1
|
Miyata R, Inoue S, Nikaido K, Nakajima K, Hasegawa T. Friction Force Mapping of Molecular Ordering and Mesoscopic Phase Transformations in Layered-Crystalline Organic Semiconductor Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39701-39707. [PMID: 39013158 DOI: 10.1021/acsami.4c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
It is critical to understand molecular ordering processes in small-molecule organic semiconductor (OSC) films in optimizing electronic device applications, although it is difficult to observe and investigate the ordering characteristics at a mesoscopic or device scale. Here, we report that friction force microscopy (FFM) allows visualizing the ordering transformation process from a thermodynamically metastable phase to a stable phase at a mesoscopic scale. We utilized 2-octyl-benzothieno[3,2-b]naphtho[2,3-b]thiophene (2-C8-BTNT) as a typical highly layered-crystalline OSC. We found that the friction force between an AFM tip and spin-coated OSC films significantly depends on whether local film states are in metastable monolayer phase or stable bilayer-type herringbone (b-LHB) phase that exhibits high carrier mobility. The formation of the stable b-LHB phase leads to lower friction than the metastable monolayer phase, clearly visualizing the molecular order. Force map (Fmap) analysis indicates that the lower friction in the b-LHB phase should be associated with the reduction of interfacial adhesion force. Notably, the observed results demonstrate that the spin-coated thin film changes from continuous film with the monolayer phase to rugged microcrystal grains with the b-LHB phase when left at ambient conditions. By contrast, an appropriate post-thermal annealing process facilitates the phase transformation without inducing such morphological changes. The technique provides a unique and effective tool for revealing the relationship between processing conditions and device performance in polycrystalline OSC films.
Collapse
Affiliation(s)
- Ryo Miyata
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Satoru Inoue
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kiyoshi Nikaido
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Tatsuo Hasegawa
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Huang C, Li C, Geng B, Ding X, Zhang J, Tang W, Duan S, Ren X, Hu W. Tuning Electrode Work Function and Surface Energy for Solution Shearing High-Performance Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30228-30238. [PMID: 38810990 DOI: 10.1021/acsami.4c02012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A bottom-contact organic field-effect transistor (OFET) is easily adaptable to the standard lithography process because the contact electrodes are deposited before the organic semiconductor (OSC). However, the low surface energy of bare electrodes limits utilizing solution-processed single-crystal OSCs. Additionally, the bare electrode usually leads to a significant charge injection barrier, owing to its relatively low work function (WF). Here, we simultaneously improved the surface energy and WF of gold electrodes by conducting oxygen plasma treatment to achieve high-performance OFET based on solution-processed organic single crystals. We cultivated a thin layer of gold oxide on Au electrodes to increase the WF by ∼0.7 eV. The surface energy of Au electrodes was enhanced to the same as AlOx dielectric surface, enabling the seamless growth of large-area C8-BTBT (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene) organic single-crystal thin films via solution shearing. This technique facilitates the production of high-performance OFETs with the highest carrier mobility of 6.7 cm2 V-1 s-1 and sharp switching characterized by a subthreshold swing of 63.6 mV dec-1. The bottom-contact OFETs exhibited a lower contact resistance of 1.19 kΩ cm than its F4-TCNQ-doped top-contact control device. This method offers a straightforward and effective strategy for producing high-quality single-crystal OFETs, which are potentially suitable for commercial applications.
Collapse
Affiliation(s)
- Congcong Huang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chengtai Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Bowen Geng
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiaohai Ding
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jing Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Wei Tang
- School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuming Duan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Xiaochen Ren
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
3
|
Tanwar S, Millan-Solsona R, Ruiz-Molina S, Mas-Torrent M, Kyndiah A, Gomila G. Nanoscale Operando Characterization of Electrolyte-Gated Organic Field-Effect Transistors Reveals Charge Transport Bottlenecks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309767. [PMID: 38110297 DOI: 10.1002/adma.202309767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Indexed: 12/20/2023]
Abstract
Charge transport in electrolyte-gated organic field-effect transistors (EGOFETs) is governed by the microstructural property of the semiconducting thin film that is in direct contact with the electrolyte. Therefore, a comprehensive nanoscale operando characterization of the active channel is crucial to pinpoint various charge transport bottlenecks for rational and targeted optimization of the devices. Here, the local electrical properties of EGOFETs are systematically probed by in-liquid scanning dielectric microscopy (in-liquid SDM) and a direct picture of their functional mechanism at the nanoscale is provided across all operational regimes, starting from subthreshold, linear to saturation, until the onset of pinch-off. To this end, a robust interpretation framework of in-liquid SDM is introduced that enables quantitative local electric potential mapping directly from raw experimental data without requiring calibration or numerical simulations. Based on this development, a straightforward nanoscale assessment of various charge transport bottlenecks is performed, like contact access resistances, inter- and intradomain charge transport, microstructural inhomogeneities, and conduction anisotropy, which have been inaccessible earlier. Present results contribute to the fundamental understanding of charge transport in electrolyte-gated transistors and promote the development of direct structure-property-function relationships to guide future design rules.
