1
|
Zhao K, Shen G, Liu Y, Chen K, Chang R, Liu Y, Chen W, Liu H, Yang M, Xing R, Yan X. Dual-Targeted Assembled Nanodrugs for Near-Infrared Photothermal Immunotherapy of Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67532-67544. [PMID: 39576254 DOI: 10.1021/acsami.4c18320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Triple-negative breast cancer (TNBC) is known for its poor prognosis and aggressive behavior, being highly prone to recurrence and metastasis, and currently has limited effective treatment options. Photothermal therapy (PTT) is an emerging, minimally invasive, low-drug-resistance, and precisely controllable therapeutic method for cancer treatment, offering hope to break through the bottleneck in TNBC therapy. The antitumor efficiency of PTT is predominantly contingent upon the performance of the photothermal drugs. Therefore, there is an urgent need to develop photothermal drugs that not only have excellent photothermal conversion efficiency but also possess strong tumor-targeting capabilities and good biosafety. Here, we have developed a tumor-targeted photothermal agent with near-infrared (NIR) absorption capability based on the strategy of biomolecular assembly, utilizing biliverdin manganese complexes (MnBV) and amphiphilic phospholipid-polymer conjugates (DSPE-PEG and DSPE-PEG-cKNGRE). This photothermal assembled drug exhibits a uniform size, good stability, and ideal photothermal conversion efficiency. In the 4T1 tumor-bearing mouse model of TNBC, it shows good tumor dual-targeting capabilities and a significant drug enrichment performance. While ablating the primary tumor, PTT further stimulates the maturation of dendritic cells (DCs), enhancing the infiltration of T lymphocytes into the spleen and tumor, thus reshaping the immune microenvironment of TNBC and thereby effectively inhibiting tumor metastasis and recurrence. The developed photothermal assembled drug provides an innovative candidate treatment paradigm for TNBC, offering the potential to advance precise, targeted, and safe therapy for highly invasive and aggressive malignancies.
Collapse
Affiliation(s)
- Kaili Zhao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guizhi Shen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yamei Liu
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwei Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhou Liu
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanting Chen
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huazhen Liu
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Feng M, Jiao Q, Ren Y, Liu X, Gao Z, Li Z, Wang Y, Zhao M, Bi L. The interaction between UBR7 and PRMT5 drives PDAC resistance to gemcitabine by regulating glycolysis and immune microenvironment. Cell Death Dis 2024; 15:758. [PMID: 39424627 PMCID: PMC11489413 DOI: 10.1038/s41419-024-07145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common malignant tumor of the digestive tract. Although gemcitabine and other therapeutic agents are effective in patients with advanced and metastatic pancreatic cancer, drug resistance has severely limited their use. However, the mechanisms of gemcitabine resistance in pancreatic cancer are poorly understood. In this study, ATAC-seq, ChIP-seq, and RNA-seq were performed to compare chromatin accessibility and gene expression in a patient-derived tumor xenograft (PDX) model of pancreatic cancer with or without gemcitabine resistance. Analyzing these sequencing data, we found a dramatic change in chromatin accessibility in the PDX model of gemcitabine-resistant tissues and identified a key gene, UBR7, which plays an important role in mediating gemcitabine resistance. Further research found that depletion of UBR7 significantly increased pancreatic carcinogenesis and the immunosuppressive microenvironment. Mechanistically, depleted UBR7 increased the stability of PRMT5, thereby promoting glycolysis in pancreatic cancer cells. Finally, an inhibitor that blocks PRMT5 (DS-437) significantly reduced gemcitabine resistance in pancreatic cancer caused by UBR7 depletion. In conclusion, our results illustrate that the UBR7-PRMT5 axis is a key metabolic regulator of PDAC and a promising target for the clinical treatment of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
- Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zihan Gao
- School of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhengjun Li
- School of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Miaoqing Zhao
- Department of pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Lei Bi
- School of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
3
|
Huang Y, Wang Y, Zheng T, Nie S, Wang Y, Shen H, Mo F. Development of Dual Diagnostic-Therapeutic Nanoformulation Effective Against Pancreatic Cancer in Animal Model. Int J Nanomedicine 2024; 19:9121-9143. [PMID: 39258004 PMCID: PMC11386073 DOI: 10.2147/ijn.s464788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Purpose Erythrocytes and fibroblasts in the pancreatic cancer tumor microenvironment promote tumor cell growth and invasion by providing nutrients and promoting immunosuppression. Additionally, they form a barrier against the penetration of chemotherapeutic drugs. Therefore, the search for diversified tumor-targeting materials plays an essential role in solving the above problems. Methods Physicochemical characterization of Graphene fluorescent nanoparticles (GFNPs) and nanomedicines were analyzed by transmission electron microscopy (TEM), elemental analyzers and ultraviolet fluorescence (UV/FL) spectrophotometer. Localization of GFNPs in cell and tissue sections imaged with laser confocal microscope, fluorescence scanner and small animal in vivo imager. Qualitative detection and quantitative detection of GFNPs and GFNPs-GEM were performed using High performance liquid chromatography (HPLC). Results Based on the 3 nm average dimensions, GFNPs penetrate vascular endothelial cells and smooth muscle cells, achieve up to label 30% tumor cells and 60% cancer-associated fibroblasts (CAFs) cells, and accurately label mature red blood cells in the tumor microenvironment. In orthotopic transplanted pancreatic cancer models, the fluorescence intensity of GFNPs in tumors showed a positive correlation with the cycle size of tumor development. The differential spatial distribution of GFNPs in three typical clinical pancreatic cancer samples demonstrated their diagnostic potential. To mediate the excellent targeting properties of GFNPs, we synthesized a series of nanomedicines using popular chemotherapeutic drugs, in which complex of GFNPs and gemcitabine (GFNPs-GEM) possessed stability in vivo and exhibited effective reduction of tumor volume and fewer side effects. Conclusion GFNPs with multiple targeting tumor microenvironments in pancreatic cancer possess diagnostic efficiency and therapeutic potential.
Collapse
Affiliation(s)
- Yanan Huang
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Yunfeng Wang
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China
| | - Tianyu Zheng
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Yanli Wang
- International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan, People's Republic of China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Pereira-Silva M, Diaz-Gomez L, Blanco-Fernandez B, Ferreirós A, Veiga F, Concheiro A, Paiva-Santos AC, Alvarez-Lorenzo C. Cancer cell membrane-modified Soluplus® micelles for gemcitabine delivery to pancreatic cancer using a prodrug approach. Int J Pharm 2024; 662:124529. [PMID: 39084580 DOI: 10.1016/j.ijpharm.2024.124529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies worldwide and its incidence is increasing. Chemotherapy is often associated to limited efficacy, poor targeting and systemic toxicity. In this work, the hydrophilic gemcitabine (GEM), widely used in PC treatment alone or in combination, was conjugated with vitamin E succinate (VES) and encapsulated in Soluplus® micelles. This prodrug approach facilitated encapsulation of the anticancer drug into the self-assembled copolymer micelles. Soluplus®/VES-GEM micelles were optimized regarding the ratio of the components and the preparation process. The micelles were small-sized (<80 nm), monodisperse, and highly stable, efficiently retaining the conjugate drug and showing significant antiproliferative activity against BxPC3 cell line. To improve biofunctionalization and targeting properties of prepared Soluplus®/VES-GEM micelles, biomimetic modification with PC cell membrane was further attempted by co-extruding PC cell membrane (BxPC3) nanovesicles with Soluplus®/VES-GEM micelles. Several protocols were attempted to prepare the BxPC3-modified Soluplus®/VES-GEM micelles and the outcomes were analyzed in detail. Overall, the results pave the way to innovative PC-targeted nanotherapies by maximizing GEM encapsulation in hydrophobic compartments with high stability and affinity. The results also highlight the need of higher resolution techniques to characterize cell membrane coating of nanocarriers bearing highly hydrophilic shells.
