1
|
Tang K, Wang J, Pei X, Zhu Z, Liu J, Wan Q, Zhang X. Flexible coatings based on hydrogel to enhance the biointerface of biomedical implants. Adv Colloid Interface Sci 2025; 335:103358. [PMID: 39591835 DOI: 10.1016/j.cis.2024.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The use of biomedical implants in surgical techniques promotes the restoration of lost tissue or organ physiological functions in the body. The interface between different materials determines their interactions and ultimately affects the physicochemical properties of biomedical implants. After implantation, the biointerface plays a crucial role in determining the biocompatibility and functionality of biomedical implants. Surface modification of biomaterials by developing novel biomaterials like various flexible coatings to meet the requirements of biointerfaces, such as mechanical performance, compatibility safety, and biological activities, can improve material-biological interactions by maintaining its original volumetric characteristics. Hydrogels possess excellent plasticity, biodegradability, biocompatibility, and extracellular-matrix-like properties, making them widely used in the biomedical field. Moreover, due to their unique three-dimensional crosslinked hydrophilic network, hydrogels can encapsulate a variety of materials, such as small molecules, polymers, and particle. In recent years, it has been proved that coating biomedical implant materials with flexible hydrogels can optimize the biointerface and holds vast potential for implant surface modification. In this review, we first discussed the potential requirements of the biointerface on the surface of implantable materials in both in vitro and in vivo biological microenvironments. Based on these comprehensive reviews, we also introduced the potential applications of hydrogels in both in vitro and in vivo settings. Finally, this review focused on the challenges faced by the biointerface of implantable materials constructed based on hydrogels and proposed future approaches to inspire researchers with new ideas.
Collapse
Affiliation(s)
- Kun Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiang Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Cheng QS, Xu PY, Luo SC, Chen AZ. Advances in Adhesive Materials for Oral and Maxillofacial Soft Tissue Diseases. Macromol Biosci 2024:e2400494. [PMID: 39588806 DOI: 10.1002/mabi.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Oral diseases represent a prevalent global health burden, profoundly affecting patients' quality of life. Given the involvement of oral mucosa and muscles in diverse physiological functions, coupled with clinical aesthetics considerations, repairing oral and maxillofacial soft tissue defects poses a formidable challenge. Wet-adhesive materials are regarded as promising oral repair materials due to their unique advantages in easily overcoming physical and biological barriers in the oral cavity. This review first introduces the intricate wet-state environment prevalent in the oral cavity, meticulously explaining the fundamental physical and chemical adhesion mechanisms that underpin adhesive materials. It then comprehensively summarizes the diverse types of adhesives utilized in stomatology, encompassing polysaccharide, protein, and synthetic polymer adhesive materials. The review further evaluates the latest research advancements in utilizing these materials to treat various oral and maxillofacial soft tissue diseases, including oral mucosal diseases, periodontitis, peri-implantitis, oral and maxillofacial skin defects, and maxillofacial tumors. Finally, it also highlights the promising future prospects and pivotal challenges related to stomatology application of multifunctional adhesive materials.
Collapse
Affiliation(s)
- Qiu-Shuang Cheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Sheng-Chang Luo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| |
Collapse
|
3
|
Hutomo DI, Deandra FA, Ketherin K, García-Gareta E, Bachtiar EW, Amir L, Tadjoedin FM, Widaryono A, Haerani N, Lessang R, Soeroso Y. The Effect of Carbodiimide Crosslinkers on Gelatin Hydrogel as a Potential Biomaterial for Gingival Tissue Regeneration. Gels 2024; 10:674. [PMID: 39590030 PMCID: PMC11593530 DOI: 10.3390/gels10110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Connective tissue grafts for gingival recession treatment present significant challenges as they require an additional surgical site, leading to increased morbidity, extended operative times, and a more painful postoperative recovery for patients. Gelatin contains the arginine-glycine-aspartic acid (RGD) sequence, which supports cell adhesion and interactions. The development of gelatin hydrogels holds significant promise due to their biocompatibility, ease of customization, and structural resemblance to the extracellular matrix, making them a potential candidate for gingival regeneration. This study aimed to assess the physical and biological properties of crosslinked gelatin hydrogels using EDC/NHS with two crosslinker concentrations (GelCL12 and GelCL24) and compare these to non-crosslinked gelatin. Both groups underwent morphological, rheological, and chemical analysis. Biological assessments were conducted to evaluate human gingival fibroblast (HGF) proliferation, migration, and COL1 expression in response to the scaffolds. The crosslinked gelatin group exhibited greater interconnectivity and better physical characteristics without displaying cytotoxic effects on the cells. FTIR analysis revealed no significant chemical differences between the groups. Notably, the GelCL12 group significantly enhanced HGF migration and upregulated COL1 expression. Overall, GelCL12 met the required physical characteristics and biocompatibility, making it a promising scaffold for future gingival tissue regeneration applications.
Collapse
Affiliation(s)
- Dimas Ilham Hutomo
- Doctoral Program, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia;
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Fathia Agzarine Deandra
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.A.D.); (K.K.)
| | - Ketherin Ketherin
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.A.D.); (K.K.)
| | - Elena García-Gareta
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Aragon Institute of Health Research (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain;
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1E 6DE, UK
| | - Endang Winiati Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (E.W.B.); (L.A.)
| | - Lisa Amir
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (E.W.B.); (L.A.)
| | - Fatimah Maria Tadjoedin
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Adityo Widaryono
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Natalina Haerani
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Robert Lessang
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| |
Collapse
|
4
|
Park SK, Shin JH, Lee DU, Jung JH, Hwang I, Yoo SH, Lee HC, Park I, Kim W, Lee DY, Choi DY. Facile Fabrication of Multifunctional Hydrogel Nanoweb Coating Using Carboxymethyl Chitosan-Based Short Nanofibers for Blood-Contacting Medical Devices. NANO LETTERS 2024; 24:8920-8928. [PMID: 38874568 DOI: 10.1021/acs.nanolett.4c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Blood-contacting medical devices (BCDs) require antithrombotic, antibacterial, and low-friction surfaces. Incorporating a nanostructured surface with the functional hydrogel onto BCD surfaces can enhance the performances; however, their fabrication remains challenging. Here, we introduce a straightforward method to fabricate a multifunctional hydrogel-based nanostructure on BCD surfaces using O-carboxymethyl chitosan-based short nanofibers (CMC-SNFs). CMC-SNFs, fabricated via electrospinning and cutting processes, are easily sprayed and entangled onto the BCD surface. The deposited CMC-SNFs form a robust nanoweb layer via fusion at the contact area of the nanofiber interfaces. The superhydrophilic CMC-SNF nanoweb surface creates a water-bound layer that effectively prevents the nonspecific adhesion of bacteria and blood cells, thereby enhancing both antimicrobial and antithrombotic performances. Furthermore, the CMC-SNF nanoweb exhibits excellent lubricity and durability on the bovine aorta. The demonstration results of the CMC-SNF coating on catheters and sheaths provide evidence of its capability to apply multifunctional surfaces simply for diverse BCDs.
Collapse
Affiliation(s)
- Se Kye Park
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae Hak Shin
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Dong Uk Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| | - Jae Hee Jung
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Injoo Hwang
- Department of Mechanical Engineering, Silla University, Busan 46958, Republic of Korea
| | - Seung Hwa Yoo
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Han Chang Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| | - Inyong Park
- Department of Sustainable Environment Research, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Woojin Kim
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| | - Dong Yun Lee
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Yun Choi
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| |
Collapse
|
5
|
Shrivas S, Samaur H, Yadav V, Boda SK. Soft and Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration. ACS Biomater Sci Eng 2024; 10:1966-1987. [PMID: 38530973 DOI: 10.1021/acsbiomaterials.3c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A holistic biointegration of percutaneous bone-anchored metallic prostheses with both hard and soft tissues dictates their longevity in the human body. While titanium (Ti) has nearly solved osseointegration, soft tissue integration of percutaneous metallic prostheses is a perennial problem. Unlike the firm soft tissue sealing in biological percutaneous structures (fingernails and teeth), foreign body response of the skin to titanium (Ti) leads to inflammation, epidermal downgrowth and inferior peri-implant soft tissue sealing. This review discusses various implant surface treatments/texturing and coatings for osseointegration, soft tissue integration, and against bacterial attachment. While surface microroughness by SLA (sandblasting with large grit and acid etched) and porous calcium phosphate (CaP) coatings improve Ti osseointegration, smooth and textured titania nanopores, nanotubes, microgrooves, and biomolecular coatings encourage soft tissue attachment. However, the inferior peri-implant soft tissue sealing compared to natural teeth can lead to peri-implantitis. Toward this end, the application of smart multifunctional bioadhesives with strong adhesion to soft tissues, mechanical resilience, durability, antibacterial, and immunomodulatory properties for soft tissue attachment to metallic prostheses is proposed.
