1
|
Rao H, Tan JBL. Polysaccharide-based hydrogels for atopic dermatitis management: A review. Carbohydr Polym 2025; 349:122966. [PMID: 39638516 DOI: 10.1016/j.carbpol.2024.122966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Atopic dermatitis (AD) is the most common form of eczema and the most burdensome skin disease globally, affecting nearly 223 million. A major AD predisposition is genetic susceptibility, affecting skin barrier integrity and cell-mediated immunity. Manifesting as red, dry, and itchy skin, basic treatment involves skin hydration with emollients. Despite their effectiveness, poor patient compliance remains a major drawback. In severe cases, medicated emollients are used, but carry risks, including skin thinning, and immunosuppression. Hence, hydrogels have emerged as a promising alternative for AD management based on their ability to improve skin hydration, attributed to their hydrophilicity and high water retention capacity. Moreover, researchers have loaded hydrogels with various compounds for AD management; they also hold the potential to reduce systemic side effects of commercial drugs by enhancing dermal retention. Hydrogels address the challenges of patient compliance based on their non-greasy texture and reduced application frequency. Their appeal also stems from their versatility, as they can be fabricated from varying polymers. Due to their abundance, this review focuses on polysaccharides including alginate, cellulose, chitosan, and hyaluronic acid, which are preferred for fabricating natural and modified natural hydrogels for AD. It also briefly explores hydrogel application methods and key AD models.
Collapse
Affiliation(s)
- Harinash Rao
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
2
|
Xu H, Liu Y, Huang Y, Zhang J, Qin Z, Wei B, Xu C, Zhu L, Wang H. The impact of spatial structures of collagen on the hemostatic properties of collagen/calcium alginate composite membranes. Int J Biol Macromol 2025; 288:138753. [PMID: 39674447 DOI: 10.1016/j.ijbiomac.2024.138753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Biomacromolecule-based hemostatic materials with biocompatibility and biodegradability have become a topic of significant research for the treatment of wound hemorrhage. Among available biomacromolecules, collagen and alginate are particularly promising. Although collagen and alginate composite materials have been developed, the impact of the spatial structures of collagen on the hemostatic properties of these materials remains to be fully understood. Collagen fibers, formed through self-assembly, share the same composition as collagen but exhibit distinct spatial structures. In this study, calcium alginate (CaAlg) membranes containing collagen (Col) or collagen fibers (Col-fiber) were fabricated. By adjusting the ratio of collagen to alginate, Col/CaAlg and Col-fiber/CaAlg composite membranes with favourable tensile strength and water retention ability were selected. The impact of collagen's spatial structures on the structures and properties of composite membranes was investigated, revealing that collagen fibers enhance the cytocompatibility, blood compatibility, and hemostatic performance of alginate membranes more effectively than collagen. Therefore, the Col-fiber/CaAlg membranes could be a promising candidate for hemostatic applications.
Collapse
Affiliation(s)
- Haofei Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yang Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yaozhi Huang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | - Zhenhua Qin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China.
| |
Collapse
|
3
|
Li Q, Li C, Yan J, Zhang C, Jiang Y, Hu X, Han L, Li L, Wang P, Zhao L, Zhao Y. Evenly Distributed Microporous Structure and E7 Peptide Functionalization Synergistically Accelerate Osteogenesis and Angiogenesis in Engineered Periosteum. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2406084. [PMID: 39871636 DOI: 10.1002/advs.202406084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/10/2024] [Indexed: 01/29/2025]
Abstract
Repairing large bone defects remains a significant clinical challenge. Stem cell is of great importance in bone regeneration, and periosteum is rich in periosteal stem cell, which has a great influence on repairing bone defects. Bioengineered periosteum with excellent biocompatibility and stem cell homing capabilities to promote bone regeneration is of great clinical significance. The E7 peptide (EPLQLKM), which exhibits a specific affinity for mesenchymal stem cells (MSCs), is beneficial for modulating cellular functions. In this study, a unique microporous structured carboxymethyl chitosan/sodium alginate membrane with a proper mass ratio is developed by the addition of Poloxam 407 (P407), which is then functionalized with the E7 affinitive peptide. This membrane, characterized by its microporous structure and E7 peptide functionalization (CSSA/P/E), not only demonstrated favorable mechanical properties, enhanced hydrophilicity, satisfactory biodegradation profile, and excellent biocompatibility, but also synergistically enhanced MSCs recruitment. It is found to promote the proliferation, spreading, and osteogenic differentiation of MSCs in vitro and to accelerate early periosteal regeneration, bone matrix deposition, and vascularization in vivo, leading to effective regeneration of critical-sized bone defects. Overall, this study presents a robust, cell and growth factor-free strategy for bioengineering periosteum, offering a potential solution for the challenging large size bone defects.
Collapse
Affiliation(s)
- Qihong Li
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Chen Li
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jun Yan
- Xijing 986 Hospital Department, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chunli Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Yu Jiang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Xiantong Hu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Liwei Han
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Li Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lingzhou Zhao
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, 100142, China
| | - Yantao Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| |
Collapse
|
4
|
Liu L, Jing R, Yao L, Wang Y, Mu L, Hu Y. Hemostasis Strategies and Recent Advances in Hydrogels for Managing Uncontrolled Hemorrhage. ACS APPLIED BIO MATERIALS 2025; 8:42-61. [PMID: 39745272 DOI: 10.1021/acsabm.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Hemorrhage continues to pose a significant challenge in various medical contexts, underscoring the need for advanced hemostatic materials. Hemostatic hydrogels have gained recognition as innovative tools for addressing uncontrollable bleeding, attributed to their distinctive features including biological compatibility, tunable mechanical properties, and exceptional hemostatic performance. This review provides a comprehensive overview of hemostatic hydrogels that offer rapid and effective bleeding control. Particularly, this review focuses on hemostatic hydrogel design and associated hemostatic mechanisms. Additionally, recent advancements in the application of these materials are discussed in detail, especially in clinical trials. Finally, the challenges and potential advancements of hemostatic hydrogels are analyzed and assessed. This review seeks to emphasize the role of hydrogels in biomedical applications for hemorrhage control and provide perspectives on the innovation of clinically applicable hemostatic materials.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Rui Jing
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Yao
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanbo Wang
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lihua Mu
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuan Hu
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
5
|
Heidari F, Raoufi Z, Abdollahi S, Chamchangi MA, Asl HZ. Evaluation of sodium alginate sponge infused bromelain spray and Helichrysum italicum nanoemulsion to accelerate wound healing. Int J Biol Macromol 2024; 283:137799. [PMID: 39577514 DOI: 10.1016/j.ijbiomac.2024.137799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
This research introduces a pioneering porous sponge composed of sodium alginate/gellan gum polymers manufactured via the freeze-drying method. Bromelain was encapsulated in H. italicum nanoemulsion and sprayed using a spray device containing a glass gun with a 0.2 μm nozzle. Physicochemical properties, including swelling capacity (1570.48 ± 54.2), porosity (88.860 ± 5.7), biodegradability (98.21 ± 8), shape memory, FTIR, and SEM analyses were performed. Blood absorption (1465 ± 82 %), anti-inflammatory, and antibacterial activity against various pathogens (35 mm S. aureus, 23 mm E. coli, 21 mm P. aeruginosa) also were investigated. SA/GG/BR/NEHro sponge showed excellent anti-inflammatory (89.34 ± 4.2) and demonstrated effective antibacterial properties, which can help safeguard the wound against bacterial infection. FTIR analysis correctly confirms the presence of bromelain and oil nanoemulsion and SEM micrograph analysis showed high porosity of sponges containing H. italicum oil nanoemulsion. SA/GG/BR/NEHro exhibited remarkable compressive flexibility, mechanical stability, and shape memory properties. The results also show that bromelain helped reduce inflammation, promote tissue repair, and accelerate wound closure. In vitro and in vivo wound healing studies revealed that the sponges exhibited excellent homeostasis. Notably, the SA/GG/BR/NEHro sponge achieved complete closure of full-thickness wounds (100 %), underscoring its exceptional performance in wound repair and regeneration.
