1
|
Chen J, Zhang YP, Yu LQ, Wang BJ, Xie SM, Zhang JH, Yuan LM. Facile synthesis of a new chiral polyimine macrocycle and its application for enantioseparation in high-performance liquid chromatography. Talanta 2024; 280:126781. [PMID: 39197311 DOI: 10.1016/j.talanta.2024.126781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/18/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Macrocyclic compounds such as crown ethers and cyclodextrins play an important role in the field of chromatography and show excellent separation performance. The design of simple and convenient methods for the efficient synthesis of novel chiral macrocycles for chromatographic separation is of great significance. In this work, a novel chiral polyimine macrocycle (PIMC) was designed and synthesized by the simply one-step reaction of 2,6-diformyl-4-tert-butylphenol with (S)-(-)-1,2-propanediamine. Then, it was bonded onto silica by the thiol-ene click reaction to construct a new chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC). The chiral separation performance of the proposed CSP was examined by separating various racemates in the normal-phase (NP) and reversed-phase (RP) HPLC. In total, twelve and nine racemates, including ethers, esters, amines, alcohols, organic acids, ketones, and epoxides, were separated to varying degrees via NP-HPLC and RP-HPLC, respectively, Moreover, the CSP offered good chiral separation complementarity to Chiralcel OD-H and Chiralpak AD-H columns for resolution of these test racemates, and it can separate several racemic compounds that either cannot be separated or cannot be separated well be separated by the two commercially available columns. After the column was used for hundreds of injections, the relative standard deviations of the retention time and resolution were below 0.56 % and 0.45 %, respectively, showing the good reproducibility and stability of the CSP. This study provides a simple and convenient approach to synthesize a novel chiral macrocycle and CSP and also indicates the broad application prospects of such chiral PIMCs in HPLC chiral separation.
Collapse
Affiliation(s)
- Juan Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - You-Ping Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - Li-Qin Yu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - Bang-Jin Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - Sheng-Ming Xie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China.
| | - Jun-Hui Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China.
| | - Li-Ming Yuan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| |
Collapse
|
2
|
Gao SW, Li N, Cui YY, Yang CX. Modification of hollow microporous organic network with polyethyleneimine for efficient enrichment of phenolic acids from fruit juice samples. J Chromatogr A 2024; 1736:465419. [PMID: 39378621 DOI: 10.1016/j.chroma.2024.465419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Owning to the hydrophobic characteristics of microporous organic networks (MONs), their utilizations still largely limited in non- and weak-polar analytes. To expend their applications, here we reported the synthesis of a novel hollowed H-MON-PEI1800-2 composite via sacrifice template method and subsequent modification with polyethyleneimine (PEI) for efficient solid phase extraction of polar and ionic phenolic acid (PAs) from fruit juice samples. H-MON-PEI1800-2 exhibits large surface area, rapid extraction kinetics, remarkable chemical and thermal stabilities, and provides synergistic electrostatic, π-π, hydrogen bonding, and hydrophobic interaction sites for PAs. The developed method owns low limit of detection, wide linear range, large enrichment factors, and good reusability. The recoveries of H-MON-PEI1800-2 for PAs are 1-3 orders of magnitude higher than those of commercial adsorbents like activated carbon, C18 and Oasis HLB. This work highlights the prospects of functional H-MONs for enriching polar and ionic targets from complex sample matrices.
Collapse
Affiliation(s)
- Shuo-Wen Gao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Na Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
3
|
Zhang W, Liao B, Xie S, Zhang L. Hollow microporous organic network fiber membrane for efficient extraction of okadaic acid from marine organisms. J Chromatogr A 2024; 1736:465392. [PMID: 39378624 DOI: 10.1016/j.chroma.2024.465392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/01/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
Membrane-based micro-solid phase extraction (M-μSPE) has garnered great attention in sample pretreatment, suffering an inherent contradiction between permeability and adsorption capacity. In this study, a pure microporous organic network (TEB-DIB-MON) fiber membrane was prepared by combining electrostatic spinning technology, Sonogashira-Hagihara reaction and template sacrifice method. The prepared TEB-DIB-MON membrane exhibited a large specific surface area with a hollow and porous structure, thereby providing excellent solvent permeability and high adsorption capacity for okadaic acid (OA, an algal toxin). Under the optimized conditions, a sensitive analytical method was established by coupling M-μSPE with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The established method has a low detection limit (0.5 pg mL-1), a wide linear range (1.5-1000 pg mL-1, R ≥ 0.9991), and good reproducibility (RSD ≤ 9.4 %, n = 6), which was then successfully applied for OA detection in marine organisms. Trace amounts of OA (59.3-89.0 pg mL-1) was detected in the oyster and prawn samples. This work demonstrated that the excellent application potential of MON membranes in sample pretreatment, while also presents a novel synthesis strategy for MONs membranes.
Collapse
Affiliation(s)
- Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian 350108, China; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Baodi Liao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shiye Xie
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
4
|
Guo Y, Di W, Qin C, Liu R, Cao H, Gao X. Covalent Organic Framework-Involved Sensors for Efficient Enrichment and Monitoring of Food Hazards: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23053-23081. [PMID: 39382449 DOI: 10.1021/acs.jafc.4c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The food safety issues caused by environmental pollution have posed great risks to human health that cannot be ignored. Hence, the precise monitoring of hazard factors in food has emerged as a critical concern for the food safety sector. As a novel porous material, covalent organic frameworks (COFs) have garnered significant attention due to their large specific surface area, excellent thermal and chemical stability, modifiability, and abundant recognition sites. This makes it a potential solution for food safety issues. In this research, the synthesis and regulation strategies of COFs were reviewed. The roles of COFs in enriching and detecting food hazards were discussed comprehensively and extensively. Taking representative hazard factors in food as the research object, the expression forms and participation approaches of COFs were explored, along with the effectiveness of corresponding detection methods. Finally, the development directions of COFs in the future as well as the problems existing in practical applications were discussed, which was beneficial to promote the application of COFs in food safety and beyond.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Wenli Di
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Rui Liu
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Hongqian Cao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| |
Collapse
|
5
|
Asselin P, Harvey PD. Thoughts on the Rational Design of MOF-Guest Interactions for Future Intelligent Materials. SMALL METHODS 2024:e2400584. [PMID: 39428953 DOI: 10.1002/smtd.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Indexed: 10/22/2024]
Abstract
The MOF-guest relationship is broken down in elementary phases, descriptors, and parameters. These descriptors and parameters allow precise descriptions of processes, whether they occur at the point when the guest enters the MOF, during the stay, or at the point of exiting. Description of these three phases is possible according to the location of the guest inside the MOF, the activity between MOF and guest, whether stimuli can be used, and whether a selective action can be exercised. The vocabulary provided herein can be useful to better formulate requirements when designing host-guest interactions in, and building new classes of, intelligent materials.
