1
|
Gutiérrez Coronado O, Sandoval Salazar C, Muñoz Carrillo JL, Gutiérrez Villalobos OA, Miranda Beltrán MDLL, Soriano Hernández AD, Beltrán Campos V, Villalobos Gutiérrez PT. Functionalized Nanomaterials in Cancer Treatment: A Review. Int J Mol Sci 2025; 26:2633. [PMID: 40141274 PMCID: PMC11942109 DOI: 10.3390/ijms26062633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer is one of the main causes of death worldwide. Chemotherapy, radiotherapy and surgery are currently the treatments of choice for cancer. However, conventional therapies have their limitations, such as non-specificity, tumor recurrence and toxicity to the target cells. Recently, nanomaterials have been considered as therapeutic agents against cancer. This is mainly due to their unique optical properties, biocompatibility, large surface area and nanoscale size. These properties are crucial as they can affect biocompatibility and uptake by the cell, reducing efficacy. However, because nanoparticles can be functionalized with biomolecules, they become more biocompatible, which improves uptake, and they can be specifically targeted against cancer cells, which improves their anticancer activity. In this review, we summarize some of the recent studies in which nanomaterials have been functionalized with the aim of increasing therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Oscar Gutiérrez Coronado
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico; (O.G.C.); (M.d.l.L.M.B.); (A.D.S.H.)
| | - Cuauhtémoc Sandoval Salazar
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico; (C.S.S.); (V.B.C.)
| | - José Luis Muñoz Carrillo
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico; (O.G.C.); (M.d.l.L.M.B.); (A.D.S.H.)
| | | | - María de la Luz Miranda Beltrán
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico; (O.G.C.); (M.d.l.L.M.B.); (A.D.S.H.)
| | | | - Vicente Beltrán Campos
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico; (C.S.S.); (V.B.C.)
| | | |
Collapse
|
2
|
Metternich JT, Patjoshi SK, Kistwal T, Kruss S. High-Throughput Approaches to Engineer Fluorescent Nanosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411067. [PMID: 39533494 PMCID: PMC11707575 DOI: 10.1002/adma.202411067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Optical sensors are powerful tools to identify and image (biological) molecules. Because of their optoelectronic properties, nanomaterials are often used as building blocks. To transduce the chemical interaction with the analyte into an optical signal, the interplay between surface chemistry and nanomaterial photophysics has to be optimized. Understanding these aspects promises major opportunities for tailored sensors with optimal performance. However, this requires methods to create and explore the many chemical permutations. Indeed, many current approaches are limited in throughput. This affects the chemical design space that can be studied, the application of machine learning approaches as well as fundamental mechanistic understanding. Here, an overview of selection-limited and synthesis-limited approaches is provided to create and identify molecular nanosensors. Bottlenecks are discussed and opportunities of non-classical recognition strategies are highlighted such as corona phase molecular recognition as well as the requirements for high throughput and scalability. Fluorescent carbon nanotubes are powerful building blocks for sensors and their huge chemical design space makes them an ideal platform for high throughput approaches. Therefore, they are the focus of this article, but the insights are transferable to any nanosensor system. Overall, this perspective aims to provide a fresh perspective to overcome current challenges in the nanosensor field.
Collapse
Affiliation(s)
- Justus T. Metternich
- Fraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
| | - Sujit K. Patjoshi
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
| | - Tanuja Kistwal
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
| | - Sebastian Kruss
- Fraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
- Center for Nanointegration Duisburg‐Essen (CENIDE)Carl‐Benz‐Strasse 19947057DuisburgGermany
| |
Collapse
|
3
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics 2023; 15:889. [PMID: 36986748 PMCID: PMC10055866 DOI: 10.3390/pharmaceutics15030889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Anticancer drugs in monotherapy are ineffective to treat various kinds of cancer due to the heterogeneous nature of cancer. Moreover, available anticancer drugs possessed various hurdles, such as drug resistance, insensitivity of cancer cells to drugs, adverse effects and patient inconveniences. Hence, plant-based phytochemicals could be a better substitute for conventional chemotherapy for treatment of cancer due to various properties: lesser adverse effects, action via multiple pathways, economical, etc. Various preclinical studies have demonstrated that a combination of phytochemicals with conventional anticancer drugs is more efficacious than phytochemicals individually to treat cancer because plant-derived compounds have lower anticancer efficacy than conventional anticancer drugs. Moreover, phytochemicals suffer from poor aqueous solubility and reduced bioavailability, which must be resolved for efficacious treatment of cancer. Therefore, nanotechnology-based novel carriers are employed for codelivery of phytochemicals and conventional anticancer drugs for better treatment of cancer. These novel carriers include nanoemulsion, nanosuspension, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles, dendrimers, metallic nanoparticles, carbon nanotubes that provide various benefits of improved solubility, reduced adverse effects, higher efficacy, reduced dose, improved dosing frequency, reduced drug resistance, improved bioavailability and higher patient compliance. This review summarizes various phytochemicals employed in treatment of cancer, combination therapy of phytochemicals with anticancer drugs and various nanotechnology-based carriers to deliver the combination therapy in treatment of cancer.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai 206001, India
| |
Collapse
|
5
|
Wu M, Zhang J, Xiong Y, Zhao Y, Zheng M, Huang X, Huang F, Wu X, Li X, Fan W, Hu L, Zeng Y, Cheng X, Yue J, Du J, Chen N, Wei W, Yao Q, Lu X, Huang C, Deng J, Chang Z, Liu H, Zhao TC, Chinn YE. Promotion of Lung Cancer Metastasis by SIRT2-Mediated Extracellular Protein Deacetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205462. [PMID: 36453571 PMCID: PMC9875677 DOI: 10.1002/advs.202205462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Acetylation of extracellular proteins has been observed in many independent studies where particular attention has been given to the dynamic change of the microenvironmental protein post-translational modifications. While extracellular proteins can be acetylated within the cells prior to their micro-environmental distribution, their deacetylation in a tumor microenvironment remains elusive. Here it is described that multiple acetyl-vWA domain-carrying proteins including integrin β3 (ITGB3) and collagen 6A (COL6A) are deacetylated by Sirtuin family member SIRT2 in extracellular space. SIRT2 is secreted by macrophages following toll-like receptor (TLR) family member TLR4 or TLR2 activation. TLR-activated SIRT2 undergoes autophagosome translocation. TNF receptor associated factor 6 (TRAF6)-mediated autophagy flux in response to TLR2/4 activation can then pump SIRT2 into the microenvironment to function as extracellular SIRT2 (eSIRT2). In the extracellular space, eSIRT2 deacetylates ITGB3 on aK416 involved in cell attachment and migration, leading to a promotion of cancer cell metastasis. In lung cancer patients, significantly increased serum eSIRT2 level correlates with dramatically decreased ITGB3-K416 acetylation in cancer cells. Thus, the extracellular space is a subcellular organelle-like arena where eSIRT2 promotes cancer cell metastasis via catalyzing extracellular protein deacetylation.