Collapse
Affiliation(s)
- Shubham Tanwar
- Nanoscale Bioelectrical Characterization Group, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, Barcelona, 08028, Spain
| | - Ruben Millan-Solsona
- Nanoscale Bioelectrical Characterization Group, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, Barcelona, 08028, Spain
- Department d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, Carrer Martí i Franquès, 1, Barcelona, 08028, Spain
| | - Sara Ruiz-Molina
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Adrica Kyndiah
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Gabriel Gomila
- Nanoscale Bioelectrical Characterization Group, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, Barcelona, 08028, Spain
- Department d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, Carrer Martí i Franquès, 1, Barcelona, 08028, Spain
| |
Collapse
|
4
|
Gong H, Lin J, Sun H. Nanocrystal Array Engineering and Optoelectronic Applications of Organic Small-Molecule Semiconductors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2087. [PMID: 37513098 PMCID: PMC10386679 DOI: 10.3390/nano13142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Organic small-molecule semiconductor materials have attracted extensive attention because of their excellent properties. Due to the randomness of crystal orientation and growth location, however, the preparation of continuous and highly ordered organic small-molecule semiconductor nanocrystal arrays still face more challenges. Compared to organic macromolecules, organic small molecules exhibit better crystallinity, and therefore, they exhibit better semiconductor performance. The formation of organic small-molecule crystals relies heavily on weak interactions such as hydrogen bonds, van der Waals forces, and π-π interactions, which are very sensitive to external stimuli such as mechanical forces, high temperatures, and organic solvents. Therefore, nanocrystal array engineering is more flexible than that of the inorganic materials. In addition, nanocrystal array engineering is a key step towards practical application. To resolve this problem, many conventional nanocrystal array preparation methods have been developed, such as spin coating, etc. In this review, the typical and recent progress of nanocrystal array engineering are summarized. It is the typical and recent innovations that the array of nanocrystal array engineering can be patterned on the substrate through top-down, bottom-up, self-assembly, and crystallization methods, and it can also be patterned by constructing a series of microscopic structures. Finally, various multifunctional and emerging applications based on organic small-molecule semiconductor nanocrystal arrays are introduced.
Collapse
Affiliation(s)
- Haoyu Gong
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Huibin Sun
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
5
|
Wei Y, Liu W, Yu J, Li Y, Wang Y, Huo Z, Cheng L, Feng Z, Sun J, Sun Q, Wang ZL. Triboelectric Potential Powered High-Performance Organic Transistor Array. ACS NANO 2022; 16:19199-19209. [PMID: 36354955 DOI: 10.1021/acsnano.2c08420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Triboelectric potential gated transistors have inspired various applications toward mechanical behavior controlled logic circuits, multifunctional sensors, artificial sensory neurons, etc. Their rapid development urgently calls for high-performance devices and corresponding figure of merits to standardize the tribotronic gating properties. Organic semiconductors paired with solution processability promise low-cost manufacture of high-performance tribotronic transistor devices/arrays. Here, we demonstrate a record high-performance tribotronic transistor array composed of an integrated triboelectric nanogenerator (TENG) and a large-area device array of C8-BTBT-PS transistors. The working mechanism of effective triboelectric potential gating is elaborately explained from the aspect of conjugated energy bands of the contact-electrification mediums and organic semiconductors. Driven by the triboelectric potential, the tribotronic transistor shows superior properties of record high current on/off ratios (>108), a steep subthreshold swing (29.89 μm/dec), high stability, and excellent reproducibility. Moreover, tribotronic logic devices modulated by mechanical displacement have also been demonstrated with good stability and a high gain of 1260 V/mm. The demonstrated large-area tribotronic transistor array of organic semiconductor exhibits record high performance and offers an effective R&D platform for mechano-driven electronic terminals, interactive intelligent system, artificial robotic skin, etc.
Collapse
Affiliation(s)
- Yichen Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Wanrong Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Yonghai Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Yifei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Ziwei Huo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Liuqi Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Zhenyu Feng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Jia Sun
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Shandong Zhongke Naneng Energy Technology Co., Ltd., Dongying, 257061, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Georgia Institute of Technology, Atlanta, Georgia30332-0245, United States
| |
Collapse
|
6
|
Poimanova EY, Shaposhnik PA, Anisimov DS, Zavyalova EG, Trul AA, Skorotetcky MS, Borshchev OV, Vinnitskiy DZ, Polinskaya MS, Krylov VB, Nifantiev NE, Agina EV, Ponomarenko SA. Biorecognition Layer Based On Biotin-Containing [1]Benzothieno[3,2- b][1]benzothiophene Derivative for Biosensing by Electrolyte-Gated Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16462-16476. [PMID: 35357127 DOI: 10.1021/acsami.1c24109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Requirements of speed and simplicity in testing stimulate the development of modern biosensors. Electrolyte-gated organic field-effect transistors (EGOFETs) are a promising platform for ultrasensitive, fast, and reliable detection of biological molecules for low-cost, point-of-care bioelectronic sensing. Biosensitivity of the EGOFET devices can be achieved by modification with receptors of one of the electronic active interfaces of the transistor gate or organic semiconductor surface. Functionalization of the latter gives the advantage in the creation of a planar architecture and compact devices for lab-on-chip design. Herein, we propose a universal, fast, and simple technique based on doctor blading and Langmuir-Schaefer methods for functionalization of the semiconducting surface of C8-BTBT-C8, allowing the fabrication of a large-scale biorecognition layer based on the novel functional derivative of BTBT-containing biotin fragments as a foundation for further biomodification. The fabricated devices are very efficient and operate stably in phosphate-buffered saline solution with high reproducibility of electrical properties in the EGOFET regime. The development of biorecognition properties of the proposed biolayer is based on the streptavidin-biotin interactions between the consecutive layers and can be used for a wide variety of receptors. As a proof-of-concept, we demonstrate the specific response of the BTBT-based biorecognition layer in EGOFETs to influenza A virus (H7N1 strain). The elaborated approach to biorecognition layer formation is appropriate but not limited to aptamer-based receptor molecules and can be further applied for fabricating several biosensors for various analytes on one substrate and paves the way for "electronic tongue" creation.