Collapse
Affiliation(s)
- Sangeeta Shrivas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vinod Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sunil Kumar Boda
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
6
|
Papaioannou A, Vasilaki E, Loukelis K, Papadogianni D, Chatzinikolaidou M, Vamvakaki M. Bioactive and biomimetic 3D scaffolds for bone tissue engineering using graphitic carbon nitride as a sustainable visible light photoinitiator. BIOMATERIALS ADVANCES 2024; 157:213737. [PMID: 38211506 DOI: 10.1016/j.bioadv.2023.213737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is explored as a novel sustainable visible light photoinitiator for the preparation of biomimetic 3D hydrogel scaffolds comprising gelatin methacrylamide (GelMA) and dopamine methacrylamide for use in tissue engineering. The initiator efficiency was assessed by comparing the swelling behavior and the stability of photopolymerized hydrogels prepared with GelMA of different degrees of functionalization and different comonomer compositions. Bioactive composite hydrogels with a 50 wt% nanohydroxyapatite (nHAp) content, to closely mimic the actual bone composition, were successfully obtained by the introduction of nHAp in the prepolymer solutions followed by photopolymerization. The composite hydrogels demonstrated enhanced mechanical properties and excellent stability in PBS verifying the preparation of robust 3D scaffolds for use in cancellous or pre-calcified bone tissue engineering applications. The in vitro cell response of the composite scaffolds exhibited high cell viability and enhanced differentiation of pre-osteoblasts to mature osteoblasts, demonstrating their osteogenic potential. This work establishes, for the first time, the excellent properties of g-C3N4 as a sustainable, visible light initiator, fully satisfying the principles of green chemistry, for the preparation of robust and biologically relevant hydrogels, and proposes a new approach to overcome the main challenges of conventional photoinitiators in cell scaffold fabrication, such as photobleaching, high cost and non-scalable synthesis employing toxic organic precursors and solvents.
Collapse
Affiliation(s)
- Anna Papaioannou
- School of Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Evangelia Vasilaki
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece.
| | - Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece
| | - Danai Papadogianni
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece
| | - Maria Vamvakaki
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece.
| |
Collapse
|
7
|
Mohanto S, Narayana S, Merai KP, Kumar JA, Bhunia A, Hani U, Al Fatease A, Gowda BHJ, Nag S, Ahmed MG, Paul K, Vora LK. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253:127143. [PMID: 37793512 DOI: 10.1016/j.ijbiomac.2023.127143] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India.
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Khushboo Paresh Merai
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Jahanvee Ashok Kumar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Rd, 632014, Tamil Nadu, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| |
Collapse
|
8
|
Ma T, Wang CX, Ge XY, Zhang Y. Applications of Polydopamine in Implant Surface Modification. Macromol Biosci 2023; 23:e2300067. [PMID: 37229654 DOI: 10.1002/mabi.202300067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/22/2023] [Indexed: 05/27/2023]
Abstract
There is great clinical demand for orthopedic and dental implant surface modification methods to prevent osseointegration failure and improve implant biological functions. Notably, dopamine (DA) can be polymerized to form polydopamine (PDA), which is similar to the adhesive proteins secreted by mussels, to form a stable bond between the bone surface and implants. Therefore, PDA has the potential to be used as an implant surface modification material with good hydrophilicity, roughness, morphology, mechanical strength, biocompatibility, antibacterial activity, cellular adhesion, and osteogenesis. In addition, PDA degradation releases DA into the surrounding microenvironment, which is found to play an important role in regulating DA receptors on both osteoblasts and osteoclasts during the bone remodeling process. Furthermore, the adhesion properties of PDA suggest its use as an intermediate layer in assisting other functional bone remodeling materials, such as nanoparticles, growth factors, peptides, and hydrogels, to form "dual modifications." The purpose of this review is to summarize the recent progress in research on PDA and its derivatives as orthopedic and dental implant surface modification materials and to analyze the multiple functions of PDA.
Collapse
Affiliation(s)
- Ting Ma
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Chen-Xi Wang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Xi-Yuan Ge
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Yu Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| |
Collapse
|
9
|
Zhang L, Du H, Sun X, Cheng F, Lee W, Li J, Dai G, Fang NX, Liu Y. 3D Printing of Interpenetrating Network Flexible Hydrogels with Enhancement of Adhesiveness. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41892-41905. [PMID: 37615397 PMCID: PMC10620755 DOI: 10.1021/acsami.3c07816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
3D printing of hydrogels has been widely explored for the rapid fabrication of complex soft structures and devices. However, using 3D printing to customize hydrogels with both adequate adhesiveness and toughness remains a fundamental challenge. Here, we demonstrate mussel-inspired (polydopamine) PDA hydrogel through the incorporation of a classical double network (2-acrylamido-2-methylpropanesulfonic acid) PAMPS/(polyacrylamide) PAAm to achieve simultaneously tailored adhesiveness, toughness, and biocompatibility and validate the 3D printability of such a hydrogel into customized architectures. The strategy of combining PDA with PAMPS/PAAm hydrogels leads to favorable adhesion on either hydrophilic or hydrophobic surfaces. The hydrogel also shows excellent flexibility, which is attributed to the reversible cross-linking of PDA and PAMPS, together with the long-chain PAAm cross-linking network. Among them, the reversible cross-linking of PDA and PAMPS is capable of dissipating mechanical energy under deformation. Meanwhile, the long-chain PAAm network contributes to maintaining a high deformation capability. We establish a theoretical framework to quantify the contribution of the interpenetrating networks to the overall toughness of the hydrogel, which also provides guidance for the rational design of materials with the desired properties. Our work manifests a new paradigm of printing adhesive, tough, and biocompatible interpenetrating network hydrogels to meet the requirements of broad potential applications in biomedical engineering, soft robotics, and intelligent and superabsorbent devices.