Collapse
|
6
|
Wulf V, Bisker G. Single-Walled Carbon Nanotubes as Fluorescent Probes for Monitoring the Self-Assembly and Morphology of Peptide/Polymer Hybrid Hydrogels. NANO LETTERS 2022; 22:9205-9214. [PMID: 36259520 PMCID: PMC9706665 DOI: 10.1021/acs.nanolett.2c01587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Indexed: 05/20/2023]
Abstract
Hydrogels formed via supramolecular self-assembly of fluorenylmethyloxycarbonyl (Fmoc)-conjugated amino acids provide excellent scaffolds for 3D cell culture, tissue engineering, and tissue recovery matrices. Such hydrogels are usually characterized by rheology or electron microscopy, which are invasive and cannot provide real-time information. Here, we incorporate near-infrared fluorescent single-walled carbon nanotubes (SWCNTs) into Fmoc-diphenylalanine hydrogels as fluorescent probes, reporting in real-time on the morphology and time-dependent structural changes of the self-assembled hydrogels in the transparency window of biological tissue. We further demonstrate that the gelation process and structural changes upon the addition of cross-linking ions are transduced into spectral modulations of the SWCNT-fluorescence. Moreover, morphological differences of the hydrogels induced by polymer additives are manifested in unique features in fluorescence images of the incorporated SWCNTs. SWCNTs can thus serve as optical probes for noninvasive, long-term monitoring of the self-assembly gelation process and the fate of the resulting peptide hydrogel during long-term usage.
Collapse
Affiliation(s)
- Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- Center
for Light Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Ruan Y, Sohail M, Zhao J, Hu F, Li Y, Wang P, Zhang L. Applications of Material-Binding Peptides: A Review. ACS Biomater Sci Eng 2022; 8:4738-4750. [PMID: 36229413 DOI: 10.1021/acsbiomaterials.2c00651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Material-binding peptides (MBPs) are functionalized adhesive materials consisting of a few to several dozen amino acids. This affinity between MBPs and materials is regulated by multiple interactions, including hydrogen bonding, electrostatic, hydrophobic interactions, and π-π stacking. They show selective binding and high affinity to a diverse range of inorganic and organic materials, such as silicon-based materials, metals, metal compounds, carbon materials, and polymers. They are used to improve the biocompatibility of materials, increase the efficiency of material synthesis, and guide the controlled synthesis of nanomaterials. In addition, these can be used for precise targeting of proteins by conjugating to target biomolecules. In this review, we summarize the main designs and applications of MBPs in recent years. The discussions focus on more efficient and functional peptides, including evolution and overall design of MBPs. We have also highlighted the recent applications of MBPs, such as functionalization of material surfaces, synthesis of nanomaterials, drug delivery, cancer therapy, and plastic degradation. Besides, we also discussed the development trend of MBPs. This interpretation will accelerate future investigations to bottleneck the drawbacks of available MBPs, promoting their commercial applications.
Collapse
Affiliation(s)
- Yongqiang Ruan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jindi Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Fanghui Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yunhan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Panlin Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
8
|
Mondal J, An JM, Surwase SS, Chakraborty K, Sutradhar SC, Hwang J, Lee J, Lee YK. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. BIOSENSORS 2022; 12:731. [PMID: 36140116 PMCID: PMC9496036 DOI: 10.3390/bios12090731] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
After the COVID-19 pandemic, the development of an accurate diagnosis and monitoring of diseases became a more important issue. In order to fabricate high-performance and sensitive biosensors, many researchers and scientists have used many kinds of nanomaterials such as metal nanoparticles (NPs), metal oxide NPs, quantum dots (QDs), and carbon nanomaterials including graphene and carbon nanotubes (CNTs). Among them, CNTs have been considered important biosensing channel candidates due to their excellent physical properties such as high electrical conductivity, strong mechanical properties, plasmonic properties, and so on. Thus, in this review, CNT-based biosensing systems are introduced and various sensing approaches such as electrochemical, optical, and electrical methods are reported. Moreover, such biosensing platforms showed excellent sensitivity and high selectivity against not only viruses but also virus DNA structures. So, based on the amazing potential of CNTs-based biosensing systems, healthcare and public health can be significantly improved.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Sachin S. Surwase
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea
| | - Sabuj Chandra Sutradhar
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Joon Hwang
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jaewook Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
| |
Collapse
|
9
|
Xu Y, Wang H, Qiao Z. Precise Control of Self‐Assembly in Vivo Based on Polymer‐Peptide Conjugates. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yin‐Sheng Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| | - Zeng‐Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
10
|
Safdar M, Kim W, Park S, Gwon Y, Kim YO, Kim J. Engineering plants with carbon nanotubes: a sustainable agriculture approach. J Nanobiotechnology 2022; 20:275. [PMID: 35701848 PMCID: PMC9195285 DOI: 10.1186/s12951-022-01483-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 01/12/2023] Open
Abstract
Sustainable agriculture is an important conception to meet the growing food demand of the global population. The increased need for adequate and safe food, as well as the ongoing ecological destruction associated with conventional agriculture practices are key global challenges. Nanomaterials are being developed in the agriculture sector to improve the growth and protection of crops. Among the various engineered nanomaterials, carbon nanotubes (CNTs) are one of the most promising carbon-based nanomaterials owing to their attractive physiochemical properties such as small size, high surface area, and superior mechanical and thermal strength, offering better opportunities for agriculture sector applications. This review provides basic information about CNTs, including their history; classification; and electrical, thermal, and mechanical properties, with a focus on their applications in the agriculture field. Furthermore, the mechanisms of the uptake and translocation of CNTs in plants and their defense mechanisms against environmental stresses are discussed. Finally, the major shortcomings, threats, and challenges of CNTs are assessed to provide a broad and clear view of the potential and future directions for CNT-based agriculture applications to achieve the goal of sustainability.
Collapse
Affiliation(s)
- Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea. .,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea. .,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
11
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022; 61:e202112372. [PMID: 34978752 PMCID: PMC9313876 DOI: 10.1002/anie.202112372] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/28/2021] [Indexed: 12/23/2022]
Abstract
Biosensors are powerful tools for modern basic research and biomedical diagnostics. Their development requires substantial input from the chemical sciences. Sensors or probes with an optical readout, such as fluorescence, offer rapid, minimally invasive sensing of analytes with high spatial and temporal resolution. The near-infrared (NIR) region is beneficial because of the reduced background and scattering of biological samples (tissue transparency window) in this range. In this context, single-walled carbon nanotubes (SWCNTs) have emerged as versatile NIR fluorescent building blocks for biosensors. Here, we provide an overview of advances in SWCNT-based NIR fluorescent molecular sensors. We focus on chemical design strategies for diverse analytes and summarize insights into the photophysics and molecular recognition. Furthermore, different application areas are discussed-from chemical imaging of cellular systems and diagnostics to in vivo applications and perspectives for the future.
Collapse
Affiliation(s)
- Julia Ackermann
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department EBSUniversity Duisburg-EssenBismarckstrasse 8147057DuisburgGermany
| | - Justus T. Metternich
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Svenja Herbertz
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Sebastian Kruss
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| |
Collapse
|
12
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Ackermann
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
- Department EBS University Duisburg-Essen Bismarckstrasse 81 47057 Duisburg Germany
| | - Justus T. Metternich
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Svenja Herbertz
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Sebastian Kruss
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| |
Collapse
|
13
|
Nißler R, Müller AT, Dohrman F, Kurth L, Li H, Cosio EG, Flavel BS, Giraldo JP, Mithöfer A, Kruss S. Detection and Imaging of the Plant Pathogen Response by Near-Infrared Fluorescent Polyphenol Sensors. Angew Chem Int Ed Engl 2022; 61:e202108373. [PMID: 34608727 PMCID: PMC9298901 DOI: 10.1002/anie.202108373] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/28/2021] [Indexed: 12/17/2022]
Abstract
Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near-infrared (NIR) fluorescent single-wall carbon nanotubes (SWCNTs). We identified polyethylene glycol-phospholipids that render (6,5)-SWCNTs sensitive (Kd =90 nM) to plant polyphenols (tannins, flavonoids, …), which red-shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen-induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion.
