalities of Engineered Cardiac Tissues. ACS APPLIED BIO MATERIALS 2019; 2:3508-3519. [DOI: 10.1021/acsabm.9b00414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guoxu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- School of Material Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, People’s Republic of China
| | - Xuejiao Bao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| |
Collapse
|
37
|
Nguyen AH, Marsh P, Schmiess-Heine L, Burke PJ, Lee A, Lee J, Cao H. Cardiac tissue engineering: state-of-the-art methods and outlook. J Biol Eng 2019; 13:57. [PMID: 31297148 PMCID: PMC6599291 DOI: 10.1186/s13036-019-0185-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to assess the state-of-the-art fabrication methods, advances in genome editing, and the use of machine learning to shape the prospective growth in cardiac tissue engineering. Those interdisciplinary emerging innovations would move forward basic research in this field and their clinical applications. The long-entrenched challenges in this field could be addressed by novel 3-dimensional (3D) scaffold substrates for cardiomyocyte (CM) growth and maturation. Stem cell-based therapy through genome editing techniques can repair gene mutation, control better maturation of CMs or even reveal its molecular clock. Finally, machine learning and precision control for improvements of the construct fabrication process and optimization in tissue-specific clonal selections with an outlook of cardiac tissue engineering are also presented.
Collapse
Affiliation(s)
- Anh H. Nguyen
- Electrical and Computer Engineering Department, University of Alberta, Edmonton, Alberta Canada
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Paul Marsh
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Lauren Schmiess-Heine
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Peter J. Burke
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Chemical Engineering and Materials Science Department, University of California Irvine, Irvine, CA USA
| | - Abraham Lee
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Mechanical and Aerospace Engineering Department, University of California Irvine, Irvine, CA USA
| | - Juhyun Lee
- Bioengineering Department, University of Texas at Arlington, Arlington, TX USA
| | - Hung Cao
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Henry Samueli School of Engineering, University of California, Irvine, USA
| |
Collapse
|
38
|
Peña B, Maldonado M, Bonham AJ, Aguado BA, Dominguez-Alfaro A, Laughter M, Rowland TJ, Bardill J, Farnsworth NL, Ramon NA, Taylor MRG, Anseth KS, Prato M, Shandas R, McKinsey TA, Park D, Mestroni L. Gold Nanoparticle-Functionalized Reverse Thermal Gel for Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18671-18680. [PMID: 31021594 PMCID: PMC6764451 DOI: 10.1021/acsami.9b00666] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Utilizing polymers in cardiac tissue engineering holds promise for restoring function to the heart following myocardial infarction, which is associated with grave morbidity and mortality. To properly mimic native cardiac tissue, materials must not only support cardiac cell growth but also have inherent conductive properties. Here, we present an injectable reverse thermal gel (RTG)-based cardiac cell scaffold system that is both biocompatible and conductive. Following the synthesis of a highly functionalizable, biomimetic RTG backbone, gold nanoparticles (AuNPs) were chemically conjugated to the backbone to enhance the system's conductivity. The resulting RTG-AuNP hydrogel supported targeted survival of neonatal rat ventricular myocytes (NRVMs) for up to 21 days when cocultured with cardiac fibroblasts, leading to an increase in connexin 43 (Cx43) relative to control cultures (NRVMs cultured on traditional gelatin-coated dishes and RTG hydrogel without AuNPs). This biomimetic and conductive RTG-AuNP hydrogel holds promise for future cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Brisa Peña
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
| | - Marcos Maldonado
- Department of Chemistry and Biochemistry, Metropolitan State University of Denver, 1201 5th Street, Denver, Colorado 80206, United States
| | - Andrew J. Bonham
- Department of Chemistry and Biochemistry, Metropolitan State University of Denver, 1201 5th Street, Denver, Colorado 80206, United States
| | - Brian A. Aguado
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Antonio Dominguez-Alfaro
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Melissa Laughter
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
| | - Teisha J. Rowland
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - James Bardill
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
| | - Nikki L. Farnsworth
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Ct., Bldg. M20, Aurora, Colorado 80045, United States
| | - Nuria Alegret Ramon
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Matthew R. G. Taylor
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Maurizio Prato
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, Trieste 34127, Italy
- Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
| | - Robin Shandas
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Daewon Park
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, Colorado 80045, United States
| | - Luisa Mestroni
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, Colorado 80045, United States
| |
Collapse
|
39
|
Yao X, Liu R, Liang X, Ding J. Critical Areas of Proliferation of Single Cells on Micropatterned Surfaces and Corresponding Cell Type Dependence. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15366-15380. [PMID: 30964630 DOI: 10.1021/acsami.9b03780] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Material cues to influence cell proliferation are a fundamental issue in the fields of biomaterials, cell biology, tissue engineering, and regenerative medicine. This paper aims to investigate the proliferation of single mammal cells on micropatterned material surfaces. To this end, we prepared cell-adhesive circular microislands with 20 areas on the nonfouling background and systematically examined adhesion and proliferation behaviors of different kinds of single cells (primary stem and nonstem cells, cancer and normal cell lines) on micropatterns. On the basis of the analysis of experimental data, we found two critical areas about cell proliferation: (1) the critical spreading area of cells from almost no proliferation to confined proliferation, denoted as AP and (2) the critical spreading area of cells from confined proliferation to almost free proliferation, denoted as AFP. We further summarized the relative size relationship between these two critical areas and the characteristic areas of cell adhesion on both patterned and nonpatterned surfaces. While proliferation of single primary cells was affected by cell spreading, those cell lines, irrespective of normal and cancer cells, did not exhibit significant cell-spreading effects. As a result, this study reveals that proliferation of single cells is dependent upon spreading area, in particular for primary cells on material surfaces.