Collapse
Affiliation(s)
- Lei Zhang
- Department
of Mechanical & Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- State
Key Laboratory of Primate Biomedical Research, Institute of Primate
Translational Medicine, Kunming University
of Science and Technology, Kunming, Yun Nan 650000, China
| | - Huifeng Du
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xin Sun
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Feng Cheng
- Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Wenhan Lee
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jiahe Li
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Biomedical Engineering, College of Engineering and School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Guohao Dai
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nicholas Xuanlai Fang
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yongmin Liu
- Department
of Mechanical & Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Adler C, Monavari M, Abraham GA, Boccaccini AR, Ghorbani F. Mussel-inspired polydopamine decorated silane modified-electroconductive gelatin-PEDOT:PSS scaffolds for bone regeneration. RSC Adv 2023; 13:15960-15974. [PMID: 37250225 PMCID: PMC10214007 DOI: 10.1039/d3ra01311a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
This study seeks to simulate both the chemistry and piezoelectricity of bone by synthesizing electroconductive silane-modified gelatin-poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) scaffolds using the freeze drying technique. In order to enhance hydrophilicity, cell interaction, and biomineralization, the scaffolds were functionalized with polydopamine (PDA) inspired by mussels. Physicochemical, electrical, and mechanical analyses were conducted on the scaffolds, as well as in vitro evaluations using the osteosarcoma cell line MG-63. It was found that scaffolds had interconnected porous structures, so the PDA layer formation reduced the size of pores while maintaining scaffold uniformity. PDA functionalization reduced the electrical resistance of the constructs while improving their hydrophilicity, compressive strength, and modulus. As a result of the PDA functionalization and the use of silane coupling agents, higher stability and durability were achieved as well as an improvement in biomineralization capability after being soaked in SBF solution for a month. Additionally, the PDA coating enabled the constructs to enhance viability, adhesion, and proliferation of MG-63 cells, as well as to express alkaline phosphatase and deposit HA, indicating that scaffolds can be used for bone regeneration. Therefore, the PDA-coated scaffolds developed in this study and the non-toxic performance of PEDOT:PSS present a promising approach for further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Catalina Adler
- Faculty of Engineering, National University of Mar del Plata Mar del Plata Argentina
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Cauerstrasse 6 91058 Erlangen Germany +49 9131 85-69637 +49 9131 85-28601
| | - Mahshid Monavari
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Cauerstrasse 6 91058 Erlangen Germany +49 9131 85-69637 +49 9131 85-28601
| | - Gustavo A Abraham
- Faculty of Engineering, National University of Mar del Plata Mar del Plata Argentina
- Research Institute for Materials Science and Technology, INTEMA (UNMdP-CONICET) Mar del Plata Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Cauerstrasse 6 91058 Erlangen Germany +49 9131 85-69637 +49 9131 85-28601
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Cauerstrasse 6 91058 Erlangen Germany +49 9131 85-69637 +49 9131 85-28601
| |
Collapse
|
11
|
Chen H, Feng R, Xia T, Wen Z, Li Q, Qiu X, Huang B, Li Y. Progress in Surface Modification of Titanium Implants by Hydrogel Coatings. Gels 2023; 9:gels9050423. [PMID: 37233014 DOI: 10.3390/gels9050423] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Although titanium and titanium alloys have become the preferred materials for various medical implants, surface modification technology still needs to be strengthened in order to adapt to the complex physiological environment of the human body. Compared with physical or chemical modification methods, biochemical modification, such as the introduction of functional hydrogel coating on implants, can fix biomolecules such as proteins, peptides, growth factors, polysaccharides, or nucleotides on the surface of the implants, so that they can directly participate in biological processes; regulate cell adhesion, proliferation, migration, and differentiation; and improve the biological activity on the surface of the implants. This review begins with a look at common substrate materials for hydrogel coatings on implant surfaces, including natural polymers such as collagen, gelatin, chitosan, and alginate, and synthetic materials such as polyvinyl alcohol, polyacrylamide, polyethylene glycol, and polyacrylic acid. Then, the common construction methods of hydrogel coating (electrochemical method, sol-gel method and layer-by-layer self-assembly method) are introduced. Finally, five aspects of the enhancement effect of hydrogel coating on the surface bioactivity of titanium and titanium alloy implants are described: osseointegration, angiogenesis, macrophage polarization, antibacterial effects, and drug delivery. In this paper, we also summarize the latest research progress and point out the future research direction. After searching, no previous relevant literature reporting this information was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Rui Feng
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
12
|
Tan Y, Cai B, Li X, Wang X. Preparation and Application of Biomass-based Sprayable Hydrogels. PAPER AND BIOMATERIALS 2023; 8:1-19. [DOI: 10.26599/pbm.2023.9260006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Rizwan A, Gulfam M, Jo SH, Seo JW, Ali I, Thang Vu T, Joo SB, Park SH, Taek Lim K. Gelatin-based NIR and reduction-responsive injectable hydrogels cross-linked through IEDDA click chemistry for drug delivery application. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
14
|
Bao Y, Zhang HQ, Chen L, Cai HH, Liu ZL, Peng Y, Li Z, Dai FY. Artemisinin-Loaded Silk Fibroin/Gelatin Composite Hydrogel for Wound Healing and Tumor Therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
15
|
Kwan JC, Dondani J, Iyer J, Muaddi HA, Nguyen TT, Tran SD. Biomimicry and 3D-Printing of Mussel Adhesive Proteins for Regeneration of the Periodontium-A Review. Biomimetics (Basel) 2023; 8:biomimetics8010078. [PMID: 36810409 PMCID: PMC9944831 DOI: 10.3390/biomimetics8010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Innovation in the healthcare profession to solve complex human problems has always been emulated and based on solutions proven by nature. The conception of different biomimetic materials has allowed for extensive research that spans several fields, including biomechanics, material sciences, and microbiology. Due to the atypical characteristics of these biomaterials, dentistry can benefit from these applications in tissue engineering, regeneration, and replacement. This review highlights an overview of the application of different biomimetic biomaterials in dentistry and discusses the key biomaterials (hydroxyapatite, collagen, polymers) and biomimetic approaches (3D scaffolds, guided bone and tissue regeneration, bioadhesive gels) that have been researched to treat periodontal and peri-implant diseases in both natural dentition and dental implants. Following this, we focus on the recent novel application of mussel adhesive proteins (MAPs) and their appealing adhesive properties, in addition to their key chemical and structural properties that relate to the engineering, regeneration, and replacement of important anatomical structures in the periodontium, such as the periodontal ligament (PDL). We also outline the potential challenges in employing MAPs as a biomimetic biomaterial in dentistry based on the current evidence in the literature. This provides insight into the possible increased functional longevity of natural dentition that can be translated to implant dentistry in the near future. These strategies, paired with 3D printing and its clinical application in natural dentition and implant dentistry, develop the potential of a biomimetic approach to overcoming clinical problems in dentistry.
Collapse
Affiliation(s)
- Jan C. Kwan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Jay Dondani
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Janaki Iyer
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Hasan A. Muaddi
- Department of Oral and Maxillofacial Surgery, King Khalid University, Abha 62529, Saudi Arabia
| | - Thomas T. Nguyen
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Division of Periodontics, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Correspondence:
| |
Collapse
|
16
|
Li G, Zhang Y, Wu J, Yang R, Sun Q, Xu Y, Wang B, Cai M, Xu Y, Zhuang C, Wang L. Adipose stem cells-derived exosomes modified gelatin sponge promotes bone regeneration. Front Bioeng Biotechnol 2023; 11:1096390. [PMID: 36845194 PMCID: PMC9947707 DOI: 10.3389/fbioe.2023.1096390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background: Large bone defects resulting from trauma and diseases still a great challenge for the surgeons. Exosomes modified tissue engineering scaffolds are one of the promising cell-free approach for repairing the defects. Despite extensive knowledge of the variety kinds of exosomes promote tissue regeneration, little is known of the effect and mechanism for the adipose stem cells-derived exosomes (ADSCs-Exos) on bone defect repair. This study aimed to explore whether ADSCs-Exos and ADSCs-Exos modified tissue engineering scaffold promotes bone defects repair. Material/Methods: ADSCs-Exos were isolated and identified by transmission electron microscopy nanoparticle tracking analysis, and western blot. Rat bone marrow mesenchymal stem cells (BMSCs) were exposed to ADSCs-Exos. The CCK-8 assay, scratch wound assay, alkaline phosphatase activity assay, and alizarin red staining were used to evaluate the proliferation, migration, and osteogenic differentiation of BMSCs. Subsequently, a bio-scaffold, ADSCs-Exos modified gelatin sponge/polydopamine scaffold (GS-PDA-Exos), were prepared. After characterized by scanning electron microscopy and exosomes release assay, the repair effect of the GS-PDA-Exos scaffold on BMSCs and bone defects was evaluated in vitro and in vivo. Results: The diameter of ADSCs-exos is around 122.1 nm and high expressed exosome-specific markers CD9 and CD63. ADSCs-Exos promote the proliferation migration and osteogenic differentiation of BMSCs. ADSCs-Exos was combined with gelatin sponge by polydopamine (PDA)coating and released slowly. After exposed to the GS-PDA-Exos scaffold, BMSCs have more calcium nodules with osteoinductive medium and higher expression the mRNA of osteogenic related genes compared with other groups. The quantitative analysis of all micro-CT parameters showed that GS-PDA-Exos scaffold promote new bone formed in the femur defect model in vivo and confirmed by histological analysis. Conclusion: This study demonstrates the repair efficacy of ADSCs-Exos in bone defects, ADSCs-Exos modified scaffold showing a huge potential in the treatment of large bone defects.