Collapse
Affiliation(s)
- Robert Nißler
- Physical Chemistry IIBochum UniversityUniversitätsstrasse 15044801BochumGermany
- Institute of Physical ChemistryGeorg-August Universität GöttingenTammannstrasse 637077GöttingenGermany
| | - Andrea T. Müller
- Research Group Plant Defense PhysiologyMax Planck Institute for Chemical EcologyHans-Knöll-Strasse 807745JenaGermany
| | - Frederike Dohrman
- Institute of Physical ChemistryGeorg-August Universität GöttingenTammannstrasse 637077GöttingenGermany
| | - Larissa Kurth
- Institute of Physical ChemistryGeorg-August Universität GöttingenTammannstrasse 637077GöttingenGermany
| | - Han Li
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)76344Eggenstein-LeopoldshafenGermany
| | - Eric G. Cosio
- Institute for Nature Earth and Energy (INTE-PUCP)Pontifical Catholic University of PeruAv. Universitaria 1801, San Miguel15088LimaPeru
| | - Benjamin S. Flavel
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)76344Eggenstein-LeopoldshafenGermany
| | - Juan Pablo Giraldo
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCA92507USA
| | - Axel Mithöfer
- Research Group Plant Defense PhysiologyMax Planck Institute for Chemical EcologyHans-Knöll-Strasse 807745JenaGermany
| | - Sebastian Kruss
- Physical Chemistry IIBochum UniversityUniversitätsstrasse 15044801BochumGermany
- Institute of Physical ChemistryGeorg-August Universität GöttingenTammannstrasse 637077GöttingenGermany
- Fraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| |
Collapse
|
14
|
Nißler R, Müller AT, Dohrman F, Kurth L, Li H, Cosio EG, Flavel BS, Giraldo JP, Mithöfer A, Kruss S. Detektion und Visualisierung der Pflanzen‐Pathogen‐Response durch Nah‐Infrarot‐fluoreszente Polyphenolsensoren. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Robert Nißler
- Physikalische Chemie II Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
- Institut für Physikalische Chemie Georg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Deutschland
| | - Andrea T. Müller
- Research Group Plant Defense Physiology Max-Planck-Institut für Chemische Ökologie Hans-Knöll-Straße 8 07745 Jena Deutschland
| | - Frederike Dohrman
- Institut für Physikalische Chemie Georg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Deutschland
| | - Larissa Kurth
- Institut für Physikalische Chemie Georg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Deutschland
| | - Han Li
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Deutschland
| | - Eric G. Cosio
- Institute for Nature Earth and Energy (INTE-PUCP) Pontifical Catholic University of Peru Av. Universitaria 1801, San Miguel 15088 Lima Peru
| | - Benjamin S. Flavel
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Deutschland
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences University of California Riverside CA 92507 USA
| | - Axel Mithöfer
- Research Group Plant Defense Physiology Max-Planck-Institut für Chemische Ökologie Hans-Knöll-Straße 8 07745 Jena Deutschland
| | - Sebastian Kruss
- Physikalische Chemie II Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
- Institut für Physikalische Chemie Georg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Deutschland
- Fraunhofer-Institut für Mikroelektronische Schaltungen Finkenstraße 61 47057 Duisburg Deutschland
| |
Collapse
|
15
|
Tang L, Xiao Q, Mei Y, He S, Zhang Z, Wang R, Wang W. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnology 2021; 19:423. [PMID: 34915901 PMCID: PMC8679967 DOI: 10.1186/s12951-021-01174-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the exciting breakthroughs in medical technology, cancer still accounts for one of the principle triggers of death and conventional therapeutic modalities often fail to attain an effective cure. Recently, nanobiotechnology has made huge advancement in cancer therapy with gigantic application potential because of their ability in achieving precise and controlled drug release, elevating drug solubility and reducing adverse effects. Carbon nanotubes (CNTs), one of the most promising carbon-related nanomaterials, have already achieved much success in biomedical field. Due to their excellent optical property, thermal and electronic conductivity, easy functionalization ability and high drug loading capacity, CNTs can be applied in a multifunctional way for cancer treatment and diagnosis. In this review, we will give an overview of the recent progress of CNT-based drug delivery systems in cancer theranostics, which emphasizes their targetability to intracellular components of tumor cells and extracellular elements in tumor microenvironment. Moreover, a detailed introduction on how CNTs penetrate inside the tumor cells to reach their sites of action and achieve the therapeutic effects, as well as their diagnostic applications will be highlighted. ![]()
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ruotong Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
16
|
Selvaggio G, Weitzel M, Oleksiievets N, Oswald TA, Nißler R, Mey I, Karius V, Enderlein J, Tsukanov R, Kruss S. Photophysical properties and fluorescence lifetime imaging of exfoliated near-infrared fluorescent silicate nanosheets. NANOSCALE ADVANCES 2021; 3:4541-4553. [PMID: 36133471 PMCID: PMC9419235 DOI: 10.1039/d1na00238d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/23/2021] [Indexed: 05/04/2023]
Abstract
The layered silicates Egyptian Blue (CaCuSi4O10, EB), Han Blue (BaCuSi4O10, HB) and Han Purple (BaCuSi2O6, HP) emit as bulk materials bright and stable fluorescence in the near-infrared (NIR), which is of high interest for (bio)photonics due to minimal scattering, absorption and phototoxicity in this spectral range. So far the optical properties of nanosheets (NS) of these silicates are poorly understood. Here, we exfoliate them into monodisperse nanosheets, report their physicochemical properties and use them for (bio)photonics. The approach uses ball milling followed by tip sonication and centrifugation steps to exfoliate the silicates into NS with lateral size and thickness down to ≈ 16-27 nm and 1-4 nm, respectively. They emit at ≈ 927 nm (EB-NS), 953 nm (HB-NS) and 924 nm (HP-NS), and single NS can be imaged in the NIR. The fluorescence lifetimes decrease from ≈ 30-100 μs (bulk) to 17 μs (EB-NS), 8 μs (HB-NS) and 7 μs (HP-NS), thus enabling lifetime-encoded multicolor imaging both on the microscopic and the macroscopic scale. Finally, remote imaging through tissue phantoms reveals the potential for bioimaging. In summary, we report a procedure to gain monodisperse NIR fluorescent silicate nanosheets, determine their size-dependent photophysical properties and showcase the potential for NIR photonics.
