1
|
Huang J, Shao J, Zhong W, Sun C, Zhang G, Chen L, Fang J, Li C, Wang J, Feng X, Zhou L, Mi H, Chen J, Dong X, Liu X. A Wind Bell Inspired Triboelectric Nanogenerator for Extremely Low‑Speed and Omnidirectional Wind Energy Harvesting. SMALL METHODS 2024; 8:e2400078. [PMID: 38537103 DOI: 10.1002/smtd.202400078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Indexed: 12/28/2024]
Abstract
As one of the most promising renewable energies, wind energy is abundant in the natural environment. However, it is still challenging to effectively collect wind energy because of its variable wind speed and unpredictable direction. Here, a triboelectric nanogenerator, which is inspired by ancient Chinese wind bells, has been developed to collect energy from variable-speed and multi-directional wind. The wind-bell-inspired triboelectric nanogenerator (W-TENG) has the capability to generate electricity even at a very low wind speed of 0.5 m s-1. Furthermore, it is able to harvest wind energy effectively from all directions (0-360 degrees). The parameter-optimized W-TENG achieves a maximum output voltage of 9.3 V and a maximum current of 0.63 µA. Electronic devices including a digital watch and 40 light-emitting diodes (LEDs) are successfully powered by the designed W-TENG, demonstrating its applicability. In this study, it is believed that a novel and effective strategy is provided to harvest energy from variable-speed and multi-directional wind.
Collapse
Affiliation(s)
- Jinlong Huang
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Jiang Shao
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Wei Zhong
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Chao Sun
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Gengchen Zhang
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Longyi Chen
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Jiwen Fang
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Chong Li
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Jia Wang
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Xiaoming Feng
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Lijun Zhou
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Hongliang Mi
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Jiawei Chen
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Xiaohong Dong
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Xue Liu
- The College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475001, China
| |
Collapse
|
2
|
Hu J, Iwamoto M, Chen X. A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator. NANO-MICRO LETTERS 2023; 16:7. [PMID: 37930592 PMCID: PMC10628068 DOI: 10.1007/s40820-023-01238-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
The triboelectric nanogenerator (TENG) can effectively collect energy based on contact electrification (CE) at diverse interfaces, including solid-solid, liquid-solid, liquid-liquid, gas-solid, and gas-liquid. This enables energy harvesting from sources such as water, wind, and sound. In this review, we provide an overview of the coexistence of electron and ion transfer in the CE process. We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies. The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques. Additionally, we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces. Finally, this review elucidates the future opportunities and challenges that interface CE may encounter. We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.
Collapse
Affiliation(s)
- Jun Hu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Mitsumasa Iwamoto
- Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33 O-Okayama, Meguro-Ku, Tokyo, 152-8552, Japan.
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
3
|
Yan J, Tang Z, Mei N, Zhang D, Zhong Y, Sheng Y. Research Progress on the Application of Triboelectric Nanogenerators for Wind Energy Collection. MICROMACHINES 2023; 14:1592. [PMID: 37630128 PMCID: PMC10456817 DOI: 10.3390/mi14081592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The escalating global energy demand necessitates the exploration of renewable energy sources, with wind energy emerging as a crucial and widely available resource. With wind energy exhibiting a vast potential of approximately 1010 kw/a per year, about ten times that of global hydroelectric power generation, its efficient conversion and utilization hold the promise of mitigating the pressing energy crisis and replacing the dominant reliance on fossil fuels. In recent years, Triboelectric Nanogenerators (TENGs) have emerged as novel and efficient means of capturing wind energy. This paper provides a comprehensive summary of the fundamental principles governing four basic working modes of TENGs, elucidating the structures and operational mechanisms of various models employed in wind energy harvesting. Furthermore, it highlights the significance of two major TENG configurations, namely, the vertical touch-separation pattern structure and the independent layer pattern for wind energy collection, emphasizing their respective advantages. Furthermore, the study briefly discusses the current strengths of nano-friction power generation in wind energy harvesting while acknowledging the existing challenges pertaining to device design, durability, operation, and maintenance. The review concludes by presenting potential research directions and prospects for triboelectric nanogenerators generation in the realm of wind energy, offering valuable insights for researchers and scholars in the field.
Collapse
Affiliation(s)
- Jin Yan
- College of Shipping and Maritime Transportation, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, China
| | - Zhi Tang
- College of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Naerduo Mei
- College of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dapeng Zhang
- College of Shipping and Maritime Transportation, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yinghao Zhong
- College of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuxuan Sheng
- College of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
4
|
Yang H, He J, Yan J, Li H, Bai Y, Wang Q, Yan H, Yin S. Highly Sensitive Self-Powered Humidity Sensor Based on a TaS 2/Cu 2S Heterostructure Driven by a Triboelectric Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37385961 DOI: 10.1021/acsami.3c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Self-powered humidity sensors with high response and good stability have attracted extensive interest in environmental monitoring, medical and health care, and sentiment detection. Because of its high specific surface area and good conductivity, two-dimensional material has wide application in the field of humidity sensing. In this work, we proposed a novel self-powered high-performance TaS2/Cu2S heterostructure-based humidity sensor driven by a triboelectric nanogenerator (TENG) made with the same structure. The TaS2/Cu2S heterostructure was prepared via the chemical vapor deposition method, and then, electrolytic and ultrasound treatments were introduced to further increase the surface area. The fabricated humidity sensor showed ultrahigh sensitivity (S = 3.08 × 104), fast response (2 s), low hysteresis (3.5%), and great stability. First-principles calculation results demonstrated the existence of an electron transport channel with a low energy barrier (-0.156 eV) from the Cu2S to TaS2 layer in the heterostructure, which improves the surface charge transfer of the material. The TaS2/Cu2S heterojunction-based TENG can generate an output voltage of 30 V and an output current of 2.9 μA. Furthermore, the proposed self-powered humidity sensor verified the potential ability of detecting human respiratory frequency, skin humidity, and environmental humidity. This work provides a new and feasible path for research in the field of humidity sensors and promotes the application development of self-powered electronic devices.
