1
|
Kopinski-Grünwald O, Schandl S, Gusev J, Chamalaki OE, Ovsianikov A. Surface functionalization of microscaffolds produced by high-resolution 3D printing: A new layer of freedom. Mater Today Bio 2025; 31:101452. [PMID: 39896295 PMCID: PMC11783114 DOI: 10.1016/j.mtbio.2025.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Scaffolded-spheroids represent novel building blocks for bottom-up tissue assembly, allowing to produce constructs with high initial cell density. Previously, we demonstrated the successful differentiation of such building blocks, produced from immortalized human adipose-derived stem cells, towards different phenotypes, and the possibility of creating macro-sized tissue-like constructs in vitro. The culture of cells in vitro depends on the supply of various nutrients and biomolecules, such as growth factors, usually supplemented in the culture medium. Another means for growth factor delivery (in vitro and in vivo) is the release from the scaffold to alter the biological response of surrounding cells (e.g. by release of VEGF).1 As a proof of concept for this approach, we sought to biofunctionalize the surface of the microscaffolds with heparin as a "universal linker" that would allow binding a variety of growth factors/biomolecules. An aminolysis step in an organic solvent made it possible to generate a hydrophilic and charged surface. The backbone of the amine, as well as reaction conditions, led to an adjustable surface modification. The amount of heparin on the surface was increased with an ethylene glycol-based diamine backbone and varied between 8 and 40 ng per microscaffold. Choosing a suitable linker allows easy adjustment of the loading of VEGF and other heparin-binding proteins. Initial results indicated that up to 5 ng VEGF could be loaded per microscaffold, generating a steady VEGF release for 16 days. We report an easy-to-perform, scalable surface modification approach of polyester-based resin that leads to adjustable surface concentrations of heparin. The successful surface aminolysis opens the route to various modifications and broadens the spectrum of biomolecules which can be delivered.
Collapse
Affiliation(s)
| | | | - Jegor Gusev
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria
| | - Ourania Evangelia Chamalaki
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria
| | | |
Collapse
|
2
|
Meng Y, Xu L, Cheng G. Bioelectronics hydrogels for implantable cardiac and brain disease medical treatment application. Int J Biol Macromol 2025; 299:139945. [PMID: 39837454 DOI: 10.1016/j.ijbiomac.2025.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Hydrogel-based bioelectronic systems offer significant benefits for point-of-care diagnosis, treatment of cardiac and cerebral disease, surgical procedures, and other medical applications, ushering in a new era of advancements in medical technology. Progress in hydrogel-based bioelectronics has advanced from basic instrument and sensing capabilities to sophisticated multimodal perceptions and feedback systems. Addressing challenges related to immune responses and inflammation regulation after implantation, physiological dynamic mechanism, biological toxicology as well as device size, power consumption, stability, and signal conversion is crucial for the practical implementation of hydrogel-based bioelectronics in medical implants. Therefore, further exploration of hydrogel-based bioelectronics is imperative, and a comprehensive review is necessary to steer the development of these technologies for use in implantable therapies for cardiac and brain/neural conditions. In this review, a concise overview is provided on the fundamental principles underlying ionic electronic and ionic bioelectronic mechanisms. Additionally, a comprehensive examination is conducted on various bioelectronic materials integrated within hydrogels for applications in implantable medical treatments. The analysis encompasses a detailed discussion on the representative structures and physical attributes of hydrogels. This includes an exploration of their intrinsic properties such as mechanical strength, dynamic capabilities, shape-memory features, stability, stretchability, and water retention characteristics. Moreover, the discussion extends to properties related to interactions with tissues or the environment, such as adhesiveness, responsiveness, and degradability. The intricate relationships between the structure and properties of hydrogels are thoroughly examined, along with an elucidation of how these properties influence their applications in implantable medical treatments. The review also delves into the processing techniques and characterization methods employed for hydrogels. Furthermore, recent breakthroughs in the applications of hydrogels are logically explored, covering aspects such as materials, structure, properties, functions, fabrication procedures, and hybridization with other materials. Finally, the review concludes by outlining the future prospects and challenges associated with hydrogels-based bioelectronics systems.
Collapse
Affiliation(s)
- Yanfang Meng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Lin Xu
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
3
|
Zhang L, Chen Y, Feng D, Xing Z, Wang Y, Bai Y, Shi D, Li H, Fan X, Xia J, Wang J. Recombinant collagen microneedles for transdermal delivery of antibacterial copper-DNA nanoparticles to treat skin and soft tissue infections. J Control Release 2025; 379:191-201. [PMID: 39793653 DOI: 10.1016/j.jconrel.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Skin and soft tissue infections (SSTI) include bacterial infections of the skin, muscles, and connective tissue such as ligaments and tendons. SSTI in patients with immunocompromising diseases may lead to chronic, hard-to-heal infected wounds, resulting in disability, amputation, or even death. To treat SSTI and rebuild the defensive barrier of the skin, here we utilize recombinant type XVII collagen protein (rCol XVII) to construct biodegradable, regenerative collagen microneedles (rCol-MNs) for transdermal delivery of antibacterial agents. Spheroidal copper-DNA antibacterial nanoparticles (Cu-CpG NPs; CpG represents short single-stranded synthetic DNA molecules of cytosine and guanine) are synthesized with copper ions and CpG oligodeoxynucleotides (ODNs), followed by polydopamine (PDA) coating to obtain Cu-CpG@PDA. Doping Cu-CpG@PDA into rCol-MNs yields Cu-CpG@PDA-loaded rCol-MNs. These microneedles combine the photothermal conversion property of PDA, antibacterial properties of copper ions, innate immune activation of CpG ODNs, and skin regenerating ability of rCol XVII, allowing the treatment of SSTI and also regenerating the damaged skin. In a mouse model, we show that the Cu-CpG@PDA-loaded rCol-MNs rescue skin wound infections, facilitate the orderly deposition of collagen at the wound site, and promote the healing of infected full-thickness wounds without noticeable scar formation. rCol-MNs serve as a transdermal delivery vehicle and, simultaneously, a reservoir of skin-regenerating recombinant collagen, bringing combined benefits of infection control and skin regeneration. SIGNIFICANCE STATEMENT: Treatment of soft tissue infection requires the delivery of antibacterial agents into the soft tissue or dermis while providing a regenerating environment for open wounds. Here, we devise recombinant collagen microneedles (rCol-MNs) to meet both requirements.
Collapse
Affiliation(s)
- Li Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yifan Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Danna Feng
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yuhui Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Haihang Li
- Jiangsu Trautec Medical Technology Co., Ltd, Changzhou 213200, PR China
| | - Xiaoju Fan
- Jiangsu Trautec Medical Technology Co., Ltd, Changzhou 213200, PR China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
4
|
Liu Y, Li B, Yi C, Chen X, Yu X. Application of polydopamine as antibacterial and anti-inflammatory materials. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:022005. [PMID: 39970533 DOI: 10.1088/2516-1091/adb81d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
Polydopamine (PDA), as a material mimicking the adhesive proteins of mussels in nature, has emerged as a strong candidate for developing novel antibacterial and anti-inflammatory materials due to its outstanding biomimetic adhesion, effective photothermal conversion, excellent biocompatibility and antioxidant capabilities. This review discussed in detail the intricate structure and polymerization principles of PDA, elucidated its mechanisms in combating bacterial infections and inflammation, as well as explored the innovative use of PDA-based composite materials for antibacterial and anti-inflammatory applications. By providing an in-depth analysis of PDA's capabilities and future research directions, this review addresses a crucial need for safer, more effective, and controllable antimicrobial and anti-inflammatory strategies, which aim to contribute to the development of advanced materials that can significantly impact public health.
Collapse
Affiliation(s)
- Yi Liu
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
- Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
| | - Baixue Li
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Chuan Yi
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Xiaolin Yu
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
| |
Collapse
|
5
|
He X, Gao B, Wu Q, Xin C, Xue J, Lu F, Qu XP, Li S, Zhang F, Shen H. Polydopamine-coated cerium oxide core-shell nanoparticles for efficient and non-damaging chemical-mechanical polishing. Dalton Trans 2025; 54:4151-4158. [PMID: 39903199 DOI: 10.1039/d4dt03546a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Chemical mechanical polishing (CMP) represents one of the most important steps in the manufacturing of integrated circuits, and high surface quality is always required for the CMP processes of shallow trench isolation (STI) structures. Herein, a new series of polydopamine (PDA)-coated cerium oxide core-shell nanoparticles has been developed as efficient and non-damaging abrasives for CMP of SiO2 on the surface of silicon wafers. The composite abrasives with the structure of SiO2@CeO2@PDA have been fabricated in a simple manner and thoroughly characterized using scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The SiO2 core enhances the content of Ce3+ in the abrasives, while the water-soluble PDA layer facilitates the interaction between the abrasives and SiO2 dielectrics. As a result, the wafers polished with SiO2@CeO2@PDA not only achieved a high polishing rate, but also exhibited a high surface quality (Ra = 0.109). This study not only presents a new efficient and non-damaging type of cerium oxide abrasive for CMP, but also highlights the potential of the surface coordination strategy in the fabrication of advanced abrasives for the manufacturing of integrated circuits.
Collapse
Affiliation(s)
- Xiaohai He
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Bo Gao
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Qingyuan Wu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengrui Xin
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Junjie Xue
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Fangwei Lu
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xin-Ping Qu
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Simin Li
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Fan Zhang
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Hui Shen
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
6
|
Du J, Guo Z, Yan X, Yao Y, Zhang R, Zhou Y, Liu X, Shang B, Huang J, Gu S. Flexible, stretchable multifunctional silver nanoparticles-decorated cotton textile based on amyloid-like protein aggregation for electrothermal and photothermal dual-driven wearable heater. Int J Biol Macromol 2025; 292:139124. [PMID: 39722396 DOI: 10.1016/j.ijbiomac.2024.139124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The design of multifunctional, high-performance wearable heaters utilizing textile substrates has garnered increasing attention, particularly in the development of body temperature and health monitoring devices. However, fabricating these multifunctional wearable heaters while simultaneously ensuring flexibility, air permeability, Joule heating performance, electromagnetic interference (EMI) shielding and antibacterial properties remains a significant challenge. This study utilizes phase transition lysozyme (PTL) film-mediated electroless deposition (ELD) technology to deposit silver nanoparticles (Ag NPs) on the cotton fabrics surface in a mild aqueous solution at room temperature, thereby constructing a wearable heater with long-term stability, high conductivity, and exceptional photothermal properties. The textiles enriched with Ag NPs exhibit remarkable electrothermal and photothermal dual-driven heating capabilities, achieving temperatures exceeding 110 °C within 50s under 2 V, or in merely a few seconds through photothermal conversion. Importantly, these textiles retain the intrinsic flexibility and breathability of the textile substrate. Furthermore, the amyloid-like protein Ag NP integrated textiles demonstrate excellent antibacterial properties, and exhibit a high EMI shielding efficiency of 50 dB within the frequency range of 8.2-12.4 GHz. Therefore, these multifunctional Ag NPs wearable heaters were expected to find applications in areas such as smart wearable clothing and future health management.