Collapse
Affiliation(s)
- Gabriele Selvaggio
- Physical Chemistry II, Bochum University Bochum 44801 Germany
- Institute of Physical Chemistry, University of Göttingen Göttingen 37077 Germany
| | - Milan Weitzel
- Institute of Physical Chemistry, University of Göttingen Göttingen 37077 Germany
| | - Nazar Oleksiievets
- Third Institute of Physics, University of Göttingen Göttingen 37077 Germany
| | - Tabea A Oswald
- Institute of Organic and Biomolecular Chemistry, University of Göttingen Göttingen 37077 Germany
| | - Robert Nißler
- Physical Chemistry II, Bochum University Bochum 44801 Germany
- Institute of Physical Chemistry, University of Göttingen Göttingen 37077 Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Göttingen Göttingen 37077 Germany
| | - Volker Karius
- Department of Sedimentology and Environmental Geology, Geoscience Center, University of Göttingen Göttingen 37077 Germany
| | - Jörg Enderlein
- Third Institute of Physics, University of Göttingen Göttingen 37077 Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen Germany
| | - Roman Tsukanov
- Third Institute of Physics, University of Göttingen Göttingen 37077 Germany
| | - Sebastian Kruss
- Physical Chemistry II, Bochum University Bochum 44801 Germany
- Institute of Physical Chemistry, University of Göttingen Göttingen 37077 Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems Duisburg 47057 Germany
| |
Collapse
|
17
|
Ashokkumar P, Collot M, Klymchenko AS. Fluorogenic Squaraine Dendrimers for Background-Free Imaging of Integrin Receptors in Cancer Cells. Chemistry 2021; 27:6795-6803. [PMID: 33567148 DOI: 10.1002/chem.202100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 11/06/2022]
Abstract
To overcome the limited brightness of existing fluorogenic molecular probes for biomolecular targets, we introduce a concept of fluorogenic dendrimer probe, which undergoes polarity-dependent switching due to intramolecular aggregation-caused quenching of its fluorophores. Based on a rational design of dendrimers with four and eight squaraine dyes, we found that octamer bearing dyes through a sufficiently long PEG(8) linker displays >400-fold fluorescence enhancement from water to non-polar dioxane. High extinction coefficient (≈2,300,000 m-1 cm-1 ) resulted from eight squaraine dyes and quantum yield (≈25 %) make this octamer the brightest environment-sensitive fluorogenic molecule reported to date. Its conjugate with cyclic RGD used at low concentration (3 nm) enables integrin-specific fluorescence imaging of cancer cells with high signal-to-background ratio. The developed dendrimer probe is a "golden middle" between molecular probes and nanoparticles, combining small size, turn-on response and high brightness, important for bioimaging.
Collapse
Affiliation(s)
- Pichandi Ashokkumar
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch, France.,Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Mayeul Collot
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch, France
| |
Collapse
|
18
|
Nißler R, Kurth L, Li H, Spreinat A, Kuhlemann I, Flavel BS, Kruss S. Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes. Anal Chem 2021; 93:6446-6455. [PMID: 33830740 DOI: 10.1021/acs.analchem.1c00168] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Semiconducting single-wall carbon nanotubes (SWCNTs) fluoresce in the near-infrared (NIR) region, and the emission wavelength depends on their chirality (n,m). Interactions with the environment affect the fluorescence and can be tailored by functionalizing SWCNTs with biopolymers such as DNA, which is the basis for fluorescent biosensors. So far, such biosensors have been mainly assembled from mixtures of SWCNT chiralities with large spectral overlap, which affects sensitivity as well as selectivity and prevents multiplexed sensing. The main challenge to gain chirality-pure sensors has been to combine approaches to isolate specific SWCNTs and generic (bio)functionalization approaches. Here, we created chirality-pure SWCNT-based NIR biosensors for important analytes such as neurotransmitters and investigated the effect of SWCNT chirality/handedness as well as long-term stability and sensitivity. For this purpose, we used aqueous two-phase extraction (ATPE) to gain chirality-pure (6,5)-, (7,5)-, (9,4)-, and (7,6)-SWCNTs (emission at ∼990, 1040, 1115, and 1130 nm, respectively). An exchange of the surfactant sodium deoxycholate (DOC) to specific single-stranded (ss)DNA sequences yielded monochiral sensors for small analytes (dopamine, riboflavin, ascorbic acid, pH). DOC residues impaired sensitivity, and therefore substantial removal was necessary. The assembled monochiral (6,5)-SWCNTs were up to 10 times brighter than their nonpurified counterparts, and the ssDNA sequence determined the absolute fluorescence intensity as well as colloidal (long-term) stability and selectivity for the analytes. (GT)40-(6,5)-SWCNTs displayed the maximum fluorescence response to the neurotransmitter dopamine (+140%, Kd = 1.9 × 10-7 M) and a long-term stability of >14 days. The specific ssDNA sequences imparted selectivity to the analytes mostly independent of SWCNT chirality and handedness of (±) (6,5)-SWCNTs, which allowed a predictable design. Finally, multiple monochiral/single-color SWCNTs were combined to achieve ratiometric/multiplexed sensing of the important analytes dopamine, riboflavin, H2O2, and pH. In summary, we demonstrated the assembly, characteristics, and potential of monochiral (single-color) SWCNTs for NIR fluorescence sensing applications.
Collapse
Affiliation(s)
- Robert Nißler
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany.,Physical Chemistry II, Bochum University, 44801 Bochum, Germany
| | - Larissa Kurth
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Spreinat
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Ilyas Kuhlemann
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany.,Physical Chemistry II, Bochum University, 44801 Bochum, Germany.,Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| |
Collapse
|
19
|
Nißler R, Bader O, Dohmen M, Walter SG, Noll C, Selvaggio G, Groß U, Kruss S. Remote near infrared identification of pathogens with multiplexed nanosensors. Nat Commun 2020; 11:5995. [PMID: 33239609 PMCID: PMC7689463 DOI: 10.1038/s41467-020-19718-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are worldwide a major cause of morbidity and mortality. Fast and specific detection of pathogens such as bacteria is needed to combat these diseases. Optimal methods would be non-invasive and without extensive sample-taking/processing. Here, we developed a set of near infrared (NIR) fluorescent nanosensors and used them for remote fingerprinting of clinically important bacteria. The nanosensors are based on single-walled carbon nanotubes (SWCNTs) that fluoresce in the NIR optical tissue transparency window, which offers ultra-low background and high tissue penetration. They are chemically tailored to detect released metabolites as well as specific virulence factors (lipopolysaccharides, siderophores, DNases, proteases) and integrated into functional hydrogel arrays with 9 different sensors. These hydrogels are exposed to clinical isolates of 6 important bacteria (Staphylococcus aureus, Escherichia coli,…) and remote (≥25 cm) NIR imaging allows to identify and distinguish bacteria. Sensors are also spectrally encoded (900 nm, 1000 nm, 1250 nm) to differentiate the two major pathogens P. aeruginosa as well as S. aureus and penetrate tissue (>5 mm). This type of multiplexing with NIR fluorescent nanosensors enables remote detection and differentiation of important pathogens and the potential for smart surfaces.
Collapse
Affiliation(s)
- Robert Nißler
- Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
- Physical Chemistry II, Bochum University, Bochum, Germany
| | - Oliver Bader
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Dohmen
- Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| | - Sebastian G Walter
- Department for Cardiothoracic Surgery and Intensive Care, University Hospital Cologne, Cologne, Germany
| | - Christine Noll
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriele Selvaggio
- Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
- Physical Chemistry II, Bochum University, Bochum, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry, Göttingen University, Göttingen, Germany.
- Physical Chemistry II, Bochum University, Bochum, Germany.