Collapse
Affiliation(s)
- Huiqi Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jinbo He
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jinjian Yan
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, P. R. China
| | - Heng Li
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, P. R. China
| | - Yanliu Bai
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Qingguo Wang
- GuoAng Zhuotai (Tianjin) Smart IOT Technology Co., Ltd, Tianjin 301700, P. R. China
| | - Hui Yan
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Shougen Yin
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
5
|
Wang X, Qin Q, Lu Y, Mi Y, Meng J, Zhao Z, Wu H, Cao X, Wang N. Smart Triboelectric Nanogenerators Based on Stimulus-Response Materials: From Intelligent Applications to Self-Powered Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1316. [PMID: 37110900 PMCID: PMC10141953 DOI: 10.3390/nano13081316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Smart responsive materials can react to external stimuli via a reversible mechanism and can be directly combined with a triboelectric nanogenerator (TENG) to deliver various intelligent applications, such as sensors, actuators, robots, artificial muscles, and controlled drug delivery. Not only that, mechanical energy in the reversible response of innovative materials can be scavenged and transformed into decipherable electrical signals. Because of the high dependence of amplitude and frequency on environmental stimuli, self-powered intelligent systems may be thus built and present an immediate response to stress, electrical current, temperature, magnetic field, or even chemical compounds. This review summarizes the recent research progress of smart TENGs based on stimulus-response materials. After briefly introducing the working principle of TENG, we discuss the implementation of smart materials in TENGs with a classification of several sub-groups: shape-memory alloy, piezoelectric materials, magneto-rheological, and electro-rheological materials. While we focus on their design strategy and function collaboration, applications in robots, clinical treatment, and sensors are described in detail to show the versatility and promising future of smart TNEGs. In the end, challenges and outlooks in this field are highlighted, with an aim to promote the integration of varied advanced intelligent technologies into compact, diverse functional packages in a self-powered mode.
Collapse
Affiliation(s)
- Xueqing Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qinghao Qin
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiajing Meng
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Han Wu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China;
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China;
| |
Collapse
|
6
|
Ku CA, Chung CK. Advances in Humidity Nanosensors and Their Application: Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23042328. [PMID: 36850926 PMCID: PMC9960561 DOI: 10.3390/s23042328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 05/27/2023]
Abstract
As the technology revolution and industrialization have flourished in the last few decades, the development of humidity nanosensors has become more important for the detection and control of humidity in the industry production line, food preservation, chemistry, agriculture and environmental monitoring. The new nanostructured materials and fabrication in nanosensors are linked to better sensor performance, especially for superior humidity sensing, following the intensive research into the design and synthesis of nanomaterials in the last few years. Various nanomaterials, such as ceramics, polymers, semiconductor and sulfide, carbon-based, triboelectrical nanogenerator (TENG), and MXene, have been studied for their potential ability to sense humidity with structures of nanowires, nanotubes, nanopores, and monolayers. These nanosensors have been synthesized via a wide range of processes, including solution synthesis, anodization, physical vapor deposition (PVD), or chemical vapor deposition (CVD). The sensing mechanism, process improvement and nanostructure modulation of different types of materials are mostly inexhaustible, but they are all inseparable from the goals of the effective response, high sensitivity and low response-recovery time of humidity sensors. In this review, we focus on the sensing mechanism of direct and indirect sensing, various fabrication methods, nanomaterial geometry and recent advances in humidity nanosensors. Various types of capacitive, resistive and optical humidity nanosensors are introduced, alongside illustration of the properties and nanostructures of various materials. The similarities and differences of the humidity-sensitive mechanisms of different types of materials are summarized. Applications such as IoT, and the environmental and human-body monitoring of nanosensors are the development trends for futures advancements.
Collapse
|
7
|
Lu Q, Zhao Y, Huang L, An J, Zheng Y, Yap EH. Low-Dimensional-Materials-Based Flexible Artificial Synapse: Materials, Devices, and Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:373. [PMID: 36770333 PMCID: PMC9921566 DOI: 10.3390/nano13030373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
With the rapid development of artificial intelligence and the Internet of Things, there is an explosion of available data for processing and analysis in any domain. However, signal processing efficiency is limited by the Von Neumann structure for the conventional computing system. Therefore, the design and construction of artificial synapse, which is the basic unit for the hardware-based neural network, by mimicking the structure and working mechanisms of biological synapses, have attracted a great amount of attention to overcome this limitation. In addition, a revolution in healthcare monitoring, neuro-prosthetics, and human-machine interfaces can be further realized with a flexible device integrating sensing, memory, and processing functions by emulating the bionic sensory and perceptual functions of neural systems. Until now, flexible artificial synapses and related neuromorphic systems, which are capable of responding to external environmental stimuli and processing signals efficiently, have been extensively studied from material-selection, structure-design, and system-integration perspectives. Moreover, low-dimensional materials, which show distinct electrical properties and excellent mechanical properties, have been extensively employed in the fabrication of flexible electronics. In this review, recent progress in flexible artificial synapses and neuromorphic systems based on low-dimensional materials is discussed. The potential and the challenges of the devices and systems in the application of neuromorphic computing and sensory systems are also explored.