Collapse
Affiliation(s)
- Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Bárbara Blanco-Fernandez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alba Ferreirós
- Nasasbiotech, S.L., Canton Grande 9, 15003 A Coruña, Spain
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Tang H, Dilimulati D, Yang Z, Zhou K, Chen X, Sun R, Wang N, Liang Z, Bian S, Zhao J, Song P, Zheng S, Wang H, Xie H. Chemically engineered mTOR-nanoparticle blockers enhance antitumour efficacy. EBioMedicine 2024; 103:105099. [PMID: 38604089 PMCID: PMC11017279 DOI: 10.1016/j.ebiom.2024.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly prevalent and deadly type of cancer, and although pharmacotherapy remains the cornerstone of treatment, therapeutic outcomes are often unsatisfactory. Pharmacological inhibition of mammalian target of rapamycin (mTOR) has been closely associated with HCC regression. METHODS Herein, we covalently conjugated AZD8055, a potent mTORC1/2 blocker, with a small panel of unsaturated fatty acids via a dynamically activating linkage to enable aqueous self-assembly of prodrug conjugates to form mTOR nanoblockers. Cell-based experiments were carried out to evaluate the effects of the nanoblocker against hepatocellular carcinoma (HCC) cells. The orthotopic and subcutaneous HCC mouse models were established to examine its antitumour activity. FINDINGS Among several fatty acids as promoieties, linoleic acid-conjugated self-assembling nanoblocker exhibited optimal size distribution and superior physiochemical properties. Compared with free agents, PEGylated AZD8055 nanoblocker (termed AZD NB) was pharmacokinetically optimized after intravenous administration. In vivo investigations confirmed that AZD NB significantly suppressed tumour outgrowth in subcutaneous HCCLM3 xenograft, Hepatoma-22, and orthotopic Hepa1-6 liver tumour models. Strikingly, treatment with AZD NB, but not free agent, increased intratumour infiltration of IFN-γ+CD8+ T cells and CD8+ memory T cells, suggesting a potential role of the mTOR nanoblocker to remodel the tumour microenvironment. Overall, a single conjugation with fatty acid transformed a hydrophobic mTOR blocker into a systemically injectable nanomedicine, representing a facile and generalizable strategy for improving the therapeutic index of mTOR inhibition-based cancer therapy. INTERPRETATION The mTOR inhibition by chemically engineered nanoblocker presented here had enhanced efficacy against tumours compared with the pristine drug and thus has the potential to improve the survival outcomes of patients with HCC. Additionally, this new nanosystem derived from co-assembling of small-molecule prodrug entities can serve as a delivery platform for the synergistic co-administration of distinct pharmaceutical agents. FUNDING This work was supported by the National Natural Science Foundation of China (32171368,81721091), the Zhejiang Provincial Natural Science Foundation of China (LZ21H180001), the Jinan Provincial Laboratory Research Project of Microecological Biomedicine (JNL-2022039c and JNL-2022010B), State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (zz202310), and Natural Science Foundation of Shandong Province (ZR2023ZD59).
Collapse
Affiliation(s)
- Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dilinuer Dilimulati
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ke Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaona Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhi Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Suchen Bian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jialing Zhao
- Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province 310003, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Hangxiang Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
6
|
Pramanik N, Gupta A, Ghanwatkar Y, Mahato RI. Recent advances in drug delivery and targeting for the treatment of pancreatic cancer. J Control Release 2024; 366:231-260. [PMID: 38171473 PMCID: PMC10922996 DOI: 10.1016/j.jconrel.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Despite significant treatment efforts, pancreatic ductal adenocarcinoma (PDAC), the deadliest solid tumor, is still incurable in the preclinical stages due to multifacet stroma, dense desmoplasia, and immune regression. Additionally, tumor heterogeneity and metabolic changes are linked to low grade clinical translational outcomes, which has prompted the investigation of the mechanisms underlying chemoresistance and the creation of effective treatment approaches by selectively targeting genetic pathways. Since targeting upstream molecules in first-line oncogenic signaling pathways typically has little clinical impact, downstream signaling pathways have instead been targeted in both preclinical and clinical studies. In this review, we discuss how the complexity of various tumor microenvironment (TME) components and the oncogenic signaling pathways that they are connected to actively contribute to the development and spread of PDAC, as well as the ways that recent therapeutic approaches have been targeted to restore it. We also illustrate how many endogenous stimuli-responsive linker-based nanocarriers have recently been developed for the specific targeting of distinct oncogenes and their downstream signaling cascades as well as their ongoing clinical trials. We also discuss the present challenges, prospects, and difficulties in the development of first-line oncogene-targeting medicines for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Nilkamal Pramanik
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya Gupta
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Pereira-Silva M, Miranda-Pastoriza D, Diaz-Gomez L, Sotelo E, Paiva-Santos AC, Veiga F, Concheiro A, Alvarez-Lorenzo C. Gemcitabine-Vitamin E Prodrug-Loaded Micelles for Pancreatic Cancer Therapy. Pharmaceutics 2024; 16:95. [PMID: 38258105 PMCID: PMC10819901 DOI: 10.3390/pharmaceutics16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive cancer subtype presenting unmet clinical challenges. Conventional chemotherapy, which includes antimetabolite gemcitabine (GEM), is seriously undermined by a short half-life, its lack of targeting ability, and systemic toxicity. GEM incorporation in self-assembled nanosystems is still underexplored due to GEM's hydrophilicity which hinders efficient encapsulation. We hypothesized that vitamin E succinate-GEM prodrug (VES-GEM conjugate) combines hydrophobicity and multifunctionalities that can facilitate the development of Pluronic® F68 and Pluronic® F127 micelle-based nanocarriers, improving the therapeutic potential of GEM. Pluronic® F68/VES-GEM and Pluronic® F127/VES-GEM micelles covering a wide range of molar ratios were prepared by solvent evaporation applying different purification methods, and characterized regarding size, charge, polydispersity index, morphology, and encapsulation. Moreover, the effect of sonication and ultrasonication and the influence of a co-surfactant were explored together with drug release, stability, blood compatibility, efficacy against tumour cells, and cell uptake. The VES-GEM conjugate-loaded micelles showed acceptable size and high encapsulation efficiency (>95%) following an excipient reduction rationale. Pluronic® F127/VES-GEM micelles evidenced a superior VES-GEM release profile (cumulative release > 50%, pH = 7.4), stability, cell growth inhibition (<50% cell viability for 100 µM VES-GEM), blood compatibility, and extensive cell internalization, and therefore represent a promising approach to leveraging the efficacy and safety of GEM for PC-targeted therapies.
Collapse
Affiliation(s)
- Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; (M.P.-S.); (A.C.P.-S.); (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Darío Miranda-Pastoriza
- Department of Organic Chemistry, Faculty of Farmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (D.M.-P.); (E.S.)
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Eddy Sotelo
- Department of Organic Chemistry, Faculty of Farmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (D.M.-P.); (E.S.)
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; (M.P.-S.); (A.C.P.-S.); (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; (M.P.-S.); (A.C.P.-S.); (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
8
|
Deshpande S, Yang Y, Zauscher S, Chilkoti A. Enzymatic Synthesis of Aptamer-Polynucleotide Nanoparticles with High Anticancer Drug Loading for Targeted Delivery. Biomacromolecules 2024; 25:155-164. [PMID: 38051194 PMCID: PMC11495896 DOI: 10.1021/acs.biomac.3c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We report a targeted prodrug delivery platform that can deliver a cytostatic nucleobase analog with high drug loading. We chose fluorouracil (5FU), a drug used to treat various cancers, whose active metabolite 5-fluorodeoxyuridine monophosphate (5-FdUMP) is the antineoplastic agent. We use terminal deoxynucleotidyl transferase (TdT) to polymerize 5-fluorodeoxyuridine triphosphate (5-FdUTP) onto the 3'-end of an aptamer. We find that (i) addition of hydrophobic, unnatural nucleotides at the 3'-end of the 5-FdU polynucleotide by TdT leads to their spontaneous self-assembly into nuclease resistant micelles, (ii) aptamers presented on the micelle corona retain specificity for their cognate receptor on tumor cells, and (iii) the micelles deliver 5FU to tumor cells and exhibit greater cytotoxicity than the free drug. The modular design of our platform, consisting of a targeting moiety, a polynucleotide drug, and a self-assembly domain, can be adapted to encompass a range of polymerizable therapeutic nucleotides and targeting units.