Collapse
Affiliation(s)
- Jiehao Du
- State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Zengpei Guo
- State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xue Yan
- State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Yiting Yao
- State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Ruquan Zhang
- State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Yingshan Zhou
- State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xin Liu
- State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Bin Shang
- State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Jingjing Huang
- State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China.
| | - Shaojin Gu
- State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
7
|
Han M, Wang Z, Xie Z, Hou M, Gao Z. Polydopamine-modified sodium alginate hydrogel for microplastics removal: Adsorption performance, characteristics, and kinetics. Int J Biol Macromol 2025; 297:139947. [PMID: 39824429 DOI: 10.1016/j.ijbiomac.2025.139947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
The potential health hazards of micro/nanoplastics in food have become a significant concern. This study developed a Polydopamine-modified sodium alginate hydrogel (PMSAH) for removing microplastics in daily drinking water. The hydrogel's performance, characteristics, and kinetics for microplastic removal were systematically evaluated. Results demonstrated that the incorporation of polydopamine reduced the hydrogel's surface zeta potential and increased its adsorption capacity for microplastics. PMSAH5 exhibited the highest removal efficiency, reaching approximately 99.6 %. Additionally, polydopamine-modified sodium alginate hydrogel exhibited higher elasticity and thermal stability. The hydrogel successfully adsorbed microplastics, regardless of their size and surface charge. This adsorption was driven by the combined action of multiple forces, resulting in multilayer adsorption. The unique advantages of polydopamine-mediated multi-molecular interactions present a promising and environmentally friendly approach for effective removal of microplastics in daily drinking water.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Zihan Wang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Ziyue Xie
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Mengxin Hou
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China.
| |
Collapse
|
8
|
Ding Y, Huang Y, Zhang F, Wang L, Li W, Santos HA, Sun L. Biological Augmentation Using Electrospun Constructs with Dual Growth Factor Release for Rotator Cuff Repair. ACS APPLIED BIO MATERIALS 2025. [PMID: 40012485 DOI: 10.1021/acsabm.4c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Surgical reattachment of tendon to bone is the standard therapy for rotator cuff tear (RCT), but its effectiveness is compromised by retear rates of up to 94%, primarily due to challenges in achieving successful tendon-bone enthesis regeneration under natural conditions. Biological augmentation using biomaterials has emerged as a promising approach to address this challenge. In this study, a bilayer construct incorporates polydopamine (PDA)-mediated bone morphogenetic protein 2 (BMP2) and BMP12 in separate poly(lactic-co-glycolic acid) (PLGA) fiber layers to promote osteoblast and tenocyte growth, respectively, and intermediate fibrocartilage formation, aiming to enhance the regenerative potential of tendon-bone interfaces. The lower layer, consisting of PLGA fibers with BMP2 immobilization through PDA adsorption, significantly accelerated osteoblast growth. Concurrently, the upper BMP12@PLGA-PDA fiber mat facilitated fibrocartilage formation and tendon tissue regeneration, evidenced by significantly elevated tenocyte viability and tenogenic differentiation markers. Therapeutic efficacy assessed through in vivo RCT models demonstrated that the dual-BMP construct augmentation significantly promoted the healing of tendon-bone interfaces, confirmed by biomechanical testing, cartilage immunohistochemistry analysis, and collagen I/II immunohistochemistry analysis. Overall, this combinational strategy, which combines augmentation patches with the controlled release of dual growth factors, shows great promise in improving the overall success rates of rotator cuff repairs.
Collapse
Affiliation(s)
- Yaping Ding
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Yao Huang
- Department of Orthopedics, Sports Medicine Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| | - Fucheng Zhang
- Department of Orthopedics, Sports Medicine Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| | - Lei Wang
- Department of Orthopedics, Sports Medicine Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Luning Sun
- Department of Orthopedics, Sports Medicine Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| |
Collapse
|
9
|
Ramesh AK, Chen X, Seetoh IP, Lim GY, Tan WX, Thirunavukkarasu V, Jin T, Lew WS, Lai C. Polydopamine Assisted Electroless Deposition of Strongly Adhesive NiFe Films for Flexible Spintronics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12805-12817. [PMID: 39945768 DOI: 10.1021/acsami.4c19118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Cost-effective techniques for depositing durable magnetic thin films are essential for realizing flexible spintronic devices in wearable and soft robotics applications. Here, we introduce a highly scalable electroless deposition technique for coating ferromagnetic Ni80Fe20 thin films onto flexible polyimide and polyethylene terephthalate substrates via a polydopamine intermediate layer. The resultant films demonstrated very good adhesion strength, especially for those on polyimide substrates, which attained the highest ASTM 3359 rating of 5B and exhibited a tensile pull-off strength greater than 5.82 MPa (ASTM D4541). With the assistance of XPS and TEM results, this unusual adhesive strength of NiFe on the polymers can be traced to the formation of primary bonds across the entire coating: (i) covalent bonding between the polymer substrate and polydopamine, (ii) coordinate covalent bonding between catechol groups in polydopamine and palladium ions, and (iii) metallic bonding between palladium and NiFe. By annealing the NiFe-on-polyimide samples at 300 °C-400 °C, the crystallinity of the material was found to improve, which increased the saturation magnetization of NiFe to 1350 emu/cm3 and decreased the coercivity to 20 Oe. Ferromagnetic resonance also showed ∼31% improvement in the film's Gilbert damping constant after annealing at 300 °C. Application of a bending strain increased the squareness ratio by 22% but decreased the saturation magnetization of the annealed film by 18%. These results suggest that the highly adhesive NiFe films on flexible polyimide substrates were of sufficient quality for spintronic devices, although their properties could be improved if the surface roughness could be decreased to that of physically deposited films.
Collapse
Affiliation(s)
- Akhil K Ramesh
- Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Xingyu Chen
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ian P Seetoh
- Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Guo Yao Lim
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wei Xin Tan
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Vasanthan Thirunavukkarasu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tianli Jin
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Changquan Lai
- Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
10
|
Davoine C, Fillet M. Hyphenation of Affinity Capillary Electrophoresis with Mass Spectrometry for the Study of Ligand-Protein Interactions: n-Methylmorpholine Acetate Buffer and Polydopamine-Based Coating as Key Assets. Anal Chem 2025; 97:3988-3995. [PMID: 39933826 DOI: 10.1021/acs.analchem.4c05559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The direct and precise assessment of ligand-protein interactions under nearly physiological conditions is the core of drug discovery. In this context, affinity capillary electrophoresis (ACE) has become an emerging and reliable approach. The hyphenation of ACE with mass spectrometry (MS) is even more powerful than the classical ACE-UV methodology. It reduces compound identification errors and increases throughput by facilitating the analysis of the mixtures. However, buffers and capillary coatings compatible with mass spectrometry and operating under physiological conditions are very limited. In this paper, n-methylmorpholine acetate buffer and polydopamine-based coating were highlighted as major assets for CE-MS studies involving native proteins. Thanks to its protein desorption property, n-methylmorpholine improved the peak shape of proteins during CE analysis at physiological pH. The polydopamine-based neutral coating developed in this study is simple to prepare and demonstrated high stability at pH 7.4, enabling its use with an MS detector. The combination of these two key elements enabled us to successfully convert our ACE-UV method for coagulation factor XIIa into an ACE-MS approach operating at physiological pH. This study extends the scope of ACE for medicinal chemistry projects.
Collapse
Affiliation(s)
- Clara Davoine
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| |
Collapse
|
11
|
Sakib S, Andoy NMO, Yang JYC, Galang A, Sullan RMA, Zou S. Antimicrobial and anti-inflammatory effects of polyethyleneimine-modified polydopamine nanoparticles on a burn-injured skin model. Biomater Sci 2025. [PMID: 39995391 DOI: 10.1039/d4bm01530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Chronic infections involving bacterial biofilms pose significant treatment challenges due to the resilience of biofilms against existing antimicrobials. Here, we introduce a nanomaterial-based platform for treating Staphylococcus epidermidis biofilms, both in isolation and within a biofilm-infected burn skin model. Our approach leverages biocompatible and photothermal polydopamine nanoparticles (PDNP), functionalized with branched polyethyleneimine (PEI) and loaded with the antibiotic rifampicin, to target bacteria dwelling within biofilms. A key innovation of our method is its ability to not only target planktonic S. epidermidis but also effectively tackle biofilm-embedded bacteria. We demonstrated that PDNP-PEI interacts effectively with the bacterial surface, facilitating laser-activated photothermal eradication of planktonic S. epidermidis. In a 3D skin burn injury model, PDNP-PEI demonstrates anti-inflammatory and reactive oxygen species (ROS)-scavenging effects, reducing inflammatory cytokine levels and promoting healing. The rifampicin-loaded PDNP-PEI (PDNP-PEI-Rif) platform further shows significant efficacy against bacteria inside biofilms. The PDNP-PEI-Rif retained its immunomodulatory activity and efficiently eradicated biofilms grown on our burn-injured 3D skin model, effectively addressing the challenges of biofilm-related infections. This achievement marks a significant advancement in infection management, with the potential for a transformative impact on clinical practice.
Collapse
Affiliation(s)
- Sadman Sakib
- Metrology Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| | - Nesha May O Andoy
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
| | - Jessica Y C Yang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
| | - Anna Galang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada.
| | - Ruby May A Sullan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada.
| | - Shan Zou
- Metrology Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| |
Collapse
|
12
|
Park S, Bisht H, Park S, Jeong J, Hong Y, Chu D, Koh M, Hong D. Melanin-Inspired Maleimide Coatings on Various Substrates for Rapid Thiol Functionalization. Macromol Biosci 2025:e2400616. [PMID: 39973616 DOI: 10.1002/mabi.202400616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Indexed: 02/21/2025]
Abstract
In this study, a substrate-independent maleimide film is developed that can be formed under mild aqueous conditions (pH 7.4), and which allows rapid and efficient external thiol immobilization onto the coated surfaces. For the coating block, tyrosine-conjugated maleimide (Tyr-Mal) containing a phenolic amine moiety is prepared as a substrate-independent dormant coating precursor, wherein the maleimide component permits a rapid Michael addition reaction with the thiol moiety of interest. By mimicking natural melanogenesis, Tyr-Mal acts as a substrate for tyrosinase under physiological conditions (pH 7.4) to form a melanin-inspired maleimide (Mel-Mal) film on various substrates, including living cell surfaces. The resulting film undergoes a rapid surface reaction (< 30 min) with external thiol groups under mild aqueous conditions. Considering that a typical polydopamine film requires a long reaction time (≈3 h) under alkaline conditions (pH 8.5) to achieve thiol functionalization with low efficiency, the current surface platform demonstrates significant improvements in terms of its reaction kinetics and usability. Moreover, considering that thiol functionalization and surface coating are performed under mild aqueous conditions, it is expected that the developed Mel-Mal film will be a useful tool in the fields of cell surface engineering, microarrays, and high-throughput screening.
Collapse
Affiliation(s)
- Suho Park
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Himani Bisht
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Seongchul Park
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehoon Jeong
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Yubin Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Daeun Chu
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Daewha Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
13
|
Ke Q, Zhang Y, Qin Z, Meng Q, Huang X, Kou X, Zhang Y. Polydopamine-functionalized capsules: From design to applications. J Control Release 2025; 378:1114-1138. [PMID: 39724949 DOI: 10.1016/j.jconrel.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In recent years, polydopamine (PDA)-functionalized capsules have garnered significant interest from researchers in the field of materials, owing to its remarkable properties of adhesion, biocompatibility, photothermal conversion capabilities, chemical reactivity, and so on. At present, numerous studies have reported various structures and morphologies of PDA-functionalized capsules fabricated via diverse strategies, that have found applications across a broad spectrum of disciplines. However, there are few comprehensive and systematic reviews focusing on various preparation strategies of PDA-functionalized capsules with various structures. This paper systematically reviewed the preparation strategies and related applications of PDA-functionalized capsules. These strategies of PDA-functionalized capsules were discussed in detail from four parts including PDA-functionalized capsules based on hollow PDA, mesoporous PDA (MPDA), directly encapsulating emulsion, and surface modification of capsules. Then the review outlined the applications of PDA-functionalized capsules in biomedicine, energy, textiles, and the environment. Furthermore, this review summarized the current research findings on PDA-functionalized capsules and outlines their future development directions. Overall, we aim for this review to inspire researchers and offer valuable guidance for the synthesis and application of advanced PDA-functionalized capsules.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Yifei Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhaoyuan Qin
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
14
|
Gao P, Zhang Q, Sun Y, Cheng H, Wu S, Zhang Y, Si W, Sun H, Sun N, Yang J, Cai K, Lu L, Liu J. Synergistic catecholamine and coordination chemistry for enhanced bioactivity and secondary grafting activity of zirconia dental implants. Colloids Surf B Biointerfaces 2025; 246:114361. [PMID: 39522290 DOI: 10.1016/j.colsurfb.2024.114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The inherent bioinertness of zirconia (ZrO2) hinders its early bone integration, presenting a significant obstacle to its widespread use in dental implant technologies. Addressing this, we developed a surface coating leveraging the synergistic effects of catecholamine and coordination chemistry inspired by the mussel byssus cuticle. This coating, named PDPA@Sr, is enriched with strontium ions and amine groups, resulting from a simple immersion of polydopamine (PD)-coated ZrO2 in an alkaline strontium chloride and poly(allylamine) (PA) solution. Compared to conventional mussel-inspired PD coatings, PDPA@Sr demonstrates enhanced aesthetic properties and mechanical stability. The continuous release of strontium ions from the coating significantly enhances osteogenesis, while the abundant surface amine groups offer notable antibacterial effects. More importantly, these amine groups also enable a variety of chemical modifications, including electrostatic adsorption, carbodiimide chemistry, Michael addition, Schiff base formation, and click chemistry, thus providing a multifaceted platform for the advanced surface modification of ZrO2 implants.
