1
|
Liu KW, Sie PY, Huang JY, Chen HY, Chen YL, Lin YC, Liao MY. Rational design of stable Cu and AuCu nanoparticles for investigations of size-enhanced SERS applications. Anal Chim Acta 2024; 1329:343189. [PMID: 39396279 DOI: 10.1016/j.aca.2024.343189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND While significant progress has been made to clarify the effects of Au and Ag nanoparticle size on SERS enhancement, research on the size effects of copper nanoparticles and copper-related nanoalloys on SERS enhancement remain scarce. Nanoscale copper (Cu) is important because of its unique sensing and catalytic properties; however, research on its size and compositional effects remains a significant challenge because of the intricate fabrication process and difficulty in preventing oxidation. RESULTS Our study elucidated the size-dependent, surface-enhanced Raman scattering (SERS) of Cu NPs, particularly the sensing capabilities of both electromagnetic (EM) SERS at 1.5 × 103 and chemical enhancement (CE) SERS at 3.6 × 104 of approximately 58 nm Cu NPs. Additionally, a solution aging examination revealed preservation of the metal-related core structure, surface plasmon resonance, and SERS features of the PSMA/ONPG-coated Cu NPs for up to 7 days. With the introduction of galvanic replacement reactions and laser ablation syntheses, the incorporation of Au atoms enabled the fabrication of 7-75 nm AuxCuy nanoparticles by using the remaining Cu core after aging in water, which offered precise control over the Cu/Au ratio from 5/95 to 29/71. SERS measurements of the large AuxCuy nanoparticles amplified up to 1.4 × 104 of the EM-mediated vibrational signals from the adsorbed molecules. The strong Au-S chemical bonds of the Au-rich AuxCuy nanocrystals increased the CE SERS to 5.5 × 104, whereas the Au3Cu1 crystals at the AuxCuy interface decreased the CE SERS but improved the electron transfer for catalysis via SERS detection. SIGNIFICANCE Our research provides further insight into the structural and size effects of Cu and AuCu alloys used as SERS enhancers and offers avenues for designing cutting-edge SERS catalytic sensors tailored to Cu-related catalytic reactive structures. For the first time, we also manipulated the Cu atomic structure and surface composition to understand the significance of surface effects on SERS substrates of the Cu series from a nanoscale analytical perspective.
Collapse
Affiliation(s)
- Kuan-Wen Liu
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Pei-Yu Sie
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Jing-Yin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Hsi-Ying Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Yi-Lun Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Yu-Ching Lin
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan.
| |
Collapse
|
2
|
Wang Q, Xia G, Li J, Yuan L, Yu S, Li D, Yang N, Fan Z, Li J. Multifunctional Nanoplatform for NIR-II Imaging-Guided Synergistic Oncotherapy. Int J Mol Sci 2023; 24:16949. [PMID: 38069279 PMCID: PMC10707236 DOI: 10.3390/ijms242316949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Tumors are a major public health issue of concern to humans, seriously threatening the safety of people's lives and property. With the increasing demand for early and accurate diagnosis and efficient treatment of tumors, noninvasive optical imaging (including fluorescence imaging and photoacoustic imaging) and tumor synergistic therapies (phototherapy synergistic with chemotherapy, phototherapy synergistic with immunotherapy, etc.) have received increasing attention. In particular, light in the near-infrared second region (NIR-II) has triggered great research interest due to its penetration depth, minimal tissue autofluorescence, and reduced tissue absorption and scattering. Nanomaterials with many advantages, such as high brightness, great photostability, tunable photophysical properties, and excellent biosafety offer unlimited possibilities and are being investigated for NIR-II tumor imaging-guided synergistic oncotherapy. In recent years, many researchers have tried various approaches to investigate nanomaterials, including gold nanomaterials, two-dimensional materials, metal sulfide oxides, polymers, carbon nanomaterials, NIR-II dyes, and other nanomaterials for tumor diagnostic and therapeutic integrated nanoplatform construction. In this paper, the application of multifunctional nanomaterials in tumor NIR-II imaging and collaborative therapy in the past three years is briefly reviewed, and the current research status is summarized and prospected, with a view to contributing to future tumor therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhongxiong Fan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Q.W.); (G.X.); (J.L.); (L.Y.); (S.Y.); (D.L.); (N.Y.)
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Q.W.); (G.X.); (J.L.); (L.Y.); (S.Y.); (D.L.); (N.Y.)