Collapse
Affiliation(s)
- Gen Li
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yin Zhang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiezhou Wu
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renhao Yang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yidong Xu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Xu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengyu Zhuang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Chengyu Zhuang, ; Lei Wang,
| | - Lei Wang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Chengyu Zhuang, ; Lei Wang,
| |
Collapse
|
17
|
Syeddan SA. Research Methodology and Mechanisms of Action of Current Orthopaedic Implant Coatings. J Long Term Eff Med Implants 2023; 33:51-66. [PMID: 36734927 DOI: 10.1615/jlongtermeffmedimplants.2022040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orthopedic implants are crucial interventions that are gaining greater importance in modern medicine to restore function to commonly affected joints. Each implantation carries the risk of implant-associated infection and loosening of the implant due to improper integration with soft tissue. Coating strategies have been developed to aid the growth of bone into the implant (osteointegration) and prevent biofilm formation to avoid infection. In this review, primary articles highlighting recent developments and advancements in orthopedic implant coating will be presented. Additionally, the methodology of the articles will be critiqued based on this research criteria: establishment of function on a theoretical basis, validation of coating function, and potential next steps/improvements based on results. A theoretical basis based on understanding the mechanisms at play of these various coatings allows for systems to be developed to tackle the tasks of osteointegration, subversion of infection, and avoidance of cytotoxicity. The current state of research methodology in coating design focuses too heavily on either osteointegration or the prevention of infection, thus, future development in medical implant coating needs to investigate the creation of a coating that accomplishes both tasks. Additionally, next steps and improvements to systems need to be better highlighted to move forward when problems arise within a system. Research currently showcasing new coatings is performed primarily in vitro and in vivo. More clinical trials need to be performed to highlight long-term sustainability, the structural integrity, and the safety of the implant.
Collapse
|
18
|
Wang M, Yang L, Zhu X, Yang L, Song Z. Influence of Enzymes on the In Vitro Degradation Behavior of Pure Zn in Simulated Gastric and Intestinal Fluids. ACS OMEGA 2023; 8:1331-1342. [PMID: 36643457 PMCID: PMC9835524 DOI: 10.1021/acsomega.2c06752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 05/26/2023]
Abstract
Zinc (Zn) alloys are being developed as the degradable biomaterial. However, the corrosion mechanism of Zn in the gastrointestinal environment is seldom investigated and needs to be addressed. In this study, the impacts of enzymes on the degradation of pure Zn via electrochemical measurements and immersion were investigated. Pepsin and pancreatin affected the degradation of pure Zn. In contrast with the solutions without enzymes, the degradation rates declined with the addition of enzymes in solutions. However, localized corrosion was observed because the adsorption of pepsin was not a perfect barrier to prevent corrosion. The adsorbed pancreatin protected the samples from corrosion mainly at the initial stage of immersion. With immersion in the simulated intestinal fluid, adsorption and desorption of pancreatin occurred simultaneously on the sample surface. These findings allow the development of Zn alloy-implanted devices for the digestive tract as well as the understanding of the Zn corrosion mechanism in the gastrointestinal environment.
Collapse
Affiliation(s)
- Manli Wang
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Lingbo Yang
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
| | - Xinglong Zhu
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
| | - Lijing Yang
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
| | - Zhenlun Song
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
| |
Collapse
|
19
|
Zhou Y, Yang Y, Liu R, Zhou Q, Lu H, Zhang W. Research Progress of Polydopamine Hydrogel in the Prevention and Treatment of Oral Diseases. Int J Nanomedicine 2023; 18:2623-2645. [PMID: 37213351 PMCID: PMC10199686 DOI: 10.2147/ijn.s407044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Oral diseases represent one of the most prevalent diseases globally and are associated with serious health and economic burdens, greatly altering the quality of life of affected individuals. Various biomaterials play important roles in the treatment of oral diseases. To some extent, the development of biomaterials has promoted progress in clinically available oral medicines. Hydrogels have unique tunable advantages that make them useful in the next generation of regenerative strategies and have been widely applied in both oral soft and hard tissues repair. However, most hydrogels lack self-adhesive properties, which may result in low repair efficacy. Polydopamine (PDA), the primary adhesive component, has attracted increasing attention in recent years. PDA-modified hydrogels exhibit reliable and suitable adherence to tissues and easily integrate into tissues to promote repair efficiency. This paper reviews the latest research progress on PDA hydrogels and elaborates on the mechanism of the reaction between PDA functional groups and hydrogels, and summarizes the biological properties and the applications of PDA hydrogels in the prevention and treatment of the field of oral diseases. It is also proposed that in future research we should simulate the complex microenvironment of the oral cavity as much as possible, coordinate and plan various biological events rationally, and realize the translation from scientific research to clinical practice.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuanmeng Yang
- Department of Preventive Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Rongpu Liu
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Qin Zhou
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Haixia Lu
- Department of Preventive Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Haixia Lu, Department of Preventive Dentistry, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China, Email
| | - Wenjie Zhang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Wenjie Zhang, Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China, Email
| |
Collapse
|
20
|
Secretion of Bacillus amyloliquefaciens Transglutaminase from Lactococcus lactis and Its Enhancement of Food Gel Properties. Gels 2022; 8:gels8100674. [PMID: 36286175 PMCID: PMC9601987 DOI: 10.3390/gels8100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Microbial transglutaminases (MTGase) catalyze protein crosslink. This is useful in the food industry to improve gelation, water holding capacity, and emulsifying capacity during foodstuff manufacturing. The production of MTGase in wild-type strains renders low yield and high costs of downstream purification, limiting its industrial applications. (2) Methods: In this work, MTGase from Bacillus amyloliquefaciens BH072 (BaMTGase) has been heterologously expressed in Lactococcus lactis, using the signal peptide Usp45 to direct the secretion of recombinant BaMTGase out of the cell for easier purification. (3) Results: In these conditions, MTGase was purified with a high yield (48.7 ± 0.2 mg/L) and high enzyme activity (28.6 ± 0.5 U/mg). Next, BaMTGase was tested for industrial applications. Recombinant BaMTGase and commercial MTGase were used for SPI solution crosslinking. BaMTGase formed a harder gel with higher water-holding capacity and a dense and smooth gel microstructure. (4) Conclusions: This work provides an attractive food-grade cell factory for the food industry and offers a suitable chassis for MTGase production.
Collapse
|
21
|
Tian Q, Zhou W, Cai Q, Pan X, Ma G, Lian G. In situ complex coacervation supported by self-coated polydopamine interlayer on uniform-sized essential oils droplet. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Brooks AK, Wulff HE, Broitman JM, Zhang N, Yadavalli VK. Stretchable and Electroactive Crosslinked Gelatin for Biodevice and Cell Culture Applications. ACS APPLIED BIO MATERIALS 2022; 5:4922-4931. [PMID: 36179055 DOI: 10.1021/acsabm.2c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomimetic substrates that incorporate functionality such as electroactivity and mechanical flexibility, find utility in a variety of biomedical applications. Toward these uses, nature-derived materials such as gelatin offer inherent biocompatibility and sustainable sourcing. However, issues such as high swelling, poor mechanical properties, and lack of stability at biological temperatures limit their use. The enzymatic crosslinking of gelatin via microbial transglutaminase (mTG) yields flexible and robust large area substrates that are stable under physiological conditions. Here, we demonstrate the fabrication and characterization of strong, stretchable, conductive mTG crosslinked gelatin thin films. Incorporation of the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate in the gel matrix with a bioinspired polydopamine surface coating is used to enable conductivity with enhanced mechanical properties such as extensibility and flexibility, in comparison to plain gelatin or crosslinked gelatin films. The electroconductive substrates are conducive to cell growth, supporting myoblast cell adhesion, viability, and proliferation and could find use in creating active cell culture systems incorporating electrical stimulation. The substrates are responsive to motion such as stretching and bending while being extremely handleable and elastic, making them useful for applications such as electronic skin and flexible bioelectronics. Overall, this work presents facile, yet effective development of bioinspired conductive composites as substrates for bio-integrated devices and functional tissue engineering.
