1
|
Wang Y, Jiang Z, Wu Y, Ai C, Dang F, Xu H, Wan J, Guan W, Albilali R, He C. Simultaneously Promoted Water Resistance and CO 2 Selectivity in Methanol Oxidation Over Pd/CoOOH: Synergy of Co-OH and the Pd-O latt-Co Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18414-18425. [PMID: 39359071 DOI: 10.1021/acs.est.4c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Catalytic purification of industrial oxygenated volatile organic compounds (OVOCs) is hindered by the presence of water vapor that attacks the active sites of conventional noble metal-based catalysts and the insufficient mineralization that leads to the generation of hazardous intermediates. Developing catalysts simultaneously with excellent water resistance and a high intermediate suppression ability is still a great challenge. Herein, we proposed a simple strategy to synthesize a Pd/CoOOH catalyst that contains abundant hydroxyl groups and lattice oxygen species, over which a negligible effect was observed on CH3OH conversion with 3 vol % water vapor, while a remarkable conversion reduction of 24% was observed over Pd/Co3O4. Moreover, the low-temperature CO2 selectivity over Pd/CoOOH is significantly enhanced in comparison with Pd/Co(OH)2. The high concentration of surface hydroxyl groups on Pd/CoOOH enhances the water resistance owing to the accelerated activation of H2O to generate Co-OH, which replaces the consumed hydroxyl and facilitates the quick dissociation of surface H2O through timely desorption. Additionally, the presence of Pd-Olatt-Co promotes electron transport from Co to Pd, leading to improved metal-support interactions and weakened metal-O bonds. This in turn enhances the catalyst's capacity to efficaciously convert intermediates. This study sheds new insights into designing multifunctional catalytic platforms for efficient industrial OVOC purification as well as other heterogeneous oxidation reactions.
Collapse
Affiliation(s)
- Yadi Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710064, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Yani Wu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Chaoqian Ai
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Fan Dang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Han Xu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jialei Wan
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Weisheng Guan
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710064, P. R. China
| | - Reem Albilali
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| |
Collapse
|
2
|
Basumatary P, Choi JH, Konwar D, Ramchiary A, Han B, Yoon YS. Hierarchical PtCuMnP Nanoalloy for Efficient Hydrogen Evolution and Methanol Oxidation. SMALL METHODS 2024; 8:e2301651. [PMID: 38461539 DOI: 10.1002/smtd.202301651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Indexed: 03/12/2024]
Abstract
The higher amount of Pt usage and its poisoning in methanol oxidation reaction in acidic media is a major setback for methanol fuel cells. Herein, a promising dual application high-performance electrocatalyst has been developed for hydrogen evolution and methanol oxidation. A low Pt-content nanoalloy co-doped with Cu, Mn, and P is synthesized using a modified solvothermal process. Initially, ultrasmall ≈2.9 nm PtCuMnP nanoalloy is prepared on N-doped graphene-oxide support and subsequently, it is characterized using several analytical techniques and examined through electrochemical tests. Electrochemical results show that PtCuMnP/N-rGO has a low overpotential of 6.5 mV at 10 mA cm-2 in 0.3 m H2SO4 and high mass activity for the hydrogen evolution reaction. For the methanol oxidation reaction, the PtCuMnP/N-rGO electrocatalyst exhibits robust performance. The mass activity of PtCuMnP/N-rGO is 6.790 mA mg-1 Pt, which is 7.43 times higher than that of commercial Pt/C (20% Pt). Moreover, in the chronoamperometry test, PtCuMnP/N-rGO shows exceptionally good stability and retains 72% of the initial current density even after 20,000 cycles. Furthermore, the PtCuMnP/N-rGO electrocatalyst exhibits outstanding performance for hydrogen evolution and methanol oxidation along with excellent anti-poisoning ability. Hence, the developed bifunctional electrocatalyst can be used efficiently for hydrogen evolution and methanol oxidation.