| |
Collapse
|
3
|
Ding C, Shi Z, Ou M, Li Y, Huang L, Wang W, Huang Q, Li M, Chen C, Zeng X, Chen H, Mei L. Dextran-based micelles for combinational chemo-photodynamic therapy of tumors via in vivo chemiluminescence. Carbohydr Polym 2023; 319:121192. [PMID: 37567697 DOI: 10.1016/j.carbpol.2023.121192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 08/13/2023]
Abstract
Natural polysaccharides, represented by dextran, chitosan, and hyaluronic acid, are widely approved for use as pharmaceutical excipients and are important carrier materials for the design of advanced drug delivery systems, particularly in the field of anticancer drug delivery. The combination of stimuli-activable prodrug based chemotherapy and photodynamic therapy (PDT) has attracted increasing attention. Recent studies have verified the effectiveness of this strategy in the treatment of multiple aggressive cancers. However, in such combination, the stimuli-responsive chemotherapy and PDT have their own problems that need to be overcome. The uneven distribution of endogenous stimuli within tumor tissues makes it difficult for prodrug to be completely activated. And the inadequate tissue penetration depth of external light results in low efficiency of PDT. Aiming at these two bottlenecks, we designed a biocompatible dextran based - multi-component nanomedicine (PCL-NPs) that integrate a chemiluminescence agent luminol, a photosensitizer chlorine e6 (Ce6), and a reactive oxygen species (ROS)-activable thioketal-based paclitaxel (PTX) prodrug. The presence of overexpressed hydrogen peroxide (H2O2) inside tumor oxidizes the luminol moiety to generate in-situ light for PDT through chemiluminescence resonance energy transfer (CRET). The singlet oxygen (1O2) produced in this process not only directly kills tumor cells but also amplifies oxidative stress to accelerate the activation of PTX prodrug. We propose that the PCL-NPs have great therapeutic potential by simultaneously enhancing chemotherapy and PDT in a combination therapy.
Collapse
Affiliation(s)
- Chendi Ding
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China; Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhaoqing Shi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meitong Ou
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yingbang Li
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China
| | - Li Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wenyan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Meihang Li
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China; School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chunbo Chen
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
4
|
Zhuo X, Liu Z, Aishajiang R, Wang T, Yu D. Recent Progress of Copper-Based Nanomaterials in Tumor-Targeted Photothermal Therapy/Photodynamic Therapy. Pharmaceutics 2023; 15:2293. [PMID: 37765262 PMCID: PMC10534922 DOI: 10.3390/pharmaceutics15092293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress (OS) during carcinogenesis and disease development. Because of the localized surface plasmon resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeutic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein, we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs used in PTT/PDT applications.
Collapse
Affiliation(s)
| | | | | | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| |
Collapse
|
5
|
Amatya R, Lee D, Sultana M, Min KA, Shin MC. Albumin-coated copper nanoparticles for photothermal cancer therapy: Synthesis and in vitro characterization. Heliyon 2023; 9:e17732. [PMID: 37449093 PMCID: PMC10336593 DOI: 10.1016/j.heliyon.2023.e17732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Copper nanoparticles (CuNPs) have attracted great interest in various biomedical research fields due to their superior optical and plasmonic properties. In the present study, we synthesized bovine serum albumin (BSA)-coated CuNPs (BSA-CuNPs) by adopting the aqueous reduction method in 2-step procedures. The prepared BSA-CuNPs were characterized in vitro for their physical characteristics and photothermal activity. The successful synthesis of BSA-CuNPs was verified through transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and ultraviolet-visible (UV-VIS) light spectroscopy. The prepared BSA-CuNPs revealed a great light-to-heat conversion capacity and good photothermal stability. Notably, accompanied by laser irradiation, the BSA-CuNPs elicited significantly higher cytotoxicity on tumor cells than the control group. Preliminary animal studies to determine the biosafety and pharmacokinetics (PK) profiles exhibited that the BSA-CuNPs have a maximum tolerable dose (MTD) of 16 mgCu/kg and a relatively long plasma half-life of 1.98 h. Overall, our findings demonstrated that BSA-CuNPs might be a potential photothermal therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Donghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Marium Sultana
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea
| |
Collapse
|
6
|
Sugawa K, Suzuki A, Honda J, Yabuki T, Tahara H, Hayakawa Y, Furuya M, Ikake H, Kimura T, Kosuge Y, Kurumi S, Akiyama T, Takase K, Otsuki J. Photothermal therapeutic ability of copper open-shell nanostructures that are effective in the second biological transparency window based on symmetry breaking-induced plasmonic properties. J Mater Chem B 2023. [PMID: 37376903 DOI: 10.1039/d3tb00443k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In this study, a photothermal therapy agent that works efficiently in the second biological transparency window was developed based on the localized surface plasmon (LSP) resonance of symmetry-broken open-shell nanostructures of low-cost Cu (CuOSNs). The strong LSP resonance and superior photothermal conversion ability in the second biological transparency window were achieved by generating the dipolar bonding mode due to the plasmon hybridization between the nanoshell dipole and the nanohole dipole at the opening edge in CuOSNs derived from the symmetry breaking of a Cu nanoshell. Oxidative dissolution of CuOSNs in water was significantly suppressed by successive coating with the self-assembled monolayer of 16-mercaptohexadecanoic acid and a thin silica layer. Furthermore, the stability in phosphate buffered saline, which models the biological environment, was attained by further coating the nanoparticles with polyethylene glycol. It was demonstrated from in vitro cell tests using HeLa cells that the cytotoxicity of CuOSNs was effectively suppressed by the surface protection. The viability of HeLa cells incubated with CuOSNs was decreased under the irradiation of low intensity 1060 nm laser with increasing number of CuOSNs. These results demonstrate that low-cost symmetry-broken Cu-based nanostructures can act as an excellent photothermal therapy agent in the second biological transparency window.