Collapse
Affiliation(s)
- Paul Asselin
- Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
6
|
Liu H, He Y, Chen J, Qu X, He J, Chen X, Wang J, Qiu H. Chiral ionic organic single-crystal and its exfoliated two-dimensional nanosheets with enhanced enantioseparation. Chem Sci 2024:d4sc04990j. [PMID: 39494371 PMCID: PMC11525712 DOI: 10.1039/d4sc04990j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
A chiral ionic organic single-crystal (CIOC) was prepared for the first time through ionic self-assembly using bipyridium chiral ionic liquid (CIL) and 4,4'-biphenyldisulfonic acid (BDA). The CIOC can be ultrasonically exfoliated to produce two-dimensional nanosheets (2D-NSs). The 2D-NSs presented enhanced enantioseparation compared to the CIOC and CIL when used as gas chromatography stationary phase, which may be due to the exfoliated 2D-NSs exhibiting greater exposure of functional groups. Additionally, better resolution of other organic compounds such as positional isomers, n-alkanes and n-alkanols, Grob mixture, phenols and anilines was obtained in 2D-NSs than CIOC and CIL. This work not only provides a reference for the preparation of chiral ionic organic single-crystals and two-dimensional nanosheets for chiral separation, but also stimulates the preparation of such new ionic organic single-crystals via self-assembly for other potential applications.
Collapse
Affiliation(s)
- Huifeng Liu
- Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
- Department of Chemistry, College of Sciences, Northeastern University Shenyang 110819 China
| | - Yongrui He
- School of Pharmacy, Shandong Second Medical University Weifang 261053 China
| | - Jia Chen
- Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| | - Xiaoqing Qu
- Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
- Department of Chemistry, College of Sciences, Northeastern University Shenyang 110819 China
| | - Jing He
- Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University Shenyang 110819 China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University Shenyang 110819 China
| | - Hongdeng Qiu
- Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341000 China
| |
Collapse
|
7
|
Xu CY, Zhong YX, Cui YY, Yang CX. Thiol-yne click post-synthesis of phenylboronic acid-functionalized magnetic cyclodextrin microporous organic network for selective and efficient extraction of antiepileptic drugs. Talanta 2024; 277:126440. [PMID: 38897013 DOI: 10.1016/j.talanta.2024.126440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Owing to their incomplete digestion in the human body and inadequate removal by sewage treatment plants, antiepileptic drugs (AEDs) accumulate in water bodies, potentially affecting the exposed humans and aquatic organisms. Therefore, sensitive and reliable detection methods must be urgently developed for monitoring trace AEDs in environmental water samples. Herein, a novel phenylboronic acid-functionalized magnetic cyclodextrin microporous organic network (Fe3O4@CD-MON-PBA) was designed and synthesized via the thiol-yne click post-modification strategy for selective and efficient magnetic solid-phase extraction (MSPE) of trace AEDs from complex sample matrices through the specific B-N coordination, π-π, hydrogen bonding, electrostatic, and host-guest interactions. Fe3O4@CD-MON-PBA exhibited a large surface area (118.5 m2 g-1), rapid magnetic responsiveness (38.6 emu g-1, 15 s), good stability and reusability (at least 8 times), and abundant binding sites for AEDs. Under optimal extraction conditions, the proposed Fe3O4@CD-MON-PBA-MSPE-HPLC-UV method exhibited a wide linear range (0.5-1000 μg L-1), low limits of detection (0.1-0.5 μg L-1) and quantitation (0.3-2 μg L-1), good anti-interference ability, and large enrichment factors (92.2-104.3 to 92.3-98.0) for four typical AEDs. This work confirmed the feasibility of the thiol-yne click post-synthesis strategy for constructing novel and efficient multifunctional magnetic CD-MONs for sample pretreatment and elucidated the significance of B-N coordination between PBA and N-containing AEDs.
Collapse
Affiliation(s)
- Chun-Ying Xu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yi-Xin Zhong
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
8
|
Li YH, Li XH, Cui YY, Abdukayum A, Yang CX. Fabrication of sea urchin shaped polyaniline-modified magnetic microporous organic network for efficient extraction of non-steroidal anti-inflammatory drugs from animal-derived food samples. J Chromatogr A 2024; 1730:465140. [PMID: 38986401 DOI: 10.1016/j.chroma.2024.465140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
In this work, a novel polyaniline-modified magnetic microporous organic network (MMON-PANI) composite was fabricated for effective magnetic solid phase extraction (MSPE) of five typical nonsteroidal anti-inflammatory drugs (NSAIDs) from animal-derived food samples before high performance liquid chromatography (HPLC) detection. The core-shell sea urchin shaped MMON-PANI integrates the merits of Fe3O4, MON, and PANI, exhibiting large specific surface area, rapid magnetic responsiveness, good stability, and multiple binding sites to NSAIDs. Convenient and effective extraction of trace NSAIDs from chicken, beef and pork samples is realized on MMON-PANI via the synergetic π-π, hydrogen bonding, hydrophobic, and electrostatic interactions. Under optimal conditions, the MMON-PANI-MSPE-HPLC-UV method exhibits wide linear ranges (0.2-1000 μg L-1), low limits of detection (0.07-1.7 μg L-1), good precisions (intraday and inter-day RSDs < 5.4 %, n = 3), large enrichment factors (98.6-99.9), and less adsorbent consumption (3 mg). The extraction mechanism and selectivity of MMON-PANI are also evaluated in detail. This work proves the incorporation of PANI onto MMON is an efficient way to promote NSAIDs enrichment and provides a new strategy to synthesize multifunctional MON-based composites in sample pretreatment.