Collapse
Affiliation(s)
- Fatemeh Heidari
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mohammad Arab Chamchangi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Hassan Zare Asl
- Department of Physics, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
6
|
Liu L, Liu L, Chen L, Chen G, Wei Y, Hong FF. Synthesis of hemostatic aerogel of TEMPO-oxidized cellulose nanofibers/collagen/chitosan and in vivo/ vitro evaluation. Mater Today Bio 2024; 28:101204. [PMID: 39221199 PMCID: PMC11364910 DOI: 10.1016/j.mtbio.2024.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The treatment of internal hemorrhage remains challenging due to the current limited antibacterial capability, hemostatic efficacy, and biocompatibility of hemostatic materials. The TEMPO-oxidized cellulose nanofibers/collagen/chitosan (TCNF/COL/CS) hemostatic aerogel was developed in this work by physically encasing COL in a sandwich structure and electrostatically self-assembling polyanionic TCNF with polycationic CS. In vitro coagulation experiments revealed the favorable procoagulant properties of TCNF/COL/CS along with high adhesion to erythrocytes and platelets. TCNF/COL/CS significantly increased the hemostatic efficacy by 59.8 % and decreased blood loss by 62.2 % in the liver injury model when compared to Surgicel®, the most frequently used hemostatic material. Furthermore, it demonstrated outstanding biodegradability both in vitro and in vivo, and a substantial increase in resistance (96.8 % against E. coli and 95.4 % against S. aureus) compared to TCNF. The significant hemostatic and biodegradable characteristics of TCNF/COL/CS can be ascribed to its interconnected porous structure, increased porosity, and efficient water absorption, along with the synergistic effect of the three constituents. The TCNF/COL/CS aerogel shows significant potential to control internal bleeding. A novel plant-derived nanocellulose composite aerogel has been described here for the first time; it has outstanding antibacterial characteristics, higher biocompatibility, and outstanding hemostatic characteristics in vivo.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
- College of Biological Science and Medical Engineering, Donghua University, No.2999 North Ren Min Road, Shanghai, 201620, China
| | - Liang Liu
- College of Biological Science and Medical Engineering, Donghua University, No.2999 North Ren Min Road, Shanghai, 201620, China
| | - Lin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Genqiang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
- College of Biological Science and Medical Engineering, Donghua University, No.2999 North Ren Min Road, Shanghai, 201620, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, China
| | - Feng F. Hong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
- College of Biological Science and Medical Engineering, Donghua University, No.2999 North Ren Min Road, Shanghai, 201620, China
- National Advanced Functional Fiber Innovation Center, WuJiang, Suzhou, China
- Scientific Research Base for Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, Shanghai, 201620, China
| |
Collapse
|
7
|
Peng D, Deng D, Lv J, Zhang W, Tian H, Zhang X, Wu M, Zhao Y. A novel macroporous carboxymethyl chitosan/sodium alginate sponge dressing capable of rapid hemostasis and drug delivery. Int J Biol Macromol 2024; 278:134943. [PMID: 39173799 DOI: 10.1016/j.ijbiomac.2024.134943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Carboxymethyl chitosan (CMCS) and sodium alginate (SA), which are excellent polysaccharide-based hemostatic agents, are capable of forming polyelectrolyte complexes (PEC) through electrostatic interactions. However, CMCS/SA PEC sponges prepared by the conventional sol-gel process exhibited slow liquid absorption rate and poor mechanical properties post-swelling. In this work, a novel strategy involving freeze casting followed by acetic acid vapor treatment to induce electrostatic interactions was developed to fabricate novel PEC sponges with varying CMCS/SA mass ratios. Compared to sol-gel process sponge, the novel sponge exhibited a higher density of electrostatic interactions, resulting in denser pore walls that resist re-gelation and swelling according to FTIR, XRD, and SEM analyses. Additionally, the liquid absorption kinetics, as well as compression and tension tests, demonstrated that the novel sponge had significantly improved rapid blood absorption capacity and mechanical properties. Furthermore, in vitro coagulation and drug release studies showed that the novel sponge had a lower blood clotting index and clotting time, along with a slower drug release rate after loading with berberine hydrochloride, showcasing its potential as a rapid hemostatic dressing with controlled drug release capabilities.
Collapse
Affiliation(s)
- Deyi Peng
- College of Sciences, Northeastern University, Shenyang 110819, China; Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528200, China
| | - Dafeng Deng
- College of Sciences, Northeastern University, Shenyang 110819, China; Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528200, China
| | - Jianhua Lv
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528200, China
| | - Wenchang Zhang
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528200, China
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China.
| | - Xia Zhang
- College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Mi Wu
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528200, China.
| | - Yan Zhao
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528200, China.
| |
Collapse
|
8
|
Kim MJ, Song YJ, Kwon TG, Lee JH, Chun SY, Oh SH. Platelet-Rich Plasma-Embedded Porous Polycaprolactone Film with a Large Surface Area for Effective Hemostasis. Tissue Eng Regen Med 2024; 21:995-1005. [PMID: 38896385 PMCID: PMC11416449 DOI: 10.1007/s13770-024-00656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Uncontrollable and widespread bleeding caused by surgery or sudden accidents can lead to death if not treated with appropriate hemostasis. To prevent excessive life-threatening bleeding, various hemostatic agents based on polymeric biomaterials with various additives for accelerated blood coagulation have been adopted in clinical fields. In particular, platelet-rich plasma (PRP), which contains many blood coagulation factors that can accelerate blood clot formation, is considered as one of the most effective hemostatic additives. METHODS We investigated a PRP-embedded porous film using discarded (expired) PRP and a film with a leaf-stacked structure (FLSS), as a hemostatic agent to induce rapid hemostasis. The film, which contained an LSS on one side (PCL-FLSS), was fabricated by a simple heating-cooling technique using tetraglycol and polycaprolactone (PCL) film. Activated PRP was obtained by the thawing of frozen PRP at the end of its expiration date (the platelet cell membrane is disrupted during the freezing and thawing of PRP, thus releasing various coagulation factors) and embedded in the PCL-FLSS (PRP-FLSS). RESULTS From in vitro and in vivo experiments using a rat hepatic bleeding model, it was recognized that PRP-FLSS is not only biocompatible but also significantly accelerates blood clotting and thus prevents rapid bleeding, probably due to a synergistic effect of the sufficient supply of various blood coagulants from activated PRP embedded in the LSS layer and the large surface area of the LSS itself. CONCLUSION The study suggests that PRP-FLSS, a combination of a porous polymer matrix with a unique morphology and discarded biofunctional resources, can be an advanced hemostatic agent as well as an upcycling platform to avoid the waste of biofunctional resources.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ye Jin Song
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Chilgok Kyungpook National University Hospital, Kyungpook National University, Daegu, 41404, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon, 34054, Republic of Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41404, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
9
|
Zhang D, Hu Z, Hao R, Ouyang Q, Wang C, Hu Q, Li H, Li S, Zhu C. Fabrication and hemostasis evaluation of a carboxymethyl chitosan/sodium alginate/Resina Draconis composite sponge. Int J Biol Macromol 2024; 274:133265. [PMID: 38909732 DOI: 10.1016/j.ijbiomac.2024.133265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Hemostasis is the first step of emergency medical treatment. It is particularly important to develop rapid-acting and efficacious hemostatic materials. Carboxymethyl chitosan (CMCS), sodium alginate (SA) and Resina Draconis (RD) were composited uniformly by polyelectrolyte blending. Their composite sponges (CMCS/SA/RD) were prepared by freeze-induced phase separation. CMCS/SA/RD sponges were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy, and their blood absorption and hemolysis ratio were analyzed. The hemostatic effect of the composite sponges was evaluated by coagulation in vitro and in vivo. The composite sponges had a porous network structure. The water absorption ratio was >8000 %, and hemolysis ratio was <5 %. CMCS/SA/RD-II and CMCS/SA/RD-III composite sponges shortened the coagulation time in vitro by 11.33 s and 9.66 s, the hepatic hemostasis time by 13.8 % and 23.3 %, and the hemostasis time after mouse-tail amputation by 28.9 % and 23.9 %, respectively. A preliminary study on its coagulation mechanism showed that CMCS/SA/RD had significant effects on erythrocyte adsorption, platelet adhesion, and shortening of the activated partial thromboplastin time.
Collapse
Affiliation(s)
- Dongying Zhang
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Zhang Hu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruijuan Hao
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Qianqian Ouyang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Chen Wang
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Qin Hu
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Hang Li
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Sidong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunhua Zhu
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China.