Collapse
Affiliation(s)
- Peng Gao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Qihong Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yingyue Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Huan Cheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Shuyi Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yinyan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Wen Si
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Haobo Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Ningyao Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jing Yang
- Sichuan Film and Television University, Chengdu 611331, China
| | - Kaiyong Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Lei Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
15
|
Almeida LC, Zeferino JF, Branco C, Squillaci G, Morana A, Santos R, Ihalainen P, Sobhana L, Correia JP, Viana AS. Polynorepinephrine and polydopamine-bacterial laccase coatings for phenolic amperometric biosensors. Bioelectrochemistry 2025; 161:108826. [PMID: 39321496 DOI: 10.1016/j.bioelechem.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The successful fabrication of biosensors is greatly limited by the immobilization of their bioreceptor, thus we propose a facile and reproducible two-step method to modify graphite electrodes with a bacterial laccase, relying on a fast and controllable potentiostatic process to coat graphite surfaces with biomolecule-compatible thin films of polynorepinephrine (ePNE) and polydopamine (ePDA). Both polymers, synthesized with a similar thickness, were functionalized with bacterial laccase, displaying distinct electrochemical transducing behaviours at pH 5.0 and 7.0. ePNE layer enables adequate electron transfer of anionic and cationic species in acidic and neutral media, whereas transduction across ePDA strongly depends on pH and redox probe charge. ePNE stands out by improving the amperometric responses of the biosensing interface towards a phenolic acid (gallic acid) and a flavonoid (catechin), in respect to ePDA. The optimal graphite/ePNE/laccase interface outperforms biosensing interfaces based on fungal laccases at neutral pH, displaying detection sensitivities of 104 and 14.4 µA cm-2 mM-1for gallic acid and catechin, respectively. The fine synthetic control of the ePNE bio-inspired transduction layer and the use of an alkaliphilic bacterial laccase enabled the construction of an amperometric biosensing interface with extended pH range of polyphenols detection present in food products and agro-industrial waste.
Collapse
Affiliation(s)
- Luís C Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Jorge F Zeferino
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Clara Branco
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Guiseppe Squillaci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy, (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Alessandra Morana
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy, (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Romana Santos
- Centro de Ciências do Mar e do Ambiente (MARE), ARNET - Aquatic Research Network, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | | | - Liji Sobhana
- MetGen, Rakentajantie 26, 20780 Kaarina, Finland
| | - Jorge P Correia
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana S Viana
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
16
|
Fang B, Li Y, Zhao X, Liu Y, Xu L, Wang Q, Liu X, Gong Z, Lai W. Supramolecular self-assembly of high-loaded horseradish peroxidase and biorecognized antibody into Au/polydopamine nanocomposites for sensitive immunoassay of E. coli O157:H7 in milk. J Dairy Sci 2025:S0022-0302(25)00033-5. [PMID: 39890072 DOI: 10.3168/jds.2024-25518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/19/2024] [Indexed: 02/03/2025]
Abstract
It is an urgent need of rapid and sensitive method for detection of Escherichia coli O157:H7 (E. coli O157:H7), a class of hazardous foodborne pathogens in food safety. The traditional enzyme-linked immunosorbent assay (ELISA), a dominant rapid detection technic, takes disadvantages of low test sensitivity due to the insufficient enzyme loading capacity. In this study, we successfully synthesized the self-assembled Au/polydopamine (PDA)/HRP nanocomposites with the high enzyme loading on the outer surface and in the inner space. The high catalytic activity of Au/PDA/HRP was maintained by virtue of its hyperbranched flexible structure. For E. coli O157:H7 detection in milk samples, the proposed immunoassay achieved a visual cut-off value of 103 cfu mL-1 and a low limit of detection (LOD) of 2.8 × 102 cfu mL-1, 33 and 46 times more sensitive than the traditional ELISA, respectively. The tremendous advantages of high sensitivity, excellent specificity and adequate recovery make it promising for sensitively monitoring various kinds of pathogenic bacteria in food safety.
Collapse
Affiliation(s)
- Bolong Fang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuzhi Li
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaole Zhao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yan Liu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lin Xu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Liu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhiyong Gong
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
17
|
Bisht H, Hong Y, Park S, Hwang Y, Hong D. Fabrication of Versatile Antifouling Coatings Inspired by Melanogenesis Using a Tyrosine-Conjugated Carboxybetaine Derivative. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2082-2088. [PMID: 39817801 DOI: 10.1021/acs.langmuir.4c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In this study, we developed zwitterionic surface coatings of carboxybetaine by mimicking natural melanogenesis. We synthesized an unnatural tyrosine-conjugated carboxybetaine (Tyr-CB) that undergoes melanin-like oxidation upon treatment with tyrosinase under various aqueous conditions. The thickness of the resulting poly(Tyr-CB) film was tuned by adjusting the pH during the coating process. The poly(Tyr-CB)-coated surfaces demonstrated excellent antifouling performance against proteins and cells and imparted (super)hydrophilicity to various substrates. Additionally, post-functionalization with external biotin-PEG-thiol was achieved by targeting the oxidized quinone groups within the poly(Tyr-CB) film network. This enabled biospecific binding to streptavidin, while non-specific interactions were suppressed due to the antifouling background. As our one-step antifouling coating method is simple, involves aqueous conditions, and could be generically used to coat various substrates, it can be a versatile and valuable tool for biosensing, high-throughput screening, and cell-surface engineering.
Collapse
Affiliation(s)
- Himani Bisht
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yubin Hong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Suho Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hwang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
18
|
de Souza AL, Oliveira AVDA, Ribeiro LD, Moraes ARFE, Jesus M, Santos J, de Oliveira TV, Soares NDFF. Experimental and Theoretical Analysis of Dopamine Polymerization on the Surface of Cellulose Nanocrystals and Its Reinforcing Properties in Cellulose Acetate Films. Polymers (Basel) 2025; 17:345. [PMID: 39940547 PMCID: PMC11821026 DOI: 10.3390/polym17030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
The study of natural materials inspires sustainable innovations, with biomimetics excelling in surface modification. Polydopamine (PDA) offers a promising approach for modifying cellulose nanocrystals (CNC), enhancing their compatibility with hydrophobic polymers by improving interfacial adhesion. In this work, the modification of CNC with PDA (CNC@PDA) significantly enhanced the compatibility between the nanocargoes and the cellulose acetate (CA) matrix. The CNC@PDA complex formation was suggested through a combination of FTIR analysis, particle size distribution measurements and ζ-potential analysis. However, the exact mechanism behind dopamine polymerization on the surface of CNC remains a subject of ongoing debate among researchers due to its complexity. This study hypothesized the formation of modified CNC through this process. Furthermore, this study provided a satisfactory investigation of the antimicrobial activity of CNC@PDA in response to bacterial strains (E. coli, P. aeruginosa, S. aureus and L. plantarum) in view of the hypothesis of the possible generation of reactive oxygen species (ROS). Additionally, the incorporation of CNC@PDA CA films was analyzed to assess its effect as a mechanical reinforcement agent. The results showed an improvement in mechanical properties, with the 1% CNC@PDA film exhibiting the best balance between tensile strength and flexibility.
Collapse
Affiliation(s)
- Amanda Lélis de Souza
- Laboratory of Polymeric Materials, Food Technology Department, Federal University of Viçosa, Viçosa CEP 36570-000, Minas Gerais, Brazil; (A.L.d.S.); (T.V.d.O.)
| | - Arthur Vinicius de Abreu Oliveira
- Laboratory of Biochemical and Fermentative Processes, Food Technology Department, Federal University of Viçosa, Viçosa CEP 36570-000, Minas Gerais, Brazil;
| | - Laisse Dias Ribeiro
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina CEP 39100-000, Minas Gerais, Brazil;
| | - Allan Robledo Fialho e Moraes
- Institute of Agricultural Sciences, Federal University of Viçosa, Rio Paranaíba CEP 38810-000, Minas Gerais, Brazil;
| | - Meirielly Jesus
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Rua da Escola Industrial e Comercial Nun’Alvares 34, 4900-347 Viana do Castelo, Portugal;
| | - Joana Santos
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Rua da Escola Industrial e Comercial Nun’Alvares 34, 4900-347 Viana do Castelo, Portugal;
| | - Taila Veloso de Oliveira
- Laboratory of Polymeric Materials, Food Technology Department, Federal University of Viçosa, Viçosa CEP 36570-000, Minas Gerais, Brazil; (A.L.d.S.); (T.V.d.O.)
| | - Nilda de Fátima Ferreira Soares
- Laboratory of Polymeric Materials, Food Technology Department, Federal University of Viçosa, Viçosa CEP 36570-000, Minas Gerais, Brazil; (A.L.d.S.); (T.V.d.O.)
| |
Collapse
|
19
|
Zhang Y, Liu L, Li M, Wang S, Fu J, Yang M, Yan C, Liu Y, Zheng Y. Dose-dependent enhancement of in vitro osteogenic activity on strontium-decorated polyetheretherketone. Sci Rep 2025; 15:3063. [PMID: 39856116 PMCID: PMC11760343 DOI: 10.1038/s41598-025-86561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Polyetheretherketone (PEEK) is widely used in orthopedic and dental implants due to its excellent mechanical properties, chemical stability, and biocompatibility. However, its inherently bioinert nature makes it present weak osteogenic activity, which greatly restricts its clinical adoption. Herein, strontium (Sr) is incorporated onto the surface of PEEK using mussel-inspired polydopamine coating to improve its osteogenic activity. X-ray photoelectron spectroscopy and ion release assay results confirm that different concentrations of Sr are incorporated onto the PEEK substrate surfaces. The strontium-modified PEEK samples show a stable Sr ion release in 35 days of detection. Better results of MC3T3-E1 pre-osteoblasts adhesion, spreading, and proliferation can be observed in strontium-modified PEEK groups, which demonstrates strontium-modified PEEK samples with the improved MC3T3-E1 pre-osteoblasts compatibility. The boosted osteogenic activity of strontium-modified PEEK samples has been demonstrated by the better performed of ALP activity, extracellular matrix mineralization, collagen secretion, and the remarkable up-regulation of ALP, OCN, OPN, Runx2, Col-I, BSP, and OSX of the MC3T3-E1 pre-osteoblasts. Additionally, the strontium-modified PEEK samples exhibit a dose-dependent enhancement of osteoblasts compatibility and osteogenic activity, and the PEEK-Sr10 group shows the best. These findings indicate that strontium-decorated PEEK implants show promising application in orthopedic and dental implants.
Collapse
Affiliation(s)
- Yongheng Zhang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Lvhua Liu
- School of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Mengqi Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Shufu Wang
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Jingjing Fu
- School of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Mingyuan Yang
- School of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Chunxi Yan
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Ying Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Department of Stomatology, North Sichuan Medical College, Nanchong, China.
| | - Yanyan Zheng
- School of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China.