Collapse
Affiliation(s)
- Anne K Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Halle E Wulff
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Jacob M Broitman
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Ning Zhang
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
23
|
Taghizadeh A, Taghizadeh M, Yazdi MK, Zarrintaj P, Ramsey JD, Seidi F, Stadler FJ, Lee H, Saeb MR, Mozafari M. Mussel-inspired biomaterials: From chemistry to clinic. Bioeng Transl Med 2022; 7:e10385. [PMID: 36176595 PMCID: PMC9472010 DOI: 10.1002/btm2.10385] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
After several billions of years, nature still makes decisions on its own to identify, develop, and direct the most effective material for phenomena/challenges faced. Likewise, and inspired by the nature, we learned how to take steps in developing new technologies and materials innovations. Wet and strong adhesion by Mytilidae mussels (among which Mytilus edulis-blue mussel and Mytilus californianus-California mussel are the most well-known species) has been an inspiration in developing advanced adhesives for the moist condition. The wet adhesion phenomenon is significant in designing tissue adhesives and surgical sealants. However, a deep understanding of engaged chemical moieties, microenvironmental conditions of secreted proteins, and other contributing mechanisms for outstanding wet adhesion mussels are essential for the optimal design of wet glues. In this review, all aspects of wet adhesion of Mytilidae mussels, as well as different strategies needed for designing and fabricating wet adhesives are discussed from a chemistry point of view. Developed muscle-inspired chemistry is a versatile technique when designing not only wet adhesive, but also, in several more applications, especially in the bioengineering area. The applications of muscle-inspired biomaterials in various medical applications are summarized for future developments in the field.
Collapse
Affiliation(s)
- Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | - Florian J. Stadler
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdongChina
| | - Haeshin Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoToronto, ONCanada
| |
Collapse
|
24
|
Harati J, Tao X, Shahsavarani H, Du P, Galluzzi M, Liu K, Zhang Z, Shaw P, Shokrgozar MA, Pan H, Wang PY. Polydopamine-Mediated Protein Adsorption Alters the Epigenetic Status and Differentiation of Primary Human Adipose-Derived Stem Cells (hASCs). Front Bioeng Biotechnol 2022; 10:934179. [PMID: 36032703 PMCID: PMC9399727 DOI: 10.3389/fbioe.2022.934179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Polydopamine (PDA) is a biocompatible cell-adhesive polymer with versatile applications in biomedical devices. Previous studies have shown that PDA coating could improve cell adhesion and differentiation of human mesenchymal stem cells (hMSCs). However, there is still a knowledge gap in the effect of PDA-mediated protein adsorption on the epigenetic status of MSCs. This work used gelatin-coated cell culture surfaces with and without PDA underlayer (Gel and PDA-Gel) to culture and differentiate primary human adipose-derived stem cells (hASCs). The properties of these two substrates were significantly different, which, in combination with a variation in extracellular matrix (ECM) protein bioactivity, regulated cell adhesion and migration. hASCs reduced focal adhesions by downregulating the expression of integrins such as αV, α1, α2, and β1 on the PDA-Gel compared to the Gel substrate. Interestingly, the ratio of H3K27me3 to H3K27me3+H3K4me3 was decreased, but this only occurred for upregulation of AGG and BMP4 genes during chondrogenic differentiation. This result implies that the PDA-Gel surface positively affects the chondrogenic, but not adipogenic and osteogenic, differentiation. In conclusion, for the first time, this study demonstrates the sequential effects of PDA coating on the biophysical property of adsorbed protein and then focal adhesions and differentiation of hMSCs through epigenetic regulation. This study sheds light on PDA-mediated mechanotransduction.
Collapse
Affiliation(s)
- Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Mohammad Ali Shokrgozar
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Haobo Pan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Peng-Yuan Wang, ; Haobo Pan,
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Peng-Yuan Wang, ; Haobo Pan,
| |
Collapse
|
25
|
Wu H, Zhao C, Lin K, Wang X. Mussel-Inspired Polydopamine-Based Multilayered Coatings for Enhanced Bone Formation. Front Bioeng Biotechnol 2022; 10:952500. [PMID: 35875492 PMCID: PMC9301208 DOI: 10.3389/fbioe.2022.952500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
Repairing bone defects remains a challenge in clinical practice and the application of artificial scaffolds can enhance local bone formation, but the function of unmodified scaffolds is limited. Considering different application scenarios, the scaffolds should be multifunctionalized to meet specific demands. Inspired by the superior adhesive property of mussels, polydopamine (PDA) has attracted extensive attention due to its universal capacity to assemble on all biomaterials and promote further adsorption of multiple external components to form PDA-based multilayered coatings with multifunctional property, which can induce synergistic enhancement of new bone formation, such as immunomodulation, angiogenesis, antibiosis and antitumor property. This review will summarize mussel-inspired PDA-based multilayered coatings for enhanced bone formation, including formation mechanism and biofunction of PDA coating, as well as different functional components. The synergistic enhancement of multiple functions for better bone formation will also be discussed. This review will inspire the design and fabrication of PDA-based multilayered coatings for different application scenarios and promote deeper understanding of their effect on bone formation, but more efforts should be made to achieve clinical translation. On this basis, we present a critical conclusion, and forecast the prospects of PDA-based multilayered coatings for bone regeneration.
Collapse
Affiliation(s)
| | | | - Kaili Lin
- *Correspondence: Kaili Lin, ; Xudong Wang,
| | | |
Collapse
|
26
|
Du L, Liao R, Zhang H, Qu X, Hu X. Redox-activity of polydopamine for ultrafast preparation of self-healing and adhesive hydrogels. Colloids Surf B Biointerfaces 2022; 214:112469. [PMID: 35339902 DOI: 10.1016/j.colsurfb.2022.112469] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
The high adhesive property of polydopamine (PDA) has spurred various hydrogels for biological and medical applications. Herein, a dual-catalytic redox system was constructed by using the inner dynamic redox-activity of PDA and free radical initiator ammonium persulfate (APS) to initiate the polymerization of acrylic acid (AA) monomer to obtain Fe-PDA hydrogels within 2 h at room temperature. Fe-PDA NPs functions as both initiator to activate APS to generate free radicals and promotes the formation of the hydrogel and dynamic cross-linking mediator between the polymer chains. The tensile strength and ductility of the obtained hydrogels vary with the content of Fe-PDA NPs. Hydrogel with 0.15 wt% of Fe-PDA NPs has the highest tensile strength (~0.62 MPa) and hydrogel with 0.6 wt% of Fe-PDA NPs has the highest elongation, about ~650%. The introduction of PDA NPs imparts PAA hydrogel with reproducible adhesive properties and self-healing ability. The doped iron ion further endows hydrogel enhanced photothermal properties (up to 160 ℃ with 808 nm laser irradiation for 120 s) and conductivity.
Collapse
Affiliation(s)
- Lulu Du
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Rixin Liao
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Huijuan Zhang
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Xiongwei Qu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| | - Xiuli Hu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
27
|
Edwards SD, Hou S, Brown JM, Boudreau RD, Lee Y, Kim YJ, Jeong KJ. Fast-Curing Injectable Microporous Hydrogel for In Situ Cell Encapsulation. ACS APPLIED BIO MATERIALS 2022; 5:2786-2794. [PMID: 35576622 DOI: 10.1021/acsabm.2c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seth D. Edwards
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Shujie Hou
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Jason M. Brown
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Ryann D. Boudreau
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Yuhan Lee
- Engineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Young Jo Kim
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
28
|
Han H, Lee K. Systematic Approach to Mimic Phenolic Natural Polymers for Biofabrication. Polymers (Basel) 2022; 14:1282. [PMID: 35406154 PMCID: PMC9003098 DOI: 10.3390/polym14071282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022] Open
Abstract
In nature, phenolic biopolymers are utilized as functional tools and molecular crosslinkers to control the mechanical properties of biomaterials. Of particular interest are phenolic proteins/polysaccharides from living organisms, which are rich in catechol and/or gallol groups. Their strong underwater adhesion is attributed to the representative phenolic molecule, catechol, which stimulates intermolecular and intramolecular crosslinking induced by oxidative polymerization. Significant efforts have been made to understand the underlying chemistries, and researchers have developed functional biomaterials by mimicking the systems. Owing to their unique biocompatibility and ability to transform their mechanical properties, phenolic polymers have revolutionized biotechnologies. In this review, we highlight the bottom-up approaches for mimicking polyphenolic materials in nature and recent advances in related biomedical applications. We expect that this review will contribute to the rational design and synthesis of polyphenolic functional biomaterials and facilitate the production of related applications.