Collapse
Affiliation(s)
- Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Yunqi Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Stefan Zauscher
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
9
|
Xian S, Zhu J, Wang Y, Song H, Wang H. Oral liposomal delivery of an activatable budesonide prodrug reduces colitis in experimental mice. Drug Deliv 2023; 30:2183821. [PMID: 36861451 PMCID: PMC9987780 DOI: 10.1080/10717544.2023.2183821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is one of the most common intestinal disorders, with increasing global incidence and prevalence. Numerous therapeutic drugs are available but require intravenous administration and are associated with high toxicity and insufficient patient compliance. Here, an oral liposome that entraps the activatable corticosteroid anti-inflammatory budesonide was developed for efficacious and safe IBD therapy. The prodrug was produced via the ligation of budesonide with linoleic acid linked by a hydrolytic ester bond, which was further constrained into lipid constituents to form colloidal stable nanoliposomes (termed budsomes). Chemical modification with linoleic acid augmented the compatibility and miscibility of the resulting prodrug in lipid bilayers to provide protection from the harsh environment of the gastrointestinal tract, while liposomal nanoformulation enables preferential accumulation to inflamed vasculature. Hence, when delivered orally, budsomes exhibited high stability with low drug release in the stomach in the presence of ultra-acidic pH but released active budesonide after accumulation in inflamed intestinal tissues. Notably, oral administration of budsomes demonstrated favorable anti-colitis effect with only ∼7% mouse body weight loss, whereas at least ∼16% weight loss was observed in other treatment groups. Overall, budsomes exhibited higher therapeutic efficiency than free budesonide treatment and potently induced remission of acute colitis without any adverse side effects. These data suggest a new and reliable approach for improving the efficacy of budesonide. Our in vivo preclinical data demonstrate the safety and increased efficacy of the budsome platform for IBD treatment, further supporting clinical evaluation of this orally efficacious budesonide therapeutic.
Collapse
Affiliation(s)
- Shiyun Xian
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, P.R. China
| | - Jiabin Zhu
- Department of Pharmacy, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P.R. China
| | - Yuchen Wang
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, P.R. China
| |
Collapse
|
10
|
Liu T, Guo C, Xu S, Hu G, Wang L. A Novel Strategy to Improve Tumor Targeting of Hydrophilic Drugs and Nanoparticles for Imaging Guided Synergetic Therapy. Adv Healthc Mater 2023; 12:e2300883. [PMID: 37437241 DOI: 10.1002/adhm.202300883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The fast renal clearance of hydrophilic small molecular anticancer drugs and ultrasmall nanoparticles (NPs) results in the low utilization rate and certain side effects, thus improving the tumor targeting is highly desired but faces great challenges. A novel and general β-cyclodextrin (CD) aggregation-induced assembly strategy to fabricate doxorubicin (DOX) and CD-coated NPs (such as Au) co-encapsulated pH-responsive nanocomposites (NCs) is proposed. By adding DOX×HCl and reducing pH in a reversed microemulsion system, hydrophilic CD-coated AuNPs rapidly assemble into large NCs. Then in situ polymerization of dopamine and sequentially coordinating with Cu2+ on the surface of NCs provide extra weak acid responsiveness, chemodynamic therapy (CDT), and improved biocompatibility as well as stability. The subsequent tumor microenvironment responsive dissociation notably improves their passive tumor targeting, bioavailability, imaging, and therapeutic capabilities, as well as facilitates their internalization by tumor cells and metabolic clearance, thereby reducing side effects. The combination of polymerized dopamine and assembled AuNPs reinforces photothermal capability, thus further boosting CDT through thermally amplifying Cu-catalyzed Fenton-like reaction. Both in vitro and in vivo studies confirm the desirable outcomes of these NCs as photoacoustic imaging guided trimodal (thermally enhanced CDT, photothermal therapy, and chemotherapy) synergistic tumor treatment agents with minimal systemic toxicity.
Collapse
Affiliation(s)
- Taoxia Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chang Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gaofei Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Husni P, Lim C, Taek Oh K. Tumor microenvironment stimuli-responsive lipid-drug conjugates for cancer treatment. Int J Pharm 2023; 639:122942. [PMID: 37037397 DOI: 10.1016/j.ijpharm.2023.122942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Lipid drug conjugates (LDCs) have attracted considerable attention in the fields of drug delivery and pharmacology due to their ability to target specific cells, increase drug solubility, reduce toxicity, and improve therapeutic efficacy. These unique features make LDCs promising candidates for the treatment cancer, inflammation, and infectious diseases. In fact, by choosing specific linkers between the lipid and drug molecules, stimuli-responsive LDCs can be designed to target cancer cells based on the unique properties of the tumor microenvironment. Despite the fact that many reviews have described LDCs, few articles have focused on tumor microenvironmental stimuli-responsive LDCs for cancer treatment. Therefore, the key elements of these types of LDCs in cancer treatment will be outlined and discussed in this paper. Our paper goes into detail on the concepts and benefits of LDCs, the various types of tumor microenvironment stimuli-responsive LDCs (such as pH, redox, enzyme, or reactive oxygen species-responsive LDCs), and the current status of LDCs in clinical trials.
Collapse
Affiliation(s)
- Patihul Husni
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chaemin Lim
- College of Pharmacy, Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
12
|
Li Y, Lin L, Xie J, Wei L, Xiong S, Yu K, Zhang B, Wang S, Li Z, Tang Y, Chen G, Li Z, Yu Z, Wang X. ROS-Triggered Self-Assembled Nanoparticles Based on a Chemo-Sonodynamic Combinational Therapy Strategy for the Noninvasive Elimination of Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15893-15906. [PMID: 36940438 DOI: 10.1021/acsami.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The hypopermeability and hypoxia in the tumor milieu are important factors that limit multiple treatments. Herein, the reactive oxygen species (ROS)-triggered self-assembled nanoparticles (RP-NPs) was constructed. The natural small molecule Rhein (Rh) was encapsulated into RP-NPs as a sonosensitizer highly accumulated at the tumor site. Then highly tissue-permeable ultrasound (US) irradiation induced apoptosis of tumor cells through the excitation of Rh and acoustic cavitation, which prompted the rapid production of large amounts of ROS in the hypoxic tumor microenvironment. In addition, the thioketal bond structures in the innovatively designed prodrug LA-GEM were triggered and broken by ROS to achieve rapid targeted release of the gemcitabine (GEM). Sonodynamic therapy (SDT) increased the tissue permeability of solid tumors and actively disrupted redox homeostasis via mitochondrial pathways to kill hypoxic tumor cells, and the triggered response mechanism to GEM synergistically amplified the effect of chemotherapy. The chemo-sonodynamic combinational treatment approach is highly effective and noninvasive, with promising applications for hypoxic tumor elimination, such as in cervical cancer (CCa) patients who want to maintain their reproductive function.