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, Germany.
| |
Collapse
|
20
|
Mann FA, Herrmann N, Opazo F, Kruss S. Quantum Defects as a Toolbox for the Covalent Functionalization of Carbon Nanotubes with Peptides and Proteins. Angew Chem Int Ed Engl 2020; 59:17732-17738. [PMID: 32511874 PMCID: PMC7540668 DOI: 10.1002/anie.202003825] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) are a 1D nanomaterial that shows fluorescence in the near-infrared (NIR, >800 nm). In the past, covalent chemistry was less explored to functionalize SWCNTs as it impairs NIR emission. However, certain sp3 defects (quantum defects) in the carbon lattice have emerged that preserve NIR fluorescence and even introduce a new, red-shifted emission peak. Here, we report on quantum defects, introduced using light-driven diazonium chemistry, that serve as anchor points for peptides and proteins. We show that maleimide anchors allow conjugation of cysteine-containing proteins such as a GFP-binding nanobody. In addition, an Fmoc-protected phenylalanine defect serves as a starting point for conjugation of visible fluorophores to create multicolor SWCNTs and in situ peptide synthesis directly on the nanotube. Therefore, these quantum defects are a versatile platform to tailor both the nanotube's photophysical properties as well as their surface chemistry.
Collapse
Affiliation(s)
- Florian A. Mann
- Institute of Physical ChemistryGeorg-August UniversitätTammannstraße 637077GöttingenGermany
| | - Niklas Herrmann
- Institute of Physical ChemistryGeorg-August UniversitätTammannstraße 637077GöttingenGermany
| | - Felipe Opazo
- Center for Biostructural Imaging of NeurodegenerationVon-Siebold-Straße 3a37075GöttingenGermany
| | - Sebastian Kruss
- Institute of Physical ChemistryGeorg-August UniversitätTammannstraße 637077GöttingenGermany
| |
Collapse
|
21
|
Mann FA, Herrmann N, Opazo F, Kruss S. Quantendefekte als Werkzeugkasten für die kovalente Funktionalisierung von Kohlenstoffnanoröhren mit Peptiden und Proteinen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Florian A. Mann
- Institut für Physikalische Chemie Georg-August Universität Tammannstraße 6 37077 Göttingen Deutschland
| | - Niklas Herrmann
- Institut für Physikalische Chemie Georg-August Universität Tammannstraße 6 37077 Göttingen Deutschland
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3a 37075 Göttingen Deutschland
| | - Sebastian Kruss
- Institut für Physikalische Chemie Georg-August Universität Tammannstraße 6 37077 Göttingen Deutschland
| |
Collapse
|
22
|
Dinarvand M, Elizarova S, Daniel J, Kruss S. Imaging of Monoamine Neurotransmitters with Fluorescent Nanoscale Sensors. Chempluschem 2020; 85:1465-1480. [DOI: 10.1002/cplu.202000248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Meshkat Dinarvand
- Institute of Physical ChemistryGöttingen University Tammannstrasse 2 37077 Göttingen Germany
| | - Sofia Elizarova
- Department of Molecular NeurobiologyMax Planck Institute of Experimental Medicine 37077 Göttingen Germany
| | - James Daniel
- Department of Molecular NeurobiologyMax Planck Institute of Experimental Medicine 37077 Göttingen Germany
| | - Sebastian Kruss
- Institute of Physical ChemistryGöttingen University Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
23
|
Patel KD, Kim TH, Mandakhbayar N, Singh RK, Jang JH, Lee JH, Kim HW. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. Acta Biomater 2020; 108:97-110. [PMID: 32165193 DOI: 10.1016/j.actbio.2020.03.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Tailoring the surface of biomaterial scaffolds has been a key strategy to modulate the cellular interactions that are helpful for tissue healing process. In particular, nanotopological surfaces have been demonstrated to regulate diverse behaviors of stem cells, such as initial adhesion, spreading and lineage specification. Here, we tailor the surface of biopolymer nanofibers with carbon nanotubes (CNTs) to create a unique bi-modal nanoscale topography (500 nm nanofiber with 25 nm nanotubes) and report the performance in modulating diverse in vivo responses including inflammation, angiogenesis, and bone regeneration. When administered to a rat subcutaneous site, the CNT-coated nanofiber exhibited significantly reduced inflammatory signs (down-regulated pro-inflammatory cytokines and macrophages gathering). Moreover, the CNT-coated nanofibers showed substantially promoted angiogenic responses, with enhanced neoblood vessel formation and angiogenic marker expression. Such stimulated tissue healing events by the CNT interfacing were evidenced in a calvarium bone defect model. The in vivo bone regeneration of the CNT- coated nanofibers was significantly accelerated, with higher bone mineral density and up-regulated osteogenic signs (OPN, OCN, BMP2) of in vivo bone forming cells. The in vitro studies using MSCs could demonstrate accelerated adhesion and osteogenic differentiation and mineralization, supporting the osteo-promoting mechanism behind the in vivo bone forming event. These findings highlight that the CNTs interfacing of biopolymer nanofibers is highly effective in reducing inflammation, promoting angiogenesis, and driving adhesion and osteogenesis of MSCs, which eventually orchestrate to accelerate tissue healing and bone regeneration process. STATEMENT OF SIGNIFICANCE: Here we demonstrate that the interfacing of biopolymer nanofibers with carbon nanotubes (CNTs) could modulate multiple interactions of cells and tissues that are ultimately helpful for the tissue healing and bone regeneration process. The CNT-coated scaffolds significantly reduced the pro-inflammatory signals while stimulating the angiogenic marker expressions. Furthermore, the CNT-coated scaffolds increased the bone matrix production of bone forming cells in vivo as well as accelerated the adhesion and osteogenic differentiation of MSCs in vitro. These collective findings highlight that the CNTs coated on the biopolymer nanofibers allow the creation of a promising platform for nanoscale engineering of biomaterial surface that can favor tissue healing and bone regeneration process, through a series of orchestrated events in anti-inflammation, pro-angiogenesis, and stem cell stimulation.
Collapse
Affiliation(s)
- Kapil D Patel
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Tae-Hyun Kim
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K Singh
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University, Incheon, Republic of Korea
| | - Jung-Hwan Lee
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
24
|
Wu H, Nißler R, Morris V, Herrmann N, Hu P, Jeon SJ, Kruss S, Giraldo JP. Monitoring Plant Health with Near-Infrared Fluorescent H 2O 2 Nanosensors. NANO LETTERS 2020; 20:2432-2442. [PMID: 32097014 DOI: 10.1021/acs.nanolett.9b05159] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Near-infrared (nIR) fluorescent single-walled carbon nanotubes (SWCNTs) were designed and interfaced with leaves of Arabidopsis thaliana plants to report hydrogen peroxide (H2O2), a key signaling molecule associated with the onset of plant stress. The sensor nIR fluorescence response (>900 nm) is quenched by H2O2 with selectivity against other stress-associated signaling molecules and within the plant physiological range (10-100 H2O2 μM). In vivo remote nIR imaging of H2O2 sensors enabled optical monitoring of plant health in response to stresses including UV-B light (-11%), high light (-6%), and a pathogen-related peptide (flg22) (-10%), but not mechanical leaf wounding (<3%). The sensor's high biocompatibility was reflected on similar leaf cell death (<5%) and photosynthetic rates to controls without SWCNT. These optical nanosensors report early signs of stress and will improve our understanding of plant stress communication, provide novel tools for precision agriculture, and optimize the use of agrochemicals in the environment.