Collapse
Affiliation(s)
- Qifeng Lu
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China
| | - Yinchao Zhao
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China
| | - Long Huang
- School of Intelligent Manufacturing Ecosystem, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China
| | - Jiabao An
- School of Intelligent Manufacturing Ecosystem, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China
| | - Yufan Zheng
- School of Intelligent Manufacturing Ecosystem, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China
| | - Eng Hwa Yap
- School of Robotics, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China
| |
Collapse
|
8
|
Vafaiee M, Ejehi F, Mohammadpour R. CNT-PDMS foams as self-powered humidity sensors based on triboelectric nanogenerators driven by finger tapping. Sci Rep 2023; 13:370. [PMID: 36611085 PMCID: PMC9825370 DOI: 10.1038/s41598-023-27690-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
An increasing number of frequently applied portable electronics has raised the significance of self-powered systems. In this regard, triboelectric nanogenerators (TENGs) have drawn considerable attention due to their diversity of design and high power output. As a widely used material in TENG electrodes, polydimethylsiloxane (PDMS) shows attractive characteristics, such as electron affinity, flexibility, and facile fabrication. To achieve active TENG-based humidity sensing, we proposed a straightforward method to enhance the hydrophilicity of PDMS by two parallel approaches: 1. Porosity induction, 2. Carbon nanotube (CNT) compositing. Both of the mentioned processes have been performed by water addition during the synthesis procedure, which is not only totally safe (in contrast with the similar foaming/compositing routes), but also applicable for a wide range of nanomaterials. Applying the modified electrode as a single-electrode TENG-based humidity sensor, demonstrated an impressive enhancement of sensing response from 56% up to 108%, compared to the bare electrodes. Moreover, the detecting range of ambient humidity was broadened to higher values of 80% in a linear behavior. The fabricated humidity sensor based on a CNT-PDMS foam not only provides superior sensing characteristics but also is satisfactory for portable applications, due to being lightweight and desirably self-powered.
Collapse
Affiliation(s)
- Mohaddeseh Vafaiee
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Faezeh Ejehi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Raheleh Mohammadpour
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran.
| |
Collapse
|
9
|
Papež N, Pisarenko T, Ščasnovič E, Sobola D, Ţălu Ş, Dallaev R, Částková K, Sedlák P. A Brief Introduction and Current State of Polyvinylidene Fluoride as an Energy Harvester. COATINGS 2022; 12:1429. [DOI: 10.3390/coatings12101429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
This review summarizes the current trends and developments in the field of polyvinylidene fluoride (PVDF) for use mainly as a nanogenerator. The text covers PVDF from the first steps of solution mixing, through production, to material utilization, demonstration of results, and future perspective. Specific solvents and ratios must be selected when choosing and mixing the solution. It is necessary to set exact parameters during the fabrication and define whether the material will be flexible nanofibers or a solid layer. Based on these selections, the subsequent use of PVDF and its piezoelectric properties are determined. The most common degradation phenomena and how PVDF behaves are described in the paper. This review is therefore intended to provide a basic overview not only for those who plan to start producing PVDF as energy nanogenerators, active filters, or sensors but also for those who are already knowledgeable in the production of this material and want to expand their existing expertise and current overview of the subject.
Collapse
Affiliation(s)
- Nikola Papež
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic
| | - Tatiana Pisarenko
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic
| | - Erik Ščasnovič
- Central European Institute of Technology, Purkyňova 656/123, 61200 Brno, the Czech Republic
| | - Dinara Sobola
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic
- Institute of Physics of Materials, the Czech Academy of Sciences, Žižkova 22, 61662 Brno, the Czech Republic
| | - Ştefan Ţălu
- Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Constantin Daicoviciu Street, No. 15, 400020 Cluj-Napoca, Romania
| | - Rashid Dallaev
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic
| | - Klára Částková
- Central European Institute of Technology, Purkyňova 656/123, 61200 Brno, the Czech Republic
- Department of Ceramics and Polymers, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61600 Brno, the Czech Republic
| | - Petr Sedlák
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic
| |
Collapse
|
10
|
Khandelwal G, Dahiya R. Self-Powered Active Sensing Based on Triboelectric Generators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200724. [PMID: 35445458 DOI: 10.1002/adma.202200724] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The demand for portable and wearable chemical or biosensors and their expeditious development in recent years has created a scientific challenge in terms of their continuous powering. As a result, mechanical energy harvesters such as piezoelectric and triboelectric generators (TEGs) have been explored recently either as sensors or harvesters to store charge in small, but long-life, energy-storage devices to power the sensors. The use of energy harvesters as sensors is particularly interesting, as with such multifunctional operations it is possible to reduce the number devices needed in a system, which also helps overcome the integration complexities. In this regard, TEGs are promising, particularly for energy autonomous chemical and biological sensors, as they can be developed with a wide variety of materials, and their mechanical energy to electricity conversion can be modulated by various analytes. This review focuses on this interesting dimension of TEGs and presents various self-powered active chemical and biological sensors. A brief discussion about the development of TEG-based physical, magnetic, and optical sensors is also included. The influence of environmental factors, various figures of merit, and the significance of TEG design are explained in context with the active sensing. Finally, the key applications, challenges, and future perspective of chemical and biological detection via TEGs are discussed with a view to drive further advances in the field of self-powered sensors.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
11
|