Collapse
Affiliation(s)
| | - Kyueui Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| |
Collapse
|
29
|
Yang Y, Shi K, Yu K, Xing F, Lai H, Zhou Y, Xiao P. Degradable Hydrogel Adhesives with Enhanced Tissue Adhesion, Superior Self-Healing, Cytocompatibility, and Antibacterial Property. Adv Healthc Mater 2022; 11:e2101504. [PMID: 34784443 DOI: 10.1002/adhm.202101504] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/10/2021] [Indexed: 12/12/2022]
Abstract
Degradable hydrogel adhesives with multifunctional advantages are promising to be candidates as hemostatic agents, surgical sutures, and wound dressings. In this study, hydrogel adhesives are constructed by catechol-conjugated gelatin from natural resource, iron ions (Fe3+ ), and a synthetic polymer. Specifically, the latter is prepared by the radical ring-opening copolymerization of a cyclic ketene acetal monomer 5,6-benzo-2-methylene-1,3-dioxepane and N-(2-ethyl p-toluenesulfonate) maleimide. By the incorporation of ester bonds in the backbone and the combination with quaternary ammonium salt pendants in the polymer, it exhibits excellent degradability and antibacterial property. Remarkably, doping the synthetic polymer into the 3,4-dihydroxyphenylacetic acid-modified gelatin network forms a semi-interpenetrating polymer network which can effectively improve the rigidity, tissue adhesion, and antibacterial property of fabricated hydrogel adhesives. Moreover, non-covalent bonds from coordination interaction between catechol and Fe3+ contribute to the fast self-healing of the developed hydrogel adhesives. These hydrogel adhesives with the multiple merits including the degradability, enhanced tissue adhesion, superior self-healing, good cytocompatibility, and antibacterial property show the great potential to be used as tissue adhesives in biomedical fields.
Collapse
Affiliation(s)
- Yili Yang
- Department of Immunobiology College of Life Science and Technology Jinan University #601 Huangpu West Avenue Guangzhou 510632 China
| | - Kai Shi
- Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan 430073 China
| | - Keman Yu
- Department of Immunobiology College of Life Science and Technology Jinan University #601 Huangpu West Avenue Guangzhou 510632 China
| | - Feiyue Xing
- Department of Immunobiology College of Life Science and Technology Jinan University #601 Huangpu West Avenue Guangzhou 510632 China
- MOE Key Laboratory of Tumor Molecular Biology Jinan University Guangzhou 510632 China
| | - Haiwang Lai
- Department of Immunobiology College of Life Science and Technology Jinan University #601 Huangpu West Avenue Guangzhou 510632 China
| | - Yingshan Zhou
- Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan 430073 China
| | - Pu Xiao
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
30
|
Zheng K, Gu Q, Zhou D, Zhou M, Zhang L. Recent progress in surgical adhesives for biomedical applications. SMART MATERIALS IN MEDICINE 2022; 3:41-65. [DOI: 10.1016/j.smaim.2021.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Fang Y, Shi L, Duan Z, Rohani S. Hyaluronic acid hydrogels, as a biological macromolecule-based platform for stem cells delivery and their fate control: A review. Int J Biol Macromol 2021; 189:554-566. [PMID: 34437920 DOI: 10.1016/j.ijbiomac.2021.08.140] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022]
Abstract
Stem cell-based therapies offer numerous potentials to repair damaged or defective organs. The therapeutic outcomes of human studies, however, fall far short from what is expected. Enhancing stem cells local density and longevity would possibly maximize their healing potential. One promising strategy is to administer stem cells via injectable hydrogels. However, stem cells differentiation process is a delicate matter which is easily affected by various factors such as their interaction with their surrounding materials. Among various biomaterial options for hydrogels' production, hyaluronic acid (HA) has shown great promise. HA is a naturally occurring biological macromolecule, a polysaccharide of large molecular weight which is involved in cell proliferation, cell migration, angiogenesis, fetal development, and tissue function. In the current study we will discuss the applications, prospects, and challenges of HA-based hydrogels in stem cell delivery and fate control.
Collapse
Affiliation(s)
- Yu Fang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| | - Lele Shi
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Zhiwei Duan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Saeed Rohani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Zheng D, Huang C, Zhu X, Huang H, Xu C. Performance of Polydopamine Complex and Mechanisms in Wound Healing. Int J Mol Sci 2021; 22:10563. [PMID: 34638906 PMCID: PMC8508909 DOI: 10.3390/ijms221910563] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Polydopamine (PDA) has been gradually applied in wound healing of various types in the last three years. Due to its rich phenol groups and unique structure, it can be combined with a variety of materials to form wound dressings that can be used for chronic infection, tissue repair in vivo and serious wound healing. PDA complex has excellent mechanical properties and self-healing properties, and it is a stable material that can be used for a long period of time. Unlike other dressings, PDA complexes can achieve both photothermal therapy and electro activity. In this paper, wound healing is divided into four stages: antibacterial, anti-inflammatory, cell adhesion and proliferation, and re-epithelialization. Photothermal therapy can improve the bacteriostatic rate and remove reactive oxygen species to inhibit inflammation. Electrical signals can stimulate cell proliferation and directional migration. With low reactive oxygen species (ROS) levels, inflammatory factors are down-regulated and growth factors are up-regulated, forming regular collagen fibers and accelerating wound healing. Finally, five potential development directions are proposed, including increasing drug loading capacity, optimization of drug delivery platforms, improvement of photothermal conversion efficiency, intelligent electroactive materials and combined 3D printing.
Collapse
Affiliation(s)
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, Daxue Road 100, Nanning 530000, China; (D.Z.); (X.Z.); (H.H.); (C.X.)
| | | | | | | |
Collapse
|
33
|
Lu Y, Wan Y, Gan D, Zhang Q, Luo H, Deng X, Li Z, Yang Z. Enwrapping Polydopamine on Doxorubicin-Loaded Lamellar Hydroxyapatite/Poly(lactic- co-glycolic acid) Composite Fibers for Inhibiting Bone Tumor Recurrence and Enhancing Bone Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:6036-6045. [PMID: 35006872 DOI: 10.1021/acsabm.1c00297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Simultaneous prevention of bone tumor recurrence and promotion of repairing bone defects resulting from tumorectomy remain a challenge. Herein, we report a polydopamine (PDA)-coated composite scaffold consisting of doxorubicin (DOX)-loaded lamellar hydroxyapatite (LHAp) and poly(lactic-co-glycolic acid) (PLGA) in an attempt to reach dual functions of tumor inhibition and bone repair. The DOX was intercalated into LHAp, and the DOX-loaded LHAp was incorporated into PLGA solution to prepare a DOX-intercalated LHAp/PLGA (labeled as DH/PLGA) scaffold that was coated with PDA to obtain a PDA@DH/PLGA scaffold. The morphology, structure, wettability, mechanical properties, drug release, biocompatibility, and in vitro and in vivo bioactivities of the PDA@DH/PLGA scaffold were evaluated. It is found that PDA coating not only improves hydrophilicity and mechanical properties, but also leads to more sustainable drug release. More importantly, the PDA@DH/PLGA scaffold shows significantly inhibited growth of tumor cells initially and subsequent improved adhesion and proliferation of osteoblasts. In addition, the PDA coating improves the bioactivity of the DH/PLGA scaffold as suggested by the in vitro biomineralization. Further in vivo study demonstrates the improved bone growth around PDA@DH/PLGA over DH/PLGA after 20 days of drug release. The dual functional PDA@DH/PLGA scaffold shows great promise in the treatment of bone tumor.