Collapse
Affiliation(s)
- Kosuke Sugawa
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Arisa Suzuki
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Jotaro Honda
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Taiku Yabuki
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Hironobu Tahara
- Graduate School of Engineering, Nagasaki University, Bunkyo, Nagasaki, 852-8521, Japan
| | - Yutaro Hayakawa
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Masato Furuya
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Hiroki Ikake
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabashi 274-8555, Japan
| | - Satoshi Kurumi
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Tsuyoshi Akiyama
- Department of Materials Science, School of Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533, Japan
| | - Kouichi Takase
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Joe Otsuki
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| |
Collapse
|
7
|
Wu S, Liu C, Li W, Zhang C, Chen D, Xu C, Su L, Wang X. Second near-infrared photoactivatable nanomedicines for enhanced photothermal-chemodynamic therapy of cancer. J Mater Chem B 2023; 11:2455-2465. [PMID: 36810638 DOI: 10.1039/d2tb02769k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nanomedicines have been widely used for cancer therapy, while controlling their activity for effective and safe treatment remains a big challenge. Herein, we report the development of a second near-infrared (NIR-II) photoactivatable enzyme-loaded nanomedicine for enhanced cancer therapy. Such a hybrid nanomedicine contains a thermoresponsive liposome shell loaded with copper sulfide nanoparticles (CuS NPs) and glucose oxidase (GOx). The CuS nanoparticles mediate the generation of local heat under 1064 nm laser irradiation, which not only can be used for NIR-II photothermal therapy (PTT), but also leads to the destruction of the thermal-responsive liposome shell to achieve the on-demand release of CuS nanoparticles and GOx. In a tumor microenvironment, GOx oxidizes glucose to produce hydrogen peroxide (H2O2) that acts as a medium to promote the efficacy of chemodynamic therapy (CDT) by CuS nanoparticles. This hybrid nanomedicine enables the synergetic action of NIR-II PTT and CDT to obviously improve efficacy without remarkable side effects via NIR-II photoactivatable release of therapeutic agents. Such a hybrid nanomedicine-mediated treatment can achieve complete ablation of tumors in mouse models. This study provides a promising nanomedicine with photoactivatable activity for effective and safe cancer therapy.
Collapse
Affiliation(s)
- Shunli Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China. .,School of Medicine, Shanghai University, Shanghai, 200444, China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Wenjuan Li
- First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Shengqiao Community Health Service Centre, Yuepu Town, Baoshan District, Shanghai, 200942, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Liu S, Hu Z, Wang J, Tang N, Guo D, Ou H. Eruption pore matrix with cooperative chelating of spatially continued ligands for rapid and selective removal of uranium. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Ponzio RA, Ibarra LE, Achilli EE, Odella E, Chesta CA, Martínez SR, Palacios RE. Sweet light o' mine: Photothermal and photodynamic inactivation of tenacious pathogens using conjugated polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112510. [PMID: 36049287 DOI: 10.1016/j.jphotobiol.2022.112510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Each year a rising number of infections can not be successfully treated owing to the increasing pandemic of antibiotic resistant pathogens. The global shortage of innovative antibiotics fuels the emergence and spread of drug resistant microbes. Basic research, development, and applications of alternative therapies are urgently needed. Since the 90´s, light-mediated therapies have promised to be the next frontier combating multidrug-resistance microbes. These platforms have demonstrated to be a reliable, rapid, and efficient alternative to eliminate tenacious pathogens while avoiding the emergence of resistance mechanisms. Among the materials showing antimicrobial activity triggered by light, conjugated polymers (CPs) have risen as the most promising option to tackle this complex situation. These materials present outstanding characteristics such as high absorption coefficients, great photostability, easy processability, low cytotoxicity, among others, turning them into a powerful class of photosensitizer (PS)/photothermal agent (PTA) materials. Herein, we summarize and discuss the advances in the field of CPs with applications in photodynamic inactivation and photothermal therapy towards bacteria elimination. Additionally, a section of current challenges and needs in terms of well-defined benchmark experiments and conditions to evaluate the efficiency of phototherapies is presented.