Xu C, Fu X, Li C, Liu G, Gao Y, Qi Y, Bu T, Chen Y, Wang ZL, Zhang C. Raindrop energy-powered autonomous wireless hyetometer based on liquid-solid contact electrification. MICROSYSTEMS & NANOENGINEERING 2022; 8:30. [PMID: 35359613 PMCID: PMC8918552 DOI: 10.1038/s41378-022-00362-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 06/01/2023]
Abstract
Triboelectric nanogenerators (TENGs) can directly harvest energy via solid-liquid interface contact electrification, making them very suitable for harvesting raindrop energy and as active rainfall sensors. This technology is promising for realizing a fully self-powered system for autonomous rainfall monitoring combined with energy harvesting/sensing. Here, we report a raindrop energy-powered autonomous rainfall monitoring and wireless transmission system (R-RMS), in which a raindrop-TENG (R-TENG) array simultaneously serves as a raindrop energy harvester and rainfall sensor. At a rainfall intensity of 71 mm/min, the R-TENG array can generate an average short-circuit current, open-circuit voltage, and maximum output power of 15 μA, 1800 V, and 325 μW, respectively. The collected energy can be adjusted to act as a stable 2.5 V direct-current source for the whole system by a power management circuit. Meanwhile, the R-TENG array acts as a rainfall sensor, in which the output signal can be monitored and the measured data are wirelessly transmitted. Under a rainfall intensity of 71 mm/min, the R-RMS can be continuously powered and autonomously transmit rainfall data once every 4 min. This work has paved the way for raindrop energy-powered wireless hyetometers, which have exhibited broad prospects in unattended weather monitoring, field surveys, and the Internet of Things.
Collapse
Affiliation(s)
- Chaoqun Xu
- Center on Nanoenergy Research, School of Physical Science & Technology, School of Mechanical Engineering, Guangxi University, Nanning, 530004 China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
| | - Xianpeng Fu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chengyu Li
- Center on Nanoenergy Research, School of Physical Science & Technology, School of Mechanical Engineering, Guangxi University, Nanning, 530004 China
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuyu Gao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
| | - Youchao Qi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tianzhao Bu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuanfen Chen
- Center on Nanoenergy Research, School of Physical Science & Technology, School of Mechanical Engineering, Guangxi University, Nanning, 530004 China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Chi Zhang
- Center on Nanoenergy Research, School of Physical Science & Technology, School of Mechanical Engineering, Guangxi University, Nanning, 530004 China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
12
|
Yu D, Sun C, Wang K, Yin S, Sun L, Chen H, Kong F. A novel direct-driven triboelectric–electromagnetic hybridized wave energy converter for buoy power supply. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02398-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Ren Z, Wu L, Zhang J, Wang Y, Wang Y, Li Q, Wang F, Liang X, Yang R. Trapezoidal Cantilever-Structure Triboelectric Nanogenerator Integrated with a Power Management Module for Low-Frequency Vibration Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5497-5505. [PMID: 35061351 DOI: 10.1021/acsami.1c23309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wide-band vibration is abundant in various industrial equipment, but extracting low frequency energy is challenging. Here, we demonstrated a trapezoidal cantilever-structure triboelectric nanogenerator (C-TENG) that can efficiently harvest energy from vibration in the range of 1-22 Hz. The C-TENG is fabricated with a flexible film electrode, and its mechanical model is analyzed with structural mechanics for the optimal performance of the device. The C-TENG can harvest the vibration source with a frequency as low as 1 Hz, and its output power density reaches 62.2 W/m3 at a vibration frequency of 5 Hz. Furthermore, a power management module is developed, and its integration with TENG arrays enables the self-powered timing and wireless transmitting systems. This work proposes an effective strategy to harvest ubiquitously distributed but usually neglected vibration sources, which would contribute to the development of self-powered electronic systems and Internet of Things.
Collapse
Affiliation(s)
- Zewei Ren
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710126, P. R. China
| | - Liting Wu
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710126, P. R. China
| | - Jiaojiao Zhang
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710126, P. R. China
| | - Yue Wang
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710126, P. R. China
| | - Yong Wang
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710126, P. R. China
| | - Qikun Li
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710126, P. R. China
| | - Fan Wang
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Xi Liang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710126, P. R. China
| |
Collapse
|
14
|
Wang F, Yang P, Tao X, Shi Y, Li S, Liu Z, Chen X, Wang ZL. Study of Contact Electrification at Liquid-Gas Interface. ACS NANO 2021; 15:18206-18213. [PMID: 34677929 DOI: 10.1021/acsnano.1c07158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is known that the suspended liquid droplets in clouds can generate electrostatic charges, which finally results in the lightning. However, the detailed mechanism related to the contact-electrification process on the liquid-gas (L-G) interfaces is still poorly understood. Here, by introducing an acoustic levitation method for levitating a liquid droplet, we have studied the electrification mechanism at the L-G interface. The tribo-motion between water droplets and air induced by the ultrasound wave leads to the generation of positive charges on the surface of the droplets, and the charge amount of water droplets (20 μL) gradually reaches saturation within 30 s. The mixed solid particles in droplets can increase the amount of transferred charge, whereas the increase of ion concentration in the droplet can suppress the charge generation. This charge transfer phenomenon at L-G interfaces and the related analysis can be a guidance for the study in many fields, including anti-static, harvesting rainy energy, micro/nano fluidics, triboelectric power generator, surface engineering, and so on. Moreover, the surface charge generation due to L-G electrification is an inevitable effect during ultrasonic levitation, and thus, this study can also work for the applications of the ultrasonic technique.