Collapse
Affiliation(s)
- Padmini Basumatary
- Department of Materials Science and Engineering, Gachon University, Bokjung-dong, Seongnam-si, Gyeonggi-Do, 1342, Republic of Korea
| | - Ji-Hyeok Choi
- Department of Materials Science and Engineering, Gachon University, Bokjung-dong, Seongnam-si, Gyeonggi-Do, 1342, Republic of Korea
| | - Dimpul Konwar
- Department of Materials Science and Engineering, Gachon University, Bokjung-dong, Seongnam-si, Gyeonggi-Do, 1342, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Anjalu Ramchiary
- Department of Physics, Bodoland University, Rangalikhata, Kokrajhar, Assam, 783370, India
| | - Byungchan Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Soo Yoon
- Department of Materials Science and Engineering, Gachon University, Bokjung-dong, Seongnam-si, Gyeonggi-Do, 1342, Republic of Korea
| |
Collapse
|
3
|
Li R, Huang Y, Zhu Y, Guo M, Peng W, Zhi Y, Wang L, Cao J, Lee S. Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co 3O 4-Based Monolithic Catalyst for Toluene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14906-14917. [PMID: 39104092 DOI: 10.1021/acs.est.4c04157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe-S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe-S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe-S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir-Hinshelwood (L-H) and Mars-van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Yimai Zhu
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Mingzhi Guo
- School of Civil Engineering, Shaoxing University, Shaoxing 312000, P. R. China
| | - Wei Peng
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Yizhou Zhi
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Chongqing Key Laboratory of Multiscale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, P. R. China
| | - Liqin Wang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shuncheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| |
Collapse
|
4
|
Hua Y, Vikrant K, Kim KH, Heynderickx PM, Boukhvalov DW. Low-temperature thermocatalytic removal of formaldehyde in air using copper manganite spinels. ENVIRONMENTAL RESEARCH 2024; 255:119186. [PMID: 38777297 DOI: 10.1016/j.envres.2024.119186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The removal of formaldehyde (FA) is vital for indoor air quality management in light of its carcinogenic propensity and adverse environmental impact. A series of copper manganite spinel structures (e.g., CuMn2O4) are prepared using the sol-gel combustion method and treated with reduction or oxidation pretreatment at 300 °C condition. Accordingly, CuMn2O4-O ("O" suffix for oxidation pre-treatment in air) is identified as the best performer to achieve 100% conversion (XFA) of FA (50 ppm) at 90 °C; its performance, if assessed in terms of reaction kinetic rate (r) at XFA = 10%, is 5.02E-03 mmol g-1 h-1. The FA removal performance increases systematically with decreases in flow rate, FA concentration, and relative humidity (RH) or with increases in bed mass. The reaction pathways and intermediates of FA catalytic oxidation on CuMn2O4-A are studied with density functional theory simulations, temperature-programmed characterization experiments, and in-situ diffuse reflectance infrared Fourier transform spectroscopy. The synergistic combination of large quantities of adsorbed oxygen (OA) species and oxidized metal species (e.g., Cu2+) contribute to the enhanced catalytic performance of CuMn2O4-O to oxidize FA into CO2 with the reaction intermediates of H2CO2 (DOM), HCOO-, and CO. The present study is expected to provide valuable insights into the thermocatalytic oxidation of FA over spinel CuMn2O4 materials and their catalytic performances in relation to the key process variables.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Philippe M Heynderickx
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Engineering of Materials Via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon, 406-840, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002, Yekaterinburg, Russia
| |
Collapse
|
5
|
Hua Y, Vikrant K, Kim KH, Heynderickx PM, Boukhvalov DW. The practical utility of ternary nickel-cobalt-manganese oxide-supported platinum catalysts for room-temperature oxidative removal of formaldehyde from the air. J Colloid Interface Sci 2024; 665:1029-1042. [PMID: 38579386 DOI: 10.1016/j.jcis.