| |
Collapse
|
10
|
Zhang Z, Liu H, Yu DG, Bligh SWA. Alginate-Based Electrospun Nanofibers and the Enabled Drug Controlled Release Profiles: A Review. Biomolecules 2024; 14:789. [PMID: 39062503 PMCID: PMC11274620 DOI: 10.3390/biom14070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Alginate is a natural polymer with good biocompatible properties and is a potential polymeric material for the sustainable development and replacement of petroleum derivatives. However, the non-spinnability of pure alginate solutions has hindered the expansion of alginate applications. With the continuous development of electrospinning technology, synthetic polymers, such as PEO and PVA, are used as co-spinning agents to increase the spinnability of alginate. Moreover, the coaxial, parallel Janus, tertiary and other diverse and novel electrospun fiber structures prepared by multi-fluid electrospinning have found a new breakthrough for the problem of poor spinning of natural polymers. Meanwhile, the diverse electrospun fiber structures effectively achieve multiple release modes of drugs. The powerful combination of alginate and electrostatic spinning is widely used in many biomedical fields, such as tissue engineering, regenerative engineering, bioscaffolds, and drug delivery, and the research fever continues to climb. This is particularly true for the controlled delivery aspect of drugs. This review provides a brief overview of alginate, introduces new advances in electrostatic spinning, and highlights the research progress of alginate-based electrospun nanofibers in achieving various controlled release modes, such as pulsed release, sustained release, biphasic release, responsive release, and targeted release.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Sim-Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
11
|
Sun L, Shen Y, Li M, Wang Q, Li R, Gong S. Comprehensive Assessment of Collagen/Sodium Alginate-Based Sponges as Hemostatic Dressings. Molecules 2024; 29:2999. [PMID: 38998951 PMCID: PMC11243721 DOI: 10.3390/molecules29132999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
In our search for a biocompatible composite hemostatic dressing, we focused on the design of a novel biomaterial composed of two natural biological components, collagen and sodium alginate (SA), cross-linked using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) and oxidized sodium alginate (OSA). We conducted a series of tests to evaluate the physicochemical properties, acute systemic toxicity, skin irritation, intradermal reaction, sensitization, cytotoxicity, and in vivo femoral artery hemorrhage model. The results demonstrated the excellent biocompatibility of the collagen/sodium alginate (C/SA)-based dressings before and after crosslinking. Specifically, the femoral artery hemorrhage model revealed a significantly shortened hemostasis time of 132.5 ± 12.82 s for the EDC/NHS cross-linked dressings compared to the gauze in the blank group (hemostasis time of 251.43 ± 10.69 s). These findings indicated that C/SA-based dressings exhibited both good biocompatibility and a significant hemostatic effect, making them suitable for biomedical applications.
Collapse
Affiliation(s)
- Leilei Sun
- College of Life Science, Yantai University, Yantai 264005, China; (Y.S.); (M.L.); (Q.W.); (R.L.); (S.G.)
| | | | | | | | | | | |
Collapse
|
12
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
13
|
Wu P, He RH, Fang Y, Chen K, Wu M, Zhang W, Lv J, Zhao Y. The study of double-network carboxymethyl chitosan/sodium alginate based cryogels for rapid hemostasis in noncompressible hemorrhage. Int J Biol Macromol 2024; 266:131399. [PMID: 38641504 DOI: 10.1016/j.ijbiomac.2024.131399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Developing an injectable hemostatic dressing with shape recovery and high blood absorption ratio for rapid hemostasis in noncompressible hemorrhage maintains a critical clinical challenge. Here, double-network cryogels based on carboxymethyl chitosan, sodium alginate, and methacrylated sodium alginate were prepared by covalent crosslinking and physical crosslinking, and named carboxymethyl chitosan/methacrylated sodium alginate (CM) cryogels. Covalent crosslinking was achieved by methacrylated sodium alginate in the freeze casting process, while physical crosslinking was realized by electrostatic interaction between the amino group of carboxymethyl chitosan and the carboxyl group of sodium alginate. CM cryogels exhibited large water swelling ratios (8167 ± 1062 %), fast blood absorption speed (2974 ± 669 % in 15 s), excellent compressive strength (over 160 kPa for CM100) and shape recovery performance. Compared with gauze and commercial gelatin sponge, better hemostatic capacities were demonstrated for CM cryogel with the minimum blood loss of 40.0 ± 8.9 mg and the lowest hemostasis time of 5.0 ± 2.0 s at hemostasis of rat liver. Made of natural polysaccharides with biocompatibility, hemocompatibility, and cytocompatibility, the CM cryogels exhibit shape recovery and high blood absorption rate, making them promising to be used as an injectable hemostatic dressing for rapid hemostasis in noncompressible hemorrhage.
Collapse
Affiliation(s)
- Pan Wu
- Jihua Laboratory, Foshan 528000, People's Republic of China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Rong-Huan He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yaru Fang
- Jihua Laboratory, Foshan 528000, People's Republic of China
| | - Kezhou Chen
- Jihua Laboratory, Foshan 528000, People's Republic of China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Mi Wu
- Jihua Laboratory, Foshan 528000, People's Republic of China
| | - Wenchang Zhang
- Jihua Laboratory, Foshan 528000, People's Republic of China
| | - Jianhua Lv
- Jihua Laboratory, Foshan 528000, People's Republic of China.
| | - Yan Zhao
- Jihua Laboratory, Foshan 528000, People's Republic of China.
| |
Collapse
|
14
|
Sacramento MMA, Oliveira MB, Gomes JR, Borges J, Freedman BR, Mooney DJ, Rodrigues JMM, Mano JF. Natural Polymer-Polyphenol Bioadhesive Coacervate with Stable Wet Adhesion, Antibacterial Activity, and On-Demand Detachment. Adv Healthc Mater 2024; 13:e2304587. [PMID: 38334308 PMCID: PMC11469155 DOI: 10.1002/adhm.202304587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Medical adhesives are emerging as an important clinical tool as adjuvants for sutures and staples in wound closure and healing and in the achievement of hemostasis. However, clinical adhesives combining cytocompatibility, as well as strong and stable adhesion in physiological conditions, are still in demand. Herein, a mussel-inspired strategy is explored to produce adhesive coacervates using tannic acid (TA) and methacrylate pullulan (PUL-MA). TA|PUL-MA coacervates mainly comprise van der Waals forces and hydrophobic interactions. The methacrylic groups in the PUL backbone increase the number of interactions in the adhesives matrix, resulting in enhanced cohesion and adhesion strength (72.7 Jm-2), compared to the non-methacrylated coacervate. The adhesive properties are kept in physiologic-mimetic solutions (72.8 Jm-2) for 72 h. The photopolymerization of TA|PUL-MA enables the on-demand detachment of the adhesive. The poor cytocompatibility associated with the use of phenolic groups is here circumvented by mixing reactive oxygen species-degrading enzyme in the adhesive coacervate. This addition does not hamper the adhesive character of the materials, nor their anti-microbial or hemostatic properties. This affordable and straightforward methodology, together with the tailorable adhesivity even in wet environments, high cytocompatibility, and anti-bacterial activity, enables foresee TA|PUL-MA as a promising ready-to-use bioadhesive for biomedical applications.
Collapse
Affiliation(s)
- Margarida M. A. Sacramento
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Mariana B. Oliveira
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - José R.B. Gomes
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - João Borges
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Benjamin R. Freedman
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMA02138USA
- Department of Orthopaedic SurgeryBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMA02138USA
| | - João M. M. Rodrigues
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
15
|
Sharma A, Verma C, Singh P, Mukhopadhyay S, Gupta A, Gupta B. Alginate based biomaterials for hemostatic applications: Innovations and developments. Int J Biol Macromol 2024; 264:130771. [PMID: 38467220 DOI: 10.1016/j.ijbiomac.2024.130771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Development of the efficient hemostatic materials is an essential requirement for the management of hemorrhage caused by the emergency situations to avert most of the casualties. Such injuries require the use of external hemostats to facilitate the immediate blood clotting. A variety of commercially available hemostats are present in the market but most of them are associated with limitations such as exothermic reactions, low biocompatibility, and painful removal. Thus, fabrication of an ideal hemostatic composition for rapid blood clot formation, biocompatibility, and antimicrobial nature presents a real challenge to the bioengineers. Benefiting from their tunable fabrication properties, alginate-based hemostats are gaining importance due to their excellent biocompatibility, with >85 % cell viability, high absorption capacity exceeding 500 %, and cost-effectiveness. Furthermore, studies have estimated that wounds treated with sodium alginate exhibited a blood loss of 0.40 ± 0.05 mL, compared to the control group with 1.15 ± 0.13 mL, indicating its inherent hemostatic activity. This serves as a solid foundation for designing future hemostatic materials. Nevertheless, various combinations have been explored to further enhance the hemostatic potential of sodium alginate. In this review, we have discussed the possible role of alginate based composite hemostats incorporated with different hemostatic agents, such as inorganic materials, polymers, biological agents, herbal agents, and synthetic drugs. This article outlines the challenges which need to be addressed before the clinical trials and give an overview of the future research directions.
Collapse
Affiliation(s)
- Ankita Sharma
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Pratibha Singh
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Amlan Gupta
- Sikkim Manipal Institute of Medical Sciences, Tadong, Gangtok, Sikkim 737102, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
16
|
Shao H, Wu X, Xiao Y, Yang Y, Ma J, Zhou Y, Chen W, Qin S, Yang J, Wang R, Li H. Recent research advances on polysaccharide-, peptide-, and protein-based hemostatic materials: A review. Int J Biol Macromol 2024; 261:129752. [PMID: 38280705 DOI: 10.1016/j.ijbiomac.2024.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/05/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Hemorrhage is a potentially life-threatening emergency that can occur at any time or place. Whether traumatic, congenital, surgical, disease-related, or drug-induced, bleeding can lead to severe complications or death. Therefore, the development of efficient hemostatic materials is critical. However, the results and prognosis demonstrated by clinical means of hemostasis do not reach expectations. With the development of technology, novel hemostatic materials have been developed from polysaccharides (chitosan, hyaluronic acid, alginate, cellulose, cyclodextrins, starch, dextran, and carrageenan), peptides (self-assembling peptides), and proteins (silk fibroin, collagen, gelatin, keratin, and thrombin). These new materials exhibit high hemostatic efficacy due to the enhancement or interaction of various hemostatic mechanisms. The main forms include adhesives, sealants, bandages, hemostatic powders, and hemostatic sponges. This article introduces the clotting process and principles of hemostatic methods and reviews the research on polysaccharide-, peptide-, and protein-based hemostatic materials in the last five years. The design ideas and hemostatic principles of polysaccharide-, peptide-, and protein-based hemostatic materials are mainly introduced. Finally, we summarize material designs, advantages, disadvantages, and challenges regarding hemostatic materials.