Collapse
Affiliation(s)
- Rodrigo A Ponzio
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Física, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC y CONICET, Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Estefanía E Achilli
- Laboratorio de Materiales Biotecnológicos (LaMaBio), Universidad Nacional de Quilmes-IMBICE (CONICET), Bernal B1876BXD, Argentina
| | - Emmanuel Odella
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
10
|
Chin YC, Yang LX, Hsu FT, Hsu CW, Chang TW, Chen HY, Chen LYC, Chia ZC, Hung CH, Su WC, Chiu YC, Huang CC, Liao MY. Iron oxide@chlorophyll clustered nanoparticles eliminate bladder cancer by photodynamic immunotherapy-initiated ferroptosis and immunostimulation. J Nanobiotechnology 2022; 20:373. [PMID: 35953837 PMCID: PMC9367122 DOI: 10.1186/s12951-022-01575-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/23/2022] [Indexed: 12/28/2022] Open
Abstract
The escape of bladder cancer from immunosurveillance causes monotherapy to exhibit poor efficacy; therefore, designing a multifunctional nanoparticle that boosts programmed cell death and immunoactivation has potential as a treatment strategy. Herein, we developed a facile one-pot coprecipitation reaction to fabricate cluster-structured nanoparticles (CNPs) assembled from Fe3O4 and iron chlorophyll (Chl/Fe) photosensitizers. This nanoassembled CNP, as a multifunctional theranostic agent, could perform red-NIR fluorescence and change the redox balance by the photoinduction of reactive oxygen species (ROS) and attenuate iron-mediated lipid peroxidation by the induction of a Fenton-like reaction. The intravesical instillation of Fe3O4@Chl/Fe CNPs modified with 4-carboxyphenylboronic acid (CPBA) may target the BC wall through glycoproteins in the BC cavity, allowing local killing of cancer cells by photodynamic therapy (PDT)-induced singlet oxygen and causing chemodynamic therapy (CDT)-mediated ferroptosis. An interesting possibility is reprogramming of the tumor microenvironment from immunosuppressive to immunostimulatory after PDT-CDT treatment, which was demonstrated by the reduction of PD-L1 (lower “off” signal to the effector immune cells), IDO-1, TGF-β, and M2-like macrophages and the induction of CD8+ T cells on BC sections. Moreover, the intravesical instillation of Fe3O4@Chl/Fe CNPs may enhance the large-area distribution on the BC wall, improving antitumor efficacy and increasing survival rates from 0 to 91.7%. Our theranostic CNPs not only demonstrated combined PDT-CDT-induced cytotoxicity, ROS production, and ferroptosis to facilitate treatment efficacy but also opened up new horizons for eliminating the immunosuppressive effect by simultaneous PDT-CDT.
Collapse
Affiliation(s)
- Yu-Cheng Chin
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Xing Yang
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, 406, Taiwan.
| | - Che-Wei Hsu
- Division of Urology, Department of Surgery, Taipei City Hospital Zhongxing Branch, Taipei, 103, Taiwan
| | - Te-Wei Chang
- Division of Urology, Department of Surgery, Taipei City Hospital Heping Fuyou Branch, Taipei, 100, Taiwan
| | - Hsi-Ying Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, 900, Taiwan
| | - Linda Yen-Chien Chen
- Nanofabrication Laboratory, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| | - Zi Chun Chia
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chun-Hua Hung
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wu-Chou Su
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Chun Chiu
- Division of Urology, Department of Surgery, Taipei City Hospital Heping Fuyou Branch, Taipei, 100, Taiwan. .,Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan. .,Department of Exercise and Health Sciences, University of Taipei, Taipei, 100, Taiwan.
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan. .,Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Core Facility Center, National Cheng Kung University, 70101, Tainan, Taiwan.
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung, 900, Taiwan.
| |
Collapse
|
11
|
Yang LX, Liu YC, Cho CH, Chen YR, Yang CS, Lu YL, Zhang Z, Tsai YT, Chin YC, Yu J, Pan HM, Jiang WR, Chia ZC, Huang WS, Chiu YL, Sun CK, Huang YT, Chen LM, Wong KT, Huang HM, Chen CH, Chang YJ, Huang CC, Liu TM. A universal strategy for the fabrication of single-photon and multiphoton NIR nanoparticles by loading organic dyes into water-soluble polymer nanosponges. J Nanobiotechnology 2022; 20:311. [PMID: 35794602 PMCID: PMC9258130 DOI: 10.1186/s12951-022-01515-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/18/2022] [Indexed: 11/10/2022] Open
Abstract
The development of optical organic nanoparticles (NPs) is desirable and widely studied. However, most organic dyes are water-insoluble such that the derivatization and modification of these dyes are difficult. Herein, we demonstrated a simple platform for the fabrication of organic NPs designed with emissive properties by loading ten different organic dyes (molar masses of 479.1-1081.7 g/mol) into water-soluble polymer nanosponges composed of poly(styrene-alt-maleic acid) (PSMA). The result showed a substantial improvement over the loading of commercial dyes (3.7-50% loading) while preventing their spontaneous aggregation in aqueous solutions. This packaging strategy includes our newly synthesized organic dyes (> 85% loading) designed for OPVs (242), DSSCs (YI-1, YI-3, YI-8), and OLEDs (ADF-1-3, and DTDPTID) applications. These low-cytotoxicity organic NPs exhibited tunable fluorescence from visible to near-infrared (NIR) emission for cellular imaging and biological tracking in vivo. Moreover, PSMA NPs loaded with designed NIR-dyes were fabricated, and photodynamic therapy with these dye-loaded PSMA NPs for the photolysis of cancer cells was achieved when coupled with 808 nm laser excitation. Indeed, our work demonstrates a facile approach for increasing the biocompatibility and stability of organic dyes by loading them into water-soluble polymer-based carriers, providing a new perspective of organic optoelectronic materials in biomedical theranostic applications.