Collapse
Affiliation(s)
- Fan Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglin Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxiang Shi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyao Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqi Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
15
|
Lin L, Chung CK. PDMS Microfabrication and Design for Microfluidics and Sustainable Energy Application: Review. MICROMACHINES 2021; 12:1350. [PMID: 34832762 PMCID: PMC8625467 DOI: 10.3390/mi12111350] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022]
Abstract
The polydimethylsiloxane (PDMS) is popular for wide application in various fields of microfluidics, microneedles, biology, medicine, chemistry, optics, electronics, architecture, and emerging sustainable energy due to the intrinsic non-toxic, transparent, flexible, stretchable, biocompatible, hydrophobic, insulating, and negative triboelectric properties that meet different requirements. For example, the flexibility, biocompatibility, non-toxicity, good stability, and high transparency make PDMS a good candidate for the material selection of microfluidics, microneedles, biomedical, and chemistry microchips as well as for optical examination and wearable electronics. However, the hydrophobic surface and post-surface-treatment hydrophobic recovery impede the development of self-driven capillary microchips. How to develop a long-term hydrophilicity treatment for PDMS is crucial for capillary-driven microfluidics-based application. The dual-tone PDMS-to-PDMS casting for concave-and-convex microstructure without stiction is important for simplifying the process integration. The emerging triboelectric nanogenerator (TENG) uses the transparent flexible PDMS as the high negative triboelectric material to make friction with metals or other positive-triboelectric material for harvesting sustainably mechanical energy. The morphology of PDMS is related to TENG performance. This review will address the above issues in terms of PDMS microfabrication and design for the efficient micromixer, microreactor, capillary pump, microneedles, and TENG for more practical applications in the future.
Collapse
Affiliation(s)
| | - Chen-Kuei Chung
- Department of Mechanical Engineering and Core Facility Center, National Cheng Kung University, Tainan 701, Taiwan;
| |
Collapse
|
16
|
Zhou LN, Wu JP, Song WZ, Wang XX, Wang N, Yu M, Fan ZY, Ramakrishna S, Long YZ. High output achieved by sliding electrification of an electrospun nano-grating. NANOSCALE 2021; 13:17417-17427. [PMID: 34647562 DOI: 10.1039/d1nr04769h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rapid development of flexible and wearable electronics has proposed a trend towards miniaturization, mobility, versatility and artificial intelligence. Triboelectric nanogenerators (TENGs) can make use of micro/nano multi-functional materials to harvest and store energy from the surrounding environment efficiently, which can drive smart portable electronics operating continuously and steadily. The increase in the output power density of the triboelectric nanogenerator requires new designs. In this work, a new grating TENG was proposed, and the two friction layers were fabricated by near-field electrospinning and conventional electrospinning with two parallel electrodes as a collector, respectively. The basic model of the simulation was simplified according to the highly ordered structure and the repeatability of the TENG grating structure. The effect of the effective contact area on the output of the TENG was further proved by fitting the calculation regularity of the two models with the experimental results. At the same time, the effect of the redundant electrode on the output of the TENG was verified by experiments. We found that this nanogenerator can achieve a very high output of 1800 W m-2 due to a more refined grating structure combined with modification of the contact area. The TENG can also be used as a selfpowered sensor to detect mechanical signals, which requires no additional power source to drive it. Meanwhile, the anisotropic nature of the TENG can also be utilized to sense angles, lock devices or encrypt information. This output control technology provides a more effective idea for future output power improvement, that is, a new generation of high-output TENGs can be designed by effectively adjusting the corresponding contact area and electrode area.
Collapse
Affiliation(s)
- Li-Na Zhou
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Jun-Peng Wu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Wei-Zhi Song
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Xiao-Xiong Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Ning Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Zhi-Yong Fan
- Department of Electronic & Computer Engineering, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, and State Key Laboratory of Bio-Fibers & Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
17
|
Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization. ENERGIES 2021. [DOI: 10.3390/en14185600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With recent advancements in technology, energy storage for gadgets and sensors has become a challenging task. Among several alternatives, the triboelectric nanogenerators (TENG) have been recognized as one of the most reliable methods to cure conventional battery innovation’s inadequacies. A TENG transfers mechanical energy from the surrounding environment into power. Natural energy resources can empower TENGs to create a clean and conveyed energy network, which can finally facilitate the development of different remote gadgets. In this review paper, TENGs targeting various environmental energy resources are systematically summarized. First, a brief introduction is given to the ocean waves’ principles, as well as the conventional energy harvesting devices. Next, different TENG systems are discussed in details. Furthermore, hybridization of TENGs with other energy innovations such as solar cells, electromagnetic generators, piezoelectric nanogenerators and magnetic intensity are investigated as an efficient technique to improve their performance. Advantages and disadvantages of different TENG structures are explored. A high level overview is provided on the connection of TENGs with structural health monitoring, artificial intelligence and the path forward.