Collapse
Affiliation(s)
- Elena Yu Poimanova
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Polina A Shaposhnik
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1/3, 119991 Moscow, Russian Federation
| | - Daniil S Anisimov
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Elena G Zavyalova
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1/3, 119991 Moscow, Russian Federation
| | - Askold A Trul
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Maxim S Skorotetcky
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Oleg V Borshchev
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Dmitry Z Vinnitskiy
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Marina S Polinskaya
- Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninskiy pr. 47, 119991 Moscow, Russian Federation
| | - Vadim B Krylov
- Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninskiy pr. 47, 119991 Moscow, Russian Federation
| | - Nikolay E Nifantiev
- Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninskiy pr. 47, 119991 Moscow, Russian Federation
| | - Elena V Agina
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Sergey A Ponomarenko
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1/3, 119991 Moscow, Russian Federation
| |
Collapse
|
7
|
Hawly T, Johnson M, Späth A, Nickles Jäkel H, Wu M, Spiecker E, Watts B, Nefedov A, Fink RH. Exploring the Preparation Dependence of Crystalline 2D-Extended Ultrathin C8-BTBT-C8 Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16830-16838. [PMID: 35352935 DOI: 10.1021/acsami.2c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Crystalline organic semiconducting thin films from the benchmark molecule C8-BTBT-C8 were obtained using physical vapor deposition and various solution-based methods. Utilizing atomic force microscopy and X-ray spectromicroscopy, we illustrate the influence of the underlying growth mechanism and determine the highly preparation-dependent orientation of the thiophene backbone. We observe a continuous trend for crystalline C8-BTBT-C8 thin film domains to extend into the square millimeter-range under near-equilibrium growth conditions. For such well-defined systems, electron diffraction tomography allows us to precisely determine the unit cell directly after film deposition and to reveal an 8° molecular tilt angle with respect to the surface normal. This finding is in almost perfect accordance with the values derived from near-edge X-ray absorption fine structure linear dichroism. Within this work, we shine a light on both the successes and challenges connected to the realization of potent, thiophene-based semiconducting films, paving the way toward square centimeter-sized ultrathin organic crystals and their application in organic circuitry.
Collapse
Affiliation(s)
- Tim Hawly
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Manuel Johnson
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Andreas Späth
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Hannah Nickles Jäkel
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Mingjian Wu
- Institute of Micro- and Nanostructure Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | | | - Alexei Nefedov
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Rainer H Fink
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Kousseff CJ, Halaksa R, Parr ZS, Nielsen CB. Mixed Ionic and Electronic Conduction in Small-Molecule Semiconductors. Chem Rev 2021; 122:4397-4419. [PMID: 34491034 DOI: 10.1021/acs.chemrev.1c00314] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Small-molecule organic semiconductors have displayed remarkable electronic properties with a multitude of π-conjugated structures developed and fine-tuned over recent years to afford highly efficient hole- and electron-transporting materials. Already making a significant impact on organic electronic applications including organic field-effect transistors and solar cells, this class of materials is also now naturally being considered for the emerging field of organic bioelectronics. In efforts aimed at identifying and developing (semi)conducting materials for bioelectronic applications, particular attention has been placed on materials displaying mixed ionic and electronic conduction to interface efficiently with the inherently ionic biological world. Such mixed conductors are conveniently evaluated using an organic electrochemical transistor, which further presents itself as an ideal bioelectronic device for transducing biological signals into electrical signals. Here, we review recent literature relevant for the design of small-molecule mixed ionic and electronic conductors. We assess important classes of p- and n-type small-molecule semiconductors, consider structural modifications relevant for mixed conduction and for specific interactions with ionic species, and discuss the outlook of small-molecule semiconductors in the context of organic bioelectronics.
Collapse
Affiliation(s)
- Christina J Kousseff
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Roman Halaksa
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Zachary S Parr
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
9
|
Lin CC, Afraj SN, Velusamy A, Yu PC, Cho CH, Chen J, Li YH, Lee GH, Tung SH, Liu CL, Chen MC, Facchetti A. A Solution Processable Dithioalkyl Dithienothiophene (DSDTT) Based Small Molecule and Its Blends for High Performance Organic Field Effect Transistors. ACS NANO 2021; 15:727-738. [PMID: 33253536 DOI: 10.1021/acsnano.0c07003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The 3,5-dithiooctyl dithienothiophene based small molecular semiconductor DDTT-DSDTT (1), end functionalized with fused dithienothiophene (DTT) units, was synthesized and characterized for organic field effect transistors (OFET). The thermal, optical, electrochemical, and computed electronic structural properties of 1 were investigated and contrasted. The single crystal structure of 1 reveals the presence of intramolecular locks between S(alkyl)···S(thiophene), with a very short S-S distance of 3.10 Å, and a planar core. When measured in an OFET device compound 1 exhibits a hole mobility of 3.19 cm2 V-1 s-1, when the semiconductor layer is processed by a solution-shearing deposition method and using environmentally acceptable anisole as the solvent. This is the highest value reported to date for an all-thiophene based molecular semiconductor. In addition, solution-processed small molecule/insulating polymer (1/PαMS) blend films and devices were investigated. Morphological analysis reveals a nanoscopic vertical phase separation with the PαMS layer preferentially contacting the dielectric and 1 located on top of the stack. The OFET based on the blend comprising 50% weight of 1 exhibits a hole mobility of 2.44 cm2 V-1 s-1 and a very smaller threshold voltage shift under gate bias stress.