- Innovative Platform of Basic Medical Sciences, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
20
|
Zhao Y, Li H, Zheng H, Jia Q. Light-/pH-Regulated Spiropyran Smart-Responsive Hydrophilic Separation Platform for the Identification of Serum Glycopeptides from Hepatocellular Carcinoma Patients. Anal Chem 2025; 97:1135-1142. [PMID: 39772462 DOI: 10.1021/acs.analchem.4c04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Smart-responsive materials have attracted much attention in the enrichment of post-translational modifications of proteins. In this work, for the first time, we developed a smart enrichment strategy (MNPs-l-DOPA/PEI-SP) based on the change in hydrophilic properties of spiropyran under the regulation of light and pH to realize the controllable enrichment and release of intact glycopeptides. The enrichment mechanism and possible binding mechanism were verified by theoretical calculations. The smart enrichment platform based on MNPs-l-DOPA/PEI-SP was used to screen glycoprotein biomarkers for hepatocellular carcinoma (HCC) to evaluate its cancer diagnostic and monitoring performance. A total of 3,864 intact N-glycopeptides containing 166 N-glycoproteins were successfully identified in serum samples of early-stage HCC patients, while 3,266 intact N-glycopeptides containing 193 glycoproteins were identified in normal control (NC) serum samples. This work not only provides new ideas for the efficient enrichment of intact glycopeptides with smart-responsive material, but also broadens the research possibilities for biomarker discovery in HCC serum liquid biopsies.
Collapse
Affiliation(s)
- Yanqing Zhao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongbin Li
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Haijiao Zheng
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
21
|
Courrégelongue C, Baigl D. Functionalization of Emulsion Interfaces: Surface Chemistry Made Liquid. Chemistry 2025; 31:e202403501. [PMID: 39540269 PMCID: PMC11739829 DOI: 10.1002/chem.202403501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
Disperse systems, and emulsions in particular, are currently massively used in fields as varied as food industry, cosmetics, health care and environmentally-friendly materials. To meet increasingly precise needs or targeted applications, these systems need to be endowed with new functionalities at their interfaces, in addition to their composition and structural properties. However, due to the fragility of drops and the low reactivity of their surface, conventional solid surface chemistry cannot be used for such a purpose. Several specific emulsion interface functionalization techniques have thus been developed for targeted systems and applications, but a general framework has yet to be drawn. In this review, we attempt to present these methods in a unified way through the prism of what we may call "liquid surface chemistry". We propose to categorize existing methods into drop-coating strategies, including layer-by-layer techniques and polymer coating, with a particular focus on polydopamine, and emulsifier-carrier approaches involving particles and/or amphiphilic molecules. They are discussed in a transversal way, highlighting the underlying physico-chemical principles and providing a comparative analysis of their advantages, current limitations and potential for improvement. We also propose future directions and opportunities, involving for instance DNA-based programmability or artificial intelligence, which could make liquid surface chemistry more versatile and controlled.
Collapse
Affiliation(s)
- Clémence Courrégelongue
- PASTEUR, Department of Chemistry, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRS75005ParisFrance
| | - Damien Baigl
- PASTEUR, Department of Chemistry, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRS75005ParisFrance
| |
Collapse
|
22
|
Liu K, Liu F, Xu Y. Polydopamine-encapsulated carbon dots to boost analytical performance for microplastics detection in fluorescence mode. Mikrochim Acta 2025; 192:91. [PMID: 39820678 DOI: 10.1007/s00604-024-06937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
A kind of sulfur-doped carbon dots was prepared which were encapsulated with polydopamine (S-CDs@PDA) that has fluorescence response on polyethylene (PE) microplastics (MPs). Modified membranes were constructed using S-CDs@PDA for MP detection. Through heating and vacuum filtration process, yellow emission from the modified membrane appeared because of the combination between S-CDs@PDA and PE MPs. Notably, the fluorescence signal value of PE MPs detected by S-CDs@PDA-modified membrane was 21.3% higher than that of unmodified S-CDs membrane, and the detection efficiency was 8% higher than that of S-CDs membrane. The minimum detection limit for modified membranes was 4 mg. Due to the good adhesion of polydopamine (PDA), S-CDs@PDA-modified membrane was more easily adhered to PE MPs, showing its excellent detection ability. The rapid quantitative detection of PE MPs in 10 min was realized with a linear equation of y = 3081x + 3686.1 in a linear range of 4-14 mg. Such modified membrane exhibited excellent anti-photobleaching using continuous 365-nm excitation and its sensing performance was further confirmed in sea and river water samples. S-CDs@PDA could detect solid MP powders as well as MPs dispersed in liquids. The detection method constructed with a modified glass fiber filter membrane enables rapid identification and quantitative detection of PE MPs without relying on large-scale instrumentation. This study provided research ideas for fluorescent tracing of PE MPs and paved the way for quantitative detection of micron-sized plastics with smaller particle sizes.
Collapse
Affiliation(s)
- Keao Liu
- School of Chemical Engineering and Technology, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Beichen District, Xiping Road No. 5340, Tianjin, 300401, China
| | - Fengshan Liu
- School of Chemical Engineering and Technology, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Beichen District, Xiping Road No. 5340, Tianjin, 300401, China
| | - Yang Xu
- School of Chemical Engineering and Technology, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Beichen District, Xiping Road No. 5340, Tianjin, 300401, China.
| |
Collapse
|
23
|
Notarbartolo M, Alfieri ML, Avolio R, Ball V, Errico ME, Massaro M, Puglisi R, Sànchez-Espejo R, Viseras C, Riela S. Design of innovative and low-cost dopamine-biotin conjugate sensor for the efficient detection of protein and cancer cells. J Colloid Interface Sci 2025; 678:766-775. [PMID: 39307064 DOI: 10.1016/j.jcis.2024.09.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 10/27/2024]
Abstract
The rapid, precise identification and quantification of specific biomarkers, toxins, or pathogens is currently a key strategy for achieving more efficient diagnoses. Herein a dopamine-biotin monomer was synthetized and oxidized in the presence of hexamethylenediamine, to obtain adhesive coatings based on polydopamine-biotin (PDA-BT) on different materials to be used in targeted molecular therapy. Insight into the structure of the PDA-BT coating was obtained by solid-state 13C NMR spectroscopy acquired, for the first time, directly onto the coating, deposited on alumina spheres. The receptor binding capacity of the PDA-BT coating toward 4-hydroxyazobenzene-2-carboxylic acid/Avidin complex was verified by means of UV-vis spectroscopy. Different deposition cycles of avidin onto the PDA-BT coating by layer-by-layer assembly showed that the film retains its receptor binding capacity for at least eight consecutive cycles. Finally, the feasibility of PDA-BT coating to recognize cell lines with different grade of overexpression of biotin receptors (BR) was investigated by tumor cell capture experiments by using MCF-7 (BR+) and HL-60 (BR-) cell lines. The results show that the developed system can selectively capture MCF-7 cells indicating that it could represent a first approach for the development of future more sophisticated biosensors easily accessible, low cost and recyclable with the dual and rapid detection of both proteins and cells.
Collapse
Affiliation(s)
- Monica Notarbartolo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy
| | - Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples "Federico II", I-80126 Naples, Italy.
| | - Roberto Avolio
- Institute of Chemistry and Technology of Polymers, National Council of Research (CNR), via Campi Flegrei 34, Pozzuoli I-80078, Italy
| | - Vincent Ball
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elizabeth, 67000 Strasbourg. France; Institut National de la Santé et de la Recherche Médicale, Unité mixte de rechere 1121. 1 rue Eugène Boeckel, 67084 Strasbourg Cedex, France
| | - Maria Emanuela Errico
- Institute of Chemistry and Technology of Polymers, National Council of Research (CNR), via Campi Flegrei 34, Pozzuoli I-80078, Italy
| | - Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy.
| | - Roberta Puglisi
- Dipartimento di Scienze Chimiche (DSC), Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Rita Sànchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain; Andalusian Institute of Earth Sciences, CSIC-UGR, 18100 Armilla, Granada, Spain
| | - Serena Riela
- Dipartimento di Scienze Chimiche (DSC), Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
24
|
Sun H, Zou Y, Chen Z, He Y, Ye K, Liu H, Qiu L, Zhang Y, Mai Y, Chen X, Mao Z, Wang W, Yi C. Nanodrug-Engineered Exosomes Achieve a Jointly Dual-Pathway Inhibition on Cuproptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413408. [PMID: 39639737 PMCID: PMC11775538 DOI: 10.1002/advs.202413408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Cuproptosis, caused by an intracellular overload of copper (Cu) ions and overexpression of ferredoxin 1 (FDX1), is identified for its regulatory role in the skin wound healing process. This study verifies the presence of cuproptosis in skin wound beds and reactive oxygen species-induced cells model. To address the two pathways leading to cell cuproptosis, a nanodrug-engineered exosomes is proposed. A Cu-chelator (Clioquinol, CQ) polydopamine (PDA)-modified stem cell exosome loaded with siRNA-FDX1, named EXOsiFDX1-PDA@CQ, is designed to efficiently inhibit the two cuproptosis pathways. The functionalized exosomes are loaded into an injectable hydrogel and applied to treat diabetic wounds in mice and acute skin wounds in pigs. The local and controlled release of EXOsiFDX1-PDA@CQ ensures the retention of the therapeutic agent at wound beds, effectively promoting wound healing. The strategy of engineered exosomes with functional nanoparticles (NPs) proposed in this study offers an efficient and scalable new approach for regulating cuproptosis.
Collapse
Affiliation(s)
- Hanxiao Sun
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Yang Zou
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Zhengtai Chen
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Yan He
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Kai Ye
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Huan Liu
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Lihong Qiu
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Yufan Zhang
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Yuexue Mai
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Xinghong Chen
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Wei Wang
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Chenggang Yi
- The Second Affiliated Hospital of Zhejiang University College of MedicineHangzhou310000China
| |
Collapse
|
25
|
Alaqabani H, Hammad A, Abosnwber Y, Perrie Y. Novel microfluidic development of pH-responsive hybrid liposomes: In vitro and in vivo assessment for enhanced wound Healing. Int J Pharm 2024; 667:124884. [PMID: 39471888 DOI: 10.1016/j.ijpharm.2024.124884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Wound healing is a complex biological process crucial for tissue repair, especially in chronic wounds where healing is impaired. Liposomes have emerged as promising vehicles for delivering therapeutics to facilitate wound repair. Liposomes have been explored as effective carriers for therapeutic agents. However, traditional methods of liposome preparation face significant challenges, particularly in achieving consistent stability and precise control over drug encapsulation and release. This study addresses these challenges by pioneering the development of Hybrid Liposomes (HLPs) using microfluidic technology, which provides more controlled characteristics through precisely managed formulation parameters. Notably, the formation of Polydopamine (PDA) polymer within HLPs facilitates pH-responsive drug release, making them well-suited for acidic wound environments. Furthermore, surface modification with Folic Acid (FA) enhances cellular interaction with the HLPs. In vitro and in vivo studies demonstrate the efficacy of HLPs loaded with Hyaluronic Acid (HA) or Phenytoin (PHT) in promoting wound healing. Microfluidics optimizes the stability of HLPs over 90 days, underscoring their potential as a potent, antibiotic-free drug delivery system. In conclusion, this research advances the understanding of microfluidic optimization for HLPs, offering cutting-edge drug delivery systems. The transformative potential of targeted HLPs through microfluidics holds promise for revolutionizing wound healing and inspires optimism for effective therapeutic interventions.