Collapse
Affiliation(s)
- Hanjie Shao
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Ying Xiao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Yanyu Yang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Jingyun Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315100, PR China
| | - Yang Zhou
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315100, PR China
| | - Wen Chen
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Shaoxia Qin
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Jiawei Yang
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China.
| | - Hong Li
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China.
| |
Collapse
|
17
|
Arabpour Z, Abedi F, Salehi M, Baharnoori SM, Soleimani M, Djalilian AR. Hydrogel-Based Skin Regeneration. Int J Mol Sci 2024; 25:1982. [PMID: 38396661 PMCID: PMC10888449 DOI: 10.3390/ijms25041982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The skin is subject to damage from the surrounding environment. The repair of skin wounds can be very challenging due to several factors such as severe injuries, concomitant infections, or comorbidities such as diabetes. Different drugs and wound dressings have been used to treat skin wounds. Tissue engineering, a novel therapeutic approach, revolutionized the treatment and regeneration of challenging tissue damage. This field includes the use of synthetic and natural biomaterials that support the growth of tissues or organs outside the body. Accordingly, the demand for polymer-based therapeutic strategies for skin tissue defects is significantly increasing. Among the various 3D scaffolds used in tissue engineering, hydrogel scaffolds have gained special significance due to their unique properties such as natural mimicry of the extracellular matrix (ECM), moisture retention, porosity, biocompatibility, biodegradability, and biocompatibility properties. First, this article delineates the process of wound healing and conventional methods of treating wounds. It then presents an examination of the structure and manufacturing methods of hydrogels, followed by an analysis of their crucial characteristics in healing skin wounds and the most recent advancements in using hydrogel dressings for this purpose. Finally, it discusses the potential future advancements in hydrogel materials within the realm of wound healing.
Collapse
Affiliation(s)
- Zohreh Arabpour
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Farshad Abedi
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773955, Iran;
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| |
Collapse
|
18
|
Ren Z, Wang Y, Wu H, Cong H, Yu B, Shen Y. Preparation and application of hemostatic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 257:128299. [PMID: 38008144 DOI: 10.1016/j.ijbiomac.2023.128299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Bleeding from uncontrollable wounds can be fatal, and the body's clotting mechanisms are unable to control bleeding in a timely and effective manner in emergencies such as battlefields and traffic accidents. For irregular and inaccessible wounds, hemostatic materials are needed to intervene to stop bleeding. Hemostatic microspheres are promising for hemostasis, as their unique structural features can promote coagulation. There is a wide choice of materials for the preparation of microspheres, and the modification of natural macromolecular materials such as chitosan to enhance the hemostatic properties and make up for the deficiencies of synthetic macromolecular materials makes the hemostatic microspheres multifunctional and expands the application fields of hemostatic microspheres. Here, we focus on the hemostatic mechanism of different materials and the preparation methods of microspheres, and introduce the modification methods, related properties and applications (in cancer therapy) for the structural characteristics of hemostatic microspheres. Finally, we discuss the future trends of hemostatic microspheres and research opportunities for developing the next generation of hemostatic microsphere materials.
Collapse
Affiliation(s)
- Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
19
|
Wang Q, Han Q, Xu X, Ding X, Nie X, Xu X, Liu X, Zhang C, Li J, Shi Q. Bioinspired Zn-MOF doped radial porous chitosan-based sponge with antibacterial and antioxidant properties for rapid hemostasis and wound healing. Int J Biol Macromol 2024; 259:128960. [PMID: 38151078 DOI: 10.1016/j.ijbiomac.2023.128960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Herein, a novel bioinspired radial porous zinc-based metal-organic framework (Zn-MOF) doped sodium alginate/chitosan derivatives/pullulan-based SA/PSCS/Pul/Zn-MOF (SPCP/Zn) composites sponge with excellent antioxidant and antibacterial properties was fabricated by the ice-templating method. Boric acid (BA) and Ca2+, which were respectively used as hydrogen- and ionic- bonding cross-linkers, provided strong mechanical properties for sponge matrix composed of SA, PSCS, and Pul. The obtained SPCP/Zn sponge exhibited uniform porous morphology, proper hydrophilicity, and admirable biocompatibility. In addition, the SPCP/Zn sponge achieved a sustained release of Zn2+ and gallic acid, which displayed powerful antibacterial and antioxidant activities. Importantly, the SPCP/Zn sponge exhibited shorter rapid hemostasis (20.4 ± 2.9 s) and lower blood loss (19.8 ± 4.3 mg). The SPCP/Zn sponge also showed faster wound closure ratio for the rat full-thickness skin defect model. It was revealed that SPCP/Zn sponge could significantly accelerate and enhance wound healing through downregulating inflammatory cytokines (TNF-α, IL-6) and increasing the expression of growth factors (VEGF). Due to its excellent properties, the SPCP/Zn sponge may have promising potential in wound healing applications.
Collapse
Affiliation(s)
- Qingwu Wang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xin Xu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Xu Ding
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Xiaojuan Nie
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Xiaodong Xu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Xia Liu
- School of Chemstry, Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; Yantai Research Institute of Harbin Engineering University, Yantai, 264006, PR China
| | - Junqing Li
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
20
|
Contardi M, Summa M, Lenzuni M, Miracoli L, Bertora F, Mendez MD, Athanassiou A, Bertorelli R. Combining Alginate/PVPI-Based Film with Frequency Rhythmic Electrical Modulation System (FREMS) Technology as an Advanced Strategy for Diabetic Wounds. Macromol Biosci 2024; 24:e2300349. [PMID: 37800281 DOI: 10.1002/mabi.202300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Diabetes is rising as one of the most diffused diseases of the century with the related urgent necessity to face its systemic and local effects on the patients, such as cardiovascular problems, degeneration of limbs, and dysfunction of the wound healing process. The diffusion of leg ulcers has been estimated to be 1.51 for 1000 population, and these non-resolved wounds can produce several social, economic, and mental health issues in diabetic patients. At the same time, these people experience neuropathic pain that causes morbidity and a further decrease in their quality of life. Here, a new study is presented where asodium alginate/Polyvinylpyrrolidone-Iodine complex (PVPI)-based wound dressing is combined with the Frequency Rhythmic Electrical Modulation System (FREMS) technology, an established medical device for the treatment of neuropathic pain and diabetic ulcers. The produced Alginate/PVPI-based films are characterized in terms of morphology, chemistry, wettability, bio-/hemo-compatibility, and clotting capacity. Next, the Alginate/PVPI-based films are used together with FREMS technology in diabetic mice models, and synergism of their action in the wound closure rate and anti-inflammatory properties is found. Hence, how the combination of electrical neurostimulation devices and advanced wound dressings can be a new approach to improve chronic wound treatment is demonstrated.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Martina Lenzuni
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Luigi Miracoli
- Fremslife Srl, R&D Dept., Via Buccari, 9, Genova, 16153, Italy
| | - Franco Bertora
- Fremslife Srl, R&D Dept., Via Buccari, 9, Genova, 16153, Italy
| | | | | | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
21
|
Wei Y, Li L, Xie C, Wei Y, Huang C, Wang Y, Zhou J, Jia C, Junlin L. Current Status of Auricular Reconstruction Strategy Development. J Craniofac Surg 2023:00001665-990000000-01239. [PMID: 37983309 DOI: 10.1097/scs.0000000000009908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
Microtia has severe physical and psychological impacts on patients, and auricular reconstruction offers improved esthetics and function, alleviating psychological issues. Microtia is a congenital disease caused by a multifactorial interaction of environmental and genetic factors, with complex clinical manifestations. Classification assessment aids in determining treatment strategies. Auricular reconstruction is the primary treatment for severe microtia, focusing on the selection of auricular scaffold materials, the construction of auricular morphology, and skin and soft tissue scaffold coverage. Autologous rib cartilage and synthetic materials are both used as scaffold materials for auricular reconstruction, each with advantages and disadvantages. Methods for achieving skin and soft tissue scaffold coverage have been developed to include nonexpansion and expansion techniques. In recent years, the application of digital auxiliary technology such as finite element analysis has helped optimize surgical outcomes and reduce complications. Tissue-engineered cartilage scaffolds and 3-dimensional bioprinting technology have rapidly advanced in the field of ear reconstruction. This article discusses the prevalence and classification of microtia, the selection of auricular scaffolds, the evolution of surgical methods, and the current applications of digital auxiliary technology in ear reconstruction, with the aim of providing clinical physicians with a reference for individualized ear reconstruction surgery. The focus of this work is on the current applications and challenges of tissue engineering and 3-dimensional bioprinting technology in the field of ear reconstruction, as well as future prospects.