Collapse
Affiliation(s)
- Chia-Chi Lin
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shakil N Afraj
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Arulmozhi Velusamy
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Po-Chun Yu
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Chang-Hui Cho
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Jianhua Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi-Hsien Li
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Chou Chen
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Antonio Facchetti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Salzillo T, D'Amico F, Montes N, Pfattner R, Mas-Torrent M. Influence of polymer binder on the performance of diF-TES-ADT based organic field effect transistor. CrystEngComm 2021. [DOI: 10.1039/d0ce01467b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The presented work concerns the study of solution sheared organic thin film transistors based on a 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT) polymer blend.
Collapse
Affiliation(s)
- Tommaso Salzillo
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- 08193 Bellaterra
- Spain
- Department of Materials and Interfaces
| | | | - Nieves Montes
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- 08193 Bellaterra
- Spain
| | - Raphael Pfattner
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- 08193 Bellaterra
- Spain
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- 08193 Bellaterra
- Spain
| |
Collapse
|
11
|
Hattori Y, Kitamura M. Crystal Orientation Imaging of Organic Monolayer Islands by Polarized Light Microscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36428-36436. [PMID: 32693573 DOI: 10.1021/acsami.0c08672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The initial stage of organic semiconductor film formation greatly affects the properties of films, which are used in organic devices including thin-film transistors and light-emitting diodes. Organic monolayer islands that are formed on a suitable substrate can be observed with a conventional optical microscope. Furthermore, the use of a polarized microscope allows the determination of the refractive index and crystal orientation of islands. Here, we report organic monolayer islands of 2,9-diphenyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DPh-DNTT) deposited on a Si substrate with thermally grown SiO2 to investigate the crystal orientation of islands by polarized light microscopy. The observation of DPh-DNTT islands under polarized quasi-monochromatic light reveals that reflection intensity depends on both the crystal orientation and irradiation wavelength. A comparison between experimental and calculated reflection intensities provides an estimate of an anisotropic complex refractive index in the plane. The crossed-polarized microscopy image of a SiO2/Si substrate with DPh-DNTT islands shows that the contrast between the islands and SiO2 surface is sensitive to the angle between the polarizer and analyzer and depends on the direction of crystal orientation. The dependence of reflection contrast, which can be explained by the anisotropic extinction coefficient, is used to confirm crystal orientation.
Collapse
Affiliation(s)
- Yoshiaki Hattori
- Department of Electrical and Electronic Engineering, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe 657-8501, Japan
| | - Masatoshi Kitamura
- Department of Electrical and Electronic Engineering, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
12
|
Ricci S, Casalini S, Parkula V, Selvaraj M, Saygin GD, Greco P, Biscarini F, Mas-Torrent M. Label-free immunodetection of α-synuclein by using a microfluidics coplanar electrolyte-gated organic field-effect transistor. Biosens Bioelectron 2020; 167:112433. [PMID: 32771862 DOI: 10.1016/j.bios.2020.112433] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
The aggregation of α-synuclein is a critical event in the pathogenesis of neurological diseases, such as Parkinson or Alzheimer. Here, we present a label-free sensor based on an Electrolyte-Gated Organic Field-Effect Transistor (EGOFET) integrated with microfluidics that allows for the detection of amounts of α-synuclein in the range from 0.25 pM to 25 nM. The lower limit of detection (LOD) measures the potential of our integrated device as a tool for prognostics and diagnostics. In our device, the gate electrode is the effective sensing element as it is functionalised with anti-(α-synuclein) antibodies using a dual strategy: i) an amino-terminated self-assembled monolayer activated by glutaraldehyde, and ii) the His-tagged recombinant protein G. In both approaches, comparable sensitivity values were achieved, featuring very low LOD values at the sub-pM level. The microfluidics engineering is central to achieve a controlled functionalisation of the gate electrode and avoid contamination or physisorption on the organic semiconductor. The demonstrated sensing architecture, being a disposable stand-alone chip, can be operated as a point-of-care test, but also it might represent a promising label-free tool to explore in-vitro protein aggregation that takes place during the progression of neurodegenerative illnesses.
Collapse
Affiliation(s)
- Simona Ricci
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de La Universitat Autònoma de Barcelona, Cerdanyola, 08193, Barcelona, Spain
| | - Stefano Casalini
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de La Universitat Autònoma de Barcelona, Cerdanyola, 08193, Barcelona, Spain; Department of Chemical Sciences, University of Padua, via Francesco Marzolo 1, 35131, Padova, Italy.
| | - Vitaliy Parkula
- Scriba Nanotecnologie srl, via di Corticella 183/8, 40128, Bologna, Italy; University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Meenu Selvaraj
- Scriba Nanotecnologie srl, via di Corticella 183/8, 40128, Bologna, Italy
| | | | - Pierpaolo Greco
- Scriba Nanotecnologie srl, via di Corticella 183/8, 40128, Bologna, Italy
| | - Fabio Biscarini
- University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy; Center for Translational Neurophysiology - Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, 44100, Ferrara, Italy
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de La Universitat Autònoma de Barcelona, Cerdanyola, 08193, Barcelona, Spain.