Collapse
Affiliation(s)
- Hakam Alaqabani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK; Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Airport St, 11733 Amman, Jordan.
| | - Alaa Hammad
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Airport St, 11733 Amman, Jordan.
| | - Yara Abosnwber
- Faculty of Health School of Biomedical Sciences, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK
| |
Collapse
|
26
|
Kunkel E, Loker CB, Cowden HN, Robinson HD. Microscale Metal Patterning on Any Substrate: Exploring the Potential of Poly(dopamine) Films in High Resolution, High Contrast, Conformal Lithography. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66387-66401. [PMID: 39565837 PMCID: PMC11622185 DOI: 10.1021/acsami.4c07115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
We have explored the potential of poly(dopamine) (PDA) thin films as versatile, high resolution conformal photoresists, using catalytic photoreduction of silver ions to micropattern the film. The combination of photosensitivity, biocompatibilty, and straightforward deposition under mild conditions into thin (∼45 nm) conformal coatings on nearly any material makes PDA films of interest in lithographic patterning on highly nonplanar geometries as well as on soft and biological materials where standard photoresists cannot be used. PDA and poly(norepinephrine) (PNE) films deposited with a standard autoxidation process were investigated along with PDA film deposited with a fast oxidation (FO) technique. Notably, we find that nonspecific deposition of silver off the lithographic pattern is strongly suppressed in PNE and nearly absent in FO-PDA films, which makes very high contrast lithography possible. We attribute this to a lower ratio of catechol to quinone moieties in these films compared to standard PDA films. PNE and FO-PDA films also exhibit smaller silver grain sizes (<40 nm) than standard PDA films, where grains are up to 200 nm in size. We demonstrate laser-scanning lithography patterns at 1.7 μm spatial resolution near the optical resolution limit of the experiment. Continuous silver films can readily be deposited on PDA, PNE, and FO-PDA with blue (λ = 473 nm) and UV-A (375 nm) light, but not with green (515 nm) light. The UV light at lower intensities deposits silver several times faster than the blue light but also degrades the deposited silver at high light intensities. Silver films deposited in this way reach the percolation threshold at optical doses (at λ = 473 nm) in the range of 10-50 kJ/cm2, and SEM images of the films appear nearly pinhole free at comparable doses.
Collapse
Affiliation(s)
- Elliott
D. Kunkel
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - C. Blake Loker
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Hunter N. Cowden
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Hans D. Robinson
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
27
|
Li M, Liu J, Li Y, Chen W, Yang Z, Zou Y, Liu Y, Lu Y, Cao J. Enhanced osteogenesis and antibacterial activity of dual-functional PEEK implants via biomimetic polydopamine modification with chondroitin sulfate and levofloxacin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2790-2806. [PMID: 39155420 DOI: 10.1080/09205063.2024.2390745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
Polyetheretherketone (PEEK) implants have emerged as a clinically favored alternative to titanium alloy implants for cranial bone substitutes due to their excellent mechanical properties and biocompatibility. However, the biological inertness of PEEK has hindered its clinical application. To address this issue, we developed a dual-functional surface modification method aimed at enhancing both osteogenesis and antibacterial activity, which was achieved through the sustained release of chondroitin sulfate (CS) and levofloxacin (LVFX) from a biomimetic polydopamine (PDA) coating on the PEEK surface. CS was introduced to promote cell adhesion and osteogenic differentiation. Meanwhile, incorporation of antibiotic LVFX was essential to prevent infections, which are a critical concern in bone defect repairing. To our delight, experiment results demonstrated that the SPKD/CS-LVFX specimen exhibited enhanced hydrophilicity and sustained drug release profiles. Furthermore, in vitro experiments showed that cell growth and adhesion, cell viability, and osteogenic differentiation of mouse calvaria-derived osteoblast precursor (MC3T3-E1) cells were significantly improved on the SPKD/CS-LVFX coating. Antibacterial assays also confirmed that the SPKD/CS-LVFX specimen effectively inhibited the growth of Escherichia coli and Staphylococcus aureus, attributable to the antibiotic LVFX released from the PDA coating. To sum up, this dual-functional PEEK implant showed a promising potential for clinical application in bone defects repairing, providing excellent osteogenic and antibacterial properties through a synergistic approach.
Collapse
Affiliation(s)
- Mengjue Li
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, People's Republic of China
| | - Junyan Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yutong Li
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Wenyu Chen
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Zhou Yang
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Yayu Zou
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, People's Republic of China
| | - Yi Liu
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Yue Lu
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Jianfei Cao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, People's Republic of China
| |
Collapse
|
28
|
Singh S, Goel T, Singh A, Chugh H, Chakraborty N, Roy I, Tiwari M, Chandra R. Synthesis and characterization of Fe 3O 4@SiO 2@PDA@Ag core-shell nanoparticles and biological application on human lung cancer cell line and antibacterial strains. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:46-58. [PMID: 38156875 DOI: 10.1080/21691401.2023.2295534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Novel magnetic and metallic nanoparticles garner much attention of researchers due to their biological, chemical and catalytic properties in many chemical reactions. In this study, we have successfully prepared a core-shell Fe3O4@SiO2@PDA nanocomposite wrapped with Ag using a simple synthesis method, characterised and tested on small cell lung cancer and antibacterial strains. Incorporating Ag in Fe3O4@SiO2@PDA provides promising advantages in biomedical applications. The magnetic Fe3O4 nanoparticles were coated with SiO2 to obtain negatively charged surface which is then coated with polydopamine (PDA). Then silver nanoparticles were assembled on Fe3O4@SiO2@PDA surface, which results in the formation core-shell nanocomposite. The synthesised nanocomposite were characterized using SEM-EDAX, dynamic light scattering, XRD, FT-IR and TEM. In this work, we report the anticancer activity of silver nanoparticles against H1299 lung cancer cell line using MTT assay. The cytotoxicity data revealed that the IC50 of Fe3O4@SiO2@PDA@Ag against H1299 lung cancer nanocomposites cells was 21.52 µg/mL. Furthermore, the biological data of nanocomposites against Gram-negative 'Pseudomonas aeruginosa' and Gram-positive 'Staphylococcus aureus' were carried out. The range of minimum inhibitory concentration was found to be 115 µg/mL where gentamicin was used as a standard drug. The synthesized AgNPs proves its supremacy as an efficient biomedical agent and AgNPs may act as potential beneficial molecule in lung cancer chemoprevention and antibacterial strains.
Collapse
Affiliation(s)
- Snigdha Singh
- Department of Chemistry, University of Delhi, Delhi, India
| | - Tanya Goel
- Department of Chemistry, University of Delhi, Delhi, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Aarushi Singh
- Department of Chemistry, University of Delhi, Delhi, India
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Heerak Chugh
- Department of Chemistry, University of Delhi, Delhi, India
| | | | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi, India
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
29
|
Li H, Jia Y, Bai S, Peng H, Li J. Metal-chelated polydopamine nanomaterials: Nanoarchitectonics and applications in biomedicine, catalysis, and energy storage. Adv Colloid Interface Sci 2024; 334:103316. [PMID: 39442423 DOI: 10.1016/j.cis.2024.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Polydopamine (PDA)-based materials inspired by the adhesive proteins of mussels have attracted increasing attention owing to the universal adhesiveness, antioxidant activity, fluorescence quenching ability, excellent biocompatibility, and especially photothermal conversion capability. The high binding ability of PDA to a variety of metal ions offers a paradigm for the exploration of metal-chelated polydopamine nanomaterials with fantastic properties and functions. This review systematically summarizes the latest progress of metal-chelated polydopamine nanomaterials for the applications in biomedicine, catalysis, and energy storage. Different fabrication strategies for metal-chelated polydopamine nanomaterials with various composition, structure, size, and surface chemistry, such as the pre-functionalization method, the one-pot co-assembly method, and the post-modification method, are summarized. Furthermore, emerging applications of metal-chelated polydopamine nanomaterials in the fields ranging from cancer therapy, theranostics, antibacterial, catalysis to energy storage are highlighted. Additionally, the critical remaining challenges and future directions of this area are discussed to promote the further development and practical applications of PDA-based materials.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China..
| |
Collapse
|
30
|
Zhang J, Li Y, Wang X, Dong X, Zhao S, Du Q, Pi X, Jing Z, Jin Y. Green preparation of polydopamine-modified multiwalled carbon nanotube/calcium alginate composite aerogels for effective adsorption of methylene blue. Int J Biol Macromol 2024; 283:137984. [PMID: 39581421 DOI: 10.1016/j.ijbiomac.2024.137984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/16/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Polydopamine-modified multiwalled carbon nanotube/calcium alginate (P-CNTs/CA) aerogel was greenly prepared. The synthesis method of the P-CNTs/CA aerogel was evaluated for its environmental friendliness. SEM, FT-IR, Raman, TGA, BET, XPS, and Zeta potential characterized the P-CNTs/CA aerogel. Batch adsorption experiments were conducted to assess the adsorption efficacy of the P-CNTs/CA aerogel on methylene blue (MB). The results demonstrated that the maximum theoretical adsorption capacity of the P-CNTs/CA aerogel for MB was 506.12 mg‧g-1. The adsorption kinetics analysis indicated that the adsorption of MB by the P-CNTs/CA aerogel was more consistent with the pseudo-second-order model. The adsorption isotherm analysis demonstrated that the Sips model exhibited the most accurate fit to the experimental data. The adsorption thermodynamics showed that the adsorption process was spontaneous and heat-absorbing. The adsorption mechanism of MB adsorption by P-CNTs/CA aerogel was analyzed graphically by the density functional theory (DFT) and independent gradient model (IGM), which revealed the involvement of hydrogen bonding, electrostatic, and dispersive interactions. In parallel, the distribution of adsorption forces was analyzed using isosurfaces. Adsorption desorption experiment showed that the P-CNTs/CA aerogel maintained 79 % removal capacity after six adsorption cycles.
Collapse
Affiliation(s)
- Jie Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xinxin Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xu Dong
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
31
|
Djermane R, Nieto C, Vega MA, Del Valle EMM. EGFR-targeting polydopamine nanoparticles co-loaded with 5-fluorouracil, irinotecan, and leucovorin to potentially enhance metastatic colorectal cancer therapy. Sci Rep 2024; 14:29265. [PMID: 39587206 PMCID: PMC11589782 DOI: 10.1038/s41598-024-80879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
Despite all prevention programs, many cases of colorectal cancer (CRC) are diagnosed when they have already metastasized. Herein, chemotherapy is required, and combination of 5-fluorouracil, irinotecan, and leucovorin (FOLFIRI) is one of the first-line treatments chosen. However, it is so toxic that compromises patient outcomes. Thus, with the aim of improving FOLFIRI pharmacokinetics while reducing its side effects, the three compounds that make it up were simultaneously absorbed in this work into polydopamine nanoparticles (PDA NPs), also loaded with an antibody to target CRC cells overexpressing the epithermal growth factor receptor (EGFR). All adsorptions, which were successfully executed without toxic solvents, were electrostatic in nature according to the calorimetry results obtained. Otherwise, based on the experiments done, 5-flurouracil, irinotecan, and leucovorin release from PDA NPs followed a burst-like pattern, which was possibly mediated by Fickian diffusion mechanisms. Finally, the assays performed with two EGFR-overexpressing CRC cell lines showed that the uptake of the nanosystem was rapid, and that its therapeutic effect was very significant. It managed to greatly reduce the viability of these cells to 22-30% after 72 h of incubation. Furthermore, when tumor spheroids were developed and treated with PDA NPs loaded with FOLFIRI and the anti-EGFR antibody (FOLFIRI-CTX@PDA NPs), these demonstrated to continue to have very marked therapeutic activity. In addition, FOLFIRI-CTX@PDA NPs affected to a lesser extent the survival rate of stromal cells, with which viability experiments were also done. Therefore, the novel developed PDA nanocarrier could be a promising strategy to enhance metastatic CRC therapy hereafter.