Collapse
Grants
- MOST 108-2113-M-006-012-MY3 Ministry of Science and Technology, Taiwan
- MOST 109-2113-M-029-009 Ministry of Science and Technology, Taiwan
- MOST 109-2113-M-032-002 Ministry of Science and Technology, Taiwan
- MOST 110-2112-M-003-012-MY3 Ministry of Science and Technology, Taiwan
- MOST 108-2113-M-006-012-MY3 Ministry of Science and Technology, Taiwan
- MOST 108-2113-M-006-012-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2221-E-002-013 Ministry of Science and Technology, Taiwan
- MOST 109-2113-M-032-002 Ministry of Science and Technology, Taiwan
- MOST 108-2113-M-006-012-MY3 Ministry of Science and Technology, Taiwan
- MOST 108-2113-M-006-012-MY3 Ministry of Science and Technology, Taiwan
- MOST 108-2113-M-006-012-MY3 Ministry of Science and Technology, Taiwan
- MOST 109-2113-M-029-009 Ministry of Science and Technology, Taiwan
- MOST 110-2221-E-002-013 Ministry of Science and Technology, Taiwan
- MOST 107-2113-M-002-019-MY3 Ministry of Science and Technology, Taiwan
- MOST 107-2113-M-002-019-MY3 Ministry of Science and Technology, Taiwan
- MOST 107-2113-M-002-019-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2112-M-003-012-MY3 Ministry of Science and Technology, Taiwan
- MOST 109-2113-M-032-002 Ministry of Science and Technology, Taiwan
- MOST 109-2113-M-029-009 Ministry of Science and Technology, Taiwan
- MOST 108-2113-M-006-012-MY3 Ministry of Science and Technology, Taiwan
- MYRG2018-00070-FHS Faculty of Health Sciences, University of Macau, the internal funding of the University of Macau
- MYRG2018-00070-FHS Faculty of Health Sciences, University of Macau, the internal funding of the University of Macau
- MYRG2018-00070-FHS Faculty of Health Sciences, University of Macau, the internal funding of the University of Macau
- MYRG2018-00070-FHS Faculty of Health Sciences, University of Macau, the internal funding of the University of Macau
- 122/2016/A3 The Science and Technology Development Fund, Macau SAR
- 122/2016/A3 The Science and Technology Development Fund, Macau SAR
- 122/2016/A3 The Science and Technology Development Fund, Macau SAR
- 122/2016/A3 The Science and Technology Development Fund, Macau SAR
Collapse
Affiliation(s)
- Li-Xing Yang
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Cheng Liu
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China
| | - Chang-Hui Cho
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| | - Yi-Rou Chen
- Department of Chemistry, Tamkang University, 25137, New Taipei City, Taiwan
| | - Chan-Shan Yang
- Institute and Undergraduate Program of Electro-Optical Engineering, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Yin-Lin Lu
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China
| | - Zhiming Zhang
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China
| | - Yi-Tseng Tsai
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Cheng Chin
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Hsiu-Min Pan
- Department of Chemistry, Tamkang University, 25137, New Taipei City, Taiwan
| | - Wei-Rou Jiang
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Zi-Chun Chia
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wei-Shiang Huang
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Lin Chiu
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| | - Chun-Kai Sun
- Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Ting Huang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Li-Ming Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Min Huang
- Institute and Undergraduate Program of Electro-Optical Engineering, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chih-Hsin Chen
- Department of Chemistry, Tamkang University, 25137, New Taipei City, Taiwan.
| | - Yuan Jay Chang
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan.
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
| |
Collapse
|
12
|
Zhan W, Zhao B, Cui X, Liu J, Xiao X, Xu Y, She S, Hou C, Guo H. PDA modified NIR-II NaEr 0.8Yb 0.2F 4nanoparticles with high photothermal effect. NANOTECHNOLOGY 2022; 33:385102. [PMID: 35609524 DOI: 10.1088/1361-6528/ac72b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Polydopamine (PDA)-modified NaEr0.8Yb0.2 F4nanoparticles were synthesized, with strong NIR-II emission, quantum yield of 29.63%, and excellent photothermal performance. Crystal phases and microstructures are characterized. Optical properties such as absorption, NIR-II emission, and light stability are studied, and the luminescence mechanism is discussed in detail. Key factors in NIR-II imaging were evaluated in fresh pork tissue, including penetration depth, spatial resolution, and signal-to-noise ratio (SNR). A high penetration depth of 5 mm and a high spatial resolution of 1 mm were detected. Mice are imaged in vivo afterintravenousinjection. Due to the accumulation of nanoparticles in the liver, high image quality with an SNR of 5.2 was detected in the abdomen of KM mice with hair. The photothermal conversion effect of PDA-modified NPs was twice that of the reported material. These NIR-II nanoparticles have superior optical properties, high photothermal efficiency and low cytotoxicity, and are potential fluorescent probes for further disease diagnosis and treatment.