| |
Collapse
|
13
|
Lin FJ, Yang CW, Chen HH, Tao YT. Alignment and Photopolymerization of Hexa- peri-hexabenzocoronene Derivatives Carrying Diacetylenic Side Chains for Charge-Transporting Application. J Am Chem Soc 2020; 142:11763-11771. [PMID: 32510215 DOI: 10.1021/jacs.0c02055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thin films of four discotic liquid-crystalline hexa-peri-hexabenzocoronene (HBC) derivatives carrying three diacetylenic side chains and three saturated alkyl chains at different positions around the central HBC core were prepared on phenyltrichlorosilane-modified SiO2 substrate by the Chinese brush-coating method. The brush-coated films of molecules with D3h symmetry and C1 symmetry all exhibited anisotropic alignment with an edge-on orientation and molecular π-π stacking along the coating direction on the surface, in contrast to the spin-coated films, where a mixture of face-on and edge-on orientations was obtained. Hexagonally packed columnar structure or lamella-like columnar structure was obtained, depending on the location of the diacetylenic unit along the chain. UV irradiation of the films resulted in cross-linking/polymerization of the molecular columns. Among them, the lamella-like structure with a diacetylene unit closer to the HBC core gave more closely packed and ordered HBC arrays with the poly(ene-yne) backbones stretching along the column direction, based on a variety of experimental evidence. A thin-film transistor based on this irradiated film gave a highest mobility of 1.5 cm2 V-1 s-1 along the column direction, which is a 3 orders of magnitude improvement over that of the monomeric film. However, for those with a diacetylenic unit extended farther away from the core, cross-linking between neighboring columns was suggested to occur and no mobility can be measured for devices based on those films.
Collapse
Affiliation(s)
- Fang-Ju Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chih-Wen Yang
- Institute of Physics, Academia Sinica, Taipei 115, Taiwan
| | - Hsiu-Hui Chen
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Yu-Tai Tao
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
14
|
Zhang X, Deng W, Lu B, Fang X, Zhang X, Jie J. Fast deposition of an ultrathin, highly crystalline organic semiconductor film for high-performance transistors. NANOSCALE HORIZONS 2020; 5:1096-1105. [PMID: 32424385 DOI: 10.1039/d0nh00096e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultrathin organic semiconductor (OSC) crystalline films hold the promise of achieving high-performance, flexible, and transparent organic electronic devices. However, fast and high-throughput solution deposition of uniform pinhole-free ultrathin OSC crystalline films over a large area remains a challenge. Here, we demonstrate that a mixed solvent system can obviously alter the fluid flow dynamics and significantly improve the blade-coating quality of the film, enabling us to achieve a large-area continuous and smooth bis(triethylsilylethynyl)anthradithiophene (Dif-TES-ADT) ultrathin film at a fast coating speed of ∼1 mm s-1, much superior to the 30-50 μm s-1 for conventional methods. Also, the ultrathin, highly crystalline Dif-TES-ADT film-based organic thin-film transistors (OTFTs) exhibit a maximum mobility up to 5.54 cm2 V-1 s-1, which is on par with the Dif-TES-ADT single crystal-based devices and among the highest for Dif-TES-ADT film-based devices. This finding should open a new route to achieve ultrathin OSC crystalline film-based high-performance flexible and transparent electronics.
Collapse
Affiliation(s)
- Xiali Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Babuji A, Temiño I, Pérez-Rodríguez A, Solomeshch O, Tessler N, Vila M, Li J, Mas-Torrent M, Ocal C, Barrena E. Double Beneficial Role of Fluorinated Fullerene Dopants on Organic Thin-Film Transistors: Structural Stability and Improved Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28416-28425. [PMID: 32460481 DOI: 10.1021/acsami.0c06418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The present work assesses improved carrier injection in organic field-effect transistors by contact doping and provides fundamental insight into the multiple impacts that the dopant/semiconductor interface details have on the long-term and thermal stability of devices. We investigate donor [1]benzothieno[3,2-b]-[1]benzothiophene (BTBT) derivatives with one and two octyl side chains attached to the core, therefore constituting asymmetric (BTBT-C8) and symmetric (C8-BTBT-C8) molecules, respectively. Our results reveal that films formed out of the asymmetric BTBT-C8 expose the same alkyl-terminated surface as the C8-BTBT-C8 films do. In both cases, the consequence of depositing fluorinated fullerene (C60F48) as a molecular p-dopant is the formation of C60F48 crystalline islands decorating the step edges of the underlying semiconductor film surface. We demonstrate that local work function changes along with a peculiar nanomorphology lead to the double beneficial effect of lowering the contact resistance and providing long-term and enhanced thermal stability of the devices.