Collapse
Affiliation(s)
- Honghong Wu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert Nißler
- Institute of Physical Chemistry, Georg August University, Göttingen, 37077 Göttingen, Germany
| | - Victoria Morris
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Niklas Herrmann
- Institute of Physical Chemistry, Georg August University, Göttingen, 37077 Göttingen, Germany
| | - Peiguang Hu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Su-Ji Jeon
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Sebastian Kruss
- Institute of Physical Chemistry, Georg August University, Göttingen, 37077 Göttingen, Germany
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
25
|
Selvaggio G, Chizhik A, Nißler R, Kuhlemann L, Meyer D, Vuong L, Preiß H, Herrmann N, Mann FA, Lv Z, Oswald TA, Spreinat A, Erpenbeck L, Großhans J, Karius V, Janshoff A, Pablo Giraldo J, Kruss S. Exfoliated near infrared fluorescent silicate nanosheets for (bio)photonics. Nat Commun 2020; 11:1495. [PMID: 32198383 PMCID: PMC7083911 DOI: 10.1038/s41467-020-15299-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
Imaging of complex (biological) samples in the near-infrared (NIR) is beneficial due to reduced light scattering, absorption, phototoxicity, and autofluorescence. However, there are few NIR fluorescent materials known and suitable for biomedical applications. Here we exfoliate the layered pigment CaCuSi4O10 (Egyptian Blue, EB) via ball milling and facile tip sonication into NIR fluorescent nanosheets (EB-NS). The size of EB-NS can be tailored to diameters <20 nm and heights down to 1 nm. EB-NS fluoresce at 910 nm and the fluorescence intensity correlates with the number of Cu2+ ions. Furthermore, EB-NS display no bleaching and high brightness compared with other NIR fluorophores. The versatility of EB-NS is demonstrated by in-vivo single-particle tracking and microrheology measurements in Drosophila melanogaster embryos. EB-NS can be uptaken by plants and remotely detected in a low-cost stand-off detection setup. In summary, EB-NS have the potential for a wide range of bioimaging applications.
Collapse
Affiliation(s)
- Gabriele Selvaggio
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Alexey Chizhik
- Third Institute of Physics, University of Göttingen, Göttingen, 37077, Germany
| | - Robert Nißler
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Llyas Kuhlemann
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Daniel Meyer
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Loan Vuong
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Helen Preiß
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Niklas Herrmann
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Florian A Mann
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Zhiyi Lv
- Institute of Developmental Biochemistry, Medical School, University of Göttingen, Göttingen, 37077, Germany
| | - Tabea A Oswald
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Alexander Spreinat
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Jörg Großhans
- Institute of Developmental Biochemistry, Medical School, University of Göttingen, Göttingen, 37077, Germany
| | - Volker Karius
- Department of Sedimentology and Environmental Geology, Geoscience Center, University of Göttingen, Göttingen, 37077, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, California, 92507, USA
| | - Sebastian Kruss
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany.
| |
Collapse
|
26
|
Kim KI, Yoon S, Chang J, Lee S, Cho HH, Jeong SH, Jo K, Lee JH. Multifunctional Heterogeneous Carbon Nanotube Nanocomposites Assembled by DNA-Binding Peptide Anchors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905821. [PMID: 31898870 DOI: 10.1002/smll.201905821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Indexed: 05/25/2023]
Abstract
Although carbon nanotubes (CNTs) are remarkable materials with many exceptional characteristics, their poor chemical functionality limits their potential applications. Herein, a strategy is proposed for functionalizing CNTs, which can be achieved with any functional group (FG) without degrading their intrinsic structure by using a deoxyribonucleic acid (DNA)-binding peptide (DBP) anchor. By employing a DBP tagged with a certain FG, such as thiol, biotin, and carboxyl acid, it is possible to introduce any FG with a controlled density on DNA-wrapped CNTs. Additionally, different types of FGs can be introduced on CNTs simultaneously, using DBPs tagged with different FGs. This method can be used to prepare CNT nanocomposites containing different types of nanoparticles (NPs), such as Au NPs, magnetic NPs, and quantum dots. The CNT nanocomposites decorated with these NPs can be used as reusable catalase-like nanocomposites with exceptional catalytic activities, owing to the synergistic effects of all the components. Additionally, the unique DBP-DNA interaction allows the on-demand detachment of the NPs attached to the CNT surface; further, it facilitates a CNT chirality-specific NP attachment and separation using the sequence-specific programmable characteristics of oligonucleotides. The proposed method provides a novel chemistry platform for constructing new functional CNTs suitable for diverse applications.
Collapse
Affiliation(s)
- Kyung-Il Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seokyoung Yoon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Junhyuck Chang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Hui Hun Cho
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sun Hwan Jeong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
27
|
Spreinat A, Selvaggio G, Erpenbeck L, Kruss S. Multispectral near infrared absorption imaging for histology of skin cancer. JOURNAL OF BIOPHOTONICS 2020; 13:e201960080. [PMID: 31602799 PMCID: PMC7065629 DOI: 10.1002/jbio.201960080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 05/05/2023]
Abstract
Multispectral imaging combines the spectral resolution of spectroscopy with the spatial resolution of imaging and is therefore very useful for biomedical applications. Currently, histological diagnostics use mainly stainings with standard dyes (eg, hematoxylin + eosin) to identify tumors. This method is not applicable in vivo and provides low amounts of chemical information. Biomolecules absorb near infrared light (NIR, 800-1700 nm) at different wavelengths, which could be used to fingerprint tissue. Here, we built a NIR multispectral absorption imaging setup to study skin tissue samples. NIR light (900-1500 nm) was used for homogenous wide-field transmission illumination and detected by a cooled InGaAs camera. In this setup, images I(x, y, λ) from dermatological samples (melanoma, nodular basal-cell carcinoma, squamous-cell carcinoma) were acquired to distinguish healthy from diseased tissue regions. In summary, we show the potential of multispectral NIR imaging for cancer diagnostics.
Collapse
Affiliation(s)
| | | | - Luise Erpenbeck
- Department of Dermatology, Venereology and AllergologyUniversity Medical CenterGöttingenGermany
| | - Sebastian Kruss
- Institute of Physical ChemistryGöttingen UniversityGöttingenGermany
| |
Collapse
|
28
|
He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902409. [PMID: 31369176 DOI: 10.1002/adma.201902409] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor-targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.
Collapse
Affiliation(s)
- Jiuyang He
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Zhang
- Universal Medical Imaging Diagnostic Research Center, Shanghai, 200233, P. R. China
| | - Chenjie Yao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Minmin Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
| | - Jie Chen
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Quan Lu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Ryan Baldridge
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yong Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Minghong Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
29
|
Erpenbeck L, Gruhn AL, Kudryasheva G, Günay G, Meyer D, Busse J, Neubert E, Schön MP, Rehfeldt F, Kruss S. Effect of Adhesion and Substrate Elasticity on Neutrophil Extracellular Trap Formation. Front Immunol 2019; 10:2320. [PMID: 31632402 PMCID: PMC6781793 DOI: 10.3389/fimmu.2019.02320] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022] Open
Abstract
Neutrophils are the most abundant type of white blood cells. Upon stimulation, they are able to decondense and release their chromatin as neutrophil extracellular traps (NETs). This process (NETosis) is part of immune defense mechanisms but also plays an important role in many chronic and inflammatory diseases such as atherosclerosis, rheumatoid arthritis, diabetes, and cancer. For this reason, much effort has been invested into understanding biochemical signaling pathways in NETosis. However, the impact of the mechanical micro-environment and adhesion on NETosis is not well-understood. Here, we studied how adhesion and especially substrate elasticity affect NETosis. We employed polyacrylamide (PAA) gels with distinctly defined elasticities (Young's modulus E) within the physiologically relevant range from 1 to 128 kPa and coated the gels with integrin ligands (collagen I, fibrinogen). Neutrophils were cultured on these substrates and stimulated with potent inducers of NETosis: phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS). Interestingly, PMA-induced NETosis was neither affected by substrate elasticity nor by different integrin ligands. In contrast, for LPS stimulation, NETosis rates increased with increasing substrate elasticity (E > 20 kPa). LPS-induced NETosis increased with increasing cell contact area, while PMA-induced NETosis did not require adhesion at all. Furthermore, inhibition of phosphatidylinositide 3 kinase (PI3K), which is involved in adhesion signaling, completely abolished LPS-induced NETosis but only slightly decreased PMA-induced NETosis. In summary, we show that LPS-induced NETosis depends on adhesion and substrate elasticity while PMA-induced NETosis is completely independent of adhesion.