Collapse
Affiliation(s)
- Weifan Zhan
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bin Zhao
- Department of Sports Medicine, Fourth Medical Center, General Hospital of the Chinese People's Liberation Army, Chinese, Beijing, People's Republic of China
| | - Xiaoxia Cui
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Junsong Liu
- Xi'an Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital of Jiaotong University, Xi'an Shanxi, People's Republic of China
| | - Xusheng Xiao
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yantao Xu
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shengfei She
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chaoqi Hou
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haitao Guo
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
13
|
Nie N, Liu Y, Li B, Hua Z, Liu J, Liu J, Wang W. Amplified oxidative stress therapy by a degradable copper phosphate nanozyme coated by the in situ polymerization of PEGDA. J Mater Chem B 2021; 9:8094-8108. [PMID: 34494057 DOI: 10.1039/d1tb00436k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The elimination of reactive oxygen species (ROS) caused by glutathione (GSH) is a fundamental concern in the oxidative stress therapy (OST) of tumors. This is the first report of copper phosphate nanospheres coated by poly (ethylene glycol) diacrylate (Cu3(PO4)2@PEGDA) which act as nanozymes to amplify the anti-tumor effects of OST. Cu3(PO4)2@PEGDA not only catalyzes the generation of ˙OH from H2O2 but also consumes GSH, which is counterproductive to the role of ˙OH. Moreover, the photothermal properties of Cu3(PO4)2@PEGDA further enhances the outcome of the OST when exposed to an 808 nm laser. Another novelty lies in that a new PEGylation strategy of peroxidase-like nanozymes is proposed, in which the Cu3(PO4)2 cores work as internal heaters and radical generators, which are necessary to initiate the radical polymerization of PEGDA. An elaborate core-shell nanostructure is obtained since the polymerization prefers to take place in the vicinity of the cores, overcoming the drawbacks of traditional PEGylation methods which include invalid polymerization far away from the cores and easy core-shell disassembly during applications.
Collapse
Affiliation(s)
- Ning Nie
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yifan Liu
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bing Li
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zhentao Hua
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Jianfeng Liu
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Wei Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
14
|
Liu J, Sun L, Li L, Zhang R, Xu ZP. Synergistic Cancer Photochemotherapy via Layered Double Hydroxide-Based Trimodal Nanomedicine at Very Low Therapeutic Doses. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7115-7126. [PMID: 33543935 DOI: 10.1021/acsami.0c23143] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The success of cancer therapy is always accompanied by severe side effects due to the high amount of toxic antitumor drugs that off-target normal organs/tissues. Herein, we report the development of a trifunctional layered double hydroxide (LDH) nanosystem for combined photochemotherapy of skin cancer at very low therapeutic doses. This nanosystem (ICG/Cu-LDH@BSA-DOX) is composed of acid-responsive bovine serum albumin-doxorubicin prodrug (BSA-DOX) and indocyanine green (ICG)-intercalated Cu-doped LDH nanoparticle. ICG/Cu-LDH@BSA-DOX is able to release DOX in an acid-triggered manner, efficiently and simultaneously generates heating and reactive oxygen species (ROS) upon 808 nm laser irradiation, and synergistically induces apoptosis of skin cancer cells. In vivo therapeutic evaluations demonstrate that ICG/Cu-LDH@BSA-DOX nearly eradicated the tumor tissues upon one-course treatment using very low doses of therapeutic agents (0.175 mg/kg DOX, 0.5 mg/kg Cu, and 0.25 mg/kg ICG) upon very mild 808 nm laser irradiation (0.3 W/cm2 for 2 min). This work thus provides a novel strategy to design anticancer nanomedicine for efficient combination cancer treatment with minimal side effects in clinical applications.
Collapse
Affiliation(s)
- Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Luyao Sun
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
15
|
Clearable Nanoparticles for Cancer Photothermal Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33543458 DOI: 10.1007/978-3-030-58174-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Nanoparticles are important mediators for cancer photothermal therapy (PTT) where they can efficiently convert photon energy into heat and ablate the surrounding cancer cells with superior spatial and temporal precision. Recent decades have witnessed a booming development of numerous formulations of PTT nanoparticles that exhibit outstanding anti-tumor efficacy in preclinical studies. However, their clinical translation has been mined by safety concerns, especially their long-term impact on human body. Biodegradable nanoparticles that can be excreted after PTT, therefore, are gaining popularity due to their biocompatibility and improved safety profiles. This chapter provides an update on the progress in clearable PTT nanoparticles for cancer treatment. We discuss their design, synthesis strategy, and physicochemical properties relevant to photothermal performance. We also review their biodistribution patterns and in vivo anti-tumor efficacy, along with their degradation mechanism and clearance kinetics. Lastly, we present a brief overview of the imaging techniques to noninvasively monitor the degradation of PTT nanoparticles.
Collapse
|
16
|
Kuo SH, Wu PT, Huang JY, Chiu CP, Yu J, Liao MY. Fabrication of Anisotropic Cu Ferrite-Polymer Core-Shell Nanoparticles for Photodynamic Ablation of Cervical Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2429. [PMID: 33291730 PMCID: PMC7761902 DOI: 10.3390/nano10122429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
In this work we developed methylene blue-immobilized copper-iron nanoparticles (MB-CuFe NPs) through a facile one-step hydrothermal reaction to achieve a better phototherapeutic effect. The Fe/Cu ratio of the CuFe NPs was controllable by merely changing the loading amount of iron precursor concentration. The CuFe NPs could serve as a Fenton catalyst to convert hydrogen peroxide (H2O2) into reactive oxygen species (ROS), while the superparamagnetic properties also suggest magnetic resonance imaging (MRI) potential. Furthermore, the Food and Drug Administration (FDA)-approved MB photosensitizer could strongly adsorb onto the surface of CuFe NPs to facilitate the drug delivery into cells and improve the photodynamic therapy at 660 nm via significant generation of singlet oxygen species, leading to enhanced cancer cell-damaging efficacy. An MTT (thiazolyl blue tetrazolium bromide) assay proved the low cytotoxicity of the CuFe NPs to cervical cancer cells (HeLa cells), namely above 80% at 25 ppm of the sample dose. A slight dissolution of Cu and Fe ions from the CuFe NPs in an acidic environment was obtained, providing direct evidence for CuFe NPs being degradable without the risk of long-term retention in the body. Moreover, the tremendous photo-to-thermal conversion of CuFe NPs was examined, which might be combined with photodynamic therapy (PDT) for promising development in the depletion of cancer cells after a single pulse of deep-red light irradiation at high laser power.