Collapse
Affiliation(s)
- Adara Babuji
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
| | - Inés Temiño
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
| | - Ana Pérez-Rodríguez
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
| | - Olga Solomeshch
- Electrical Engineering Department, Nanoelectronic Center, Technion, 32000 Haifa, Israel
| | - Nir Tessler
- Electrical Engineering Department, Nanoelectronic Center, Technion, 32000 Haifa, Israel
| | - Maria Vila
- SpLine CRG BM25 Beamline, European Synchrotron Radiation Facility, 71, Avenue des Martyrs, 38000 Grenoble, France
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), 28049 Madrid, Spain
| | - Jinghai Li
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
| | - Marta Mas-Torrent
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- CIBER-BBN, Campus UAB, 08193 Bellaterra, Spain
| | - Carmen Ocal
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
| | - Esther Barrena
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
16
|
Bae O, Kim FS. Flexible Organic Electrolyte-Gated Transistors Based on Thin Polymer Blend Films of Crystalline C8-BTBT and Amorphous PTAA. Macromol Res 2020. [DOI: 10.1007/s13233-020-8118-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Wang C, Fu B, Zhang X, Li R, Dong H, Hu W. Solution-Processed, Large-Area, Two-Dimensional Crystals of Organic Semiconductors for Field-Effect Transistors and Phototransistors. ACS CENTRAL SCIENCE 2020; 6:636-652. [PMID: 32490182 PMCID: PMC7256937 DOI: 10.1021/acscentsci.0c00251] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 06/11/2023]
Abstract
Organic electronics with π-conjugated organic semiconductors are promising candidates for the next electronics revolution. For the conductive channel, the large-area two-dimensional (2D) crystals of organic semiconductors (2DCOS) serve as useful scaffolds for modern organic electronics, benefiting not only from long-range order and low defect density nature but also from unique charge transport characteristic and photoelectrical properties. Meanwhile, the solution process with advantages of cost-effectiveness and room temperature compatibility is the foundation of high-throughput print electrical devices. Herein, we will give an insightful overview to witness the huge advances in 2DCOS over the past decade. First, the typical influencing factors and state-of-the-art assembly strategies of the solution-process for large-area 2DCOS over sub-millimeter even to wafer size are discussed accompanying rational evaluation. Then, the charge transport characteristics and contact resistance of 2DCOS-based transistors are explored. Following this, beyond single transistors, the p-n junction devices and planar integrated circuits based on 2DCOS are also emphasized. Furthermore, the burgeoning phototransistors (OPTs) based on crystals in the 2D limits are elaborated. Next, we emphasized the unique and enhanced photoelectrical properties based on a hybrid system with other 2D van der Waals solids. Finally, frontier insights and opportunities are proposed, promoting further research in this field.
Collapse
Affiliation(s)
- Cong Wang
- Tianjin
Key Laboratory of Molecular Optoelectronic Sciences, Department of
Chemistry, School of Science, Tianjin University
and Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Tianjin 300072, China
| | - Beibei Fu
- Tianjin
Key Laboratory of Molecular Optoelectronic Sciences, Department of
Chemistry, School of Science, Tianjin University
and Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Tianjin 300072, China
| | - Xiaotao Zhang
- Tianjin
Key Laboratory of Molecular Optoelectronic Sciences, Department of
Chemistry, School of Science, Tianjin University
and Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Tianjin 300072, China
| | - Rongjin Li
- Tianjin
Key Laboratory of Molecular Optoelectronic Sciences, Department of
Chemistry, School of Science, Tianjin University
and Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Tianjin 300072, China
| | - Huanli Dong
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Wenping Hu
- Tianjin
Key Laboratory of Molecular Optoelectronic Sciences, Department of
Chemistry, School of Science, Tianjin University
and Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Tianjin 300072, China
| |
Collapse
|
18
|
Shen T, Zhou H, Liu X, Fan Y, Mishra DD, Fan Q, Yang Z, Wang X, Zhang M, Li J. Wettability Control of Interfaces for High-Performance Organic Thin-Film Transistors by Soluble Insulating Polymer Films. ACS OMEGA 2020; 5:10891-10899. [PMID: 32455209 PMCID: PMC7241009 DOI: 10.1021/acsomega.0c00548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Organic small-molecule semiconductors have higher carrier mobility compared to polymer semiconductors, while the actual performances of these materials are susceptible to morphological defects and misalignment of crystalline grains. Here, a new strategy is explored to control the crystallization and morphologies of a solution-processed organic small-molecule semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) using soluble polymer films to control the wettability of substrates. Different from the traditional surface modification method, the polymer layer as a modification layer is soluble in the semiconductor solution during the fabrication of organic thin-film transistors (OTFTs). The dissolved polymer alters the state of the semiconductor solution, which in turn, changes the crystallographic morphologies of the semiconductor films. By controlling the solubility and thickness of the polymer modification layers, it is possible to regulate the grain boundary and domain size of C8-BTBT films, which determine the performances of OTFTs. The bottom-gate transistors modified by a thick PS layer exhibit a mobility of >7 cm2/V·s and an on/off ratio of >107. It is expected that this new modification method will be applicable to high-performance OTFTs based on other small molecular semiconductors and dielectrics.
Collapse
Affiliation(s)
- Tao Shen
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Hui Zhou
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xue Liu
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yue Fan
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Debesh Devadutta Mishra
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Qin Fan
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zilu Yang
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xianbao Wang
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ming Zhang
- School
of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
| | - Jinhua Li
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Key Laboratory for the Green Preparation and Application of Functional
Materials, Ministry of Education, Hubei Key Laboratory of Polymer
Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
19
|
Temiño I, Basiricò L, Fratelli I, Tamayo A, Ciavatti A, Mas-Torrent M, Fraboni B. Morphology and mobility as tools to control and unprecedentedly enhance X-ray sensitivity in organic thin-films. Nat Commun 2020; 11:2136. [PMID: 32358502 PMCID: PMC7195493 DOI: 10.1038/s41467-020-15974-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Organic semiconductor materials exhibit a great potential for the realization of large-area solution-processed devices able to directly detect high-energy radiation. However, only few works investigated on the mechanism of ionizing radiation detection in this class of materials, so far. In this work we investigate the physical processes behind X-ray photoconversion employing bis-(triisopropylsilylethynyl)-pentacene thin-films deposited by bar-assisted meniscus shearing. The thin film coating speed and the use of bis-(triisopropylsilylethynyl)-pentacene:polystyrene blends are explored as tools to control and enhance the detection capability of the devices, by tuning the thin-film morphology and the carrier mobility. The so-obtained detectors reach a record sensitivity of 1.3 · 104 µC/Gy·cm2, the highest value reported for organic-based direct X-ray detectors and a very low minimum detectable dose rate of 35 µGy/s. Thus, the employment of organic large-area direct detectors for X-ray radiation in real-life applications can be foreseen. Though organic semiconductors are attractive for high performance X-ray detection systems, the detection mechanism in organic thin films is not well understood. Here, the authors report the role of morphology and carrier mobility on X-ray sensitivity in detectors with unprecedented performance.