Collapse
Affiliation(s)
- Yan-Hong Li
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashgar 844000, China
| | - Xu-Hui Li
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashgar 844000, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashgar 844000, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
9
|
Zhang X, Wang F, Chen Z. Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks. Anal Chim Acta 2024; 1316:342879. [PMID: 38969416 DOI: 10.1016/j.aca.2024.342879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Chirality is a ubiquitous phenomenon in nature, but enantiomers exhibit different pharmacological activities and toxicological effects. Therefore, Chiral recognition plays a pivotal role in various fields such as life sciences, chemical synthesis, drug development, and materials science. The synthesis of novel chiral composites with well-defined loading capabilities and ordered structures holds significant potential for electrochemical chiral recognition applications. However, the design of selective and stable electrochemical chiral recognition materials remains a challenging task. RESULT In this work, we construct a simple and rapid electrochemical sensing platform for tryptophan (Trp) enantiomer recognition using cyclodextrin-modified microporous organic network as chiral recognition agent. CD-MON with chiral microenvironment was prepared by Sonogashira-Hagihara coupling reaction of the chiral molecule heptyl-6-iodo-6-deoxyβ-cyclodextrin and 1, 4-Diethynylbenzene. The adhesion of BSA makes CD-MON firmly fixed on the electrode surface, and as a chiral protein, it can improve the chiral recognition ability through synergistic effect. Chiral amino acids are in full contact with the chiral microenvironment during pore conduction of MON, and L-Trp is more stably bound to CD-MON/BSA due to steric hindrance, host-guest recognition and hydrogen bonding. Therefore, the electrochemical sensor can effectively identify tryptophan enantiomers (IL-Trp/ID-Trp = 2.02), and it exhibits a detection limit of 2.6 μM for L-Trp. UV-Vis spectroscopy confirmed the adsorption capacity of CD-MON towards tryptophan enantiomers in agreement with electrochemistry results. SIGNIFICANCE The prepared chiral sensor has excellent stability, reproducibility (RSD = 3.7%) and selectivity, realizes the quantitative detection of single isomer in tryptophan racemic and quantitative analysis in real samples with 94.0%-101.0% recovery. This work represents the first application of MON in chiral electrochemistry which expands the application scope of chiral sensors and holds great significance in separation science and electrochemical sensing.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University and Wuhan University, School of Pharmaceutical Sciences, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Fang Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University and Wuhan University, School of Pharmaceutical Sciences, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Zilin Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University and Wuhan University, School of Pharmaceutical Sciences, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China.
| |
Collapse
|
10
|
Li X, Wang MY, Wang Y, Yang WZ, Yang CX. Fabrication of amino- and hydroxyl dual-functionalized magnetic microporous organic network for extraction of zearalenone from traditional Chinese medicine prior to the HPLC determination. J Chromatogr A 2024; 1724:464915. [PMID: 38663319 DOI: 10.1016/j.chroma.2024.464915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Efficient enrichment of trace zearalenone (ZEN) from the complex traditional Chinese medicine (TCM) samples is quite difficult, but of great significance for TCM quality control. Herein, we reported a novel magnetic solid phase extraction (MSPE) strategy for ZEN enrichment using the amino- and hydroxyl dual-functionalized magnetic microporous organic network (Fe3O4@MON-NH2-OH) as an advanced adsorbent combined with the high-performance liquid chromatography (HPLC) determination. Efficient extraction of ZEN was achieved via the possible hydrogen bonding, hydrophobic, and π-π interactions between Fe3O4@MON-NH2-OH and ZEN. The adsorption capacity of Fe3O4@MON-NH2-OH for ZEN was 215.0 mg g-1 at the room temperature, which was much higher than most of the reported adsorbents. Under the optimal condition, the developed Fe3O4@MON-NH2-OH-MSPE-HPLC method exhibited wide linear range (5-2500 μg L-1), low limits of detection (1.4-35 μg L-1), less adsorbent consumption (5 mg), and large enhancement factor (95) for ZEN. The proposed method was successfully applied to detect trace ZEN from 10 kinds of real TCM samples. Conclusively, this work demonstrates the Fe3O4@MON-NH2-OH can effectively extract trace ZEN from the complex TCM matrices, which may open up a new way for the application of MONs in the enrichment and extraction of trace contaminants or active constituents from the complex TCM samples.
Collapse
Affiliation(s)
- Xue Li
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meng-Yao Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yu Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wen-Zhi Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
11
|
Xu CY, Cui YY, Yang CX. Fabrication of magnetic Fe 3O 4 doped β-cyclodextrin microporous organic network for the efficient extraction of endocrine disrupting chemicals from food takeaway boxes. J Chromatogr A 2024; 1715:464625. [PMID: 38171066 DOI: 10.1016/j.chroma.2023.464625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Endocrine disrupting chemicals (EDCs) are a typical class of natural or man-made endogenous hormone agonists or antagonists that can directly or potentially interfere with human endocrine system. However, it is still difficult to analyze trace EDCs directly from complex environment and food matrices. Therefore, the proper sample pretreatment is highly desired and the preparation of efficient adsorbents is of great challenge and importance. Herein, we report the facile one-pot solvothermal synthesis of Fe3O4 nanoparticle doped magnetic β-cyclodextrin microporous organic network composites (MCD-MONs) for the magnetic solid phase extraction (MSPE) of four phenolic EDCs in water and food takeaway boxes prior to the high-performance liquid chromatography analysis. The sheet-like Fe3O4 doped MCD-MONs offered good magnetic property (16.5 emu g-1) and stability, and provided numerous hydrogen bonding, hydrophobic, π-π, and host-guest interaction sites for EDCs. Under the optimal experimental conditions, the established method was successfully verified with wide linear range (2.0-1000 µg L-1), low limits of detection (0.6-1.0 µg L-1), good precisions (intra-day and inter-day RSDs < 5.2 %, n = 3), large enrichment factors (88-98) and adsorption capacity (90.3-255.8 mg g-1), short extraction time (6 min), less adsorbent consumption (3 mg), and good reusability (at least 8 times) for EDCs. The proposed method was successfully applied to detect the trace EDCs in real samples with the recovery of 84.0-99.7 %. This work demonstrated the great potential of MCD-MONs for the efficient MSPE of trace EDCs from complex food takeaway boxes and water samples and uncovered the prospect of CD-based MONs in sample pretreatment.