Collapse
Affiliation(s)
- Ying Lu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.,School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Deqiang Gan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Quanchao Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Xiaoyan Deng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Zhen Li
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
34
|
|
35
|
La Gatta A, Tirino V, Cammarota M, La Noce M, Stellavato A, Pirozzi AVA, Portaccio M, Diano N, Laino L, Papaccio G, Schiraldi C. Gelatin-biofermentative unsulfated glycosaminoglycans semi-interpenetrating hydrogels via microbial-transglutaminase crosslinking enhance osteogenic potential of dental pulp stem cells. Regen Biomater 2021; 8:rbaa052. [PMID: 34211725 PMCID: PMC8240633 DOI: 10.1093/rb/rbaa052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022] Open
Abstract
Gelatin hydrogels by microbial-transglutaminase crosslinking are being increasingly exploited for tissue engineering, and proved high potential in bone regeneration. This study aimed to evaluate, for the first time, the combination of enzymatically crosslinked gelatin with hyaluronan and the newly developed biotechnological chondroitin in enhancing osteogenic potential. Gelatin enzymatic crosslinking was carried out in the presence of hyaluronan or of a hyaluronan–chondroitin mixture, obtaining semi-interpenetrating gels. The latter proved lower swelling extent and improved stiffness compared to the gelatin matrix alone, whilst maintaining high stability. The heteropolysaccharides were retained for 30 days in the hydrogels, thus influencing cell response over this period. To evaluate the effect of hydrogel composition on bone regeneration, materials were seeded with human dental pulp stem cells and osteogenic differentiation was assessed. The expression of osteocalcin (OC) and osteopontin (OPN), both at gene and protein level, was evaluated at 7, 15 and 30 days of culture. Scanning electron microscopy (SEM) and two-photon microscope observations were performed to assess bone-like extracellular matrix (ECM) deposition and to observe the cell penetration depth. In the presence of the heteropolysaccharides, OC and OPN expression was upregulated and a higher degree of calcified matrix formation was observed. Combination with hyaluronan and chondroitin improved both the biophysical properties and the biological response of enzymatically crosslinked gelatin, fastening bone deposition.
Collapse
Affiliation(s)
- Annalisa La Gatta
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Virginia Tirino
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Marcella Cammarota
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Marcella La Noce
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Antonietta Stellavato
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Anna Virginia Adriana Pirozzi
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Marianna Portaccio
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Nadia Diano
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Luigi Laino
- Dipartimento Multidisciplinare di Specialita' Medico-Chirurgiche e Odontoiatriche, via Luigi De Crecchio, 6, Napoli 80138, Italy
| | - Gianpaolo Papaccio
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Chiara Schiraldi
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| |
Collapse
|
36
|
Contessi Negrini N, Angelova Volponi A, Sharpe PT, Celiz AD. Tunable Cross-Linking and Adhesion of Gelatin Hydrogels via Bioorthogonal Click Chemistry. ACS Biomater Sci Eng 2021; 7:4330-4346. [PMID: 34086456 DOI: 10.1021/acsbiomaterials.1c00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Engineering cytocompatible hydrogels with tunable physico-mechanical properties as a biomimetic three-dimensional extracellular matrix (ECM) is fundamental to guide cell response and target tissue regeneration or development of in vitro models. Gelatin represents an optimal choice given its ECM biomimetic properties; however, gelatin cross-linking is required to ensure structural stability at physiological temperature (i.e., T > Tsol-gel gelatin). Here, we use a previously developed cross-linking reaction between tetrazine (Tz)- and norbornene (Nb) modified gelatin derivatives to prepare gelatin hydrogels and we demonstrate the possible tuning of their properties by varying their degree of modification (DOM) and the Tz/Nb ratio (R). The percentage DOM of the gelatin derivatives was tuned between 5 and 15%. Hydrogels prepared with higher DOM cross-linked faster (i.e., 10-20 min) compared to hydrogels prepared with lower DOM (i.e., 60-70 min). A higher DOM and equimolar Tz/Nb ratio R resulted in hydrogels with lower weight variation after immersion in PBS at 37 °C. The mechanical properties of the hydrogels were tuned by varying DOM and R by 1 order of magnitude, achieving elastic modulus E values ranging from 0.5 (low DOM and nonequimolar Tz/Nb ratio) to 5 kPa (high DOM and equimolar Tz/Nb ratio). Human dental pulp stem cells were embedded in the hydrogels and successfully 3D cultured in the hydrogels (percentage viable cells >85%). An increase in metabolic activity and a more elongated cell morphology was detected for cells cultured in hydrogels with lower mechanical properties (E < 1 kPa). Hydrogels prepared with an excess of Tz or Nb were successfully adhered and remained in contact during in vitro cultures, highlighting the potential use of these hydrogels as compartmentalized coculture systems. The successful tuning of the gelatin hydrogel properties here developed by controlling their bioorthogonal cross-linking is promising for tissue engineering and in vitro modeling applications.
Collapse
Affiliation(s)
- Nicola Contessi Negrini
- Department of Bioengineering, Imperial College London, White City Campus, 86 Wood Ln, W12 0BZ London, U.K
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, King's College London, Guy's Hospital, SE1 9RT London, U.K
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, King's College London, Guy's Hospital, SE1 9RT London, U.K
| | - Adam D Celiz
- Department of Bioengineering, Imperial College London, White City Campus, 86 Wood Ln, W12 0BZ London, U.K
| |
Collapse
|
37
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
38
|
Saeed M, Beigi-Boroujeni S, Rajabi S, Rafati Ashteiani G, Dolatfarahi M, Özcan M. A simple, green chemistry technology for fabrication of tissue-engineered scaffolds based on mussel-inspired 3D centrifugal spun. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111849. [PMID: 33579483 DOI: 10.1016/j.msec.2020.111849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022]
Abstract
The fabrication of 3D fibrous scaffolds with highly interconnected pores has been crucial in the development of tissue regeneration techniques. The present study describes the fabrication of 3D fibrous scaffolds by freeze-drying of polydopamine (PDA) coated centrifugal spun gelatin fibers. We wanted to combine the mussel-inspired chemistry, Maillard reaction, and the 3D microstructural advantages of centrifugal spun fibers to develop the green fibrous scaffolds at low cost, high speed, and desired mold shape. The resultant PDA-gelatin fibers exhibited a smooth 3D microstructure with a uniform formation of PDA thin ad-layer that enhanced the mechanical properties and stability of the scaffolds, and thereby decreased the degradation rate. All scaffolds showed promising properties including good dimensional and mechanical stability under wet state, optimal porosity over 94%, and high water uptake of approximately 1500%. The results of cell culture studies, further confirmed that all scaffolds exhibited appropriate biocompatibility, cell proliferation, migration, and infiltration. Particularly, the PDA-coated scaffolds showed a significant enhancement in proliferation, migration, and infiltration of HDF-GFP+ cells. These results show that a 3D porous fibrous scaffold with simplifying tunable density and desirable shape on a large scale can be readily prepared for different fields of tissue engineering applications.
Collapse
Affiliation(s)
- Mahdi Saeed
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur, Monterrey, 2501, N.L., Mexico; Hard Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Golnaz Rafati Ashteiani
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Dolatfarahi
- Hard Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mutlu Özcan
- University of Zürich, Division of Dental Biomaterials, Center for Dental and Oral Medicine, Clinic for Reconstructive Dentistry, Zürich, Switzerland
| |
Collapse
|
39
|
Sun B, Li C, Mao Y, Qiao Z, Jia R, Huang T, Xu D, Yang W. Distinctive characteristics of collagen and gelatin extracted from
Dosidicus gigas
skin. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bolun Sun
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo315211China
| | - Chao Li
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo315211China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo315211China
| | - Yuhong Mao
- College of Biological Science and Engineering Fuzhou University Fuzhou350108China
| | - Zhaohui Qiao
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo315211China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo315211China
| | - Ru Jia
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo315211China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo315211China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo315211China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo315211China
| | - Dalun Xu
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo315211China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo315211China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo315211China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo315211China
| |
Collapse
|
40
|
Huang J, Huang Z, Liang Y, Yuan W, Bian L, Duan L, Rong Z, Xiong J, Wang D, Xia J. 3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair. Biomater Sci 2021; 9:2620-2630. [DOI: 10.1039/d0bm02103b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hUCB-MSC-laden 3D printed gelatin/HAP scaffold effectively repairs knee cartilage defects in a pig model.