Collapse
Affiliation(s)
- Inés Temiño
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Bellaterra, Spain.,CIBER-BBN, Campus de la UAB, 08193, Bellaterra, Spain
| | - Laura Basiricò
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy.,National Institute for Nuclear Physics-INFN section of Bologna, Bologna, Italy
| | - Ilaria Fratelli
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy.,National Institute for Nuclear Physics-INFN section of Bologna, Bologna, Italy
| | - Adrián Tamayo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Bellaterra, Spain.,CIBER-BBN, Campus de la UAB, 08193, Bellaterra, Spain
| | - Andrea Ciavatti
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy.,National Institute for Nuclear Physics-INFN section of Bologna, Bologna, Italy
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Bellaterra, Spain. .,CIBER-BBN, Campus de la UAB, 08193, Bellaterra, Spain.
| | - Beatrice Fraboni
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy. .,National Institute for Nuclear Physics-INFN section of Bologna, Bologna, Italy.
| |
Collapse
|
20
|
Chou LH, Na Y, Park CH, Park MS, Osaka I, Kim FS, Liu CL. Semiconducting small molecule/polymer blends for organic transistors. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Kyndiah A, Leonardi F, Tarantino C, Cramer T, Millan-Solsona R, Garreta E, Montserrat N, Mas-Torrent M, Gomila G. Bioelectronic Recordings of Cardiomyocytes with Accumulation Mode Electrolyte Gated Organic Field Effect Transistors. Biosens Bioelectron 2020; 150:111844. [DOI: 10.1016/j.bios.2019.111844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
|
22
|
One-Step Coating Processed Phototransistors Enabled by Phase Separation of Semiconductor and Dielectric Blend Film. MICROMACHINES 2019; 10:mi10110716. [PMID: 31652945 PMCID: PMC6915368 DOI: 10.3390/mi10110716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022]
Abstract
Fabrication of organic thin-film transistors (OTFTs) via high throughput solution process routes have attracted extensive attention. Herein, we report a simple one-step coating method for vertical phase separation of the poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly(methyl methacrylate) (PMMA) blends as semiconducting and dielectric layers in OTFTs. These OTFTs can be used as phototransistors for ultraviolet (UV) light detection, where the phototransistors exhibited great photosensitivity of 597.6 mA/W and detectivity of 4.25 × 1010 Jones under 1 mW/cm2 UV light intensity. Studies of the electrical properties in these phototransistors suggested that optimized P3HT contents in the blend film can facilitate the improvement of film morphology, and therefore form optimized vertical phase separation of the PMMA and P3HT. These results indicate that the simple one-step fabrication method creates possibilities for realizing high throughput phototransistors with great photosensitivity.
Collapse
|
23
|
Lin FJ, Chen HH, Tao YT. Molecularly Aligned Hexa- peri-hexabenzocoronene Films by Brush-Coating and Their Application in Thin-Film Transistors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10801-10809. [PMID: 30793587 DOI: 10.1021/acsami.9b00873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The facile Chinese brush-coating method was used to prepare oriented thin films of hexa- peri-hexabenzocoronene (HBC) derivatives on the silicon substrate. As a result of the directional solution-coating, the D3 h-symmetry (HBC-1,3,5-Ph-C12) and the C1-symmetry (HBC-1,2,4-Ph-C12) derivatives displayed an anisotropic alignment, with mostly edge-on orientation on SiO2 surfaces modified with various silane-based monolayers. On these silane-modified surfaces, the higher symmetry molecule HBC-1,3,5-Ph-C12 developed a hexagonally packed superstructure, which provided greater π orbital overlap and presumably the electronic coupling between neighboring molecules. In particular, the use of an octyltrichlorosilane (OTS)-modified surface enabled brush-coated thin films to have higher anisotropic orientation, crystallinity, and favorable molecular arrangement. In contrast, the growth of the hexagonal packing of low-symmetry derivative HBC-1,2,4-Ph-C12 was only achieved on the phenyltrichlorosilane and OTS surfaces. Thin-film transistors based on these brush-coated films gave a maximum mobility of 0.1 and 0.056 cm2 V-1 s-1, which are 2 orders of magnitude improvement over the devices with unoriented films prepared by spin-coating. The results indicate that the molecular packing of discotic liquid crystals on the silane-modified surface is sensitively influenced by the molecular symmetry, which affects intermolecular interactions as well as molecule/surface interactions. This study provides a simple way to fabricate aligned films for HBC derivatives for transistor application.