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Formaldehyde (FA), a carcinogenic oxygenated volatile organic compound, is present ubiquitously in indoor air. As such, it is generally regarded as a critical target for air quality management. The oxidative removal of FA under dark and room-temperature (RT) conditions is of practical significance. A series of ternary nickel-cobalt-manganese oxide-supported platinum catalysts (Pt/NiCoMnO4) have been synthesized for FA oxidative removal at RT in the dark. Their RT conversion values for 50 ppm FA (XFA) at 5,964 h-1 gas hourly space velocity (GHSV) decrease in the following order: 1 wt% Pt/NiCoMnO4 (100 %) > 0.5 wt% Pt/NiCoMnO4 (25 %) > 0.05 wt% Pt/NiCoMnO4 (14 %) > NiCoMnO4 (6 %). The catalytic performance of 1 wt% Pt/NiCoMnO4 has been examined further under the control of various process variables (e.g., catalyst mass, flow rate, relative humidity, FA concentration, time on stream, and molecular oxygen content). The catalytic oxidation of FA at low temperatures (e.g., RT and 60 °C) is accounted for by Langmuir-Hinshelwood mechanism (single-site competitive-adsorption), while Mars van Krevelen kinetics is prevalent at higher temperatures. In situ diffuse-reflectance infrared Fourier-transform spectroscopy reveals that FA oxidation proceeds through a series of reaction intermediates such as DOM, HCOO-, and CO32-. Based on the density functional theory simulations, the unique electronic structures of the nearest surface atoms (platinum and nickel) are suggested to be responsible for the superior catalytic activity of Pt/NiCoMnO4.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Philippe M Heynderickx
- Center for Environmental and Energy Research (CEER), Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Russia
| |
Collapse
|
6
|
Chen L, Li K, Xue T, Yang Y, Gong Z, Dong F. Efficient and Durable Oxidation Removal of Formaldehyde over Layered Double Hydroxide Catalysts at Room Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10378-10387. [PMID: 38805367 DOI: 10.1021/acs.est.4c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Room temperature catalytic oxidation (RTCO) using non-noble metals has emerged as a highly promising technique for removal of formaldehyde (HCHO) under ambient conditions; however, non-noble catalysts still face the challenges related to poor water resistance and low stability under harsh conditions. In this study, we synthesized a series of layered double hydroxides (LDHs) incorporating various dual metals (MgAl, ZnAl, NiAl, NiFe, and NiTi) for formaldehyde oxidation at ambient temperature. Among the synthesized catalysts, the NiTi-LDH catalyst showed an HCHO removal efficiency and CO2 yield close to 100.0%, and exceptional water resistance and chemical stability on running 1300 min. The abundant hydroxyl groups in LDHs directly bonded with HCHO, leading to the production of CO2 and H2O, thus inhibiting the formation of CO, even in the absence of O2 and H2O. The coexistence of O2 effectively reduced the reaction barrier for H2O molecule dissociation, facilitating the formation of hydroxyl groups and their subsequent backfill on the catalyst surface. The mechanisms underlying the involvement and regeneration of hydroxyl groups in room temperature oxidation of formaldehyde were elucidated with the combined in situ DRIFTS, HCHO-TPD-MS, and DFT calculations. This work not only demonstrates the potential of LDH catalysts in environmental applications but also advances the understanding of the fundamental processes involved in room temperature oxidation of formaldehyde.
Collapse
Affiliation(s)
- Lvcun Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Kanglu Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Ting Xue
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou, Guangdong 515041, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
7
|
Shin H, Vikrant K, Kim KH, Heynderickx PM, Boukhvalov DW. Thermocatalytic oxidation of a binary mixture of formaldehyde and toluene at ambient levels by a titanium dioxide supported platinum catalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169612. [PMID: 38154644 DOI: 10.1016/j.scitotenv.2023.169612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
The thermocatalytic oxidative potential of various supported noble metal catalysts (SNMCs) is well-known for hazardous volatile organic compounds (VOCs), e.g., formaldehyde (FA) and toluene. However, little is known about SNMC performance against ambient VOC pollution with low concentration (subppm levels) relative to industrial effuluents with high concentrations (several hundred ppm). Here, the thermocatalytic oxidation performance of a titanium dioxide (TiO2)-supported platinum catalyst (Pt/TiO2) has been evaluated for a low-concentration binary mixture of FA and toluene at low temperatures and in the dark. A sample of TiO2 containing 1 wt% Pt with thermal reduction pre-treatment under hydrogen achieved 100 % conversion of FA (500 ppb) and toluene (100 ppb) at 130 °C and a gas hourly velocity of 59,701 h-1. Its catalytic activity was lowered by either a decrease in catalyst mass or an increase in VOC concentration, relative humidity, or flow rate. In situ diffuse reflectance infrared Fourier transform spectroscopy, density functional theory simulations, and molecular oxygen (O2) temperature-programmed desorption experiments were used to identify possible VOC oxidation pathways, reaction mechanisms, and associated surface phenomena. The present work is expected to offer insights into the utility of metal oxide-supported Pt catalysts for the low-temperature oxidative removal of gaseous VOCs in the dark, primarily for indoor air quality management.