Collapse
Affiliation(s)
- Rania Djermane
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain
| | - Celia Nieto
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial de Salamanca, Paseo de San Vicente, 58, 37007, Salamanca, Spain
| | - Milena A Vega
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial de Salamanca, Paseo de San Vicente, 58, 37007, Salamanca, Spain.
| | - Eva M Martín Del Valle
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial de Salamanca, Paseo de San Vicente, 58, 37007, Salamanca, Spain.
| |
Collapse
|
32
|
Chae WR, Song YJ, Lee NY. Polydopamine-mediated gold nanoparticle coating strategy and its application in photothermal polymerase chain reaction. LAB ON A CHIP 2024. [PMID: 39589462 DOI: 10.1039/d4lc00554f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Materials with high light-to-heat conversion efficiencies offer valuable strategies for remote heating. These materials find wide applications in photothermal therapy, water distillation, and gene delivery. In this study, we investigated a universal coating method to impart photothermal features to various surfaces. Polydopamine, a well-known adhesive material inspired by mussels, served as an intermediate layer to anchor polyethyleneimine and capture gold nanoparticles. Subsequently, the coated surface underwent electroless gold deposition to improve photothermal heating efficiency by increasing light absorption. This process was analyzed through scanning electron microscopic imaging and absorbance measurements. To demonstrate functionality, the coated surface was photothermally heated using a light-emitting diode controlled with a microprocessor, targeting the metal regulatory transcription factor 1 gene-a marker for osteoarthritis-and the S gene of the severe fever with thrombocytopenia syndrome virus. Successful amplification of the target genes was confirmed after 34 polymerase chain reaction cycles in just 12 min, verified by gel electrophoresis, demonstrating its diagnostic applicability. Overall, this simple photothermal coating method provides versatile utility, and is applicable to diverse surfaces such as membranes, tissue culture dishes, and microfluidic systems.
Collapse
Affiliation(s)
- Woo Ri Chae
- BioNano Applications Research Center, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
33
|
Kimmins SD, Henríquez A, Torres C, Wilson L, Flores M, Pio E, Jullian D, Urbano B, Braun-Galleani S, Ottone C, Muñoz L, Claros M, Urrutia P. Immobilization of Naringinase onto Polydopamine-Coated Magnetic Iron Oxide Nanoparticles for Juice Debittering Applications. Polymers (Basel) 2024; 16:3279. [PMID: 39684024 DOI: 10.3390/polym16233279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Chemical amination of the enzyme was demonstrated to favor immobilization onto polydopamine (PDA)-coated magnetic nanoparticles (MNPs) for the first time, to the best of the author's knowledge. MNPs prepared via hydrothermal synthesis were coated with PDA for the immobilization of naringinase. X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy showed that the MNPs were composed mainly of Fe3O4 with an average size of 38.9 nm, and coated with a 15.1 nm PDA layer. Although the specific activities of α-L-rhamnosidase (RAM) and β-D-glucosidase (GLU) of free naringinase decreased with amination, the immobilization yields of the aminated enzyme increased by more than 40% for RAM and more than 10-fold for GLU. The immobilization improved the enzyme's thermal stability (at 50 °C), reaching a half-life of 40.7 and 23.1 h for RAM and GLU activities, respectively. The biocatalyst was successfully used for the debittering of grapefruit juice, detecting a reduction in naringin of 56% after 24 h. These results demonstrate that the enzyme amination is an effective strategy to enhance the immobilization on a PDA coating and could be applied to other enzymes in order to obtain an easily recoverable biocatalyst using a simple immobilization methodology.
Collapse
Affiliation(s)
- Scott D Kimmins
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Antonella Henríquez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Celia Torres
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Marcos Flores
- Laboratory of Surface and Nanomaterials, Physics Department, Faculty of Mathematical and Physical Sciences, University of Chile, Santiago 8330111, Chile
| | - Edgar Pio
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua 2841959, Chile
| | - Domingo Jullian
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua 2841959, Chile
| | - Bruno Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 3349001, Chile
| | - Stephanie Braun-Galleani
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Lisa Muñoz
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Martha Claros
- Departamento de Ingeniería Metalúrgica y de Materiales, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Paulina Urrutia
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
34
|
Szukalska M, Grześkowiak BF, Bigaj-Józefowska MJ, Witkowska M, Cicha E, Sujka-Kordowska P, Miechowicz I, Nowicki M, Mrówczyński R, Florek E. Toxicity and Oxidative Stress Biomarkers in the Organs of Mice Treated with Mesoporous Polydopamine Nanoparticles Modified with Iron and Coated with Cancer Cell Membrane. Int J Nanomedicine 2024; 19:12053-12078. [PMID: 39583321 PMCID: PMC11585271 DOI: 10.2147/ijn.s481120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Polydopamine nanoparticles (PDA NPs) have great potential in medicine. Their applications being widely investigated in cancer therapy, imaging, chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and tissue repair. The aim of our study was to assess the in vivo toxicity and changes in oxidative stress biomarkers in organs of animals treated with mesoporous PDA NPs modified with iron (MPDAFe NPs), coated with the cancer cell membrane and loaded with doxorubicin (DOX), and subsequently subjected to PTT. Methods Liver and kidney homogenates were obtained from BALB/c nude mice with xenograft HepG2 human hepatoma cells, treated with iron modified mesoporous PDA nanoparticles, coated with the cancer cell membrane and loaded with doxorubicin (MPDAFe@DOX@Mem NPs), and subjected to PTT. These samples were used for histological evaluation and measurement of oxidative stress biomarkers, including total protein (TP), reduced glutathione (GSH), nitric oxide (NO), S-nitrosothiols (RSNO), thiobarbituric acid reactive substances (TBARS), trolox equivalent antioxidant capacity (TEAC), catalase (CAT), glutathione S-transferase (GST), and superoxide dismutase (SOD). Results In the kidney, MPDAFe@DOX@Mem NPs in combination with PTT increased GSH (43%), TBARS (32%), and CAT (27%), while SOD decreased by 20% compared to the control group. Additionally, CAT activity in the liver increased by 79%. Conclusion Significant differences in oxidative stress parameters and histological changes after administration with MPDAFe@DOX@Mem NPs and PTT were observed in the kidneys, showing more pronounced changes than the liver, indicating potential kidney toxicity. Our research provides insights into oxidative stress and possible toxic effects after in vivo administration of mesoporous PDA NPs combined with chemotherapy-photothermal therapy (CT-PTT), which is extremely important for their future applications in anticancer therapies.
Collapse
Affiliation(s)
- Marta Szukalska
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | | | | | - Marta Witkowska
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
| | - Emilia Cicha
- Laboratory of Experimental Animals, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Izabela Miechowicz
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Radosław Mrówczyński
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
35
|
Lamba S, Wang K, Lu J, Phillips ARJ, Swift S, Sarojini V. Polydopamine-Mediated Antimicrobial Lipopeptide Surface Coating for Medical Devices. ACS APPLIED BIO MATERIALS 2024; 7:7574-7584. [PMID: 39475192 DOI: 10.1021/acsabm.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Biofilm formation on medical implants such as catheters is a major issue which needs to be addressed as it leads to severe health care associated infections. This study explored the design and synthesis of a polydopamine-lipopeptide based antimicrobial coating. The coating was used to modify the surface of Ultrathane Catheters. The lipopeptide SL1.15 with an N-terminal cysteine was covalently conjugated to the polydopamine modified catheters via a Michael addition reaction between the thiol moiety in the peptide and the aromatic ring in the polydopamine layer. The immobilization of the peptide on the polydopamine coated catheters was confirmed using water contact angle, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy (SEM). The antimicrobial activity of the coated catheters investigated using drug resistant and clinical strains of Gram-positive (MRSA and S. aureus) and Gram-negative (E. coli, A. baumannii, and P. aeruginosa) bacteria revealed that lipopeptide immobilization inhibited >90% bacterial adhesion to the catheter surface. Additionally, biofilm assays against MRSA and E. coli revealed that the lipopeptide immobilized catheters inhibited >85% bacterial growth after 1 week incubation. Finally, the cytotoxicity profile of the catheters using the human dermal fibroblast, and the human embryonic kidney cell lines demonstrated that the polydopamine-lipopeptide coating was not toxic after 72 h incubation.
Collapse
Affiliation(s)
- Saurabh Lamba
- School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Kelvin Wang
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Anthony R J Phillips
- Surgical and Translational Research Centre, School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| |
Collapse
|
36
|
Jo K, Linh VTN, Yang JY, Heo B, Kim JY, Mun NE, Im JH, Kim KS, Park SG, Lee MY, Yoo SW, Jung HS. Machine learning-assisted label-free colorectal cancer diagnosis using plasmonic needle-endoscopy system. Biosens Bioelectron 2024; 264:116633. [PMID: 39126906 DOI: 10.1016/j.bios.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Early and accurate detection of colorectal cancer (CRC) is critical for improving patient outcomes. Existing diagnostic techniques are often invasive and carry risks of complications. Herein, we introduce a plasmonic gold nanopolyhedron (AuNH)-coated needle-based surface-enhanced Raman scattering (SERS) sensor, integrated with endoscopy, for direct mucus sampling and label-free detection of CRC. The thin and flexible stainless-steel needle is coated with polymerized dopamine, which serves as an adhesive layer and simultaneously initiates the nucleation of gold nanoparticle (AuNP) seeds on the needle surface. The AuNP seeds are further grown through a surface-directed reduction using Au ions-hydroxylamine hydrochloride solution, resulting in the formation of dense AuNHs. The formation mechanism of AuNHs and the layered structure of the plasmonic needle-based SERS (PNS) sensor are thoroughly analyzed. Furthermore, a strong field enhancement of the PNS sensor is observed, amplified around the edges of the polyhedral shapes and at nanogap sites between AuNHs. The feasibility of the PNS sensor combined with endoscopy system is further investigated using mouse models for direct colonic mucus sampling and verifying noninvasive label-free classification of CRC from normal controls. A logistic regression-based machine learning method is employed and successfully differentiates CRC and normal mice, achieving 100% sensitivity, 93.33% specificity, and 96.67% accuracy. Moreover, Raman profiling of metabolites and their correlations with Raman signals of mucus samples are analyzed using the Pearson correlation coefficient, offering insights for identifying potential cancer biomarkers. The developed PNS-assisted endoscopy technology is expected to advance the early screening and diagnosis approach of CRC in the future.
Collapse
Affiliation(s)
- Kangseok Jo
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea; School of Chemical Engineering, Pusan National University, Busan, 46241, South Korea
| | - Vo Thi Nhat Linh
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Jun-Yeong Yang
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Boyou Heo
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Jun Young Kim
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Na Eun Mun
- Biomedical Science Graduate Program, Chonnam National University, Hwasun, 58128, South Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, South Korea; Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Hwasun, 58128, South Korea
| | - Jin Hee Im
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, South Korea; Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Hwasun, 58128, South Korea
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, Busan, 46241, South Korea
| | - Sung-Gyu Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Min-Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Su Woong Yoo
- Biomedical Science Graduate Program, Chonnam National University, Hwasun, 58128, South Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, South Korea; Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Hwasun, 58128, South Korea.
| | - Ho Sang Jung
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea; Advanced Materials Engineering Division, University of Science and Technology (UST), Daejeon, 34113, South Korea; School of Convergence Science and Technology, Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
37
|
Cai T, Dong C, Yuan C, Bai X, Jia D, Duan H, Zheng Z. Enhancing Water Lubrication in UHMWPE Using Mesoporous Polydopamine Nanoparticles: A Strategy to Mitigate Frictional Vibration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62762-62775. [PMID: 39487849 DOI: 10.1021/acsami.4c15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Establishing a persistent lubrication mechanism and a durable tribo-film on contact surfaces is identified as crucial for improving the tribology and vibration characteristics of polymer materials under water-lubricated conditions. This study focuses on enhancing tribological performance and reducing frictional vibrations in ultrahigh molecular weight polyethylene (UHMWPE) through the incorporation of mesoporous polydopamine (MPDA) nanoparticles. In the experiments, MPDA nanoparticles were synthesized and blended with UHMWPE to create UHMWPE/MPDA composites. The interactions between these composites and zirconia (ZrO2) ceramic balls under water lubrication were examined. The results show that when the MPDA content of the composite is 1.5 wt %, the coefficient of friction and wear rate are reduced by 40% and 52% compared with those of pure UHMWPE, respectively. This notable enhancement helped to mitigate friction-induced vibrations, particularly those caused by intermittent sticking and slipping motions. MPDA nanoparticles were shown to act as reservoirs for water, releasing and replenishing water based on the loading conditions, which sustained continuous water-based lubrication at the composite surfaces. Additionally, the surface deformation behavior of the composite material is significantly weakened, which provides a more stable friction surface. This work introduces a novel approach to enhance the interface stability of polymers in water-lubricated environments, offering guidance for developing advanced materials and reducing friction and wear in engineering applications.