Collapse
Affiliation(s)
- Chun-Ying Xu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
12
|
Liu H, Chen J, Chen M, Wang J, Qiu H. Recent development of chiral ionic liquids for enantioseparation in liquid chromatography and capillary electrophoresis: A review. Anal Chim Acta 2023; 1274:341496. [PMID: 37455089 DOI: 10.1016/j.aca.2023.341496] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Ionic liquids (ILs), which are salts in a molten state below 100 °C, have become a hot topic of research in various fields because of their negligible vapour pressure, high thermal stability, and tunable viscosity. Chiral ionic liquids (CILs) can be applied in chromatography and capillary electrophoresis fields to improve the performance of enantiomeric separation, such as chiral stationary phases (CSPs) and mobile phase additives in high-performance liquid chromatography (HPLC); CSPs in gas chromatography (GC); and background electrolyte additives (BGE), chiral ligands and chiral selectors (CSs) in capillary electrophoresis (CE). This review focuses on the applications of CILs in HPLC and CE for the separation of enantiomers in the past five years. The mechanism for separating enantiomers was explained, and the prospect of the application of CILs in chiral liquid chromatography (LC) and CE analysis was also discussed.
Collapse
Affiliation(s)
- Huifeng Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
13
|
Sun W, Xu Q, Liu Q, Wang T, Liu Z. Post-synthetic modification of a magnetic covalent organic framework with alkyne linkages for efficient magnetic solid-phase extraction and determination of trace basic orange II in food samples. J Chromatogr A 2023; 1690:463777. [PMID: 36640681 DOI: 10.1016/j.chroma.2023.463777] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Efficient magnetic solid phase extraction using covalent organic frameworks (COFs) can find important applications in food safety. In this work, a sulfonate-functionalized magnetic COF (Fe3O4@COF-SO3Na) was synthesized by self-polycondensation of two-in-one monomer 1,6-bis(4-formylphenyl)-3,8-bis((4-aminophenyl) ethynyl)) pyrene (BFBAEPy) on the surface of aminated Fe3O4 and a thiol-yne click reaction. It was further adopted as an adsorbent for the efficient magnetic solid-phase extraction (MSPE) of basic orange II. The selective adsorption experiment indicated that it displayed selective adsorption ability to basic orange II due to the ion exchange, hydrogen bonds, and π-π interactions. Under the optimized conditions, the proposed MSPE method coupled with HPLC-DAD showed excellent linearity in the range of 0.05-0.5 µg/mL (R2 = 0.9997) for basic orange II. The lower limits of detection (LODs) for basic orange II were 1.0-1.4 µg/L for three food samples: yellow croaker, paprika and dried bean curd. The recoveries were 90.1-98.8% with relative standard deviations (RSDs) below 4.2%. Therefore, this work provides an effective strategy to modify magnetic COFs as absorbents in MSPE. Due to the tunability of functional groups in thiol‑yne click reactions, the functional groups of magnetic COFs can be readily designed to enrich their multifunctional applications. Meanwhile, this work proposed a new method to detect trace amounts of basic orange II in food samples.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Qili Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Tianliang Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Zhaixin Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
14
|
Zhao Z, Lin S, Yu Z, Su M, Liang B, Liang SX, Ju XH. Facile synthesis of triazine-based microporous organic network for high-efficient adsorption of flumequine and nadifloxacin: A comprehensive study on adsorption mechanisms and practical application potentials. CHEMOSPHERE 2023; 315:137731. [PMID: 36608878 DOI: 10.1016/j.chemosphere.2022.137731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Flumequine (FLU) and nadifloxacin (NAD), as emerging contaminants, have received extensive attention recently. In this study, a triazine-based microporous organic network (TMON) was synthetized and developed as an excellent adsorbent for FLU and NAD. The adsorption behavior and influence factors were investigated in both single and binary systems. Insight into the adsorption mechanisms were conducted through experiments, models, and computational studies, from macro and micro perspectives including functional groups, adsorption sites, adsorption energy and frontier molecular orbital. The results showed that the maximum adsorption capacities of TMON for FLU and NAD are 325.27 and 302.28 mg/g under 30 °C higher than records reported before. TMON exhibits the better adaptability and anti-interference ability for influence factors, leading to the preferable application effect in kinds of real water samples. TMON also shows the application potentials for the adsorption of other quinolone antibiotics and CO2 capture. Hydrogen-bonding interaction played the most critical role compared to π-π stacking effect, π-π electron-donor-acceptor interaction, CH-π interaction, and hydrophobic interaction during the adsorption. TMON could be regarded as a promising environmental adsorbent for its large surface area, stable physical and chemical properties, excellent recyclability, and wide range of applications.
Collapse
Affiliation(s)
- Zhe Zhao
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China; College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, 054001, China
| | - Shumin Lin
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Zhendong Yu
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Ming Su
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Bolong Liang
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Shu-Xuan Liang
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Xue-Hai Ju
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
15
|
A chiral porous organic polymer COP-1 used as stationary phase for HPLC enantioseparation under normal-phase and reversed-phase conditions. Mikrochim Acta 2022; 189:360. [PMID: 36042107 DOI: 10.1007/s00604-022-05448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/07/2022] [Indexed: 10/14/2022]
Abstract
A spherical chiral porous organic polymer (POPs) COP-1 is synthesized by the Friedel-Crafts alkylation reaction of Boc-3-(4-biphenyl)-L-alanine (BBLA) and 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), which was used as a novel chiral stationary phase (CSPs) for mixed-mode high-performance liquid chromatography (HPLC) enantioseparation. The racemic compounds were resolved in normal-phase liquid chromatography (NPLC) using n-hexane/isopropanol as mobile phase and reversed-phase liquid chromatography (RPLC) using methanol/water as mobile phase. The COP-1-packed column exhibited excellent separation performance toward various racemic compounds including alcohols, amines, ketones, esters, epoxy compounds, organic acids, and amino acids in NPLC and RPLC modes. The effects of analyte mass and column temperature on the separation efficiency of racemic compounds were investigated. In addition, the chiral resolution ability of the COP-1-packed column not only can be complementary in RPLC/NPLC modes but also exhibit a good chiral recognition complementarity with Chiralpak AD-H column and chiral porous organic cage (POC) NC1-R column. The relative standard deviations (RSD) (n = 5) of the retention time, resolution value, and peak area by repeated separation of 1-(4-chiorophenyl)ethanol are all below 3.0%. The COP-1 column shows high column efficiency (e.g., 17,320 plates m-1 for 1-(4-chlorophenyl)ethanol on COP-1 column in NPLC), high enantioselectivity, and good reproducibility toward various racemates. This work demonstrates that chiral POPs microspheres are promising chiral materials for HPLC enantioseparation.