Collapse
Affiliation(s)
- Hyejin Shin
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Philippe M Heynderickx
- Center for Environmental and Energy Research, Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Russia
| |
Collapse
|
8
|
Liu XH, Lu T, Jiao X, Jiang Z, Chen C, Wang Y, Jian Y, He C. Formaldehyde Ambient-Temperature Decomposition over Pd/Mn 3O 4-MnO Driven by Active Sites' Self-Tandem Catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1752-1762. [PMID: 38190653 DOI: 10.1021/acs.est.3c06876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The widespread presence of formaldehyde (HCHO) pollutant has aroused significant environmental and health concerns. The catalytic oxidation of HCHO into CO2 and H2O at ambient temperature is regarded as one of the most efficacious and environmentally friendly approaches; to achieve this, however, accelerating the intermediate formate species formation and decomposition remains an ongoing obstacle. Herein, a unique tandem catalytic system with outstanding performance in low-temperature HCHO oxidation is proposed on well-structured Pd/Mn3O4-MnO catalysts possessing bifunctional catalytic centers. Notably, the optimized tandem catalyst achieves complete oxidation of 100 ppm of HCHO at just 18 °C, much better than the Pd/Mn3O4 (30%) and Pd/MnO (27%) counterparts as well as other physical tandem catalysts. The operando analyses and physical tandem investigations reveal that HCHO is primarily activated to gaseous HCOOH on the surface of Pd/Mn3O4 and subsequently converted to H2CO3 on the Pd/MnO component for deep decomposition. Theoretical studies disclose that Pd/Mn3O4 exhibits a favorable reaction energy barrier for the HCHO → HCOOH step compared to Pd/MnO; while conversely, the HCOOH → H2CO3 step is more facilely accomplished over Pd/MnO. Furthermore, the nanoscale intimacy between two components enhances the mobility of lattice oxygen, thereby facilitating interfacial reconstruction and promoting interaction between active sites of Pd/Mn3O4 and Pd/MnO in local vicinity, which further benefits sustained HCHO tandem catalytic oxidation. The tandem catalysis demonstrated in this work provides a generalizable platform for the future design of well-defined functional catalysts for oxidation reactions.
Collapse
Affiliation(s)
- Xiao-He Liu
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Tong Lu
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Xinguo Jiao
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Yadi Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Yanfei Jian
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| |
Collapse
|
9
|
Ma W, Liu Q, Lin Y, Li Y. Dark-Light Tandem Catalytic Oxidation of Formaldehyde over SrBi 2Ta 2O 9 Nanosheets. Molecules 2023; 28:5691. [PMID: 37570662 PMCID: PMC10420077 DOI: 10.3390/molecules28155691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Formaldehyde (HCHO), as one of the main indoor toxic pollutions, presents a great threat to human health. Hence, it is imperative to efficiently remove HCHO and create a good indoor living environment for people. Herein, a layered perovskite material SrBi2Ta2O9 (SBT), was studied for the first time and exhibited superior photocatalytic efficiency and stability compared to commercial TiO2 (P25). Furthermore, a unique dark-light tandem catalytic mechanism was constructed. In the dark reaction stage, HCHO (Lewis base) site was adsorbed on the terminal (Bi2O2)2+ layer (Lewis acid) site of SBT in the form of Lewis acid-base complexation and was gradually oxidized to CO32- intermediate (HCHO → DOM (dioxymethylene) → HCOO- → CO32-). Then, in the light reaction stage, CO32- was completely converted into CO2 and H2O (CO32- → CO2). Our study contributes to a thorough comprehension of the photocatalytic oxidation of HCHO and points out its potential for day-night continuous work applications in a natural environment.
Collapse
Affiliation(s)
- Weimin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Qing Liu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Q.L.); (Y.L.)
| | - Yuhan Lin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Q.L.); (Y.L.)
| | - Yingxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
10
|
Dong T, Ji J, Yu L, Huang P, Li Y, Suo Z, Liu B, Hu Z, Huang H. Tunable Interfacial Electronic Pd-Si Interaction Boosts Catalysis via Accelerating O 2 and H 2O Activation. JACS AU 2023; 3:1230-1240. [PMID: 37124295 PMCID: PMC10131192 DOI: 10.1021/jacsau.3c00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Engineering the interfacial structure between noble metals and oxides, particularly on the surface of non-reducible oxides, is a challenging yet promising approach to enhancing the performance of heterogeneous catalysts. The interface site can alter the electronic and d-band structure of the metal sites, facilitating the transition of energy levels between the reacting molecules and promoting the reaction to proceed in a favorable direction. Herein, we created an active Pd-Si interface with tunable electronic metal-support interaction (EMSI) by growing a thin permeable silica layer on a non-reducible oxide ZSM-5 surface (termed Pd@SiO2/ZSM-5). Our experimental results, combined with density functional theory calculations, revealed that the Pd-Si active interface enhanced the charge transfer from deposited Si to Pd, generating an electron-enriched Pd surface, which significantly lowered the activation barriers for O2 and H2O. The resulting reactive oxygen species, including O2 -, O2 2-, and -OH, synergistically facilitated formaldehyde oxidation. Additionally, moderate electronic metal-support interaction can promote the catalytic cycle of Pd0 ⇆ Pd2+, which is favorable for the adsorption and activation of reactants. This study provides a promising strategy for the design of high-performance noble metal catalysts for practical applications.