Collapse
Affiliation(s)
- Yibing Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, China
| | - Ling Lin
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Jiashan Xie
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Lixue Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Shuping Xiong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Kunyi Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Bingchen Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Shengtao Wang
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan, 528000, China
| | - Zibo Li
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Yan Tang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Guimei Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Zhongjun Li
- Department of Obstetrics and Gynecology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, Guangdong 523058, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
13
|
Wang Y, Chen W, Wang Z, Zhu Y, Zhao H, Wu K, Wu J, Zhang W, Zhang Q, Guo H, Ju H, Liu Y. NIR-II Light Powered Asymmetric Hydrogel Nanomotors for Enhanced Immunochemotherapy. Angew Chem Int Ed Engl 2023; 62:e202212866. [PMID: 36401612 DOI: 10.1002/anie.202212866] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Nanomotors are appealing drug carriers, and the strength of the propelling force is important for their motion capability. Though high motion efficiency has been achieved with 808 nm light driven Janus-structured noble metal nanomotors, the NIR-I light penetration depth and material biocompatibility limit their broad application. Herein, we develop a 1064 nm NIR-II light driven asymmetric hydrogel nanomotor (AHNM) with high motion capability and load it with doxorubicin for enhanced immunochemotherapy. Magnetic field assisted photopolymerization generates an asymmetric distribution of Fe3 O4 @Cu9 S8 nanoparticles in the AHNM, producing self-thermophoresis as driving force under NIR-II irradiation. The AHNM is also functionalized with dopamine for the capture and retention of tumor-associated antigens to boost immune activation. The as-obtained NIR-II light driven AHNM has a high tumor tissue penetration capability and enhances immunochemotherapy, providing a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Yingfei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Zhong Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yu Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Kun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qing Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Bian S, Dong H, Zhao L, Li Z, Chen J, Zhu X, Qiu N, Jia X, Song W, Li Z, Zheng S, Wang H, Song P. Antihypertension Nanoblockers Increase Intratumoral Perfusion of Sequential Cytotoxic Nanoparticles to Enhance Chemotherapy Efficacy against Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201931. [PMID: 36026578 PMCID: PMC9561769 DOI: 10.1002/advs.202201931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the worst prognosis types of tumors, is characterized by dense extracellular matrix, which compresses tumor vessels and forms a physical barrier to inhibit therapeutic drug penetration and efficacy. Herein, losartan, an antihypertension agent, is applied as a tumor stroma modulator and developed into a nanosystem. A series of lipophilic losartan prodrugs are constructed by esterification of the hydroxyl group on losartan to fatty acids. Based on the self-assembly ability and hydrodynamic diameter, the losartan-linoleic acid conjugate is selected for further investigation. To improve the stability in vivo, nanoassemblies are refined with PEGylation to form losartan nanoblocker (Los NB), and administered via intravenous injection for experiments. On murine models of pancreatic cancer, Los NB shows a greater ability to remodel the tumor microenvironment than free losartan, including stromal depletion, vessel perfusion increase, and hypoxia relief. Furthermore, Los NB pretreatment remarkably enhances the accumulation and penetration of 7-ethyl-10-hydroxycamptothecin (SN38)-loaded nanodrugs (SN38 NPs) in tumor tissues. Expectedly, overall therapeutic efficacy of SN38 NPs is significantly enhanced after Los NB pretreatment. Since losartan is one of the most commonly used antihypertension agents, this study may provide a potential for clinical transformation in stroma-rich PDAC treatment.
Collapse
|
15
|
De novo engineering of both an omega-3 fatty acid-derived nanocarrier host and a prodrug guest to potentiate drug efficacy against colorectal malignancies. Biomaterials 2022; 290:121814. [DOI: 10.1016/j.biomaterials.2022.121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/23/2022] [Accepted: 09/17/2022] [Indexed: 11/20/2022]
|
16
|
Sukocheva OA, Liu J, Neganova ME, Beeraka NM, Aleksandrova YR, Manogaran P, Grigorevskikh EM, Chubarev VN, Fan R. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Semin Cancer Biol 2022; 86:358-375. [PMID: 35623562 DOI: 10.1016/j.semcancer.2022.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Epigenetic regulation by microRNAs (miRs) demonstrated a promising therapeutic potential of these molecules to regulate genetic activity in different cancers, including colorectal cancers (CRCs). The RNA-based therapy does not change genetic codes in tumor cells but can silence oncogenes and/or reactivate inhibited tumor suppressor genes. In many cancers, specific miRs were shown to promote or stop tumor progression. Among confirmed and powerful epigenetic regulators of colon carcinogenesis and development of resistance are onco-miRs, which include let-7, miR-21, miR-22, miR-23a, miR-27a, miR-34, miR-92, miR-96, miR-125b, miR-135b, miR-182, miR-200c, miR-203, miR-221, miR-421, miR-451, and others. Moreover, various tumor-suppressor miRs (miR-15b-5b, miR-18a, miR-20b, miR-22, miR-96, miR-139-5p, miR-145, miR-149, miR-197, miR-199b, miR-203, miR-214, miR-218, miR-320, miR-375-3p, miR-409-3p, miR-450b-5p, miR-494, miR-577, miR-874, and others) were found silenced in drug-resistant CRCs. Re-expression of tumor suppressor miR is complicated by the chemical nature of miRs that are not long-lasting compounds and require protection from the enzymatic degradation. Several recent studies explored application of miRs using nanocarrier complexes. This study critically describes the most successfully tested nanoparticle complexes used for intracellular delivery of nuclear acids and miRs, including micelles, liposomes, inorganic and polymeric NPs, dendrimers, and aptamers. Nanocarriers shield incorporated miRs and improve the agent stability in circulation. Attachment of antibodies and/or specific peptide or ligands facilitates cell-targeted miR delivery. Addressing in vivo challenges, a broad spectrum of non-toxic materials has been tested and indicated reliable advantages of lipid-based (lipoplexes) and polymer-based liposomes. Recent cutting-edge developments indicated that lipid-based complexes with multiple cargo, including several miRs, are the most effective approach to eradicate drug-resistant tumors. Focusing on CRC-specific miRs, this review provides a guidance and insights towards the most promising direction to achieve dramatic reduction in tumor growth and metastasis using miR-nanocarrier complexes.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Queensland, Australia; Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Junqi Liu
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Narasimha M Beeraka
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia; Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical College, Mysuru, Karnataka, India
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Prasath Manogaran
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Ekaterina M Grigorevskikh
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Chubarev
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Ruitai Fan
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China.
| |
Collapse
|
17
|
Zhong W, Zhang X, Duan X, Liu H, Fang Y, Luo M, Fang Z, Miao C, Lin D, Wu J. Redox-responsive self-assembled polymeric nanoprodrug for delivery of gemcitabine in B-cell lymphoma therapy. Acta Biomater 2022; 144:67-80. [PMID: 35331940 DOI: 10.1016/j.actbio.2022.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/30/2022]
Abstract
Gemcitabine, as a standard and classic strategy for B-cell lymphoma in the clinic, is limited by its poor pharmacodynamics. Although stimuli-responsive polymeric nanodelivery systems have been widely investigated in the past decade, issues such as complicated procedures, low loading capacity, and uncontrollable release kinetics still hinder their clinical translation. In view of the above considerations, we attempt to construct hyperbranched polyprodrug micelles with considerable drug loading via simple procedures and make use of the particularity of the tumor microenvironment to ensure that the micelles are "inactivated" in normal tissues and "activated" in the tumor microenvironment. Hence, in this work, a redox-responsive polymeric gemcitabine-prodrug (GEM-S-S-PEG) was one-pot synthesized via facile esterification and acylation. The self-assembled subsize (< 100 nm) GEM-S-S-PEG (GSP NPs) with considerable loading capacity (≈ 24.6%) exhibited on-demand and accurate control of gemcitabine release under a simulated tumor microenvironment and thus significantly induced the apoptosis of B-cell lymphoma in vitro. Moreover, in the A20 tumor xenograft murine model, GSP NPs efficiently decreased the expansion of tumor tissues with minimal systemic toxicity. In summary, these redox-responsive and self-assembling GSP NPs with a facile one-pot synthesis procedure may hold great potency in clinical translation for enhanced chemotherapy of B-cell lymphoma. STATEMENT OF SIGNIFICANCE: A redox-responsive polymeric gemcitabine-prodrug (GEM-S-S-PEG) was one-pot synthesized via facile esterification and acylation. The self-assembled subsize (< 100 nm) GEM-S-S-PEG (GSP NPs) exhibited significant tumor therapeutic effects in vitro and in vivo. The polyprodrug GEM-S-S-PEG prepared in this study shows the great potential of redox-responsive nanodrugs for antitumor activity, which provides a reference value for the optimization of the design of functional polyprodrugs.