Collapse
|
16
|
Li K, Xiong LX, Wang Y, Zhang YP, Wang BJ, Xie SM, Zhang JH, Yuan LM. Preparation and evaluation of a chiral porous organic cage based chiral stationary phase for enantioseparation in high performance liquid chromatography. J Chromatogr A 2022; 1679:463415. [PMID: 35977455 DOI: 10.1016/j.chroma.2022.463415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Porous organic cages (POCs) are a new kind of porous molecular materials, which have gained widespread interest in many fields due to their intriguing properties, including excellent molecular solubility, inherent molecular cavity and rich host-guest chemistry. To date, many chiral POCs have been explored as chiral stationary phases (CSPs) for gas chromatographic (GC) separation of enantiomers. However, the applications of chiral POCs for high performance liquid chromatography (HPLC) enantiomeric separation is extremely rare. In this study, we report the construction of thiol-ene click reaction for the preparation of CSP for HPLC by using a [4+8]-type chiral POC NC4-R as chiral selector. The fabricated CSP showed good chiral resolution performance not only in normal-phase HPLC (NP-HPLC) but also in reversed-phase HPLC (RP-HPLC). Seventeen and ten racemates were well resolved in the two separation modes, respectively, including ketones, esters, alcohols, phenols, amines, ethers, organic acids, and amino acids. Moreover, the fabricated column also shows good chiral recognition complementarity to two popular chiral HPLC columns (Chiralpak AD-H and Chiralcel OD-H columns) and previously reported chiral POC NC1-R-based HPLC column, which can resolve some racemates that unable to be resolved by the two commercially available chiral HPLC columns and NC1-R-based column. The relative standard deviation (RSD) values (n = 4) of retention time and resolution (Rs) of analytes separated on the column were less than 0.3 % and 0.5 % after it was subjected to different injections, showing the good reproducibility and stability of the NC4-R-based column. This work demonstrated high potentials of chiral POCs for HPLC enantioseparation and the applicability of chiral POC-based HPLC columns can be broadened by developing more chiral POCs with diverse structures as chiral selector for HPLC.
Collapse
Affiliation(s)
- Kuan Li
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Ling-Xiao Xiong
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Ying Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - You-Ping Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China.
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China.
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| |
Collapse
|
17
|
Chen Y, Xia L, Li G. The progress on porous organic materials for chiral separation. J Chromatogr A 2022; 1677:463341. [PMID: 35870277 DOI: 10.1016/j.chroma.2022.463341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
Chiral compounds have similar structures and properties, but their pharmacological action is very different or even opposite. Therefore, the separation of chiral compounds has great significance in pharmaceutical and agriculture. Porous organic materials are novel crystalline porous materials, which possess high surface area, controllable pore size, and favorable functionalization. Therefore, porous organic materials are considered to be an ideal material for chiral separation. In this review, we summarized the progress of chiral porous organic materials for chiral separation in recent years. Furthermore, the applications of chiral porous organic materials as chiral separation medias (chromatography stationary phases and membrane materials) in enantioseparation were highlighted. Finally, the remaining challenges and future directions for porous organic materials in chiral separation were also briefly outlined further to promote the development of porous organic materials in chiral separation.
Collapse
Affiliation(s)
- Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Le Droumaguet B, Guerrouache M, Carbonnier B. Contribution of the "Click Chemistry" Toolbox for the Design, Synthesis, and Resulting Applications of Innovative and Efficient Separative Supports: Time for Assessment. Macromol Rapid Commun 2022; 43:e2200210. [PMID: 35700224 DOI: 10.1002/marc.202200210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Indexed: 12/21/2022]
Abstract
The last two decades have seen the rapid expansion of click chemistry methodology in various domains closely related to organic chemistry. It has notably been widely developed in the area of surface chemistry, mainly because of the high-yielding character of reactions of the "click" type. Especially, this powerful chemical reaction toolbox has been adapted to the preparation of stationary phases from the corresponding chromatographic supports. A plethora of selectors can thus be immobilized on either organic, inorganic, or hybrid stationary phases that can be used in different chromatographic modes. This review first highlights the few different chemical ligation strategies of the "click" type that are up to now mainly devoted to the development of functionalized supports for separation sciences. Then, it gives in a second part an up-to-date survey of the different studies dedicated to the preparation of click chemistry-based chromatographic supports while highlighting the powerful and versatile character of the "click" ligation strategy for the design, synthesis, and developments of more and more complex systems that can find promising applications in the area of analytical sciences, in domains as varied as enantioselective separation, glycomics, proteomics, genomics, metabolomics, etc.