Collapse
Affiliation(s)
- Fang-Ju Lin
- Institute of Chemistry , Academia Sinica , 115 Taipei , Taiwan
| | - Hsiu-Hui Chen
- Department of Chemistry , National Kaohsiung Normal University , 824 Kaohsiung , Taiwan
| | - Yu-Tai Tao
- Institute of Chemistry , Academia Sinica , 115 Taipei , Taiwan
| |
Collapse
|
24
|
Zhang X, Wang B, Huang W, Wang G, Zhu W, Wang Z, Zhang W, Facchetti A, Marks TJ. Oxide-Polymer Heterojunction Diodes with a Nanoscopic Phase-Separated Insulating Layer. NANO LETTERS 2019; 19:471-476. [PMID: 30517010 DOI: 10.1021/acs.nanolett.8b04284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organic semiconductor-insulator blend films are widely explored for high-performance electronic devices enabled by unique phase-separation and self-assembly phenomena at key device interfaces. Here we report the first demonstration of high-performance hybrid diodes based on p- n junctions formed by a p-type poly(3-hexylthiophene) (P3HT)-poly(methyl methacrylate) (PMMA) blend and n-type indium-gallium-zinc oxide (IGZO). The thin film morphology, microstructure, and vertical phase-separation behavior of the P3HT films with varying contents of PMMA are systematically analyzed. Microstructural and charge transport evaluation indicates that the polymer insulator component positively impacts the morphology, molecular orientation, and effective conjugation length of the P3HT films, thereby enhancing the heterojunction performance. Furthermore, the data suggest that PMMA phase segregation creates a continuous nanoscopic interlayer between the P3HT and IGZO layers, playing an important role in enhancing diode performance. Thus, the diode based on an optimal P3HT-PMMA blend exhibits a remarkable 10-fold increase in forward current versus that of a neat P3HT diode, yielding an ideality factor value as low as 2.5, and a moderate effective barrier height with an excellent rectification ratio. These results offer a new approach to simplified manufacturing of low-cost, large-area hybrid inorganic-organic electronics technologies.
Collapse
Affiliation(s)
- Xinan Zhang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
- School of Physics and Electronics, Key Laboratory of Photovoltaic Materials , Henan University , Kaifeng 475004 , China
| | - Binghao Wang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Wei Huang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Gang Wang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Weigang Zhu
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Zhi Wang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Weifeng Zhang
- School of Physics and Electronics, Key Laboratory of Photovoltaic Materials , Henan University , Kaifeng 475004 , China
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
25
|
Paterson AF, Singh S, Fallon KJ, Hodsden T, Han Y, Schroeder BC, Bronstein H, Heeney M, McCulloch I, Anthopoulos TD. Recent Progress in High-Mobility Organic Transistors: A Reality Check. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801079. [PMID: 30022536 DOI: 10.1002/adma.201801079] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/10/2018] [Indexed: 05/27/2023]
Abstract
Over the past three decades, significant research efforts have focused on improving the charge carrier mobility of organic thin-film transistors (OTFTs). In recent years, a commonly observed nonlinearity in OTFT current-voltage characteristics, known as the "kink" or "double slope," has led to widespread mobility overestimations, contaminating the relevant literature. Here, published data from the past 30 years is reviewed to uncover the extent of the field-effect mobility hype and identify the progress that has actually been achieved in the field of OTFTs. Present carrier-mobility-related challenges are identified, finding that reliable hole and electron mobility values of 20 and 10 cm2 V-1 s-1 , respectively, have yet to be achieved. Based on the analysis, the literature is then reviewed to summarize the concepts behind the success of high-performance p-type polymers, along with the latest understanding of the design criteria that will enable further mobility enhancement in n-type polymers and small molecules, and the reasons why high carrier mobility values have been consistently produced from small molecule/polymer blend semiconductors. Overall, this review brings together important information that aids reliable OTFT data analysis, while providing guidelines for the development of next-generation organic semiconductors.
Collapse
Affiliation(s)
- Alexandra F Paterson
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Saumya Singh
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Kealan J Fallon
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Thomas Hodsden
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Yang Han
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Bob C Schroeder
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Hugo Bronstein
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Martin Heeney
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Iain McCulloch
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Thomas D Anthopoulos
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
26
|
Campos A, Riera-Galindo S, Puigdollers J, Mas-Torrent M. Reduction of Charge Traps and Stability Enhancement in Solution-Processed Organic Field-Effect Transistors Based on a Blended n-Type Semiconductor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15952-15961. [PMID: 29671315 DOI: 10.1021/acsami.8b02851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Solution-processed n-type organic field-effect transistors (OFETs) are essential elements for developing large-area, low-cost, and all organic logic/complementary circuits. Nonetheless, the development of air-stable n-type organic semiconductors (OSCs) lags behind their p-type counterparts. The trapping of electrons at the semiconductor-dielectric interface leads to a lower performance and operational stability. Herein, we report printed small-molecule n-type OFETs based on a blend with a binder polymer, which enhances the device stability due to the improvement of the semiconductor-dielectric interface quality and a self-encapsulation. Both combined effects prevent the fast deterioration of the OSC. Additionally, a complementary metal-oxide semiconductor-like inverter is fabricated depositing p-type and n-type OSCs simultaneously.
Collapse
Affiliation(s)
- Antonio Campos
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB , Cerdanyola del Vallès , 08193 Barcelona , Spain
| | - Sergi Riera-Galindo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB , Cerdanyola del Vallès , 08193 Barcelona , Spain
| | - Joaquim Puigdollers
- Department Enginyeria Electrònica , Universitat Politècnica de Catalunya , Jordi Girona 1-3 , 08034 Barcelona , Spain
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB , Cerdanyola del Vallès , 08193 Barcelona , Spain
| |
Collapse
|