Collapse
Affiliation(s)
- Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiao Duan
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yifen Fang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhengwen Fang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Congxiu Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi 046000, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
18
|
Huang L, Yang J, Wang T, Gao J, Xu D. Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug delivery. J Nanobiotechnology 2022; 20:49. [PMID: 35073914 PMCID: PMC8785568 DOI: 10.1186/s12951-022-01257-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
AbstractA widely established prodrug strategy can effectively optimize the unappealing properties of therapeutic agents in cancer treatment. Among them, lipidic prodrugs extremely uplift the physicochemical properties, site-specificity, and antitumor activities of therapeutic agents while reducing systemic toxicity. Although great perspectives have been summarized in the progress of prodrug-based nanoplatforms, no attention has been paid to emphasizing the rational design of small-molecule lipidic prodrugs (SLPs). With the aim of outlining the prospect of the SLPs approach, the review will first provide an overview of conjugation strategies that are amenable to SLPs fabrication. Then, the rational design of SLPs in response to the physiological barriers of chemotherapeutic agents is highlighted. Finally, their biomedical applications are also emphasized with special functions, followed by a brief introduction of the promising opportunities and potential challenges of SLPs-based drug delivery systems (DDSs) in clinical application.
Graphical Abstract
Collapse
|
19
|
Baroud M, Lepeltier E, El-Makhour Y, Lautram N, Bejaud J, Thepot S, Duval O. Azacitidine Omega-3 Self-Assemblies: Synthesis, Characterization, and Potent Applications for Myelodysplastic Syndromes. Pharmaceuticals (Basel) 2021; 14:1317. [PMID: 34959720 PMCID: PMC8706301 DOI: 10.3390/ph14121317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/30/2022] Open
Abstract
5-Azacitidine, a cytidine analogue used as a hypomethylating agent, is one of the main drugs for the treatment of myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML) in the elderly. However, after administration, it exhibits several limitations, including restricted diffusion and cellular internalization due to its hydrophilicity, and a rapid enzymatic degradation by adenosine deaminase. The aim of this study was to improve the drug cell diffusion and protect it from metabolic degradation via the synthesis of amphiphilic prodrugs and their potential self-assembly. Azacitidine was conjugated to two different omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The carboxylic acid group of the omega-3 fatty acids was effectively conjugated to the amine group of the azacitidine base, yielding two amphiphilic prodrugs. Nanoprecipitation of the obtained prodrugs was performed and self-assemblies were successfully obtained for both prodrugs, with a mean diameter of 190 nm, a polydispersity index below 0.2 and a positive zeta potential. The formation of self-assemblies was confirmed using pyrene as a fluorescent dye, and the critical aggregation concentrations were determined: 400 µM for AzaEPA and 688 µM for AzaDHA. Additionally, the stability of the obtained self-assemblies was studied and after 5 days their final stable arrangement was reached. Additionally, cryo-TEM revealed that the self-assemblies attain a multilamellar vesicle supramolecular structure. Moreover, the obtained self-assemblies presented promising cytotoxicity on a leukemia human cell line, having a low IC50 value, comparable to that of free azacitidine.
Collapse
Affiliation(s)
- Milad Baroud
- Micro & Nanomedecines Translationnelles (MINT), Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, University of Angers, 49000 Angers, France; (M.B.); (E.L.); (N.L.); (J.B.)
| | - Elise Lepeltier
- Micro & Nanomedecines Translationnelles (MINT), Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, University of Angers, 49000 Angers, France; (M.B.); (E.L.); (N.L.); (J.B.)
| | - Yolla El-Makhour
- Environmental Health Research Lab, Faculty of Science, Lebanese University, Nabatieh 1700, Lebanon;
| | - Nolwenn Lautram
- Micro & Nanomedecines Translationnelles (MINT), Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, University of Angers, 49000 Angers, France; (M.B.); (E.L.); (N.L.); (J.B.)
| | - Jerome Bejaud
- Micro & Nanomedecines Translationnelles (MINT), Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, University of Angers, 49000 Angers, France; (M.B.); (E.L.); (N.L.); (J.B.)
| | - Sylvain Thepot
- Department of Hematology, University Hospital of Angers, 49933 Angers, France;
- Federation Hospital of Universitaire Grand Ouest Acute Leukemia (FHU GOAL), 49933 Angers, France
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), INSERM, University of Angers, 49933 Angers, France
| | - Olivier Duval
- Micro & Nanomedecines Translationnelles (MINT), Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, University of Angers, 49000 Angers, France; (M.B.); (E.L.); (N.L.); (J.B.)
- Department of Hematology, University Hospital of Angers, 49933 Angers, France;
| |
Collapse
|
20
|
Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers (Basel) 2021; 13:cancers13246175. [PMID: 34944794 PMCID: PMC8699181 DOI: 10.3390/cancers13246175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite access to a vast arsenal of anticancer agents, many fail to realise their full therapeutic potential in clinical practice. One key determinant of this is the evolution of multifaceted resistance mechanisms within the tumour that may either pre-exist or develop during the course of therapy. This is particularly evident in pancreatic cancer, where limited responses to treatment underlie dismal survival rates, highlighting the urgent need for new therapeutic approaches. Here, we discuss the major features of pancreatic tumours that contribute to therapy resistance, and how they may be alleviated through exploitation of the mounting and exciting promise of nanomedicines; a unique collection of nanoscale platforms with tunable and multifunctional capabilities that have already elicited a widespread impact on cancer management. Abstract The development of drug resistance remains one of the greatest clinical oncology challenges that can radically dampen the prospect of achieving complete and durable tumour control. Efforts to mitigate drug resistance are therefore of utmost importance, and nanotechnology is rapidly emerging for its potential to overcome such issues. Studies have showcased the ability of nanomedicines to bypass drug efflux pumps, counteract immune suppression, serve as radioenhancers, correct metabolic disturbances and elicit numerous other effects that collectively alleviate various mechanisms of tumour resistance. Much of this progress can be attributed to the remarkable benefits that nanoparticles offer as drug delivery vehicles, such as improvements in pharmacokinetics, protection against degradation and spatiotemporally controlled release kinetics. These attributes provide scope for precision targeting of drugs to tumours that can enhance sensitivity to treatment and have formed the basis for the successful clinical translation of multiple nanoformulations to date. In this review, we focus on the longstanding reputation of pancreatic cancer as one of the most difficult-to-treat malignancies where resistance plays a dominant role in therapy failure. We outline the mechanisms that contribute to the treatment-refractory nature of these tumours, and how they may be effectively addressed by harnessing the unique capabilities of nanomedicines. Moreover, we include a brief perspective on the likely future direction of nanotechnology in pancreatic cancer, discussing how efforts to develop multidrug formulations will guide the field further towards a therapeutic solution for these highly intractable tumours.
Collapse
|
21
|
A self-assembling prodrug nanosystem to enhance metabolic stability and anticancer activity of gemcitabine. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Li G, Sun B, Li Y, Luo C, He Z, Sun J. Small-Molecule Prodrug Nanoassemblies: An Emerging Nanoplatform for Anticancer Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101460. [PMID: 34342126 DOI: 10.1002/smll.202101460] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The antitumor efficiency and clinical translation of traditional nanomedicines is mainly restricted by low drug loading, complex preparation technology, and potential toxicity caused by the overused carrier materials. In recent decades, small-molecule prodrug nanoassemblies (SMP-NAs), which are formed by the self-assembly of prodrugs themselves, have been widely investigated with distinct advantages of ultrahigh drug-loading and negligible excipients-trigged adverse reaction. Benefited from the simple preparation process, SMP-NAs are widely used for chemotherapy, phototherapy, immunotherapy, and tumor diagnosis. In addition, combination therapy based on the accurate co-delivery behavior of SMP-NAs can effectively address the challenges of tumor heterogeneity and multidrug resistance. Recent trends in SMP-NAs are outlined, and the corresponding self-assembly mechanisms are discussed in detail. Besides, the smart stimuli-responsive SMP-NAs and the combination therapy based on SMP-NAs are summarized, with special emphasis on the structure-function relationships. Finally, the outlooks and potential challenges of SMP-NAs in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaqiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
23
|
Singh AK, Italiya KS, Narisepalli S, Chitkara D, Mittal A. Role of Chain Length and Degree of Unsaturation of Fatty Acids in the Physicochemical and Pharmacological Behavior of Drug-Fatty Acid Conjugates in Diabetes. J Med Chem 2021; 64:14217-14229. [PMID: 34581574 DOI: 10.1021/acs.jmedchem.1c00391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several drug-fatty acid (FA) prodrugs have been reported to exhibit desirable physicochemical and pharmacological profile; however, comparative beneficial effects rendered by different FAs have not been explored. In the present study, four different FAs (linoleic acid, oleic acid, palmitic acid, and α-lipoic acid) were selected based on their chain length and degree of unsaturation and conjugated to Lisofylline (LSF), an antidiabetic molecule to obtain different drug-FA prodrugs and characterized for molecular weight, hydrophobicity, purity, self-assembly, and efficacy in vitro and in vivo in type 1 diabetes model. Prodrugs demonstrated a 2- to 6-fold increase in the plasma half-life of LSF. Diabetic animals treated with prodrugs, once daily for 5 weeks, maintained a steady fasting blood glucose level with a significant increase in insulin level, considerable restoration of biochemical parameters, and preserved β-cells integrity. Among the different LSF-FA prodrugs, LSF-OA and LSF-PA demonstrated the most favorable physicochemical, systemic pharmacokinetic, and pharmacodynamic profiles.