Collapse
Affiliation(s)
- Yi Wei
- Center of Burn and Plastic and Wound Healing Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Li Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan
| | - Cong Xie
- Center of Burn and Plastic and Wound Healing Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Yangchen Wei
- Center of Burn and Plastic and Wound Healing Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Chufei Huang
- Center of Burn and Plastic and Wound Healing Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Yiping Wang
- Center of Burn and Plastic and Wound Healing Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Jianda Zhou
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chiyu Jia
- Center of Burn and Plastic and Wound Healing Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Liao Junlin
- Center of Burn and Plastic and Wound Healing Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China
| |
Collapse
|
22
|
Zhang H, Wu Z, Zhou J, Wang Z, Yang C, Wang P, Fareed MS, He Y, Su J, Cha R, Wang K. The Antimicrobial, Hemostatic, and Anti-Adhesion Effects of a Peptide Hydrogel Constructed by the All-d-Enantiomer of Antimicrobial Peptide Jelleine-1. Adv Healthc Mater 2023; 12:e2301612. [PMID: 37552211 DOI: 10.1002/adhm.202301612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Indexed: 08/09/2023]
Abstract
Peptide hydrogels are believed to be potential biomaterials with wide application in the biomedical field because of their good biocompatibility, injectability, and 3D printability. Most of the previously reported polypeptide hydrogels are composed of l-peptides, while the hydrogels formed by self-assembly of d-peptides are rarely reported. Herein, a peptide hydrogel constructed by D-J-1, which is the all-d-enantiomer of antimicrobial peptide Jelleine-1 (J-1) is reported. Field emission scanning electron microscope (FE-SEM) and rheologic study are performed to characterize the hydrogel. Antimicrobial, hemostatic, and anti-adhesion studies are carried out to evaluate its biofunction. The results show that D-J-1 hydrogel is formed by self-assembly and cross-linking driven by hydrogen bonding, hydrophobic interaction, and π-π stacking force of aromatic ring in the structure of D-J-1. It exhibits promising antimicrobial activity, hemostatic activity, and anti-adhesion efficiency in a rat sidewall defect-cecum abrasion model. In addition, it also exhibits good biocompatibility. Notably, D-J-1 hydrogel shows improved in vitro and in vivo stability when compared with its l-enantiomer J-1 hydrogel. Therefore, the present study will provide new insight into the application of d-peptide hydrogel, and provides a new peptide hydrogel with antibacterial, hemostatic, and anti-adhesion efficacy for clinical use.
Collapse
Affiliation(s)
- Hanru Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, P. R. China
- Department of Obstetrics & Gynecology, Gansu Provincial Maternity and Child Care Hospital, North Road 143, Qilihe District, Lanzhou, 730000, P. R. China
| | - Zhiyu Wu
- The First School of Clinical Medicine, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, P. R. China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, P. R. China
| | - Zhaopeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, P. R. China
| | - Changyan Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, P. R. China
| | - Panpan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, P. R. China
| | - Muhammad Subaan Fareed
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, P. R. China
| | - Yuhang He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, P. R. China
| | - Jie Su
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, P. R. China
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, P. R. China
| |
Collapse
|
23
|
Swastha D, Varsha N, Aravind S, Samyuktha KB, Yokesh MM, Balde A, Ayilya BL, Benjakul S, Kim SK, Nazeer RA. Alginate-based drug carrier systems to target inflammatory bowel disease: A review. Int J Biol Macromol 2023:125472. [PMID: 37336375 DOI: 10.1016/j.ijbiomac.2023.125472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder that affects the gastrointestinal tract. IBD has become an increasingly common condition in both developed and developing nations over the last few decades, owing to a variety of factors like a rising population and diets packed with processed and junk foods. While the root pathophysiology of IBD is unknown, treatments are focused on medications aimed to mitigate symptoms. Alginate (AG), a marine-derived polysaccharide, is extensively studied for its biocompatibility, pH sensitivity, and crosslinking nature. This polymer is thoroughly researched in drug delivery systems for IBD treatment, as it is naturally available, non-toxic, cost effective, and can be easily and safely cross-linked with other polymers to form an interconnected network, which helps in controlling the release of drugs over an extended period. There are various types of drug delivery systems developed from AG to deliver therapeutic agents; among them, nanotechnology-based systems and hydrogels are popular due to their ability to facilitate targeted drug delivery, reduce dosage, and increase the therapeutic efficiency. AG-based carrier systems are not only used for the sustained release of drug, but also used in the delivery of siRNA, interleukins, and stem cells for site directed drug delivery and tissue regenerating ability respectively. This review is focussed on pathogenesis and currently studied medications for IBD, AG-based drug delivery systems and their properties for the alleviation of IBD. Moreover, future challenges are also be discoursed to improve the research of AG in the field of biopharmaceuticals and drug delivery.
Collapse
Affiliation(s)
- Dinakar Swastha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Nambolan Varsha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Suresh Aravind
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Kavassery Balasubramanian Samyuktha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Muruganandam Mohaneswari Yokesh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Bakthavatchalam Loganathan Ayilya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India.
| |
Collapse
|
24
|
Yang Y, Zhang C, Gong M, Zhan Y, Yu Z, Shen C, Zhang Y, Yu L, Chen Z. Integrated photo-inspired antibacterial polyvinyl alcohol/carboxymethyl cellulose hydrogel dressings for pH real-time monitoring and accelerated wound healing. Int J Biol Macromol 2023; 238:124123. [PMID: 36963550 DOI: 10.1016/j.ijbiomac.2023.124123] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Recurrent infection of chronic wounds remains a major clinical challenge. Recently, the hydrogel antibacterial materials have attracted extensive attention for preventing infection in wound healing. In this study, a hybrid hydrogel made of polyvinyl alcohol - iodine (PAI), sodium carboxymethyl cellulose (CMC), and carbamino quantum dot (CQDs) was prepared by the cross-linking of hydrogen bonds, named as polyvinyl alcohol‑iodine/sodium carboxymethyl cellulose/carbon quantum dots (PAI/CMC/CQDs). The composite hydrogels exhibited the outstanding photothermal conversion efficiency with near infrared (NIR) light irradiation, and the high antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Meanwhile, the elevated temperature of the composite hydrogels up to ~45 °C was able to stimulate the migration of epidermal cell to accelerate skin repair. Given that PAI and CQDs could respond to different pH values (5-8), the real-time would pH information was provided by the visible light and fluorescent light dual monitoring system by naked eye. Moreover, the visible-fluorescent images could be collected and transformed into RGB signals to quantify the would pH levels, avoiding secondary injuries caused by frequent dressing changes. PAI/CMC/CQDs was demonstrated the significant therapeutic effect on chronic wounds by eliminating bacterial infections and promoting skin repair under the smart RGB monitoring system.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Chong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ming Gong
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuan Zhan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhenkun Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Chang Shen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Li Yu
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zhaoxia Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
25
|
Gupta R, Mohanty S, Verma D. Current status of hemostatic agents, their mechanism of action, and future directions. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115221147935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The bleeding problem might seem straightforward, but it involves a plethora of complex biochemical pathways and responses. Hemorrhage control remains one of the leading causes of “preventable deaths” worldwide. The past few decades have seen a wide range of biomaterials and their derivatives targeted to serve as hemostatic agents, but none can be deemed as an ideal solution. In this review, we have highlighted the current diversity in hemostatic agents and their modalities. We have enclosed a comprehensive outlook of the proposed solutions and their clinical performance so far. In addition to these, several promising compositions are still in their infancy or developmental phases. The inclusion of novel upcoming nanocomposites has further widened the potencies of existing formulations as well.
Collapse
Affiliation(s)
- Ritvesh Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Sibanwita Mohanty
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
26
|
Kim H, Jang JH, Han W, Hwang HJ, Jang J, Kim JY, Cho DW. Extracellular matrix-based sticky sealants for scar-free corneal tissue reconstruction. Biomaterials 2023; 292:121941. [PMID: 36495802 DOI: 10.1016/j.biomaterials.2022.121941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
Regenerative medicine requires both tissue restoration and ease of compliance for clinical application. Considering this, sticky tissue sealants have been shown to have great potentials over surgical suturing and wound treatment. However, tissue sealants currently used pose challenges such as uncontrollable adhesion formation, mechanical mismatch, and lack of tissue restoration. A new sticky sealant based on gelatinized cornea-derived extracellular matrix (GelCodE) with a visible light-activating system is firstly being introduced in this study. De novo tissue regeneration relies on the matrisome in charge of tissue-organization and development within GelCodE while visible light-based photopolymerization with ruthenium/sodium persulfate rapidly induces covalent bonds with the adjacent tissues. The ease of not only in vivo application, biocompatibility, and biointegration, but also exceptional de novo tissue formation is demonstrated in this study. Interestingly, newly regenerated tissues were shown to have normal tissue-like matrices with little scar formation. Hence, this work presents a promising strategy to meet clinical demands for scar-free tissue recovery with superior ease of clinical application.