Collapse
Affiliation(s)
- Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
| | - Antonia Luise Gruhn
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
| | - Galina Kudryasheva
- Third Institute of Physics–Biophysics, Göttingen University, Göttingen, Germany
| | - Gökhan Günay
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
- Department of Chemistry, Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| | - Daniel Meyer
- Department of Chemistry, Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| | - Julia Busse
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
| | - Elsa Neubert
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
- Department of Chemistry, Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| | - Michael P. Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
- Lower Saxony Institute of Occupational Dermatology, Göttingen, Germany
| | - Florian Rehfeldt
- Third Institute of Physics–Biophysics, Göttingen University, Göttingen, Germany
| | - Sebastian Kruss
- Department of Chemistry, Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| |
Collapse
|
30
|
Zhang N, Li J, Zhang P, Yang X, Sun C. Novel nanoarchitecture of arginine-glycine-aspartate conjugated gold nanoparticles: a sensitive and selective platform for detecting arachidonic acid. Anal Bioanal Chem 2019; 411:7105-7113. [PMID: 31515585 DOI: 10.1007/s00216-019-02092-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
A novel electrochemical approach for determination of arachidonic acid (ARA) was developed based on the linear arginine-glycine-aspartic-Au (RGD-Au) nanomaterial modified on glassy carbon electrode (GCE). The prepared material was characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The electrochemical signal was obtained from the reduction of 1,4-naphthoquinone and ARA served as a proton source. Under the optimum experimental conditions, the RGD-Au-based electrode was used to analyze ARA. Meanwhile, the electrochemical characteristics were also studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). The sensor showed a wider linear range from 0.5 to 100 μM and the linear fitting equation was Ip (μA) = 0.0721 c + 2.4583 (R2 = 0.9987) with a detection limit of 80 nM. The application of the sensor in real samples was tested and compared with that of LC-MS/MS. This sensor would be a promising platform for detection of ARA in blood plasma. Graphical abstract.
Collapse
Affiliation(s)
- Nana Zhang
- Environmental Science Research Institute, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210097, Jiangsu, China
| | - Jian Li
- Neurosurgery Department, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Panpan Zhang
- Environmental Science Research Institute, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210097, Jiangsu, China
| | - Xiaodi Yang
- Environmental Science Research Institute, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210097, Jiangsu, China.
| | - Chong Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
31
|
Dinarvand M, Neubert E, Meyer D, Selvaggio G, Mann FA, Erpenbeck L, Kruss S. Near-Infrared Imaging of Serotonin Release from Cells with Fluorescent Nanosensors. NANO LETTERS 2019; 19:6604-6611. [PMID: 31418577 DOI: 10.1021/acs.nanolett.9b02865] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Serotonin is an important neurotransmitter involved in various functions of the nervous, blood, and immune system. In general, detection of small biomolecules such as serotonin in real time with high spatial and temporal resolution remains challenging with conventional sensors and methods. In this work, we designed a near-infrared (nIR) fluorescent nanosensor (NIRSer) based on fluorescent single-walled carbon nanotubes (SWCNTs) to image the release of serotonin from human blood platelets in real time. The nanosensor consists of a nonbleaching SWCNT backbone, which is fluorescent in the beneficial nIR tissue transparency window (800-1700 nm) and a serotonin binding DNA aptamer. The fluorescence of the NIRSer sensor (995 nm emission wavelength for (6,5)-SWCNTs) increases in response to serotonin by a factor up to 1.8. It detects serotonin reversibly with a dissociation constant of 301 nM ± 138 nM and a dynamic linear range in the physiologically relevant region from 100 nM to 1 μM. As a proof of principle, we detected serotonin release patterns from activated platelets on the single-cell level. Imaging of the nanosensors around and under the platelets enabled us to locate hot spots of serotonin release and quantify the time delay (≈ 21-30 s) between stimulation and release in a population of platelets, highlighting the spatiotemporal resolution of this nanosensor approach. In summary, we report a nIR fluorescent nanosensor for the neurotransmitter serotonin and show its potential for imaging of chemical communication between cells.
Collapse
Affiliation(s)
- Meshkat Dinarvand
- Institute of Physical Chemistry , Göttingen University , Göttingen 37077 , Germany
| | - Elsa Neubert
- Institute of Physical Chemistry , Göttingen University , Göttingen 37077 , Germany
- Department of Dermatology, Venereology, and Allergology , University Medical Center , Göttingen 37075 , Germany
| | - Daniel Meyer
- Institute of Physical Chemistry , Göttingen University , Göttingen 37077 , Germany
| | - Gabriele Selvaggio
- Institute of Physical Chemistry , Göttingen University , Göttingen 37077 , Germany
| | - Florian A Mann
- Institute of Physical Chemistry , Göttingen University , Göttingen 37077 , Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology, and Allergology , University Medical Center , Göttingen 37075 , Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry , Göttingen University , Göttingen 37077 , Germany
| |
Collapse
|
32
|
Si Ahmed Zennia S, Mati A, Charron C, Cakir-Kiefer C, Kriznik A, Girardet JM. Effect of nonenzymatic deamidation on the structure stability of Camelus dromedarius α-lactalbumin. Food Chem 2019; 291:207-213. [PMID: 31006460 DOI: 10.1016/j.foodchem.2019.04.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023]
Abstract
Camelid α-lactalbumin is the only known protein that can undergo nonenzymatic deamidation on two Asn residues. This leads to the generation of a mixture of unusual isoAsp and d-Asp residues that may impact health. The effect of deamidation on camel α-lactalbumin instability was investigated. Circular dichroism showed that the altered protein acquired secondary structure resulting in an increase in α-helix content. In good agreement, the 3D structure of camel α-lactalbumin determined by X-ray crystallography, displayed a short additional α-helix probably induced by deamidation, compared to the human and bovine counterparts. This α-helix was located in the C-terminal region and included residues 101-106. Differential scanning calorimetry together with the susceptibility to thermolysin showed that the deamidation process reinforced the structural stability of the α-lactalbumin at high temperature and its resistance toward proteolysis.