Collapse
Affiliation(s)
- Benjamin Le Droumaguet
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| | - Mohamed Guerrouache
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| | - Benjamin Carbonnier
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| |
Collapse
|
19
|
Recent advances of innovative and high-efficiency stationary phases for chromatographic separations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Wang YX, Cui YY, Zhang Y, Yang CX. Synthesis of reusable and renewable microporous organic networks for the removal of halogenated contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127485. [PMID: 34655878 DOI: 10.1016/j.jhazmat.2021.127485] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Microporous organic networks (MONs) have shown great potential in the removal of environmental contaminants. However, all studies have focused on the design and construction of novel and efficient adsorbents, and the recycling and reuse of adsorbates were disregarded. In this study, we report a feasible approach to synthesize renewable and reusable MONs by using target halogenated contaminants such as tetrabromobisphenol A (TBBPA), 2,3-dichlorophenol (2,3-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) as starting monomers. TBBPA, 2,3-DCP, and 2,4,6-TCP acted as hazardous contaminants and starting monomers for MONs, leading to the recycling of both adsorbents and adsorbates. The obtained TBBPA-MON, 2,3-DCP-MON, and 2,4,6-TCP-MON not only offered good reusability and large adsorption capacity for their elimination but also provided good adsorption for other phenolic contaminants relying on multiple interactions. Density functional theory calculation indicated the dominant role of π-π and hydrophobic interactions and the secondary role of hydrogen bonding interactions during the adsorption process. The used TBBPA-MON could be reused and the eluted TBBPA could be recycled and renewed for the construction of fresh MONs. This study provided a feasible approach to design and synthesize renewable MONs for environmental contaminants.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Yan Zhang
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Cheng-Xiong Yang
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| |
Collapse
|
21
|
Tang B, Wang W, Hou H, Liu Y, Liu Z, Geng L, Sun L, Luo A. A β-cyclodextrin covalent organic framework used as a chiral stationary phase for chiral separation in gas chromatography. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Ali S, Zuhra Z, Ali S, Han Q, Ahmad M, Wang Z. Ultra-deep removal of Pb by functionality tuned UiO-66 framework: A combined experimental, theoretical and HSAB approach. CHEMOSPHERE 2021; 284:131305. [PMID: 34192663 DOI: 10.1016/j.chemosphere.2021.131305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
A specific functionality in the adsorbent materials plays a significant role for the selective capture of heavy metals based on Pearson's Hard-Soft-Acid-Base (HSAB) concept. Herein, we introduced single and double amino- and thiol-functionalities into the UiO-66 framework, which acted as hard and soft base sites for heavy metal adsorption, respectively. The synthesized adsorbents (labelled as NH2-UiO-66, (NH2)2-UiO-66, SH-UiO-66 and (SH)2-UiO-66) were applied for the selective removal of lead (Pb) ions from contaminated water. The removal efficiency of Pb was about 64, 85, 75 and 99% (pH = 6, T = 30 °C, sample dosage = 10 mg, Pb concentration = 100 mg L-1), respectively, based on available number of interacting sites in the respective adsorbent. To elaborate HSAB concept, the interacting sites of these functional groups towards Pb were explored by identifying their possible types of interactions in terms of soft acid-base affinity, coordinate and covalent bonding, chelation, π-π interactions and synergetic effect of bonding. Density functional theory (DFT) simulation was used to confirm these interactions and to help the better understanding of adsorption mechanism. Model fitting and characterization of Pb-sorbed adsorbents were also performed to reveal kinetics, order of adsorptive reaction, thermodynamics and adsorption mechanism. Moreover, the optimization of adsorptive removal was performed by controlled parameters including time, initial concentration, pH and temperature. The reusability and selectivity of these adsorbents along with recovery of Pb(II) were also assessed. This study presents the conceptual framework for the design of functional adsorbents in the removal of heavy metals using the HSAB principle as an intended guideline.
Collapse
Affiliation(s)
- Shafqat Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, PR China.
| | - Zareen Zuhra
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, PR China
| | - Sajjad Ali
- Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, PR China
| | - Qi Han
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, PR China
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhongying Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
23
|
|
24
|
New Hyperbranched Polysiloxanes Made by Thiol‐yne Click Reaction: Lanthanide Complexation and Applications in Bioimaging. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Song Y, Lan PC, Martin K, Ma S. Rational design of bifunctional conjugated microporous polymers. NANOSCALE ADVANCES 2021; 3:4891-4906. [PMID: 36132340 PMCID: PMC9418725 DOI: 10.1039/d1na00479d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 06/15/2023]
Abstract
Conjugated microporous polymers (CMPs) are an emerging class of porous organic polymers that combine π-conjugated skeletons with permanent micropores. Since their first report in 2007, the enormous exploration of linkage types, building units, and synthetic methods for CMPs have facilitated their potential applications in various areas, from gas separations to energy storage. Owning to their unique construction, CMPs offer the opportunity for the precise design of conjugated skeletons and pore environment engineering, which allow the construction of functional porous materials at the molecular level. The capability to chemically alter CMPs to targeted applications allows for the fine adaptation of functionalities for the ever-changing environments and necessities. Bifunctional CMPs are a branch of functionalized CMPs that have caught the interest of researchers because of their inherent synergistic systems that can expand their applications and optimize their performance. This review discusses the rational design and synthesis of bifunctional CMPs and summarizes their advanced applications. To conclude, our own perspective on the research prospects of these types of materials is outlined.
Collapse
Affiliation(s)
- Yanpei Song
- Department of Chemistry, University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Pui Ching Lan
- Department of Chemistry, University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Kyle Martin
- Department of Chemistry, University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| |
Collapse
|
26
|
He XQ, Cui YY, Yang CX. Thiol-Yne Click Postsynthesis of a Sulfonate Group-Enriched Magnetic Microporous Organic Network for Efficient Extraction of Benzimidazole Fungicides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39905-39914. [PMID: 34374514 DOI: 10.1021/acsami.1c11148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lack of functional groups or binding sites largely hindered the broad application of microporous organic networks (MONs). Herein, we report the fabrication of the sulfonate group-enriched magnetic MON composite (MMON-SO3H@SO3Na) via the combination of the sulfonic acid group containing the monomer and thiol-yne click postmodification for efficient magnetic solid-phase extraction (MSPE) of benzimidazole fungicides (BZDs) from complex sample matrices. The well-defined core-shell-structured MMON-SO3H@SO3Na was obtained and served as an advanced adsorbent for MSPE for concentrating and monitoring trace BZDs. The MMON-SO3H@SO3Na with numerous sulfonate groups provides plenty of ion-exchange, hydrogen-bonding, and π-π sites, leading to the favorable affinity to BZDs via multiple interaction mechanisms. The MMON-SO3H@SO3Na-based MSPE-high-performance liquid chromatography method afforded a wide linear range, low limits of detection, large enrichment factors, good precisions, and reusability for BZDs. Trace BZDs in complex vegetables and fruit samples were successfully detected by the established method. The MMON-SO3H@SO3Na also exhibited good selectivity toward multiple types of polar contaminants containing hydrogen-bonding sites and aromatic structures. This work provided a new postsynthesis strategy for constructing novel and multifunctioned magnetic MONs for preconcentration of trace analytes in a complex matrix.