Collapse
Affiliation(s)
- Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea
| | - Je-Hwan Jang
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 05029, Seoul, Republic of Korea
| | - Wonil Han
- Division of Integrative Bioscience and Biotechnology, POSTECH, 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea
| | - Hyun-Jeong Hwang
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea; Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, 03722, Seoul, Republic of Korea; Department of Convergence IT Engineering, 77 Cheongam-ro, Nam-gu, POSTECH, 37673, Pohang, Kyungbuk, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, 77 Cheongam-ro, Nam-gu, POSTECH, 37673, Pohang, Kyungbuk, Republic of Korea.
| | - Joon Young Kim
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 05029, Seoul, Republic of Korea; KU Center for Animal Blood Medical Science, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 05029, Seoul, Republic of Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea; Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, 03722, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Development and characterization of alginate-derived crosslinked hydrogel membranes incorporated with ConA and gentamicin for wound dressing applications. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Xiao X, Wu Z. A Narrative Review of Different Hemostatic Materials in Emergency Treatment of Trauma. Emerg Med Int 2022; 2022:6023261. [PMID: 36311483 PMCID: PMC9616665 DOI: 10.1155/2022/6023261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
Hemostatic materials are very important for the treatment of a large number of bleeding trauma patients in battlefield and disaster environments. Different types of hemostatic materials need to be used for emergency hemostasis according to different injury parts and severity. At present, the first-aid hemostatic materials have been well applied to the bleeding of body surface wounds, limbs, and junctions, but there are still no ideal hemostatic materials in the early treatment of first aid for the deep and incompressible bleeding of thoracoabdominal cavity and visceral organs. This paper reviews the classification and mechanism of hemostatic materials, as well as the application and research progress in trauma emergency, so as to provide reference for the application of hemostatic materials in early first-aid emergency.
Collapse
Affiliation(s)
- Xiaoxiao Xiao
- West China Hospital Operation Room West China School of Nursing, Ichuan University, 37 GuoXue Alley, Chengdu 610041, Sichuan, China
| | - Zhoupeng Wu
- Department of Vascular Surgery, West China Hospital, Sichuan University, 37 GuoXue Alley, Chengdu 610041, Sichuan, China
| |
Collapse
|
30
|
Ouyang XK, Zhao L, Jiang F, Ling J, Yang LY, Wang N. Cellulose nanocrystal/calcium alginate-based porous microspheres for rapid hemostasis and wound healing. Carbohydr Polym 2022; 293:119688. [DOI: 10.1016/j.carbpol.2022.119688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
|
31
|
Niu W, Chen Y, Wang L, Li J, Cui Z, Lv J, Yang F, Huo J, Zhang Z, Ju J. The combination of sodium alginate and chlorogenic acid enhances the therapeutic effect on ulcerative colitis by the regulation of inflammation and the intestinal flora. Food Funct 2022; 13:10710-10723. [PMID: 36173280 DOI: 10.1039/d2fo01619b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorogenic acid (CA) and sodium alginate (SA) each have good therapeutic effects on ulcerative colitis (UC) owing to their antioxidant and anti-inflammatory activity. This study aimed to investigate the effects of CA alone and in combination with SA on inflammatory cells and UC mice. In the Lipopolysaccharide (LPS)-induced RAW 264.7 inflammatory cell model, Nitric oxide (NO) and interleukin-6 (IL-6) levels were significantly lower after treatment with CA plus SA than with CA alone. In the DSS-induced UC mouse model, compared with CA alone, CA plus SA showed a better ability to alleviate weight loss, reduce the disease activity index (DAI), improve the colonic mucosa, reduce the expression of inflammatory factors in the serum and myeloperoxidase (MPO) in colonic tissue, increase superoxide dismutase (SOD) levels, protect the intestinal mucosa and regulate the abundance of Actinobacteriota, Lactobacillus, Bifidobacterium, Bacteroides, Subdoligranulum and Streptococcus. Thus, CA plus SA can improve the therapeutic efficacy of CA in UC by regulating inflammatory factors, oxidative stress, and the intestinal flora and by protecting ulcerative wounds. These findings broaden our understanding of the role of the combination of SA and CA in enhancing the effects of CA on UC and provide strategies for prevention and treatment.
Collapse
Affiliation(s)
- Wei Niu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yuxuan Chen
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ligui Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jia Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhao Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jiajie Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Fuyan Yang
- Anhui University of Chinese Medicine, Hefei, China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
32
|
Wang L, Hao F, Tian S, Dong H, Nie J, Ma G. Targeting polysaccharides such as chitosan, cellulose, alginate and starch for designing hemostatic dressings. Carbohydr Polym 2022; 291:119574. [DOI: 10.1016/j.carbpol.2022.119574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022]
|
33
|
Singh S, Nwabor OF, Sukri DM, Wunnoo S, Dumjun K, Lethongkam S, Kusolphat P, Hemtanon N, Klinprathum K, Sunghan J, Dejyong K, Lertwittayanon K, Pisuchpen S, Voravuthikunchai SP. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. Int J Biol Macromol 2022; 216:235-250. [PMID: 35780920 DOI: 10.1016/j.ijbiomac.2022.06.172] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022]
Abstract
Effective treatment of infected wounds requires a comprehensive wound dressing with a combination of antibacterial, antioxidative, and anti-inflammatory effects. Biodegradable wound dressings incorporating nanostructured material were developed using polyvinyl alcohol with xanthan gum, hypromellose, or sodium carboxymethyl cellulose and extensively evaluated for antibacterial and wound healing efficacy. Synthesized silver nanoparticles and wound dressings displayed λmax at 420 nm with zeta potential ≈ - 35 mV. Significant growth inhibition with >99 % reduction in CFU/ml (p < 0.05) against important wound pathogens including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans were observed. Within 1 h of treatment, hypromellose nanocomposite demonstrated excellent bactericidal effects with a 99.9 % of reduction in growth. In addition, wound dressings demonstrated inhibitory activities against free radical scavengers. Wound dressings demonstrated a significant reduction in the inflammatory response in RAW 264.7 macrophages (p < 0.001). Ex-vivo diffusion demonstrated zero-order release and steady-state flux between 0.1571-0.2295 μg/ml/cm2h with 0.124-0.144 permeability coefficient after 10 h. Usage in animals further confirmed that the hypromellose nanocomposite accelerated the wound healing process with biocompatibility. The results suggested that hybrid biodegradable dressings can be effectively applied to treat infected wounds and attenuate inflammatory responses.