Collapse
|
18
|
Abstract
Interfaces between a liquid and a solid (L-S) are the most important surface science in chemistry, catalysis, energy, and even biology. Formation of an electric double layer (EDL) at the L-S interface has been attributed due to the adsorption of a layer of ions at the solid surface, which causes the ions in the liquid to redistribute. Although the existence of a layer of charges on a solid surface is always assumed, the origin of the charges is not extensively explored. Recent studies of contact electrification (CE) between a liquid and a solid suggest that electron transfer plays a dominant role at the initial stage for forming the charge layer at the L-S interface. Here, we review the recent works about electron transfer in liquid-solid CE, including scenerios such as liquid-insulator, liquid-semiconductor, and liquid-metal. Formation of the EDL is revisited considering the existence of electron transfer at the L-S interface. Furthermore, the triboelectric nanogenerator (TENG) technique based on the liquid-solid CE is introduced, which can be used not only for harvesting mechanical energy from a liquid but also as a probe for probing the charge transfer at liquid-solid interfaces.
Collapse
Affiliation(s)
- Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
19
|
Wen R, Fan L, Li Q, Zhai J. A composite triboelectric nanogenerator based on flexible and transparent film impregnated with ZIF-8 nanocrystals. NANOTECHNOLOGY 2021; 32:345401. [PMID: 34081024 DOI: 10.1088/1361-6528/ac020f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The triboelectric nanogenerator (TENG), based on the triboelectrification coupled with electrostatic induction, can directly convert ambient mechanical energy into electric energy. However, the output performance of TENG is still low and demands further improvement to speed up the commercial application. In this work, we demonstrate a TENG based on a flexible and transparent composite film made of PDMS and ZIF-8. When the amount of the ZIF-8 is 4 wt%, the generated output current and voltage of the TENG are gradually increased up to 16.3μA and 176 V, which are 210% and 230% higher than that of TENG without ZIF-8, respectively. Impregnated ZIF-8 which exhibits a positive polarity lowers the effective work function of the PDMS and enhance the surface charge density, verified by Kelvin probe force microscope measurement.
Collapse
Affiliation(s)
- Rongmei Wen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Qiaoling Li
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Junyi Zhai
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| |
Collapse
|
20
|
Kim K, Guo Y, Bae J, Choi S, Song HY, Park S, Hyun K, Ahn SK. 4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100910. [PMID: 33938152 DOI: 10.1002/smll.202100910] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Liquid crystal elastomers (LCEs) are broadly recognized as programmable actuating materials that are responsive to external stimuli, typically heat or light. Yet, soft LCEs that respond to changes in environmental humidity are not reported, except a few examples based on rigid liquid crystal networks with limited processing. Herein, a new class of highly deformable hygroscopic LCE actuators that can be prepared by versatile processing methods, including surface alignment as well as 3D printing is presented. The dimethylamino-functionalized LCE is prepared by the aza-Michael addition reaction between a reactive LC monomer and N,N'-dimethylethylenediamine as a chain extender, followed by photopolymerization. The humidity-responsive properties are introduced by activating one of the LCE surfaces with an acidic solution, which generates cations on the surface and provides asymmetric hydrophilicity to the LCE. The resulting humidity-responsive LCE undergoes programmed and reversible hygroscopic actuation, and its shape transformation can be directed by the cut angle with respect to a nematic director or by localizing activation regions in the LCE. Most importantly, various hygroscopic LCE actuators, including (porous) bilayers, a flower, a concentric square array, and a soft gripper, are successfully fabricated by using LC inks in UV-assisted direct-ink-writing-based 3D printing.
Collapse
Affiliation(s)
- Keumbee Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Yuanhang Guo
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehee Bae
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Subi Choi
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyeong Yong Song
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sungmin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Kyu Hyun
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Suk-Kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
21
|
Wang F, Tian J, Ding Y, Shi Y, Tao X, Wang X, Yang Y, Chen X, Wang ZL. A universal managing circuit with stabilized voltage for maintaining safe operation of self-powered electronics system. iScience 2021; 24:102502. [PMID: 34113833 PMCID: PMC8170003 DOI: 10.1016/j.isci.2021.102502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/06/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022] Open
Abstract
Harvesting mechanical energy via a triboelectric nanogenerator (TENG) is a promising strategy for solving energy problems. However, it is necessary to develop an effective and safe energy managing circuit for preventing high voltage breaking electronic devices. Here, a universal managing circuit is developed to optimize TENG's output performance, which for the first time allows the TENG to safely power various sensor systems with a safe and stable voltage. Based on the circuit, TENG's output can be transformed into a stable voltage with tunable amplitude, while an enhanced short-circuit current of 94 mA with an energy loss lower than 5% is achieved. For demonstrations, three different types of TENGs, respectively, targeting at ocean energy, wind energy, and walking energy have been prepared to reveal the capability of the circuit. This study offers a strategy to greatly enhance the output performance of TENGs to provide useful guidance for constructing self-powered and distributed sensor systems. UMC is designed for a TENG to maintain stable voltage with a lower resistance UMC provides a short-circuit current of 94 mA with an energy loss lower than 5% UMC can completely avoid the breakdown of electronic devices due to TENG's high voltage Three self-powered sensor systems have been successfully established
Collapse
Affiliation(s)
- Fan Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Tian
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafei Ding
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxiang Shi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglin Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingling Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.,School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
| |
Collapse
|
22
|
Huang C, Chen G, Nashalian A, Chen J. Advances in self-powered chemical sensing via a triboelectric nanogenerator. NANOSCALE 2021; 13:2065-2081. [PMID: 33439196 DOI: 10.1039/d0nr07770d] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chemical sensors allow for continuous detection and analysis of underexplored molecules in the human body and the surroundings and have promising applications in human healthcare and environmental protection. With the increasing number of chemical sensors and their wide-range distribution, developing a continuous, sustainable, and pervasive power supply is vitally important but an unmet scientific challenge to perform chemical sensing. Self-powered chemical sensing via triboelectric nanogenerators (TENGs) could be a promising approach to this critical situation. TENGs can convert mechanical triggers from the surroundings into usable electrical signals for chemical sensing in a self-powered and environment-friendly manner. Moreover, their simple structure, low probability of failure, and wide choice of materials distinguish them from other chemical sensing technologies. This review article discusses the working principles of TENGs and their applications in chemical sensing with respect to the role of TENGs as either a self-powered sensor or a power source for existing chemical sensors. Advances in materials innovation and nanotechnology to optimize the chemical sensing performances are discussed and emphasized. Finally, the current challenges and future prospect of TENG enabled self-powered chemical sensing are discussed to promote interdisciplinary field development and revolutions.