Collapse
Affiliation(s)
- Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , People's Republic of China
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , People's Republic of China
| | - Xiangyu Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , People's Republic of China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , People's Republic of China
| |
Collapse
|
40
|
Martinelli V, Bosi S, Peña B, Baj G, Long CS, Sbaizero O, Giacca M, Prato M, Mestroni L. 3D Carbon-Nanotube-Based Composites for Cardiac Tissue Engineering. ACS APPLIED BIO MATERIALS 2018; 1:1530-1537. [DOI: 10.1021/acsabm.8b00440] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valentina Martinelli
- International Centre for Genetic Engineering and Biotechnology, Trieste 34149, Italy
| | | | - Brisa Peña
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | - Carlin S. Long
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- University of California San Francisco, San Francisco, California 94143, United States
| | - Orfeo Sbaizero
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste 34149, Italy
| | - Maurizio Prato
- Carbon Nanobiotechnology Laboratory, Centro de Investigación Cooperativa en Biomateriales (CIC biomaGUNE), San Sebastián 20014, Spain
- Basque Foundation for Science, Bilbao 48013, Spain
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
41
|
Fu JJ, Zhang JY, Li SP, Zhang LM, Lin ZX, Liang L, Qin AP, Yu XY. CuS Nanodot-Loaded Thermosensitive Hydrogel for Anticancer Photothermal Therapy. Mol Pharm 2018; 15:4621-4631. [PMID: 30179511 DOI: 10.1021/acs.molpharmaceut.8b00624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ji-jun Fu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Jian-ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Song-pei Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Ling-min Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhong-xiao Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Lu Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Ai-ping Qin
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Xi-yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| |
Collapse
|
42
|
Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. Biomed Pharmacother 2018; 104:496-508. [DOI: 10.1016/j.biopha.2018.05.066] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 01/19/2023] Open
|
43
|
Peña B, Laughter M, Jett S, Rowland TJ, Taylor MRG, Mestroni L, Park D. Injectable Hydrogels for Cardiac Tissue Engineering. Macromol Biosci 2018; 18:e1800079. [PMID: 29733514 PMCID: PMC6166441 DOI: 10.1002/mabi.201800079] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Indexed: 12/21/2022]
Abstract
In light of the limited efficacy of current treatments for cardiac regeneration, tissue engineering approaches have been explored for their potential to provide mechanical support to injured cardiac tissues, deliver cardio-protective molecules, and improve cell-based therapeutic techniques. Injectable hydrogels are a particularly appealing system as they hold promise as a minimally invasive therapeutic approach. Moreover, injectable acellular alginate-based hydrogels have been tested clinically in patients with myocardial infarction (MI) and show preservation of the left ventricular (LV) indices and left ventricular ejection fraction (LVEF). This review provides an overview of recent developments that have occurred in the design and engineering of various injectable hydrogel systems for cardiac tissue engineering efforts, including a comparison of natural versus synthetic systems with emphasis on the ideal characteristics for biomimetic cardiac materials.
Collapse
Affiliation(s)
- Brisa Peña
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, USA
| | - Melissa Laughter
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, USA
| | - Susan Jett
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, USA
| | - Teisha J Rowland
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, USA
| | - Matthew R G Taylor
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, USA
| | - Luisa Mestroni
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, USA
| | - Daewon Park
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, USA
| |
Collapse
|
44
|
An R, Schmid R, Klausing A, Robering JW, Weber M, Bäuerle T, Detsch R, Boccaccini AR, Horch RE, Boos AM, Weigand A. Proangiogenic effects of tumor cells on endothelial progenitor cells vary with tumor type in an in vitro and in vivo rat model. FASEB J 2018; 32:5587-5601. [PMID: 29746168 DOI: 10.1096/fj.201800135rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelial progenitor cells (EPCs) contribute to neovascularization in tumors. However, the relationship of EPCs and tumor-induced angiogenesis still remains to be clarified. The present study aimed at investigating the influence of 4 different tumor types on angiogenic properties of EPCs in an in vitro and in vivo rat model. It could be demonstrated that in vitro proliferation, migration, and angiogenic abilities and genetic modifications of EPCs are controlled in a tumor-type-dependent manner. The proangiogenic effect of mammary carcinoma, osteosarcoma, and rhabdomyosarcoma cells was more pronounced compared to colon carcinoma cells. Coinjection of encapsulated tumor cells, especially mammary carcinoma cells, and EPCs in a rat model confirmed a contributing effect of EPCs in tumor vascularization. Cytokines secreted by tumors such as monocyte chemoattractant protein 1, macrophage inflammatory protein 2, and TNF-related apoptosis-inducing ligand play a pivotal role in the tumor cell-EPC interaction, leading to enhanced migration and angiogenesis. With the present study, we were able to decipher possible underlying mechanisms by which EPCs are stimulated by tumor cells and contribute to tumor vascularization. The present study will contribute to a better understanding of tumor-induced vascularization, thus facilitating the development of therapeutic strategies targeting tumor-EPC interactions.-An, R., Schmid, R., Klausing, A., Robering, J. W., Weber, M., Bäuerle, T., Detsch, R., Boccaccini, A. R., Horch, R. E., Boos, A. M., Weigand, A. Proangiogenic effects of tumor cells on endothelial progenitor cells vary with tumor type in an in vitro and in vivo rat model.
Collapse
Affiliation(s)
- Ran An
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Union Plastic and Aesthetic Hospital, Huazhong University of Science and Technology, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Rafael Schmid
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anne Klausing
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan W Robering
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Weber
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Bäuerle
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Rainer Detsch
- Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja M Boos
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Annika Weigand
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|