Collapse
Affiliation(s)
- Sudarshan Singh
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Natural Product Research Center of Excellence, Faculty of Science and Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ozioma F Nwabor
- Natural Product Research Center of Excellence, Faculty of Science and Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University, Syracuse 13244, United States
| | - Dwi M Sukri
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Medical Faculty, Malahayati University, Pramuka, Lampung, 35152, Indonesia
| | - Suttiwan Wunnoo
- Natural Product Research Center of Excellence, Faculty of Science and Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Krittima Dumjun
- Natural Product Research Center of Excellence, Faculty of Science and Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Science for Industry Program, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sakkarin Lethongkam
- Natural Product Research Center of Excellence, Faculty of Science and Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Pradipa Kusolphat
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Natthanit Hemtanon
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Keskanok Klinprathum
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Jutapoln Sunghan
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Krittee Dejyong
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Kowit Lertwittayanon
- Division of Physical Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Supachai Pisuchpen
- Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-industry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Supayang P Voravuthikunchai
- Natural Product Research Center of Excellence, Faculty of Science and Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
34
|
Singh Chandel AK, Ohta S, Taniguchi M, Yoshida H, Tanaka D, Omichi K, Shimizu A, Isaji M, Hasegawa K, Ito T. Balance of antiperitoneal adhesion, hemostasis, and operability of compressed bilayer ultrapure alginate sponges. BIOMATERIALS ADVANCES 2022; 137:212825. [PMID: 35929240 DOI: 10.1016/j.bioadv.2022.212825] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
In surgery, both antiperitoneal adhesion barriers and hemostats with high efficiency and excellent handling are necessary. However, antiadhesion and hemostasis have been examined separately. In this study, six different ultrapure alginate bilayer sponges with thicknesses of 10, 50, 100, 200, 300, and 500 μm were fabricated via lyophilization and subsequent mechanical compression. Compression significantly enhanced mechanical strength and improved handling. Furthermore, it had a complex effect on dissolution time and contact angle. Therefore, the 100 μm compressed sponge showed the highest hemostatic activity in the liver bleeding model in mice, whereas the 200 μm sponge demonstrated the highest antiadhesion efficacy among the compressed sponges in a Pean crush hepatectomy-induced adhesion model in rats. For the first time, we systematically evaluated the effect of sponge compression on foldability, fluid absorption, mechanical strength, hemostatic effect, and antiadhesion properties. The optimum thickness of an alginate bilayer sponge by compression balances antiperitoneal adhesion and hemostasis simultaneously.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Machiko Taniguchi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromi Yoshida
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daichi Tanaka
- Mochida Pharmaceutical Co. Ltd., 1-1 Ichigaya honmuracho, Shinjuku-ku, Tokyo 162-0845, Japan
| | - Kiyohiko Omichi
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsushi Shimizu
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuko Isaji
- Mochida Pharmaceutical Co. Ltd., 1-1 Ichigaya honmuracho, Shinjuku-ku, Tokyo 162-0845, Japan
| | - Kiyoshi Hasegawa
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
35
|
Designing a new alginate-fibrinogen biomaterial composite hydrogel for wound healing. Sci Rep 2022; 12:7213. [PMID: 35508533 PMCID: PMC9068811 DOI: 10.1038/s41598-022-11282-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 01/22/2023] Open
Abstract
Wound healing is a complex process and rapid healing necessitates a proper micro-environment. Therefore, design and fabrication of an efficacious wound dressing is an impressive innovation in the field of wound healing. The fabricated wound dressing in this scenario was designed using a combination of the appropriate coagulating and anti-bacterial materials like fibrinogen (as coagulating agent), nisin (as anti-bacterial agent), ethylenediaminetetraacetic acid (as anti-bacterial agent), and alginate (as wound healing agent). Biophysical characterization showed that the interaction of fibrinogen and alginate was associated with minor changes in the secondary structure of the protein. Conformational studies showed that the protein was structurally stable at 42 °C, is the maximum temperature of the infected wound. The properties of the hydrogel such as swelling, mechanical resistance, nisin release, antibacterial activity, cytotoxicity, gel porosity, and blood coagulation were assessed. The results showed a slow release for the nisin during 48 h. Antibacterial studies showed an inhibitory effect on the growth of Gram-negative and Gram-positive bacteria. The hydrogel was also capable to absorb a considerable amount of water and provide oxygenation as well as incorporation of the drug into its structure due to its sufficient porosity. Scanning electron microscopy showed pore sizes of about 14–198 µm in the hydrogel. Cell viability studies indicated high biocompatibility of the hydrogel. Blood coagulation test also confirmed the effectiveness of the synthesized hydrogel in accelerating the process of blood clot formation. In vivo studies showed higher rates of wound healing, re-epithelialization, and collagen deposition. According to the findings from in vitro as well as in vivo studies, the designed hydrogel can be considered as a novel attractive wound dressing after further prerequisite assessments.
Collapse
|
36
|
Qi L, Zhang C, Wang B, Yin J, Yan S. Progress in hydrogels for skin wound repair. Macromol Biosci 2022; 22:e2100475. [PMID: 35388605 DOI: 10.1002/mabi.202100475] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/21/2022] [Indexed: 11/08/2022]
Abstract
As the first defensive line between the human body and the outside world, the skin is vulnerable to damage from the external environment. Skin wounds can be divided into acute wounds (mechanical injuries, chemical injuries and surgical wounds, etc.) and chronic wounds (burns, infections, diabetes, etc.). In order to manage skin wound, a variety of wound dressings have been developed, including gauze, films, foams, nanofibers, hydrocolloids and hydrogels. Recently, hydrogels have received much attention because of their natural extracellular matrix (ECM)-mimik structure, tunable mechanical properties, and facile bioactive substance delivery capability. They show great potential application in skin wound repair. This paper first introduces the anatomy and function of the skin, the process of wound healing and conventional wound dressings, and then introduces the composition and construction methods of hydrogels. Next, this paper introduces the necessary properties of hydrogels in skin wound repair and the latest research progress of hydrogel dressings for skin wound repair. Finally, the future development goals of hydrogel materials in the field of wound healing are proposed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liangfa Qi
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chenlu Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Bo Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
37
|
Yu J, Wang P, Yin M, Zhang K, Wang X, Han B. Carboxymethyl chitosan-grafted polyvinylpyrrolidone-iodine microspheres for promoting the healing of chronic wounds. Bioengineered 2022; 13:8735-8746. [PMID: 35322745 PMCID: PMC9161872 DOI: 10.1080/21655979.2022.2054911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chronic wounds that fail to heal are the most common complications experienced by diabetic patients, and current treatment remains unsatisfactory, mainly due to the vulnerability of diabetic wounds to bacterial infections. Chitosan derivatives are widely used to treat chronic wounds due to their excellent hydrophilicity, biodegradability, and antimicrobial activity and substantial contribution to tissue regeneration. However, the antimicrobial effect of chitosan is not sufficient due to the complicated pathological mechanism of diabetes mellitus. Here, we prepared carboxymethyl chitosan-grafted polyvinylpyrrolidone-iodine (CMC-g-PVPI) microspheres and used them to treat chronic wounds. Carboxymethyl chitosan (CMC) was used as the skeleton and was grafted with polyvinylpyrrolidone-iodine (PVPI) to form a CMC-g-PVPI complex hydrogel and CMC-g-PVPI microspheres, which formed as a result of the high shearing dispersion of the complex hydrogel. In vivo experiments on diabetic wounds revealed significantly accelerated wound closure in the presence of the microspheres, demonstrating the excellent potential of CMC-g-PVPI to promote skin wound regeneration under diabetic conditions.
Collapse
Affiliation(s)
- Jie Yu
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Mengting Yin
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Kaiwen Zhang
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Bing Han
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Xie Y, Gao P, He F, Zhang C. Application of Alginate-Based Hydrogels in Hemostasis. Gels 2022; 8:109. [PMID: 35200490 PMCID: PMC8871293 DOI: 10.3390/gels8020109] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Hemorrhage, as a common trauma injury and clinical postoperative complication, may cause serious damage to the body, especially for patients with huge blood loss and coagulation dysfunction. Timely and effective hemostasis and avoidance of bleeding are of great significance for reducing body damage and improving the survival rate and quality of life of patients. Alginate is considered to be an excellent hemostatic polymer-based biomaterial due to its excellent biocompatibility, biodegradability, non-toxicity, non-immunogenicity, easy gelation and easy availability. In recent years, alginate hydrogels have been more and more widely used in the medical field, and a series of hemostatic related products have been developed such as medical dressings, hemostatic needles, transcatheter interventional embolization preparations, microneedles, injectable hydrogels, and hemostatic powders. The development and application prospects are extremely broad. This manuscript reviews the structure, properties and history of alginate, as well as the research progress of alginate hydrogels in clinical applications related to hemostasis. This review also discusses the current limitations and possible future development prospects of alginate hydrogels in hemostatic applications.
Collapse
Affiliation(s)
| | | | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.); (P.G.); (F.H.)
| |
Collapse
|
39
|
Nie X, Cui C, Wu T, Wu Y, Bian X, Yang R, Zhang X, Sun Y, Liu Y, Liu W. An anticoagulant/hemostatic indwelling needle for oral glucose tolerance test. Biomater Sci 2022; 10:6570-6582. [DOI: 10.1039/d2bm01133f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anticoagulant/hemostatic indwelling needles developed by polydopamine co-deposition and underwater hyperbranched polymer adhesive priming monitor changes in blood glucose concentration in diabetic rats.
Collapse
Affiliation(s)
- Xiongfeng Nie
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Chunyan Cui
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Tengling Wu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yang Wu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xinyu Bian
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Rong Yang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoping Zhang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yage Sun
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
40
|
Guo B, Dong R, Liang Y, Li M. Haemostatic materials for wound healing applications. Nat Rev Chem 2021; 5:773-791. [PMID: 37117664 DOI: 10.1038/s41570-021-00323-z] [Citation(s) in RCA: 414] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Wounds are one of the most common health issues, and the cost of wound care and healing has continued to increase over the past decade. The first step in wound healing is haemostasis, and the development of haemostatic materials that aid wound healing has accelerated in the past 5 years. Numerous haemostatic materials have been fabricated, composed of different active components (including natural polymers, synthetic polymers, silicon-based materials and metal-containing materials) and in various forms (including sponges, hydrogels, nanofibres and particles). In this Review, we provide an overview of haemostatic materials in wound healing, focusing on their chemical design and operation. We describe the physiological process of haemostasis to elucidate the principles that underpin the design of haemostatic wound dressings. We also highlight the advantages and limitations of the different active components and forms of haemostatic materials. The main challenges and future directions in the development of haemostatic materials for wound healing are proposed.