Collapse
Affiliation(s)
- Tun Cai
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| | - Conglin Dong
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| | - Chengqing Yuan
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| | - Xiuqin Bai
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| | - Dan Jia
- State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Material Protection Co., Ltd. CAM, Wuhan 430030, China
| | - Haitao Duan
- State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Material Protection Co., Ltd. CAM, Wuhan 430030, China
| | - Zhanmo Zheng
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| |
Collapse
|
38
|
Ji H, Yu K, Abbina S, Xu L, Xu T, Cheng S, Vappala S, Arefi SMA, Rana MM, Chafeeva I, Drayton M, Gonzalez K, Liu Y, Grecov D, Conway EM, Zhao W, Zhao C, Kizhakkedathu JN. Antithrombotic coating with sheltered positive charges prevents contact activation by controlling factor XII-biointerface binding. NATURE MATERIALS 2024:10.1038/s41563-024-02046-0. [PMID: 39533064 DOI: 10.1038/s41563-024-02046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Antithrombotic surfaces that prevent coagulation activation without interfering with haemostasis are required for blood-contacting devices. Such materials would restrain device-induced thrombogenesis and decrease the need for anticoagulant use, thereby reducing unwanted bleeding. Here, by optimizing the interactions with coagulation factor XII rather than preventing its surface adsorption, we develop a substrate-independent antithrombotic polymeric coating with sheltered positive charges. The antithrombic properties of the coating were demonstrated in vitro with human blood and in vivo using a carotid artery-jugular vein shunt model in rabbits. The coating exhibits a strong interaction with factor XII, but results in a low reciprocal activation of the contact pathway that triggers clot formation. These findings contradict the prevailing strategy of designing antithrombotic materials through protein-repelling surfaces. Overall, the polymeric coating we describe can benefit most blood-contacting devices and is a useful engineering guideline for designing surfaces with improved antithrombotic properties.
Collapse
Affiliation(s)
- Haifeng Ji
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kai Yu
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Srinivas Abbina
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lin Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Shengjun Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Sreeparna Vappala
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - S M Amin Arefi
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Md Mohosin Rana
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Irina Chafeeva
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew Drayton
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Gonzalez
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yun Liu
- Chengdu First People's Hospital, Chengdu, People's Republic of China
| | - Dana Grecov
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward M Conway
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
39
|
Mehrabi Z, Harsij Z, Taheri-Kafrani A. Polydopamine-functionalized polyethersulfone membrane: A paradigm advancement in the field of α-amylase stability and immobilization. J Biotechnol 2024; 394:1-10. [PMID: 39153546 DOI: 10.1016/j.jbiotec.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Biocatalytic membranes have great potential in various industrial sectors, with the immobilization of enzymes being a crucial stage. Immobilizing enzymes through covalent bonds is a complex and time-consuming process for large-scale applications. Polydopamine (PDA) offers a more sustainable and eco-friendly alternative for enzyme immobilization. Therefore, surface modification with polydopamine as mussel-inspired antifouling coatings has increased resistance to fouling. In this study, α-amylase enzyme was covalently bound to a bioactive PDA-coated polyethersulfone (PES) membrane surface using cyanuric chloride as a linker. The optimal activity of α-amylase enzyme immobilized on PES/PDA membrane was obtained at temperature and pH of 55°C and 6.5, respectively. The immobilized enzyme can be reused up to five reaction cycles with 55 % retention of initial activity. Besides, it maintained 60 % of its activity after being stored for five weeks at 4°C. Additionally, the immobilized enzyme demonstrated increased Michaelis constant and maximum velocity values during starch hydrolysis. The results of the biofouling experiment of various membranes in a dead-end cell demonstrated that the PES membrane's water flux increased from 6722.7 Lmh to 7560.2 Lmh after PDA modification. Although α-amylase immobilization reduced the flux to 7458.5 Lmh due to enhanced hydrophilicity, compared to unmodified membrane. The findings of this study demonstrated that the membrane produced through co-deposition exhibited superior hydrophilicity, enhanced coating stability, and strong antifouling properties, positioning it as a promising candidate for industrial applications.
Collapse
Affiliation(s)
- Zahra Mehrabi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Zohreh Harsij
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
40
|
Faase RA, Hummel MH, Hasbrook AV, Carpenter AP, Baio JE. A biomimetic approach towards a universal slippery liquid infused surface coating. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1376-1389. [PMID: 39530020 PMCID: PMC11552445 DOI: 10.3762/bjnano.15.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
One biomimetic approach to surface passivation involves a series of surface coatings based on the slick surfaces of carnivorous pitcher plants (Nepenthes), termed slippery liquid-infused porous surfaces (SLIPS). This study introduces a simplified method to produce SLIPS using a polydopamine (PDA) anchor layer, inspired by mussel adhesion. SLIPS layers were formed on cyclic olefin copolymer, silicon, and stainless steel substrates, by first growing a PDA film on each substrate. This was followed by a hydrophobic liquid anchor layer created by functionalizing the PDA film with a fluorinated thiol. Finally, perfluorodecalin was applied to the surface immediately prior to use. These biomimetic surface functionalization steps were confirmed by several complimentary surface analysis techniques. The wettability of each surface was probed with water contact angle measurements, while the chemical composition of the layer was determined by X-ray photoelectron spectroscopy. Finally, ordering of specific chemical groups within our PDA SLIPS layer was determined via sum frequency generation spectroscopy. The hemocompatibility of our new PDA-based SLIPS coating was then evaluated by tracking FXII activation, fibrin generation time, clot morphology, and platelet adhesion to the surface. This hemocompatibility work suggests that PDA SLIPS coatings slow or prevent clotting, but the observation of both FXII activation and the presence of adherent and activated platelets at the PDA SLIPS samples imply that this formulation of a SLIPS coating is not completely omniphobic.
Collapse
Affiliation(s)
- Ryan A Faase
- School of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Madeleine H Hummel
- School of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - AnneMarie V Hasbrook
- School of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew P Carpenter
- School of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Joe E Baio
- School of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
41
|
Zhou Y, Wang T, Lu P, Wan Z, He H, Wang J, Li D, Li Y, Shu C. Exploring the Potential of MIM-Manufactured Porous NiTi as a Vascular Drug Delivery Material. Ann Biomed Eng 2024; 52:2958-2974. [PMID: 38880816 DOI: 10.1007/s10439-024-03558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Porous nickel-titanium (NiTi) manufactured using metal injection molding (MIM) has emerged as an innovative generation of drug-loaded stent materials. However, an increase in NiTi porosity may compromise its mechanical properties and cytocompatibility. This study aims to explore the potential of porous NiTi as a vascular drug delivery material and evaluate the impact of porosity on its drug loading and release, mechanical properties, and cytocompatibility. MIM, combined with the powder space-holder method, was used to fabricate porous NiTi alloys with three porosity levels. The mechanical properties of porous NiTi were assessed, as well as the surface cell growth capability. Furthermore, by loading rapamycin nanoparticles onto the surface and within the pores of porous NiTi, we evaluated the in vitro drug release behavior, inhibitory effect on cell proliferation, and inhibition of neointimal hyperplasia in vivo. The results demonstrated that an increase in porosity led to a decrease in the mechanical properties of porous NiTi, including hardness, tensile strength, and elastic modulus, and a decrease in the surface cell growth capability, affecting both cell proliferation and morphology. Concurrently, the loading capacity and release duration of rapamycin were extended with increasing porosity, resulting in enhanced inhibitory effects on cell proliferation in vitro and inhibition of neointimal hyperplasia in vivo. In conclusion, porous NiTi holds promise as a desirable vascular drug delivery material, but a balanced consideration of the influence of porosity on both mechanical properties and cytocompatibility is necessary to achieve an optimal balance among drug-loading and release performance, mechanical properties, and cytocompatibility.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Vascular Disease Institute of Central South University, Changsha, Hunan, China
| | - Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Vascular Disease Institute of Central South University, Changsha, Hunan, China
| | - Peng Lu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Vascular Disease Institute of Central South University, Changsha, Hunan, China
| | - Zicheng Wan
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Vascular Disease Institute of Central South University, Changsha, Hunan, China
| | - Hao He
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Vascular Disease Institute of Central South University, Changsha, Hunan, China
| | - Junwei Wang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Vascular Disease Institute of Central South University, Changsha, Hunan, China
| | - Dongyang Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, China
| | - Yimin Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, China
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Vascular Disease Institute of Central South University, Changsha, Hunan, China.
- Department of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
- Department of Vascular Surgery, The Second Xiangya Hospital, No. 139 Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
42
|
Peng Q, Yang Q, Yan Z, Wang X, Zhang Y, Ye M, Zhou S, Jiao G, Chen W. Nanofiber-reinforced chitosan/gelatine hydrogel with photothermal, antioxidant and conductive capabilities promotes healing of infected wounds. Int J Biol Macromol 2024; 279:134625. [PMID: 39163962 DOI: 10.1016/j.ijbiomac.2024.134625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
The wound healing process was often accompanied by bacterial infection and inflammation. The combination of electrically conductive nanomaterials and wound dressings could accelerate cell proliferation through endogenous electrical signaling, effectively promoting wound healing. In this study, polypyrrole was modified with dopamine hydrochloride by an in situ polymerization to form dopamine-polypyrrole (DA-Ppy) conductive nanofibers which successfully enhanced the water dispersibility and biocompatibility of polypyrrole. The DA-Ppy nanofibers were dispersed in an aqueous solution for >48 h and still maintained good stability. In addition, the DA-Ppy nanofibers showed good photothermal properties, and the temperature could reach 59.7 °C by 1.5 W/cm2 near-infrared light irradiation (NIR) for 10 min. DA-Ppy conductive nanofibres could be well dispersed in 3,4-dihydroxyphenylpropionic acid modified chitosan-carboxymethylated β-cyclodextrin modified gelatin (CG) hydrogel due to the presence of DA, which endowed CG/DA-Ppy hydrogel with good adhesion properties, and the hydrogel adhered to the pigskin would not be dislodged by washing with running water. Under NIR, the CG/DA-Ppy hydrogel showed significant antimicrobial properties. Moreover, the CG/DA-Ppy hydrogel had excellent biocompatibility. In addition, CG/DA-Ppy hydrogel was effective in scavenging ROS, inducing macrophage polarization towards the M2 phenotype, and modulating the level of wound inflammation in vitro. Finally, it was confirmed in rat-infected wounds that the tissue regeneration effect and collagen deposition in the CG/DA-Ppy + NIR group were significantly better than the other groups in the repair of infected wounds, indicating better repair of infected wounds. The results suggested that the photothermal, antioxidant DA-Ppy conductive nanofiber had great potential for application in infected wound healing.