Collapse
Affiliation(s)
- Arihant Kumar Singh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Kishan S Italiya
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Saibhargav Narisepalli
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| |
Collapse
|
24
|
Xu X, Zeng Z, Ding X, Shan T, Liu Q, Chen M, Chen J, Xia M, He Y, Huang Z, Huang Y, Zhao C. Reactive oxygen species-activatable self-amplifying Watson-Crick base pairing-inspired supramolecular nanoprodrug for tumor-specific therapy. Biomaterials 2021; 277:121128. [PMID: 34537502 DOI: 10.1016/j.biomaterials.2021.121128] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/08/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022]
Abstract
Intratumoral upregulated reactive oxygen species (ROS) has been extensively exploited as exclusive stimulus to activate drug release for tumor-specific therapy. However, insufficient endogenous ROS and tumor heterogeneity severely restrict clinical translation of current ROS-responsive drug delivery systems. Herein, a tailored ROS-activatable self-amplifying supramolecular nanoprodrug was developed for reinforced ROS-responsiveness and highly selective antitumor therapy. A novel ROS-cleavable CA-based thioacetal linker CASOH was synthesized with ROS generator cinnamaldehyde (CA) incorporated into its molecular structure, to skillfully realize self-amplifying positive feedback loop of "ROS-activated CA release with CA-induced ROS regeneration". CASOH was modified with a cytosine analogue gemcitabine (GEM) to obtain ROS-activatable self-immolative prodrug CAG, which could be selectively activated in tumor cells and further achieve self-boosting "snowballing" activation via ROS compensation, while keep inactive in normal cells. Through Watson-Crick nucleobase pairing (G≡C)-like hydrogen bonds, CAG efficiently crosslinked with a matched guanine-rich acyclovir-modified hyaluronic acid conjugate HA-ACV, to self-assemble into pH/ROS dual-responsive supramolecular nanoprodrug HCAG. With high stability, beneficial tumor targeting capacity and pH/ROS-responsiveness, HCAG nanoformulation exhibited remarkable in vivo antitumor efficacy with minimal systemic toxicity. Based on unique tumor-specific self-amplifying prodrug activation and Watson-Crick base pairing-inspired supramolecular self-assembly, this study provides an inspirational strategy of exploiting novel ROS-responsive nanoplatform with reinforced responsiveness and specificity for future clinical translation.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xin Ding
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ting Shan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Qiuxing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jie Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meng Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yuanfeng He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
25
|
Ying K, Bai B, Gao X, Xu Y, Wang H, Xie B. Orally Administrable Therapeutic Nanoparticles for the Treatment of Colorectal Cancer. Front Bioeng Biotechnol 2021; 9:670124. [PMID: 34307319 PMCID: PMC8293278 DOI: 10.3389/fbioe.2021.670124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and lethal human malignancies worldwide; however, the therapeutic outcomes in the clinic still are unsatisfactory due to the lack of effective and safe therapeutic regimens. Orally administrable and CRC-targetable drug delivery is an attractive approach for CRC therapy as it improves the efficacy by local drug delivery and reduces systemic toxicity. Currently, chemotherapy remains the mainstay modality for CRC therapy; however, most of chemo drugs have low water solubility and are unstable in the gastrointestinal tract (GIT), poor intestinal permeability, and are susceptible to P-glycoprotein (P-gp) efflux, resulting in limited therapeutic outcomes. Orally administrable nanoformulations hold the great potential for improving the bioavailability of poorly permeable and poorly soluble therapeutics, but there are still limitations associated with these regimes. This review focuses on the barriers for oral drug delivery and various oral therapeutic nanoparticles for the management of CRC.
Collapse
Affiliation(s)
- Kangkang Ying
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Hangxiang Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Binbin Xie
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Nguyen A, Böttger R, Li SD. Recent trends in bioresponsive linker technologies of Prodrug-Based Self-Assembling nanomaterials. Biomaterials 2021; 275:120955. [PMID: 34130143 DOI: 10.1016/j.biomaterials.2021.120955] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
Prodrugs are designed to improve pharmaceutical properties of potent compounds and represent a central approach in drug development. The success of the prodrug strategy relies on incorporation of a reversible linkage facilitating controlled release of the parent drug. While prodrug approaches enhance pharmacokinetic properties over their parent drug, they still face challenges in absorption, distribution, metabolism, elimination, and toxicity (ADMET). Conjugating a drug to a carrier molecule such as a polymer can create an amphiphile that self-assembles into nanoparticles. These nanoparticles display prolonged blood circulation and passive targeting ability. Furthermore, the drug release can be tailored using a variety of linkers between the parent drug and the carrier molecule. In this review, we introduce the concept of self-assembling prodrugs and summarize different approaches for controlling the drug release with a focus on the linker technology. We also summarize recent clinical trials, discuss the emerging challenges, and provide our perspective on the utility and future potential of this technology.
Collapse
Affiliation(s)
- Anne Nguyen
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
27
|
Baroud M, Lepeltier E, Thepot S, El-Makhour Y, Duval O. The evolution of nucleosidic analogues: self-assembly of prodrugs into nanoparticles for cancer drug delivery. NANOSCALE ADVANCES 2021; 3:2157-2179. [PMID: 36133769 PMCID: PMC9418958 DOI: 10.1039/d0na01084g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/20/2021] [Indexed: 05/12/2023]
Abstract
Nucleoside and nucleotide analogs are essential tools in our limited arsenal in the fight against cancer. However, these structures face severe drawbacks such as rapid plasma degradation or hydrophilicity, limiting their clinical application. Here, different aspects of nucleoside and nucleotide analogs have been exposed, while providing their shortcomings. Aiming to improve their fate in the body and combating their drawbacks, two different approaches have been discussed, the prodrug and nanocarrier technologies. Finally, a novel approach called "PUFAylation" based on both the prodrug and nanocarrier technologies has been introduced, promising to be the supreme method to create a novel nucleoside or nucleotide analog based formulation, with enhanced efficacy and highly reduced toxicity.