Collapse
Affiliation(s)
- Congxi Huang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Ardo Nashalian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
23
|
Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213597] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Liu Y, Zheng H, Zhao L, Liu S, Yao K, Li D, Yiu C, Gao S, Avila R, Pakpong C, Chang L, Wang Z, Huang X, Xie Z, Yang Z, Yu X. Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer. RESEARCH 2020; 2020:1085417. [PMID: 33134931 PMCID: PMC7586250 DOI: 10.34133/2020/1085417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/07/2020] [Indexed: 11/10/2022]
Abstract
Electronic skin made of thin, soft, stretchable devices that can mimic the human skin and reconstruct the tactile sensation and perception offers great opportunities for prosthesis sensing, robotics controlling, and human-machine interfaces. Advanced materials and mechanics engineering of thin film devices has proven to be an efficient route to enable and enhance flexibility and stretchability of various electronic skins; however, the density of devices is still low owing to the limitation in existing fabrication techniques. Here, we report a high-throughput one-step process to fabricate large tactile sensing arrays with a sensor density of 25 sensors/cm2 for electronic skin, where the sensors are based on intrinsically stretchable piezoelectric lead zirconate titanate (PZT) elastomer. The PZT elastomer sensor arrays with great uniformity and passive-driven manner enable high-resolution tactile sensing, simplify the data acquisition process, and lower the manufacturing cost. The high-throughput fabrication process provides a general platform for integrating intrinsically stretchable materials into large area, high device density soft electronics for the next-generation electronic skin.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Huanxi Zheng
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Ling Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Shiyuan Liu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Chunki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Shenghan Gao
- Department of Biomedical Engineering, Tianjin University, Tianjin 300000, China
| | - Raudel Avila
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | - Lingqian Chang
- School of Biology Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, Tianjin 300000, China
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Zhengbao Yang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
25
|
Liu Y, Hu C. Triboelectric nanogenerators based on elastic electrodes. NANOSCALE 2020; 12:20118-20130. [PMID: 33026018 DOI: 10.1039/d0nr04868b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
New technologies such as the Internet of Things and big data have become the strategic focus of national development in the world. Triboelectric nanogenerators are one of the important technologies to solve the problem of distributed energy supply of wireless sensor networks. Since the invention of the triboelectric nanogenerator in 2012, it has attracted extensive attention due to its light weight, low cost, high flexibility, and the diversity of its function. Different from the common rigid inelastic electrode, the elastic electrode is deformable, flexible, and stretchable, which is significant for some specific triboelectric nanogenerators to expand their function. In this review, the latest achievements and research studies of triboelectric nanogenerators based on elastic electrodes are summarized. In addition, the basic classifications, fabrication processes, material selections, structural designs, and working mechanisms regarding the elastic electrode are comprehensively and systematically reviewed. Finally, the future perspectives and remaining challenges of this field are discussed.
Collapse
Affiliation(s)
- Yike Liu
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China.
| | - Chenguo Hu
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China.
| |
Collapse
|
26
|
Ejehi F, Mohammadpour R, Asadian E, Sasanpour P, Fardindoost S, Akhavan O. Graphene Oxide Papers in Nanogenerators for Self-Powered Humidity Sensing by Finger Tapping. Sci Rep 2020; 10:7312. [PMID: 32355191 PMCID: PMC7192944 DOI: 10.1038/s41598-020-64490-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 11/09/2022] Open
Abstract
Triboelectric nanogenerators (TENGs) offer an emerging market of self-sufficient power sources, converting the mechanical energy of the environment to electricity. Recently reported high power densities for the TENGs provide new applications opportunities, such as self-powered sensors. Here in this research, a flexible graphene oxide (GO) paper was fabricated through a straightforward method and utilized as the electrode of TENGs. Outstanding power density as high as 1.3 W.m-2, an open-circuit voltage up to 870 V, and a current density of 1.4 µA.cm-2 has been extracted in vertical contact-separation mode. The all-flexible TENG has been employed as a self-powered humidity sensor to investigate the effect of raising humidity on the output voltage and current by applying mechanical agitation in two forms of using a tapping device and finger tapping. Due to the presence of superficial functional groups on the GO paper, water molecules are inclined to be adsorbed, resulting in a considerable reduction in both generated voltage (from 144 V to 14 V) and current (from 23 µA to 3.7 µA) within the range of relative humidity of 20% to 99%. These results provide a promising applicability of the first suggested sensitive self-powered GO TENG humidity sensor in portable/wearable electronics.