Collapse
Affiliation(s)
- Shuo-Hsiu Kuo
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.K.); (P.-T.W.)
| | - Po-Ting Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.K.); (P.-T.W.)
| | - Jing-Yin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; (J.-Y.H.); (C.-P.C.)
| | - Chin-Pao Chiu
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; (J.-Y.H.); (C.-P.C.)
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.K.); (P.-T.W.)
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; (J.-Y.H.); (C.-P.C.)
| |
Collapse
|
17
|
Abstract
Phototherapies offer promising alternatives to traditional cancer therapies. Phototherapies mainly rely on manipulation of target tissue through photothermal, photochemical, or photomechanical interactions. Combining phototherapy with immunotherapy has the benefit of eliciting a systemic immune response. Specifically, photothermal therapy (PTT) has been shown to induce apoptosis and necrosis in cancer cells, releasing tumor associated antigenic peptides while sparing healthy host cells, through temperature increase in targeted tissue. However, the tissue temperature must be monitored and controlled to minimize adverse thermal effects on normal tissue and to avoid the destruction of tumor-specific antigens, in order to achieve the desired therapeutic effects of PTT. Techniques for monitoring PTT have evolved from post-treatment quantification methods like enzyme linked immunosorbent assay, western blot analysis, and flow cytometry to modern methods capable of real-time monitoring, such as magnetic resonance thermometry, computed tomography, and photoacoustic imaging. Monitoring methods are largely chosen based on the type of light delivery to the target tissue. Interstitial methods of thermometry, such as thermocouples and fiber-optic sensors, are able to monitor temperature of the local tumor environment. However, these methods can be challenging if the phototherapy itself is interstitially administered. Increasingly, non-invasive therapies call for non-invasive monitoring, which can be achieved through magnetic resonance thermometry, computed tomography, and photoacoustic imaging techniques. The purpose of this review is to introduce the feasible methods used to monitor tissue temperature during PTT. The descriptions of different techniques and the measurement examples can help the researchers and practitioners when using therapeutic PTT.
Collapse
|
18
|
Hsu CW, Cheng NC, Liao MY, Cheng TY, Chiu YC. Development of Folic Acid-Conjugated and Methylene Blue-Adsorbed Au@TNA Nanoparticles for Enhanced Photodynamic Therapy of Bladder Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1351. [PMID: 32664275 PMCID: PMC7407911 DOI: 10.3390/nano10071351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 01/23/2023]
Abstract
Photodynamic therapy (PDT) is a promising treatment for malignancy. However, the low molecular solubility of photosensitizers (PSs) with a low accumulation at borderline malignant potential lesions results in the tardy and ineffective management of recurrent urothelial carcinoma. Herein, we used tannic acid (TNA), a green precursor, to reduce HAuCl4 in order to generate Au@TNA core-shell nanoparticles. The photosensitizer methylene blue (MB) was subsequently adsorbed onto the surface of the Au@TNA nanoparticles, leading to the incorporation of a PS within the organic shell of the Au nanoparticle nanosupport, denoted as Au@TNA@MB nanoparticles (NPs). By modifying the surface of the Au@TNA@MB NPs with the ligand folate acid (FA) using NH2-PEG-NH2 as a linker, we demonstrated that the targeted delivery strategy achieved a high accumulation of PSs in cancer cells. The cell viability of T24 cells decreased to 87.1%, 57.1%, and 26.6% upon treatment with 10 ppm[Au] Au@TNA/MB NPs after 45 min, 2 h, and 4 h of incubation, respectively. We also applied the same targeted PDT treatment to normal urothelial SV-HUC-1 cells and observed minor phototoxicity, indicating that this safe photomedicine shows promise for applications aiming to achieve the local depletion of cancer sites without side effects.
Collapse
Affiliation(s)
- Che-Wei Hsu
- Division of Urology, Department of Surgery, Taipei City Hospital Zhongxiao Branch, Taipei 115, Taiwan;
| | - Nai-Chi Cheng
- Department of Applied Chemistry, National University of Kaohsiung, Kaohsiung 811, Taiwan;
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 900, Taiwan; (M.-Y.L.); (T.-Y.C.)
| | - Ting-Yu Cheng
- Department of Applied Chemistry, National Pingtung University, Pingtung 900, Taiwan; (M.-Y.L.); (T.-Y.C.)