Collapse
Affiliation(s)
- Milad Baroud
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021 Angers France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021 Angers France
| | - Sylvain Thepot
- University Hospital of Angers, Hematology 49933 Angers France
- Université d'Angers, Inserm, CRCINA 49000 Angers France
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL) France
| | - Yolla El-Makhour
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University Nabatieh Lebanon
| | - Olivier Duval
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021 Angers France
- University Hospital of Angers, Hematology 49933 Angers France
| |
Collapse
|
28
|
Coppens E, Desmaële D, Mougin J, Tusseau-Nenez S, Couvreur P, Mura S. Gemcitabine Lipid Prodrugs: The Key Role of the Lipid Moiety on the Self-Assembly into Nanoparticles. Bioconjug Chem 2021; 32:782-793. [PMID: 33797231 DOI: 10.1021/acs.bioconjchem.1c00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A small library of amphiphilic prodrugs has been synthesized by conjugation of gemcitabine (Gem) (a hydrophilic nucleoside analogue) to a series of lipid moieties and investigated for their capacity to spontaneously self-assemble into nanosized objects by simple nanoprecipitation. Four of these conjugates formed stable nanoparticles (NPs), while with the others, immediate aggregation occurred, whatever the tested experimental conditions. Whether such capacity could have been predicted based on the prodrug physicochemical features was a matter of question. Among various parameters, the hydrophilic-lipophilic balance (HLB) value seemed to hold a predictive character. Indeed, we identified a threshold value which well correlated with the tendency (or not) of the synthesized prodrugs to form stable nanoparticles. Such a hypothesis was further confirmed by broadening the analysis to Gem and other nucleoside prodrugs already described in the literature. We also observed that, in the case of Gem prodrugs, the lipid moiety affected not only the colloidal properties but also the in vitro anticancer efficacy of the resulting nanoparticles. Overall, this study provides a useful demonstration of the predictive potential of the HLB value for lipid prodrug NP formulation and highlights the need of their opportune in vitro screening, as optimal drug loading does not always translate in an efficient biological activity.
Collapse
Affiliation(s)
- Eleonore Coppens
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Didier Desmaële
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Julie Mougin
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Sandrine Tusseau-Nenez
- Laboratoire de Physique de la Matière Condensée (PMC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Patrick Couvreur
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Simona Mura
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| |
Collapse
|
29
|
Ding N, Xu S, Zheng S, Ye Q, Xu L, Ling S, Xie S, Chen W, Zhang Z, Xue M, Lin Z, Xu X, Wang L. "Sweet tooth"-oriented SN38 prodrug delivery nanoplatform for targeted gastric cancer therapy. J Mater Chem B 2021; 9:2816-2830. [PMID: 33690741 DOI: 10.1039/d0tb02787a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most cancer cells employ overexpression of glucose transports (GLUTs) to satisfy glucose demand ("Sweet Tooth") for increased aerobic glycolysis rates. GLUT1, one of the most widely expressed GLUTs in numerous cancers, was identified as a prognosis-related biomarker of gastric cancer via tissue array analysis. Herein, a "Sweet Tooth"-oriented SN38 prodrug delivery nanoplatform (Glu-SNP) was developed for targeted gastric cancer therapy. For this purpose, a SN38-derived prodrug (PLA-SN38) was synthesized by tethering 7-ethyl-10-hydroxycamptothecin (SN38) to biocompatible polylactic acid (PLA) with the appropriate degree of polymerization (n = 44). The PLA-SN38 conjugate was further assembled with glycosylated amphiphilic lipid to obtain glucosamine-decorated nanoparticles (Glu-SNP). Glu-SNP exhibited potent antitumor efficiency both in vitro and in vivo through enhanced cancer cell-specific targeting associated with the overexpression of GLUT1, which provides a promising approach for gastric cancer therapy.
Collapse
Affiliation(s)
- Ning Ding
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310020, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fang T, Ye Z, Chen X, Wang Y, Wan J, Wang H. Repurposing of camptothecin: An esterase-activatable prodrug delivered by a self-emulsifying formulation that improves efficacy in colorectal cancer. Int J Pharm 2021; 599:120399. [PMID: 33647408 DOI: 10.1016/j.ijpharm.2021.120399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/27/2021] [Accepted: 02/14/2021] [Indexed: 01/05/2023]
Abstract
The global burden of colorectal cancer (CRC), the third most commonly diagnosed malignancy, continues to rise. Therefore, more effective and less toxic therapies are needed for CRC. CPT-11 (also called irinotecan), the standard-of-care treatment for CRC, has only had limited effects on survival outcomes. In vivo, CPT-11 must be converted to an active metabolite, SN38, to exert antitumor activity in the presence of carboxylesterases, but the conversion rate is extremely low (usually less than 8%). To fully harness the active SN38 compound, we showed here that esterification of SN38 using α-linolenic acid (LNA) generated a prodrug (termed LSN38), which can be formulated in pharmaceutically acceptable surfactants, such as polysorbate 80. Upon blending with an aqueous ethanolic solution, the mixture of LSN38/polysorbate 80 formed self-emulsifying nanomicelles (termed LSN38 NMs), enabling systemic injection. Unlike the insufficient release of active SN38 from CPT-11, drug activation from the LSN38 prodrug was quantitative and relied on esterase, which is abundant in cancerous cells. Pharmacokinetics studies revealed that polysorbate 80-based nanomicelles stably constrained the prodrug in the reservoir and prolonged blood circulation compared to CPT-11. Furthermore, LSN38 NMs showed superior therapeutic efficacy against a colorectal xenograft-bearing mouse model that failed to be treated with clinically approved CPT-11. Overall, these studies highlight the feasibility of converting a chemotherapeutic agent that is not miscible or compatible with pharmaceutical surfactants into an injectable self-emulsifying formulation. This approach could be applied to rescue other drugs or drug candidates that are abandoned in the preclinical stages due to pharmaceutical challenges.
Collapse
Affiliation(s)
- Tao Fang
- Jinhua People's Hospital, Jinhua, Zhejiang Province 321000, PR China
| | - Zhijian Ye
- Jinhua People's Hospital, Jinhua, Zhejiang Province 321000, PR China
| | - Xiaona Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, PR China
| | - Yuchen Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, PR China
| | - Jianqin Wan
- The First Affiliated Hospital, Zhejiang University School of Medicine, NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
31
|
Zheng Y, Ying X, Su Y, Jin X, Xu Q, Li Y. Kinetically-stable small-molecule prodrug nanoassemblies for cancer chemotherapy. Int J Pharm 2021; 597:120369. [PMID: 33577910 DOI: 10.1016/j.ijpharm.2021.120369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
Abstract
Self-delivering nanocarrier based on the small-molecule prodrug nanoassemblies (NAs) have been widely used for the efficient delivery of chemotherapeutics, but the effect of kinetic stability of NAs on their delivery performance has not been illuminated. In this study, two camptothecin (CPT)-oleic acid (OA) prodrugs were used to fabricate self-assembling nanorods with similar size distribution, zeta potential and morphology but having sharply different kinetic stability, which provided an ideal platform to investigate the effects of kinetic stability. It is found that the nanorods with high kinetic stability showed a lower in vitro cytotoxicity, but were more effective to inhibit the tumor growth probably by decreasing the premature CPT release and subsequent generation of the inactive carboxylate CPT. However, such kinetically stable nanorods also resulted in the increased toxicity, probably due to the high prodrug accumulation in tissues after multiple injections. These results outlined the pivotal role of kinetic stability in determining antitumor efficacy of prodrug NAs, which provided a new insight into the delivery mechanism for the small-molecule prodrug self-delivering nanosystems.
Collapse
Affiliation(s)
- Yaxin Zheng
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Xue Ying
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Yue Su
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Xuan Jin
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Qiulin Xu
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Yang Li
- Department of Pharmaceutics, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
32
|
Opportunities and challenges of fatty acid conjugated therapeutics. Chem Phys Lipids 2021; 236:105053. [PMID: 33484709 DOI: 10.1016/j.chemphyslip.2021.105053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/20/2020] [Accepted: 01/16/2021] [Indexed: 01/03/2023]
Abstract
Instability, poor cellular uptake and unfavorable pharmacokinetics and biodistribution of many therapeutic molecules require modification in their physicochemical properties. The conjugation of these APIs with fatty acids has demonstrated an enhancement in their lipophilicity and stability. The improvement in the formulations that resulted from the conjugation of a drug with a fatty acid includes increased half-life, enhanced cellular uptake and retention, targeted tumor delivery, reduced chemoresistance in cancer, and improved blood-brain-barrier (BBB) penetration. In this review, various therapeutic molecules, including small molecules, peptides and oligonucleotides, that have been conjugated with fatty acid have been thoroughly discussed along with various conjugation strategies. The application of nano-system based delivery is gaining a lot of attention due to its ability to provide controlled drug release, targeting and reducing the extent of side effects. This review also covers various nano-carriers that have been utilized for the delivery of fatty acid drug conjugates. The enhanced lipophilicity of the drug-fatty acid conjugate has shown to enhance the affinity of the drug towards these carriers, thereby increasing the entrapment efficiency and formulation performance.