Collapse
|
41
|
Zhong Z, Fang C, He S, Zhang T, Liu S, Zhang Y, Wang Q, Ding X, Zhou W, Wang X. Sequential Release Platform of Heparin and Urokinase with Dual Physical (NIR-II and Bubbles) Assistance for Deep Venous Thrombosis. ACS Biomater Sci Eng 2020; 6:6790-6799. [PMID: 33320605 DOI: 10.1021/acsbiomaterials.0c01372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disability and even death from acute thrombosis remain a grave menace to public health. At present, the traditional drugs represented by urokinase (UK) in clinical thrombolysis can cause side effects of bleeding when the dosage is excess. Therefore, a more effective and safer method of thrombolysis is urgently needed. In this paper, a multifunctional dual-drug sequential release thrombolysis platform (UK-UH@PDA@HMSNs) consisting of polydopamine (PDA)-modified hollow mesoporous silicon (HMSNs) loading with UK and unfractionated heparin (UH) was constructed with a double physical assistance (NIR-II and bubbles). With the aid of near infrared-II (NIR-II, 1064 nm, 1.0 W cm-2) laser, the photothermal effect of PDA could be motivated to facilitate the UH release, thereby accelerating the dissolution of thrombus. Afterward, the local hyperthermia effect could expedite the phase transition of l-menthol in HMSNs to generate bubbles to promote the release of UK, thereby realizing the sequential release of two thrombolytic drugs. Importantly, this method deftly conquered the inherent obstacle that UK and UH cannot be combined directly. In vivo and in vitro experiments proved that the thrombolytic efficiency of UK-UH@PDA@HMSNs stimulated by NIR-II was nearly 3 times than that of UK alone. Collectively, the proposed dual physical assistance and sequential dual-drug delivery system significantly improved the efficiency of thrombolysis under the premise of limiting drug doses; the risk of death from intracranial hemorrhage thus could be decreased radically.
Collapse
Affiliation(s)
- Zhiwei Zhong
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Cuifu Fang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shasha He
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Teng Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shichen Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yini Zhang
- College of Chemistry, Nanchang University, Nanchang 330088, China
| | - Qingqing Wang
- College of Chemistry, Nanchang University, Nanchang 330088, China
| | - Xingwei Ding
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaolei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China.,College of Chemistry, Nanchang University, Nanchang 330088, China
| |
Collapse
|
42
|
Bhattacharyya SK, Dule M, Paul R, Dash J, Anas M, Mandal TK, Das P, Das NC, Banerjee S. Carbon Dot Cross-Linked Gelatin Nanocomposite Hydrogel for pH-Sensing and pH-Responsive Drug Delivery. ACS Biomater Sci Eng 2020; 6:5662-5674. [PMID: 33320568 DOI: 10.1021/acsbiomaterials.0c00982] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Delivery of therapeutics to the intestinal region bypassing the harsh acidic environment of the stomach has long been a research focus. On the other hand, monitoring a system's pH during drug delivery is a crucial diagnosis factor as the activity and release rate of many therapeutics depend on it. This study answered both of these issues by fabricating a novel nanocomposite hydrogel for intestinal drug delivery and near-neutral pH sensing at the same time. Gelatin nanocomposites (GNCs) with varying concentrations of carbon dots (CDs) were fabricated through simple solvent casting methods. Here, CDs served a dual role and simultaneously acted as a cross-linker and chromophore, which reduced the usage of toxic cross-linkers. The proposed GNC hydrogel sample acted as an excellent pH sensor in the near-neutral pH range and could be useful for quantitative pH measurement. A model antibacterial drug (cefadroxil) was used for the in vitro drug release study at gastric pH (1.2) and intestinal pH (7.4) conditions. A moderate and sustained drug release profile was noticed at pH 7.4 in comparison to the acidic medium over a 24 h study. The drug release profile revealed that the pH of the release medium and the percentage of CDs cross-linking influenced the drug release rate. Release data were compared with different empirical equations for the evaluation of drug release kinetics and found good agreement with the Higuchi model. The antibacterial activity of cefadroxil was assessed by the broth microdilution method and found to be retained and not hindered by the drug entrapment procedure. The cell viability assay showed that all of the hydrogel samples, including the drug-loaded GNC hydrogel, offered acceptable cytocompatibility and nontoxicity. All of these observations illustrated that GNC hydrogel could act as an ideal pH-monitoring and oral drug delivery system in near-neutral pH at the same time.
Collapse
Affiliation(s)
| | - Madhab Dule
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Raj Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Md Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Tarun Kumar Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Poushali Das
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Narayan Chandra Das
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.,Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Susanta Banerjee
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.,Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
43
|
Miwa N. Innovation in the food industry using microbial transglutaminase: Keys to success and future prospects. Anal Biochem 2020; 597:113638. [DOI: 10.1016/j.ab.2020.113638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
|
44
|
Cozens EJ, Kong D, Roohpour N, Gautrot JE. The physico-chemistry of adhesions of protein resistant and weak polyelectrolyte brushes to cells and tissues. SOFT MATTER 2020; 16:505-522. [PMID: 31804646 DOI: 10.1039/c9sm01403a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The non-specific adhesion of polymers and soft tissues is of great interest to the field of biomedical engineering, as it will shed light on some of the processes that regulate interactions between scaffolds, implants and nanoparticles with surrounding tissues after implantation or delivery. In order to promote adhesion to soft tissues, a greater understanding of the relationship between polymer chemistry and nanoscale adhesion mechanisms is required. In this work, we grew poly(dimethylaminoethyl methacrylate) (PDMAEMA), poly(acrylic acid) (PAA) and poly(oligoethylene glycol methacrylate) (POEGMA) brushes from the surface of silica beads, and investigated their adhesion to a variety of substrates via colloidal probe-based atomic force microscopy (AFM). We first characterised adhesion to a range of substrates with defined surface chemistry (self-assembled monolayers (SAMs) with a range of hydrophilicities, charge and hydrogen bonding), before studying the adhesion of brushes to epithelial cell monolayers (primary keratinocytes and HaCaT cells) and soft tissues (porcine epicardium and keratinized gingiva). Adhesion assays to SAMs reveal the complex balance of interactions (electrostatic, van der Waals interactions and hydrogen bonding) regulating the adhesion of weak polyelectrolyte brushes. This resulted in particularly strong adhesion of PAA brushes to a wide range of surface chemistries. In turn, colloidal probe microscopy on cell monolayers highlighted the importance of the glycocalyx in regulating non-specific adhesions. This was also reflected by the adhesive properties of soft tissues, in combination with their mechanical properties. Overall, this work clearly demonstrates the complex nature of interactions between polymeric biomaterials and biological samples and highlights the need for relatively elaborate models to predict these interactions.
Collapse
Affiliation(s)
- Edward J Cozens
- Institute of Bioengineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | | | | | | |
Collapse
|
45
|
Han N, Xu Z, Cui C, Li Y, Zhang D, Xiao M, Fan C, Wu T, Yang J, Liu W. A Fe3+-crosslinked pyrogallol-tethered gelatin adhesive hydrogel with antibacterial activity for wound healing. Biomater Sci 2020; 8:3164-3172. [DOI: 10.1039/d0bm00188k] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A tunicate-inspired gelatin-based hydrogel prepared by a simple mixing method, exhibits strong adhesion and antibacterial capacity, and facilitates wound healing.
Collapse
|
46
|
Tran HQ, Batul R, Bhave M, Yu A. Current Advances in the Utilization of Polydopamine Nanostructures in Biomedical Therapy. Biotechnol J 2019; 14:e1900080. [DOI: 10.1002/biot.201900080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Huy Q. Tran
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Rahila Batul
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Aimin Yu
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| |
Collapse
|
47
|
Qi P, Zheng YG, Ohta S, Kokudo N, Hasegawa K, Ito T. In Situ Fabrication of Double-Layered Hydrogels via Spray Processes to Prevent Postoperative Peritoneal Adhesion. ACS Biomater Sci Eng 2019; 5:4790-4798. [DOI: 10.1021/acsbiomaterials.9b00791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Norihiro Kokudo
- National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | |
Collapse
|
48
|
Liu X, Zheng C, Luo X, Wang X, Jiang H. Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1509-1522. [DOI: 10.1016/j.msec.2019.02.070] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 01/09/2023]
|