Collapse
Affiliation(s)
- Saliha Si Ahmed Zennia
- Université Mouloud Mammeri, Laboratoire de Recherche de Biochimie Analytique et Biotechnologies (LABAB), Tizi Ouzou, Algeria
| | - Abderrahmane Mati
- Université Mouloud Mammeri, Laboratoire de Recherche de Biochimie Analytique et Biotechnologies (LABAB), Tizi Ouzou, Algeria
| | - Christophe Charron
- Université de Lorraine, CNRS, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365, Nancy F-54000, France
| | - Céline Cakir-Kiefer
- Université de Lorraine, INRA, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), USC 340, Nancy F-54000, France
| | - Alexandre Kriznik
- Université de Lorraine, CNRS, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365, Nancy F-54000, France
| | - Jean-Michel Girardet
- Université de Lorraine, INRA, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), USC 340, Nancy F-54000, France.
| |
Collapse
|
33
|
Mann FA, Lv Z, Großhans J, Opazo F, Kruss S. Nanobody‐Conjugated Nanotubes for Targeted Near‐Infrared In Vivo Imaging and Sensing. Angew Chem Int Ed Engl 2019; 58:11469-11473. [DOI: 10.1002/anie.201904167] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/03/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Florian A. Mann
- Institute of Physical ChemistryGeorg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Germany
| | - Zhiyi Lv
- Institut Für EntwicklungsbiochemieUMG/Georg-August Universität Göttingen Justus-von-Liebig Weg 11 37077 Göttingen Germany
| | - Jörg Großhans
- Institut Für EntwicklungsbiochemieUMG/Georg-August Universität Göttingen Justus-von-Liebig Weg 11 37077 Göttingen Germany
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Strasse 3a 37075 Göttingen Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) Humboldtallee 23 37073 Göttingen Germany
- NanoTag Biotechnologies GmbH Rudolf-Wissell-Straße 28a 37079 Göttingen Germany
| | - Sebastian Kruss
- Institute of Physical ChemistryGeorg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) Humboldtallee 23 37073 Göttingen Germany
| |
Collapse
|
34
|
Mann FA, Lv Z, Großhans J, Opazo F, Kruss S. Nanoröhren‐Nanobody‐Konjugate als zielgerichtete Sonden und Marker für die In‐vivo‐Nahinfrarot‐Bildgebung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Florian A. Mann
- Institut für Physikalische ChemieGeorg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Deutschland
| | - Zhiyi Lv
- Institut Für EntwicklungsbiochemieUMG/Georg-August Universität Göttingen Justus-von-Liebig Weg 11 37077 Göttingen Deutschland
| | - Jörg Großhans
- Institut Für EntwicklungsbiochemieUMG/Georg-August Universität Göttingen Justus-von-Liebig Weg 11 37077 Göttingen Deutschland
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Strasse 3a 37075 Göttingen Deutschland
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) Humboldtallee 23 37073 Göttingen Deutschland
- NanoTag Biotechnologies GmbH Rudolf-Wissell-Straße 28a 37079 Göttingen Deutschland
| | - Sebastian Kruss
- Institut für Physikalische ChemieGeorg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Deutschland
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) Humboldtallee 23 37073 Göttingen Deutschland
| |
Collapse
|
35
|
Nißler R, Mann FA, Preiß H, Selvaggio G, Herrmann N, Kruss S. Chirality enriched carbon nanotubes with tunable wrapping via corona phase exchange purification (CPEP). NANOSCALE 2019; 11:11159-11166. [PMID: 31149692 DOI: 10.1039/c9nr03258d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have unique photophysical properties and serve as building blocks for biosensors, functional materials and devices. For many applications it is crucial to use chirality-pure SWCNTs, which requires sophisticated processes. Purification procedures such as wrapping by certain polymers, phase separation, density gradient centrifugation or gel chromatography have been developed and yield distinct SWCNT species wrapped by a specific polymer or surfactant. However, many applications require a different organic functionalization (corona) around the SWCNTs instead of the one used for the purification process. Here, we present a novel efficient and straightforward process to gain chirality pure SWCNTs with tunable functionalization. Our approach uses polyfluorene (PFO) polymers to enrich certain chiralities but the polymer is removed again and finally exchanged to any desired organic phase. We demonstrate this concept by dispersing SWCNTs in poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6'-{2,2'-bipyridine})] (PFO-BPy), which is known to preferentially solubilize (6,5)-SWCNTs. Then PFO-BPy is removed and recycled, while letting the SWCNTs adsorb/agglomerate on sodium chloride (NaCl) crystals, which act as a toluene-stable but water-soluble filler material. In the last step these purified SWCNTs are redispersed in different polymers, surfactants and ssDNA. This corona phase exchange purification (CPEP) approach was also extended to other PFO variants to enrich and functionalize (7,5)-SWCNTs. CPEP purified and functionalized SWCNTs display monodisperse nIR spectra, which are important for fundamental studies and applications that rely on spectral changes. We show this advantage for SWCNT-based nIR fluorescent sensors for the neurotransmitter dopamine and red-shifted sp3 defect peaks . In summary, CPEP makes use of PFO polymers for chirality enrichment but provides access to chirality enriched SWCNTs functionalized in any desired polymer, surfactant or biopolymer.
Collapse
Affiliation(s)
- Robert Nißler
- Institute of Physical Chemistry, Göttingen University, Germany.
| | - Florian A Mann
- Institute of Physical Chemistry, Göttingen University, Germany.
| | - Helen Preiß
- Institute of Physical Chemistry, Göttingen University, Germany.
| | | | - Niklas Herrmann
- Institute of Physical Chemistry, Göttingen University, Germany.
| | - Sebastian Kruss
- Institute of Physical Chemistry, Göttingen University, Germany.
| |
Collapse
|
36
|
Bernhagen D, Jungbluth V, Quilis NG, Dostalek J, White PB, Jalink K, Timmerman P. Bicyclic RGD Peptides with Exquisite Selectivity for the Integrin α vβ 3 Receptor Using a "Random Design" Approach. ACS COMBINATORIAL SCIENCE 2019; 21:198-206. [PMID: 30624885 DOI: 10.1021/acscombsci.8b00144] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe the identification of bicyclic RGD peptides with high affinity and selectivity for integrin αvβ3 via high-throughput screening of partially randomized libraries. Peptide libraries (672 different compounds) comprising the universal integrin-binding sequence Arg-Gly-Asp (RGD) in the first loop and a randomized sequence XXX (X being one of 18 canonical l-amino acids) in the second loop, both enclosed by either an l- or d-Cys residue, were converted to bicyclic peptides via reaction with 1,3,5-tris(bromomethyl)benzene (T3). Screening of first-generation libraries yielded lead bicyclic inhibitors displaying submicromolar affinities for integrin αvβ3 (e.g., CT3HEQcT3RGDcT3, IC50 = 195 nM). Next generation (second and third) libraries were obtained by partially varying the structure of the strongest lead inhibitors and screening for improved affinities and selectivities. In this way, we identified the highly selective bicyclic αvβ3-binders CT3HPQcT3RGDcT3 (IC50 = 30 nM), CT3HPQCT3RGDcT3 (IC50 = 31 nM), and CT3HSQCT3RGDcT3 (IC50 = 42 nM) with affinities comparable to that of a knottin-RGD-type peptide (32 amino acids, IC50 = 38 nM) and outstanding selectivities over integrins αvβ5 (IC50 > 10000 nM) and α5β1 (IC50 > 10000 nM). Affinity measurements using surface plasmon-enhanced fluorescence spectroscopy (SPFS) yielded Kd values of 0.4 and 0.6 nM for the Cy5-labeled bicycle CT3HPQcT3RGDcT3 and RGD "knottin" peptide, respectively. In vitro staining of HT29 cells with Cy5-labeled bicycles using confocal microscopy revealed strong binding to integrins in their natural environment, which highlights the high potential of these peptides as markers of integrin expression.
Collapse
Affiliation(s)
- Dominik Bernhagen
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands
| | - Vanessa Jungbluth
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Nestor Gisbert Quilis
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Paul B. White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Kees Jalink
- The Netherlands Cancer Institute, Plesmanlaan 21, 1066 CX Amsterdam, The Netherlands
| | - Peter Timmerman
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|