Collapse
|
33
|
Chen X, Hu Z, Zhou L, Zhang F, Wan J, Wang H. Self-assembling a natural small molecular inhibitor that shows aggregation-induced emission and potentiates antitumor efficacy. NANOSCALE HORIZONS 2021; 6:33-42. [PMID: 33210687 DOI: 10.1039/d0nh00469c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Targeted therapy using small molecular inhibitors has been developed to rewire key signaling pathways in tumor cells, but these inhibitors have had mixed success in the clinic due to their poor pharmaceutical properties and suboptimal intratumoral concentrations. Here, we developed a "self-assembling natural molecular inhibitor" strategy to test the efficacy and feasibility of the water-insoluble agent dasatinib (DAS), a tyrosine kinase inhibitor, for cancer therapy. By exploiting a facile reprecipitation protocol, the DAS inhibitor self-assembled into soluble supramolecular nanoparticles (termed sDNPs) in aqueous solution, without an exogenous excipient. This strategy is applicable for generating systemically injectable and colloid-stable therapeutic nanoparticles of hydrophobic small-molecule inhibitors. Concurrently, during this process, we observed aggregation-induced emission (AIE) of fluorescence for this self-assembled DAS, which makes sDNPs suitable for bioimaging and tracing of cellular trafficking. Notably, in an orthotopic model of breast cancer, administration of sDNPs induced a durable inhibition of primary tumors and reduced the metastatic tumor burden, significantly surpassing the effects of the free DAS inhibitor after oral delivery. In addition, low toxicity was observed for this platform, with effective avoidance of immunotoxicity. To the best of our knowledge, our studies provide the first successful demonstration of self-assembling natural molecular inhibitors with AIE and highlight the feasibility of this approach for the preparation of therapeutic nanoparticles for highly lethal human cancers and many other diseases.
Collapse
Affiliation(s)
- Xiaona Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China.
| | | | | | | | | | | |
Collapse
|
34
|
Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, Sahoo PK, Kesharwani P. Recent advances and prospects in gemcitabine drug delivery systems. Int J Pharm 2021; 592:120043. [DOI: 10.1016/j.ijpharm.2020.120043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
|
35
|
Yang B, Gao J, Pei Q, Xu H, Yu H. Engineering Prodrug Nanomedicine for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002365. [PMID: 33304763 PMCID: PMC7709995 DOI: 10.1002/advs.202002365] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Immunotherapy has shifted the clinical paradigm of cancer management. However, despite promising initial progress, immunotherapeutic approaches to cancer still suffer from relatively low response rates and the possibility of severe side effects, likely due to the low inherent immunogenicity of tumor cells, the immunosuppressive tumor microenvironment, and significant inter- and intratumoral heterogeneity. Recently, nanoformulations of prodrugs have been explored as a means to enhance cancer immunotherapy by simultaneously eliciting antitumor immune responses and reversing local immunosuppression. Prodrug nanomedicines, which integrate engineering advances in chemistry, oncoimmunology, and material science, are rationally designed through chemically modifying small molecule drugs, peptides, or antibodies to yield increased bioavailability and spatiotemporal control of drug release and activation at the target sites. Such strategies can help reduce adverse effects and enable codelivery of multiple immune modulators to yield synergistic cancer immunotherapy. In this review article, recent advances and translational challenges facing prodrug nanomedicines for cancer immunotherapy are overviewed. Last, key considerations are outlined for future efforts to advance prodrug nanomedicines aimed to improve antitumor immune responses and combat immune tolerogenic microenvironments.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Qing Pei
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Huixiong Xu
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| |
Collapse
|
36
|
Target-oriented delivery of self-assembled immunosuppressant cocktails prolongs allogeneic orthotopic liver transplant survival. J Control Release 2020; 328:237-250. [DOI: 10.1016/j.jconrel.2020.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/15/2020] [Accepted: 08/22/2020] [Indexed: 12/26/2022]
|
37
|
Shu L, Fu F, Huang Z, Huang Y, Hu P, Pan X. Nanostructure of DiR-Loaded Solid Lipid Nanoparticles with Potential Bioimaging Functions. AAPS PharmSciTech 2020; 21:321. [PMID: 33200271 DOI: 10.1208/s12249-020-01847-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
The fluorescence dye-loaded nanoparticles are widely used as bioimaging agents in the field of nanotheranostics. However, the nanoparticles for nanotheranostics usually consist of synthetic materials, such as metal, silica, and organic polymers, which are often biologically incompatible and may arouse toxicity issues. Herein, the potential of near-infrared probe DiR-containing solid lipid nanoparticle suspensions (DiR-SLNS) as the bioimaging agent, which was prepared by lipids and surfactants with excellent biocompatibility, was investigated in this study. The nanostructure of DIR-SLNS system and the distribution of DiR were studied by dissipative particle dynamics (DPD) simulations. The stability of physicochemical properties and fluorescence spectra of DIR-SLNS system were investigated using dynamic laser scattering (DLS), nanoparticle tracking analysis (NTA), and fluorescence spectra. The fluorescence intensity-concentration correlation of DIR-SLNS was also evaluated. As a result, DiR-SLNS demonstrated a "core-shell"-like nanostructure and DiR was mainly distributed in the cetyl palmitate (CP) core rather than the surface of SLNS, which was beneficial to its potential applications in bioimaging. DiR-SLNS exhibited remarkable physicochemical stability as the nanoparticles maintained ~ 90% fluorescence intensity during the 10-day storage time. The correlation between fluorescence intensity and concentration was established and validated using a linear regression model. This study proposed a type of promising candidates in nano-scale with higher safety and fluorescence stability for bioimaging.
Collapse
|
38
|
Fattahi N, Shahbazi MA, Maleki A, Hamidi M, Ramazani A, Santos HA. Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J Control Release 2020; 326:556-598. [PMID: 32726650 DOI: 10.1016/j.jconrel.2020.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Many drug molecules that are currently in the market suffer from short half-life, poor absorption, low specificity, rapid degradation, and resistance development. The design and development of lipophilic prodrugs can provide numerous benefits to overcome these challenges. Fatty acids (FAs), which are lipophilic biomolecules constituted of essential components of the living cells, carry out many necessary functions required for the development of efficient prodrugs. Chemical conjugation of FAs to drug molecules may change their pharmacodynamics/pharmacokinetics in vivo and even their toxicity profile. Well-designed FA-based prodrugs can also present other benefits, such as improved oral bioavailability, promoted tumor targeting efficiency, controlled drug release, and enhanced cellular penetration, leading to improved therapeutic efficacy. In this review, we discuss diverse drug molecules conjugated to various unsaturated FAs. Furthermore, various drug-FA conjugates loaded into various nanostructure delivery systems, including liposomes, solid lipid nanoparticles, emulsions, nano-assemblies, micelles, and polymeric nanoparticles, are reviewed. The present review aims to inspire readers to explore new avenues in prodrug design based on the various FAs with or without nanostructured delivery systems.
Collapse
Affiliation(s)
- Nadia Fattahi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
39
|
Huang L, Zhang J, Hu J, Zhao T, Gu Z. Biomimetic Gelatin Methacrylate/Nano Fish Bone Hybrid Hydrogel for Bone Regeneration via Osteoimmunomodulation. ACS Biomater Sci Eng 2020; 6:3270-3274. [DOI: 10.1021/acsbiomaterials.0c00443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Liping Huang
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, P.R. China
| | - Jianhua Zhang
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, P.R. China
| | - Junfei Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Tianbao Zhao
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, P.R. China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| |
Collapse
|