Collapse
|
41
|
Wang Y, Wang P, Ji H, Ji G, Wang M, Wang X. Analysis of Safety and Effectiveness of Sodium Alginate/Poly(γ-glutamic acid) Microspheres for Rapid Hemostasis. ACS APPLIED BIO MATERIALS 2021; 4:6539-6548. [PMID: 35006904 DOI: 10.1021/acsabm.1c00671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most preventable deaths after trauma are related to hemorrhage and occur early after injury. Timely hemostatic treatment is essential to minimize blood loss and improve survival. Among the various treatment methods, the most economical and effective is to use a hemostatic agent. A powdered hemostatic agent can be used for wounds of any shape or depth with high compactness and excellent accumulation effect. Herein, we chose the natural, hydrophilic polymer poly(γ-glutamic acid) (γ-PGA) to form composite hemostatic microspheres with sodium alginate (SA), which show good biocompatibility, water absorptivity, and viscosity. The morphology and structure of the hemostatic microspheres were determined using Fourier transform infrared spectroscopy and scanning electron microscopy. The overall safety, hemolysis, pyrogenic, and intradermal irritation tests were examined. The relationship between hemostatic pressure and hemostatic time during microsphere use was also measured. The hemostatic effect was analyzed with a liver, spleen, and femoral artery bleeding model. The composite microspheres were well tolerated in vivo and exhibited better hemostatic effects in animal experiments than a microporous polysaccharide powder compound. Research results showed that SA/γ-PGA microspheres are materials with good hemostatic effect, high safety, and great potential in clinical applications.
Collapse
Affiliation(s)
- Yun Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Pei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Haoran Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China.,Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| |
Collapse
|
42
|
Gao L, Chen J, Feng W, Song Q, Huo J, Yu L, Liu N, Wang T, Li P, Huang W. A multifunctional shape-adaptive and biodegradable hydrogel with hemorrhage control and broad-spectrum antimicrobial activity for wound healing. Biomater Sci 2021; 8:6930-6945. [PMID: 32964904 DOI: 10.1039/d0bm00800a] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemorrhage is the leading cause of preventable death of injured military and civilian patients, and subsequent infection risks endanger their lives or impede the healing of their wounds. Here, we report an injectable biodegradable hydrogel with hemostatic, antimicrobial, and healing-promoting properties. The hydrogel was prepared by dynamic cross-linking of a natural polysaccharide (dextran) with antimicrobial peptide ε-poly-l-lysine (EPL) and encapsulating base fibroblast growth factor (bFGF). The amino groups of EPL were allowed to react with the aldehyde of oxidized dextran (OD) through the Schiff-base reaction for the generation of hydrogels that have fast self-healing and injectable characteristics and adapt to the shapes of wounds. The prepared OD/EPL hydrogels promoted blood clotting in vitro and stopped bleeding in a rat liver injury model within 6 min through their platelet-aggregating ability and sealing effect. These hydrogels exhibited inherent antimicrobial effects without the use of antibiotics and effectively killed a broad spectrum of pathogenic microbes, including Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative Escherichia coli, and Pseudomonas aeruginosa and fungus Candida albicans in vitro. Moreover, these OD/EPL hydrogels were compatible with mammalian cells in vitro and in vivo and biodegradable in the mouse body. The loaded bFGF can be released sustainably, and it can promote angiogenesis, endothelial cell migration, and consequently accelerate the healing of wounds. The OD/EPL hydrogel inhibited MRSA infection in a rat full-thickness skin wound model and promoted healing. This kind of multifunctional hydrogel is a promising wound dressing for the emergency treatment of acute deep or penetrating injuries.
Collapse
Affiliation(s)
- Lingling Gao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xia L, Wang S, Jiang Z, Chi J, Yu S, Li H, Zhang Y, Li L, Zhou C, Liu W, Han B. Hemostatic performance of chitosan-based hydrogel and its study on biodistribution and biodegradability in rats. Carbohydr Polym 2021; 264:117965. [PMID: 33910708 DOI: 10.1016/j.carbpol.2021.117965] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Hemostasis is of great significance regardless of the smooth operation or postoperative recovery. Therefore, it is urgent to develop a hemostatic material with excellent biodegradability and biocompatibility. It is well known that both carboxymethyl chitosan and hyaluronic acid with biodegradability and biocompatibility have wound healing promoting property. Here, a degradable chitosan-based hydrogel was prepared based on carboxymethyl chitosan and cross-linked by oxidized hyaluronic acid. The hemostatic performance of the hydrogel in rat liver resection injury was evaluated which results showed that the hydrogel exhibited comparable hemostatic properties compared with Fibrin Sealant. In addition, the hydrogel proved to be rapidly absorbed by the body without significant accumulation in vivo, demonstrating good biodegradability and biocompatibility. The overall results suggested the hydrogel will be a promising hemostatic hydrogel for controlling bleeding.
Collapse
Affiliation(s)
- Lixin Xia
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Shuqin Yu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Hongjian Li
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Yijie Zhang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Lihua Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, PR China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China.
| |
Collapse
|
44
|
Abstract
Polymeric tissue adhesives provide versatile materials for wound management and are widely used in a variety of medical settings ranging from minor to life-threatening tissue injuries. Compared to the traditional methods of wound closure (i.e., suturing and stapling), they are relatively easy to use, enable rapid application, and introduce minimal tissue damage. Furthermore, they can act as hemostats to control bleeding and provide a tissue-healing environment at the wound site. Despite their numerous current applications, tissue adhesives still face several limitations and unresolved challenges (e.g., weak adhesion strength and poor mechanical properties) that limit their use, leaving ample room for future improvements. Successful development of next-generation adhesives will likely require a holistic understanding of the chemical and physical properties of the tissue-adhesive interface, fundamental mechanisms of tissue adhesion, and requirements for specific clinical applications. In this review, we discuss a set of rational guidelines for design of adhesives, recent progress in the field along with examples of commercially available adhesives and those under development, tissue-specific considerations, and finally potential functions for future adhesives. Advances in tissue adhesives will open new avenues for wound care and potentially provide potent therapeutics for various medical applications.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| |
Collapse
|
45
|
Shi P, Zhou D, Zhu Y, Peng B, Shao N, Zan X. Thrombin-Loaded TA-CaCO 3 Microspheres as a Budget, Adaptable, and Highly Efficient Hemostatic. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pengzhong Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, P.R. China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Daozhen Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Yaxin Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, P.R. China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, P.R. China
| | - Nannan Shao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, P.R. China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, P.R. China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
| |
Collapse
|
46
|
Separation and quantification of 2-keto-3-deoxy-gluconate (KDG) a major metabolite in pectin and alginate degradation pathways. Anal Biochem 2020; 619:114061. [PMID: 33285123 DOI: 10.1016/j.ab.2020.114061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 11/21/2022]
Abstract
A rapid and sensitive High Performance Liquid Chromatography (HPLC) method with photometric and fluorescence detection is developed for routine analysis of 2-Keto-3-deoxy-gluconate (KDG), a catabolite product of pectin and alginate. These polysaccharides are primary-based compounds for biofuel production and for generation of high-value-added products. HPLC is performed, after derivatization of the 2-oxo-acid groups of the metabolite with o-phenylenediamine (oPD), using a linear gradient of trifluoroacetic acid and acetonitrile. Quantification is accomplished with an internal standard method. The gradient is optimized to distinguish KDG from its close structural analogues such as 5-keto-4-deoxyuronate (DKI) and 2,5-diketo-3-deoxygluconate (DKII). The proposed method is simple, highly sensitive and accurate for time course analysis of pectin or alginate degradation.
Collapse
|
47
|
Li D, Chen J, Wang X, Zhang M, Li C, Zhou J. Recent Advances on Synthetic and Polysaccharide Adhesives for Biological Hemostatic Applications. Front Bioeng Biotechnol 2020; 8:926. [PMID: 32923431 PMCID: PMC7456874 DOI: 10.3389/fbioe.2020.00926] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid hemostasis and formation of stable blood clots are very important to prevent massive blood loss from the excessive bleeding for living body, but their own clotting process cannot be completed in time for effective hemostasis without the help of hemostatic materials. In general, traditionally suturing and stapling techniques for wound closure are prone to cause the additional damages to the tissues, activated inflammatory responses, short usage periods and inevitable second operations in clinical applications. Especially for the large wounds that require the urgent closure of fluids or gases, these conventional closure methods are far from enough. To address these problems, various tissue adhesives, sealants and hemostatic materials are placed great expectation. In this review, we focused on the development of two main categories of tissue adhesive materials: synthetic polymeric adhesives and naturally derived polysaccharide adhesives. Research of the high performance of hemostatic adhesives with strong adhesion, better biocompatibility, easy usability and cheap price is highly demanded for both scientists and clinicians, and this review is also intended to provide a comprehensive summarization and inspiration for pursuit of more advanced hemostatic adhesives for biological fields.
Collapse
Affiliation(s)
- Dawei Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jing Chen
- Department of Orthopedics, Aerospace Center Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingming Zhang
- The People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Chunlin Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jin Zhou
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
48
|
Urzedo AL, Gonçalves MC, Nascimento MH, Lombello CB, Nakazato G, Seabra AB. Multifunctional alginate nanoparticles containing nitric oxide donor and silver nanoparticles for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110933. [DOI: 10.1016/j.msec.2020.110933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/23/2020] [Accepted: 04/04/2020] [Indexed: 01/12/2023]
|