| | - Yi-Chun Chiu
- Division of Urology, Department of Surgery, Taipei City Hospital Heping Fuyou Branch, Taipei 100, Taiwan
- Department of Exercise and Health Sciences, University of Taipei, Taipei 100, Taiwan
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
19
|
Weng Y, Guan S, Wang L, Lu H, Meng X, Waterhouse GIN, Zhou S. Defective Porous Carbon Polyhedra Decorated with Copper Nanoparticles for Enhanced NIR-Driven Photothermal Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905184. [PMID: 31788959 DOI: 10.1002/smll.201905184] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Currently, there is tremendous interest in the discovery of new and improved photothermal agents for near-infrared (NIR)-driven cancer therapy. Herein, a series of novel photothermal agents, comprising copper nanoparticles supported on defective porous carbon polyhedra are successfully prepared by heating a Cu-BTC metal-organic framework (MOF) precursor at different temperatures (t) in the range 400-900 °C under an argon atmosphere. The copper nanoparticle size and carbon defect concentration in the obtained products (denoted herein as Cu@CPP-t) increase with synthesis temperature, thus imparting the Cu@CPP-t samples with distinct NIR absorption properties and photothermal heating responses. The Cu@CPP-800 sample shows a remarkable photothermal conversion efficiency of 48.5% under 808 nm laser irradiation, representing one of the highest photothermal efficiencies yet reported for a carbon-based photothermal agent. In vivo experiments conducted with tumor bearing nude Balb/c mice confirm the efficacy of Cu@CPP-800 as a very promising NIR-driven phototherapy agent for cancer treatment. Results encourage the wider use of MOFs as low cost precursors for the synthesis of carbon-supported metal nanoparticle composites for photothermal therapy.
Collapse
Affiliation(s)
- Yangziwan Weng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Heng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | | | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
20
|
Zhao W, Li Z, Yang H, Ren C, Lv F, Gao S, Ma H, Jin Y, Ge K, Liu D, Zhang J, Liu H. Mesoporous Platinum Nanotherapeutics for Combined Chemo-photothermal Cancer Treatment. ACS APPLIED BIO MATERIALS 2019; 2:3269-3278. [PMID: 35030769 DOI: 10.1021/acsabm.9b00250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | - Hua Yang
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | | | | | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding 071002, China
| | - Huanyun Ma
- College of Basic Medical Science, Hebei University, Baoding 071000, China
| | - Yi Jin
- College of Basic Medical Science, Hebei University, Baoding 071000, China
| | | | | | | | | |
Collapse
|
21
|
Xu Z, Lou W, Zhao G, Zheng D, Hao J, Wang X. Cu nanoparticles decorated WS 2 nanosheets as a lubricant additive for enhanced tribological performance. RSC Adv 2019; 9:7786-7794. [PMID: 35521156 PMCID: PMC9061520 DOI: 10.1039/c9ra00337a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022] Open
Abstract
Tungsten disulfide–polydopamine–copper (WS2–PDA–Cu) nanocomposites were first prepared by a green and effective biomimetic strategy and then used as a lubricant additive in polyalkylene glycol (PAG). The biomimetic strategy is inspired by the adhesive proteins in mussels. WS2 nanosheets were decorated by uniformly dispersed Cu nanoparticles (Cu NPs). The WS2–PDA–Cu nanocomposites with good dispersion stability, showed better friction reducing and anti-wear properties than WS2, Cu NPs and WS2–Cu dispersed in PAG base oil. The average friction coefficient and wear volume were reduced by 33.56% and 97.95%, respectively, at 150 °C under a load of 100 N for the optimal concentration of 0.9 wt%. The lubrication mechanism was discussed. Tungsten disulfide–polydopamine–copper (WS2–PDA–Cu) nanocomposites were first prepared by a green and effective biomimetic strategy and then used as a lubricant additive in polyalkylene glycol (PAG).![]()
Collapse
Affiliation(s)
- Zhuang Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China .,University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Wenjing Lou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| | - Gaiqing Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| | - Dongdong Zheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| | - Junying Hao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| | - Xiaobo Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
22
|
Wu PT, Lin CL, Lin CW, Chang NC, Tsai WB, Yu J. Methylene-Blue-Encapsulated Liposomes as Photodynamic Therapy Nano Agents for Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 9:E14. [PMID: 30583581 PMCID: PMC6359461 DOI: 10.3390/nano9010014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/16/2023]
Abstract
Methylene blue (MB) is a widely used dye and photodynamic therapy (PDT) agent that can produce reactive oxygen species (ROS) after light exposure, triggering apoptosis. However, it is hard for the dye to penetrate through the cell membrane, leading to poor cellular uptake; thus, drug carriers, which could enhance the cellular uptake, are a suitable solution. In addition, the defective vessels resulting from fast vessel outgrowth leads to an enhanced permeability and retention (EPR) effect, which gives nanoscale drug carriers a promising potential. In this study, we applied poly(12-(methacryloyloxy)dodecyl phosphorylcholine), a zwitterionic polymer-lipid, to self-assemble into liposomes and encapsulate MB (MB-liposome). Its properties of high stability and fast intracellular uptake were confirmed, and the higher in vitro ROS generation ability of MB-liposomes than that of free MB was also verified. For in vivo tests, we examined the toxicity in mice via tail vein injection. With the features found, MB-liposome has the potential of being an effective PDT nano agent for cancer therapy.
Collapse
Affiliation(s)
- Po-Ting Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Chih-Ling Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Che-Wei Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Ning-Chu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| |
Collapse
|