Collapse
Affiliation(s)
- Xin-Qiao He
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yuan-Yuan Cui
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Cheng-Xiong Yang
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Qian HL, Liu F, Liu X, Yang C, Yan XP. Chiral covalent organic framework-monolith as stationary phase for high-performance liquid chromatographic enantioseparation of selected amino acids. Anal Bioanal Chem 2021; 414:5255-5262. [PMID: 34331090 DOI: 10.1007/s00216-021-03574-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/25/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
The separation of amino acid (AA) enantiomers shows significance for chemistry, food, and biology, but remains challenging due to their similar properties. A promising nanoporous chiral covalent organic framework (COF) as a stationary phase for high-performance liquid chromatography (HPLC) suffers from the irregularity and widely distributed particle size of the chiral COF. Herein, we show the facile preparation of a chiral COF-monolith as a stationary phase for HPLC enantiomeric separation of AAs via orthogonal experiments. The CTzDa-monolith is prepared by the incorporation of the model chiral COF named CTzDa into the porous poly(ethylene dimethacrylate-co-methacrylate) monolith and reveals great permeability and mechanical stability. The corresponding CTzDa-monolithic column gives better chiral HPLC separation of AAs than the commercial Poroshell 120 chiral-T column. Thermal dynamic analysis and molecular docking calculations imply the involvement of stereoscopic hydrogen, π-π, and van der Waals interactions between the CTzDa and AAs during HPLC enantioseparation. The facile incorporation of the chiral COF into the porous monolith will promote the potential of a chiral COF as a stationary phase for HPLC.
Collapse
Affiliation(s)
- Hai-Long Qian
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Fang Liu
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xue Liu
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xiu-Ping Yan
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
28
|
Sun HF, Cui YY, Yang CX. Fabrication of microporous organic network@silica composite for high-performance liquid chromatographic separation of drugs and proteins. Electrophoresis 2021; 42:1936-1944. [PMID: 34180069 DOI: 10.1002/elps.202100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/06/2022]
Abstract
Microporous organic networks (MONs) that exhibit good stability and hydrophobicity are promising candidates for performing HPLC separation of small organic compounds. However, their applications in separating large analytes as well as biomolecules are still limited by the microporous nature of MONs. Herein, we demonstrated the fabrication of a MON-functionalized silica (MON@SiO2 ), exhibiting micro and mesopores for the HPLC separations of small drugs as well as large analytes, such as flavones, nonsteroidal anti-inflammatory drugs (NSAIDs), endocrine disrupting chemicals (EDCs), and proteins. MON was successfully modified on SiO2 microspheres to yield the uniform and mono-dispersed MON@SiO2 . The separation mechanisms and performance of the MON@SiO2 packed column were evaluated for a wide range of analytes, including neutral, acidic, basic compounds, drugs, and proteins. Compared with commercial C18 and SiO2 -NH2 packed columns, the proposed MON@SiO2 column afforded superior performance in the separations of flavones, NSAIDs, EDCs, and proteins. Moreover, the MON@SiO2 column also offered good repeatability with intraday RSDs (n = 7) of <0.1%, <2.0%, <2.3%, and <0.7% for the retention time, peak height, peak area, and half peak width, respectively, for separating EDCs. This work proved the potential of using MONs in the HPLC separations of drugs and proteins.
Collapse
Affiliation(s)
- Hao-Fei Sun
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, P. R. China
| | - Yuan-Yuan Cui
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, P. R. China
| | - Cheng-Xiong Yang
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, P. R. China
| |
Collapse
|
29
|
Enríquez‐Cabrera A, Ridier K, Salmon L, Routaboul L, Bousseksou A. Complete and Versatile Post‐Synthetic Modification on Iron‐Triazole Spin Crossover Complexes: A Relevant Material Elaboration Method. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alejandro Enríquez‐Cabrera
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| | - Karl Ridier
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| | - Lionel Salmon
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| | - Lucie Routaboul
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| | - Azzedine Bousseksou
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| |
Collapse
|
30
|
Cui YY, He XQ, Yang CX, Yan XP. Application of microporous organic networks in separation science. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
He XQ, Cui YY, Lin XH, Yang CX. Fabrication of polyethyleneimine modified magnetic microporous organic network nanosphere for efficient enrichment of non-steroidal anti-inflammatory drugs from wastewater samples prior to HPLC-UV analysis. Talanta 2021; 233:122471. [PMID: 34215105 DOI: 10.1016/j.talanta.2021.122471] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023]
Abstract
Development of novel functionalized adsorbents for efficient magnetic solid phase extraction (MSPE) is essential for promoting their versatile applications in sample pretreatment. Herein, we report the fabrication of a new polyethyleneimine-600 decorated magnetic microporous organic network nanosphere (Fe3O4@MON-PEI600) for effective MSPE of trace non-steroidal anti-inflammatory drugs (NSAIDs) from different water samples. The core-shelled Fe3O4@MON-PEI600 integrates the synergistic effects of Fe3O4, MON and PEI600, providing facile and effective extraction to NSAIDs via multiple hydrogen bonding, π-π and hydrophobic interactions. The inner MON shell employs π-π and hydrophobic interaction sites and the outer PEI-600 coat acts as the hydrogen bonding doner/receptor, which affords good extraction performance for NSAIDs. Under optimal conditions, the Fe3O4@MON-PEI600-MSPE-HPLC-UV method gives wide linear range (0.14-400 μg L-1), low limits of detection (0.042-0.149 μg L-1), good precisions (intra-day and inter-day RSDs < 4.5%, n = 6), and large enrichment factors (97.0-98.2). Extraction mechanisms and selectivity of Fe3O4@MON-PEI600 are evaluated in detail. Moreover, Fe3O4@MON-PEI600 is successfully applied to enrich the trace NSAIDs in different water samples with the concentrations of 0.7 and 0.8 μg L-1 for 1-naphthylacetic acid, 0.5 and 0.1 μg L-1 for naproxen as well as 0.7 μg L-1 for ibuprofen, respectively. The developed method not only affords a novel and efficient magnetic adsorbent for NSAIDs in aqueous media at trace level, but also provides a new strategy for the rational design and synthesis of multiple functionalized MON composites in sample pretreatment.