Collapse
Affiliation(s)
- Qing Peng
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, PR China
| | - Qi Yang
- Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan 523573, PR China
| | - Zheng Yan
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiaofei Wang
- Department of Orthopedics, 302 Hospital of China Guizhou Aviation Industry Group, Anshun, Guizhou 561000, PR China
| | - Ying Zhang
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, PR China
| | - Mao Ye
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, PR China
| | - Shuqin Zhou
- Department of Anesthesiology of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, PR China
| | - Genlong Jiao
- Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan 523573, PR China.
| | - Weijian Chen
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, PR China; Department of Orthopedics, 302 Hospital of China Guizhou Aviation Industry Group, Anshun, Guizhou 561000, PR China.
| |
Collapse
|
43
|
Zhang J, Xiao L, Li X, Chen X, Wang Y, Hong X, Sun Z, Shao Y, Chen Y. Optical fiber SPR probe platform combined with oriented antibody optimized modification for ultrasensitive and portable detection of human thyroglobulin. Microchem J 2024; 206:111591. [DOI: 10.1016/j.microc.2024.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Houser BJ, Camacho AN, Bryner CA, Ziegler M, Wood JB, Spencer AJ, Gautam RP, Okonkwo TP, Wagner V, Smith SJ, Chesnel K, Harrison RG, Pitt WG. Bacterial Binding to Polydopamine-Coated Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58226-58240. [PMID: 39420634 DOI: 10.1021/acsami.4c11169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In medical infections such as blood sepsis and in food quality control, fast and accurate bacteria analysis is required. Using magnetic nanoparticles (MNPs) for bacterial capture and concentration is very promising for rapid analysis. When MNPs are functionalized with the proper surface chemistry, they have the ability to bind to bacteria and aid in the removal and concentration of bacteria from a sample for further analysis. This study introduces a novel approach for bacterial concentration using polydopamine (pDA), a highly adhesive polymer often purported to create antibacterial and antibiofouling coatings on medical devices. Although pDA has been generally studied for its ability to coat surfaces and reduce biofilm growth, we have found that when coated on magnetic nanoclusters (MNCs), more specifically iron oxide nanoclusters, it effectively binds to and can remove from suspension some types of bacteria. This study investigated the binding of pDA-coated MNCs (pDA-MNCs) to various Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and several E. coli strains. MNCs were successfully coated with pDA, and these functionalized MNCs bound a wide variety of bacterial strains. The efficiency of removing bacteria from a suspension can range from 0.99 for S. aureus to 0.01 for an E. coli strain. Such strong capture and differential capture have important applications in collecting bacteria from dilute samples found in medical diagnostics, food and water quality monitoring, and other industries.
Collapse
Affiliation(s)
- Bowen J Houser
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Alyson N Camacho
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Camille A Bryner
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Masa Ziegler
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Justin B Wood
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ashley J Spencer
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Rajendra P Gautam
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Tochukwu P Okonkwo
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Victoria Wagner
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Stacey J Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Karine Chesnel
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Roger G Harrison
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
45
|
Atrei A, Chokheli S, Corsini M, József T, Di Florio G. Uptake of Magnetite Nanoparticles on Polydopamine Films Deposited on Gold Surfaces: A Study by AFM and XPS. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1699. [PMID: 39513778 PMCID: PMC11547837 DOI: 10.3390/nano14211699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Polydopamine has the capacity to adhere to a large variety of materials and this property offers the possibility to bind nanoparticles to solid surfaces. In this work, magnetite nanoparticles were deposited on gold substrates coated with polydopamine films. The aim of this work was to investigate the effects of the composition and morphology of the PDA layers on the sticking of magnetite nanoparticles. The polydopamine coating of gold surfaces was achieved by the oxidation of alkaline solutions of dopamine with various reaction times. The length of the reaction time to form PDA was expected to influence the composition and surface roughness of the PDA films. Magnetite nanoparticles were deposited on these polydopamine films by immersing the samples in aqueous dispersions of nanoparticles. The morphology at the nanometric scale and the composition of the surfaces before and after the deposition of magnetite nanoparticles were investigated by means of AFM and XPS. We found that the amount of magnetite nanoparticles on the surface did not vary monotonically with the reaction time of PDA formation, but it was at the minimum after 20 min of reaction. This behavior may be attributed to changes in the chemical composition of the coating layer with reaction time.
Collapse
Affiliation(s)
- Andrea Atrei
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, 53100 Siena, Italy; (S.C.); (M.C.)
| | - Shalva Chokheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, 53100 Siena, Italy; (S.C.); (M.C.)
| | - Maddalena Corsini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, 53100 Siena, Italy; (S.C.); (M.C.)
| | - Tóth József
- HUN-REN Institute for Nuclear Research, H-4026 Debrecem, Hungary;
| | - Giuseppe Di Florio
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Centre, 00124 Rome, Italy;
| |
Collapse
|
46
|
Cassa MA, Gentile P, Girón-Hernández J, Ciardelli G, Carmagnola I. Smart self-defensive coatings with bacteria-triggered antimicrobial response for medical devices. Biomater Sci 2024; 12:5433-5449. [PMID: 39320148 DOI: 10.1039/d4bm00936c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Bacterial colonization and biofilm formation on medical devices represent one of the most urgent and critical challenges in modern healthcare. These issues not only pose serious threats to patient health by increasing the risk of infections but also exert a considerable economic burden on national healthcare systems due to prolonged hospital stays and additional treatments. To address this challenge, there is a need for smart, customized biomaterials for medical device fabrication, particularly through the development of surface modification strategies that prevent bacterial adhesion and the growth of mature biofilms. This review explores three bioinspired approaches through which antibacterial and antiadhesive coatings can be engineered to exhibit smart, stimuli-responsive features. This responsiveness is greatly valuable as it provides the coatings with a controlled, on-demand antibacterial response that is activated only in the presence of bacteria, functioning as self-defensive coatings. Such coatings can be designed to release antibacterial agents or change their surface properties/conformation in response to specific stimuli, like changes in pH, temperature, or the presence of bacterial enzymes. This targeted approach minimizes the risk of developing antibiotic resistance and reduces the need for continuous, high-dose antibacterial treatments, thereby preserving the natural microbiome and further reducing healthcare costs. The final part of the review reports a critical analysis highlighting the potential improvements and future evolutions regarding antimicrobial self-defensive coatings and their validation.
Collapse
Affiliation(s)
- Maria Antonia Cassa
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Joel Girón-Hernández
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gianluca Ciardelli
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
- National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Pisa 56124, Italy
| | - Irene Carmagnola
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| |
Collapse
|
47
|
Xiao Q, Wan C, Zhang Z, Liu H, Liu P, Huang Q, Zhao D. A pH-Responsive Ti-Based Local Drug Delivery System for Osteosarcoma Therapy. J Funct Biomater 2024; 15:312. [PMID: 39452610 PMCID: PMC11508615 DOI: 10.3390/jfb15100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Osteosarcoma is one of the major bone cancers, especially for youngsters. The current treatment usually requires systemic chemotherapy and the removal of bone tumors. Titanium (Ti)-based implants can be modified as local drug delivery (LDD) systems for controllable and localized chemotherapeutic drug release. In this work, a pH-responsive Ti-based LDD prototype was designed by introducing polydopamine (PDA) to release doxorubicin (DOX) around osteosarcoma cells with low pH. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a contact angle meter were applied for surface characterization. Both direct and indirect cell culture modes were performed for biocompatibility and biofunction assessments. The results indicate that the Ti-based LDD prototype exhibits significant pH-dependent DOX release. The cumulative release can reach up to approximately 40% at pH = 6.0 after 72 h, but only around 20% at pH = 7.4. The Ti-based LDD implant shows good biocompatibility with approximately 93% viability of MC3T3 cells after direct culture in vitro for 24 h. Both direct and indirect culture modes verify the good anti-osteosarcoma function of the LDD implant, which should be attributed to the pH-responsive release of DOX.
Collapse
Affiliation(s)
- Qinle Xiao
- College of Biology, Hunan University, Changsha 410082, China
| | - Changjun Wan
- College of Biology, Hunan University, Changsha 410082, China
| | - Zhe Zhang
- College of Biology, Hunan University, Changsha 410082, China
| | - Hui Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Pingting Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Dapeng Zhao
- College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
48
|
Zhang L, Li M, Tang C, Wang H, Zhang X, Wang J, Li H, Mahtab MS, Yue D. Mechanistic Insights into the Removal of Surfactant-Like Contaminants on Mesoporous Polydopamine Nanospheres from Complex Wastewater Matrices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18435-18445. [PMID: 39351698 DOI: 10.1021/acs.est.4c06733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The detrimental environmental effects of surfactant-like contaminants (SLCs) with distinctive amphiphilic structures have garnered significant attention, particularly since perfluorooctanesulfonate was classified as a persistent organic pollutant. Despite the numerous absorbents developed for SLCs removal, the underlying interaction mechanisms remain speculative and lack experimental validation. To address this research gap, we elucidate the mechanistic insights into the selective removal of SLCs using mesoporous polydopamine nanospheres (MPDA) fabricated via a novel soft-template method. We employed low-field nuclear magnetic resonance to quantitatively characterize the hydrophilicity of the absorbents using water molecules as probes. The results demonstrated that MPDA with uniform mesopores exhibited a remarkable threefold enhancement in SLCs' adsorption capacity compared to conventional polydopamine particles via intraparticle diffusion. We further demonstrated the dominant effects of electrostatic and hydrophobic interactions on the selective removal of SLCs with MPDA by regulating the isoelectric pH value and performing a comparative analysis. The mechanism-inspired SLC-removal strategy achieved an average removal rate of 76.3% from highly contaminated wastewater. Our findings offer new avenues for applying MPDA as an efficient adsorbent and provide innovative and mechanistic insights for targeted SLC removal in complex wastewater matrices.
Collapse
Affiliation(s)
- Lingyue Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Mingchun Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chu Tang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijing Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xunming Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianchao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Hongxin Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mohd Salim Mahtab
- Department of Civil Engineering, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
49
|
Liu X, Li D, Tabassum M, Huang C, Yi K, Fang T, Jia X. Sequentially photocatalytic degradation of mussel-inspired polydopamine: From nanoscale disassembly to effective mineralization. J Colloid Interface Sci 2024; 672:329-337. [PMID: 38850860 DOI: 10.1016/j.jcis.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Mussel-inspired polydopamine (PDA) coating has been utilized extensively as versatile deposition strategies that can functionalize surfaces of virtually all substrates. However, the strong adhesion, stability and intermolecular interaction of PDA make it inefficient in certain applications. Herein, a green and efficient photocatalytic method was reported to remove adhesion and degrade PDA by using TiO2-H2O2 as photocatalyst. The photodegradation process of the PDA spheres was first undergone nanoscale disassembly to form soluble PDA oligomers or well-dispersed nanoparticles. Most of the disassembled PDA can be photodegraded and finally mineralized to CO2 and H2O. Various PDA coated templates and PDA hollow structures can be photodegraded by this strategy. Such process provides a practical strategy for constructing the patterned and gradient surfaces by the "top-down" method under the control of light scope and intensity. This sequential degradation strategy is beneficial to achieve the decomposition of highly crosslinked polymers.
Collapse
Affiliation(s)
- Xinghuan Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Danya Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Mehwish Tabassum
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Chao Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Ke Yi
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Tianwen Fang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
50
|
Zhang J, Tian S, Zhu C, Han L, Zhang X. The synthesis of polydopamine nano- and microspheres in microdroplets. Chem Commun (Camb) 2024; 60:11068-11071. [PMID: 39206971 DOI: 10.1039/d4cc03017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here we developed a microdroplet-based strategy for the rapid synthesis of uniform polydopamine nano- and microspheres. Polydopamine spheres with controllable sizes were generated within hundreds of microseconds by simply spraying water solutions of dopamine into microdroplets. Mass spectrometry revealed that dopamine was primarily oxidized into aminochrome, acting as the major building block for polydopamine. We anticipate that microdroplet chemistry will be rich in opportunities for the synthesis of functional nano- and micromaterials.
Collapse
Affiliation(s)
- Jianze Zhang
- College of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China.
| | - Shufang Tian
- School of Energy Science and Technology, Henan University, Zhengzhou, 450046, China.
| | - Chenghui Zhu
- College of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China.
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xinxing Zhang
- College of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China.
| |
Collapse
|