Collapse
Affiliation(s)
- Faezeh Ejehi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Raheleh Mohammadpour
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran.
| | - Elham Asadian
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), P. O. Box, 19395-5531, Tehran, Iran
| | - Somayeh Fardindoost
- Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran
| |
Collapse
|
27
|
Tian J, Chen X, Wang ZL. Environmental energy harvesting based on triboelectric nanogenerators. NANOTECHNOLOGY 2020; 31:242001. [PMID: 32092711 DOI: 10.1088/1361-6528/ab793e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the fast development of the Internet of Things, the energy supply for electronics and sensors has become a critical challenge. The triboelectric nanogenerator (TENG), which can transfer mechanical energy from the surrounding environment into electricity, has been recognized as the most promising alternative technology to remedy the shortcomings of traditional battery technology. Environmental mechanical energy widely exists in activities in nature and these environmental energy sources can enable TENGs to achieve a clean and distributed energy network, which can finally benefit the innovation of various wireless devices. In this review, TENGs targeting different environmental energy sources have been systematically summarized and analyzed. Firstly, we give a brief introduction to the basic principle and working modes of the TENG. Then, TENGs targeting different energy sources, from blowing wind and raindrops to pounding waves, noise signalling, and so on, are summarized based on their design concept and output performance. In addition, combined with other energy technologies such as solar cells, electromagnetic generators, and piezoelectric nanogenerators, the application of hybrid nanogenerators is elaborated under different scenarios. Finally, the challenges, limitations, and future research trends of environmental energy collection are outlined.
Collapse
Affiliation(s)
- Jingwen Tian
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | |
Collapse
|
28
|
Park Y, Jung Y, Li TD, Lao J, Tu RS, Chen X. β-Sheet Nanocrystals Dictate Water Responsiveness of Bombyx Mori Silk. Macromol Rapid Commun 2020; 41:e1900612. [PMID: 32125047 DOI: 10.1002/marc.201900612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Water-responsive (WR) materials that strongly swell and shrink in response to changes in relative humidity (RH) have shown a great potential to serve as high-energy actuators for soft robotics and new energy-harvesting systems. However, the design criteria governing the scalable and high-efficiency WR actuation remain unclear, and thus inhibit further development of WR materials for practical applications. Nature has provided excellent examples of WR materials that contain stiff nanocrystalline structures that can be crucial to understand the fundamentals of WR behavior. This work reports that regenerated Bombyx (B.) mori silk can be processed to increase β-sheet crystallinity, which dramatically increases the WR energy density to 1.6 MJ m-3 , surpassing that of all known natural muscles, including mammalian muscles and insect muscles. Interestingly, the maximum water sorption decreases from 80.4% to 19.2% as the silk's β-sheet crystallinity increases from 19.7% to 57.6%, but the silk's WR energy density shows an eightfold increase with higher fractions of β-sheets. The findings of this study suggest that high crystallinity of silk reduces energy dissipation and translates the chemical potential of water-induced pressure to external loads more efficiently during the hydration/dehydration processes. Moreover, the availability of B. mori silk opens up possibilities for simple and scalable modification and production of powerful WR actuators.
Collapse
Affiliation(s)
- Yaewon Park
- Advanced Science Research Center (ASRC), City University of New York, 85, St. Nicholas Terrace, New York, NY, 10031, USA
| | - Yeojin Jung
- Advanced Science Research Center (ASRC), City University of New York, 85, St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemical Engineering, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Tai-De Li
- Advanced Science Research Center (ASRC), City University of New York, 85, St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Physics, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Jianpei Lao
- Department of Chemical Engineering, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Raymond S Tu
- Advanced Science Research Center (ASRC), City University of New York, 85, St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemical Engineering, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Xi Chen
- Advanced Science Research Center (ASRC), City University of New York, 85, St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemical Engineering, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA.,Ph.D. Program in Chemistry and Physics, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
| |
Collapse
|
29
|
Ariga K, Makita T, Ito M, Mori T, Watanabe S, Takeya J. Review of advanced sensor devices employing nanoarchitectonics concepts. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2014-2030. [PMID: 31667049 PMCID: PMC6808193 DOI: 10.3762/bjnano.10.198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/06/2019] [Indexed: 05/09/2023]
Abstract
Many recent advances in sensor technology have been possible due to nanotechnological advancements together with contributions from other research fields. Such interdisciplinary collaborations fit well with the emerging concept of nanoarchitectonics, which is a novel conceptual methodology to engineer functional materials and systems from nanoscale units through the fusion of nanotechnology with other research fields, including organic chemistry, supramolecular chemistry, materials science and biology. In this review article, we discuss recent advancements in sensor devices and sensor materials that take advantage of advanced nanoarchitectonics concepts for improved performance. In the first part, recent progress on sensor systems are roughly classified according to the sensor targets, such as chemical substances, physical conditions, and biological phenomena. In the following sections, advancements in various nanoarchitectonic motifs, including nanoporous structures, ultrathin films, and interfacial effects for improved sensor function are discussed to realize the importance of nanoarchitectonic structures. Many of these examples show that advancements in sensor technology are no longer limited by progress in microfabrication and nanofabrication of device structures - opening a new avenue for highly engineered, high performing sensor systems through the application of nanoarchitectonics concepts.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Tatsuyuki Makita
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Masato Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Shun Watanabe
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Jun Takeya
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|