Collapse
Affiliation(s)
- Xin-Qiao He
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Yuan-Yuan Cui
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Xiao-Hui Lin
- Department of Physics and Chemistry, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Cheng-Xiong Yang
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
32
|
Facile preparation of ethanediamine-β-cyclodextrin modified capillary column for electrochromatographic enantioseparation of Dansyl amino acids. J Chromatogr A 2021; 1643:462082. [PMID: 33780884 DOI: 10.1016/j.chroma.2021.462082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 03/13/2021] [Indexed: 01/03/2023]
Abstract
Herein, the fabrication of a fascinating multifunctional cyclodextrin (CD) chiral stationary phase and its chiral separation performance in capillary electrochromatography are proposed. A facile interfacial polymerization was used to anchor ethanediamine-β-cyclodextrin (EDA-β-CD) polymerized with trimesoyl chloride (TMC) and to form the chiral stationary phase (CSP) composite onto the surface wall of the capillary. The characters of prepared columns were confirmed by Fourier transform infrared spectroscopy (FT-IR), X-ray Photoelectron Spectrometer (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). This novel CSP offers multi-typical interactions including hydrogen bonding, π-interaction, hydrophobic and electrostatic interaction as well as steric effects which contribute to prominent chiral recognition for Dansyl-DL-amino acids in CEC modes. The EDA-β-CD modified column showed eminent enantioseparation performance towards five Dansyl-DL-amino acids (the DL-forms of valine, threonine, leucine, phenylalanine, serine). Besides, the prepared columns were perfectly reproducible and stable. The relative standard deviations of the enantiomer retention times for intra-day (n = 5), inter-day (n = 3) runs and column-to-columns (n = 3) are below 0.54%, 1.35% and 4.89%, individually. This innovative chiral stationary phase shows a broader application view and scope in chiral recognition domain.
Collapse
|
33
|
Li X, Cui YY, Yang CX. Covalent coupling fabrication of microporous organic network bonded capillary columns for gas chromatographic separation. Talanta 2021; 224:121914. [DOI: 10.1016/j.talanta.2020.121914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
|
34
|
Fabrication of spherical silica amino-functionalized microporous organic network composites for high performance liquid chromatography. Talanta 2021; 221:121570. [DOI: 10.1016/j.talanta.2020.121570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/30/2023]
|
35
|
He Y, Qi M. A novel column modification approach for capillary gas chromatography: combination with a triptycene-based stationary phase achieves high separation performance and inertness. NEW J CHEM 2021. [DOI: 10.1039/d1nj00571e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integration of the novel column modification approach with a triptycene-based stationary phase achieves high-resolution performance and inertness towards acids/bases and isomers for capillary GC analysis.
Collapse
Affiliation(s)
- Yongrui He
- Key Laboratory of Cluster Science
- Ministry of Education of China
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Meiling Qi
- Key Laboratory of Cluster Science
- Ministry of Education of China
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| |
Collapse
|
36
|
Tang B, Zhang X, Geng L, Sun L, Luo A. A chiral metal-organic cage used as the stationary phase for gas chromatography separations. J Chromatogr A 2020; 1636:461792. [PMID: 33340747 DOI: 10.1016/j.chroma.2020.461792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Chiral metal-organic cages (MOCs) are a new type of porous materials with unique molecular recognition ability, which have received research attention as a chiral stationary phase (CSP) for gas chromatography (GC). Herein, we report the detailed investigation of a chiral MOC ([Cu12(LPA)12(H2O)12], PA = L-phenylalanine, MOC-PA) as a novel stationary phase for GC separations. The MOC-PA capillary column exhibited a high-resolution performance for a wide range of analytes, including n-alkanes, n-alcohols, esters, aromatic compounds and the Grob mixture, positional isomers and racemates. In particular, MOC-PA coated column displayed good resolution and performance for amino acid derivatives. Moreover, the MOC-PA column showed excellent separation repeatability and reproducibility. The relative standard deviation (RSD) values for the retention times were in the range of 0.16-0.30% for run to run (n = 3), 0.31-0.77% for day-to-day (n = 3), and 3.6-4.7% for column-to-column (n = 3), respectively. The experimental results showed that MOC-PA had great potential as a GC stationary phase.
Collapse
Affiliation(s)
- Bo Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| | - Xin Zhang
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China
| | - Lina Geng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China.
| |
Collapse
|
37
|
Niu X, Yang X, Li H, Liu J, Liu Z, Wang K. Application of chiral materials in electrochemical sensors. Mikrochim Acta 2020; 187:676. [DOI: 10.1007/s00604-020-04646-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/15/2020] [Indexed: 01/02/2023]
|
38
|
Fan Y, Xing Q, Zhang J, Wang Y, Liang Y, Qi W, Su R, He Z. Self-Assembly of Peptide Chiral Nanostructures with Sequence-Encoded Enantioseparation Capability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10361-10370. [PMID: 32787008 DOI: 10.1021/acs.langmuir.0c01338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biopolymers such as polysaccharides and proteins have been widely used for the chiral separation of various components due to the intrinsic chirality of the polymers. Amyloid-like short peptides can also self-assemble into diverse chiral supramolecular nanostructures or polymers with precisely tailored architectures driving by noncovalent interactions. However, the use of such supramolecular nanostructures for the resolution and separation of chiral components remains largely unexplored. Here, we report that the self-assembled peptide supramolecular nanostructures can be used for the highly efficient chiral separation of various enantiomers. By rationally designing the constituent amino acid sequence of the peptides and the self-assembling environment, we can fabricate supramolecular polymers with distinct surface charges and architectures, including nanohelices, nanoribbons, nanosheets, nanofibrils, and nanospheres. The various supramolecular nanostructures were then used to resolve the racemic mixtures of α-methylbenzylamine, 2-phenylpropionic acid, and 1-phenylethanol. The results indicated that the self-assembled peptide polymers showed excellent enantioselective separation efficiency for different chiral molecules. The enantioselective separation efficiency of the peptide nanostructures can be tailored by changing their surface charges, morphology, and the constituent amino acid sequences of the peptides.
Collapse
Affiliation(s)
- Yuqi Fan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qiguo Xing
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yaoyu Liang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|