Collapse
Affiliation(s)
- Tao Dong
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Jian Ji
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
- Guangdong
Academy of Sciences, Institute of Chemical
Engineering, Guangzhou 510665, China
| | - Leyi Yu
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Pingli Huang
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Yiheng Li
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Ziyi Suo
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Biyuan Liu
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Zhuofeng Hu
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| | - Haibao Huang
- School
of Environmental Science and Engineering, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou 510006, China
| |
Collapse
|
11
|
Wu X, Guo H, Jia L, Xiao Y, Hou B, Li D. Effect of MnO2 Crystal Type on the Oxidation of Furfural to Furoic Acid. Catalysts 2023. [DOI: 10.3390/catal13040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The base-free oxidation of furfural by non-noble metal systems has been challenging. Although MnO2 emerges as a potential catalyst application in base-free conditions, its catalytic efficiency still needs to be improved. The crystalline form of MnO2 is an important factor affecting the oxidation ability of furfural. For this reason, four crystalline forms of MnO2 (α, β, γ, and δ-MnO2) were selected. Their oxidation performance and surface functional groups were analyzed and compared in detail. Only δ-MnO2 exhibited excellent activity, achieving 99.04% furfural conversion and 100% Propo.FA (Only furoic acid was detected by HPLC in the product) under base-free conditions, while the furfural conversion of α, β, and γ-MnO2 was below 10%. Characterization by XPS, IR, O2-TPD and other means revealed that δ-MnO2 has the most abundant active oxygen species and surface hydroxyl groups, which are responsible for the best performance of δ-MnO2. This work achieves the green and efficient oxidation of furfural to furoic acid over non-noble metal catalysts.
Collapse
|
12
|
Zhao J, Bai Y, Li Z, Liu J, Wang W, Wang P, Yang B, Shi R, Waterhouse GIN, Wen XD, Dai Q, Zhang T. Plasmonic Cu Nanoparticles for the Low-temperature Photo-driven Water-gas Shift Reaction. Angew Chem Int Ed Engl 2023; 62:e202219299. [PMID: 36734471 DOI: 10.1002/anie.202219299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
The activation of water molecules in thermal catalysis typically requires high temperatures, representing an obstacle to catalyst development for the low-temperature water-gas shift reaction (WGSR). Plasmonic photocatalysis allows activation of water at low temperatures through the generation of light-induced hot electrons. Herein, we report a layered double hydroxide-derived copper catalyst (LD-Cu) with outstanding performance for the low-temperature photo-driven WGSR. LD-Cu offered a lower activation energy for WGSR to H2 under UV/Vis irradiation (1.4 W cm-2 ) compared to under dark conditions. Detailed experimental studies revealed that highly dispersed Cu nanoparticles created an abundance of hot electrons during light absorption, which promoted *H2 O dissociation and *H combination via a carboxyl pathway, leading to the efficient production of H2 . Results demonstrate the benefits of exploiting plasmonic phenomena in the development of photo-driven low-temperature WGSR catalysts.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Synfuels China, Beijing, 100195, China
| | - Zhenhua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinjia Liu
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Synfuels China, Beijing, 100195, China.,College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Wei Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Xiao-Dong Wen
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Synfuels China, Beijing, 100195, China
| | - Qing Dai
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Liu X, Wang C, Chen Y, Qin Q, Li Y, He H. Formaldehyde oxidation on Pd/USY catalysts at room temperature: The effect of acid pretreatment on supports. J Environ Sci (China) 2023; 125:811-822. [PMID: 36375962 DOI: 10.1016/j.jes.2022.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 06/16/2023]
Abstract
The complete catalytic oxidation of formaldehyde (HCHO) to CO2 and H2O at room temperature is a green route for indoor HCHO removal. Zeolite is an excellent carrier material for HCHO oxidation due to its large surface area, intricate pores and high adsorption capacity. However, the zeolite-supported noble metal catalysts have currently shown relatively low activity especially at room temperature. In this work, we present a facile acid treatment strategy for zeolite catalysts to improve the hydroxyl concentration and further enhance their catalytic activity for HCHO oxidation. Activity tests illustrated that HCHO could be completely oxidized to CO2 and H2O at a nearly 100% conversion rate with a weight hourly space velocity (WHSV) of 150,000 mL/(g∙hr) at 25°C, when the support of Pd/USY catalysts was pretreated by hydrochloric acid with a concentration of 0.20 mol/L. The characterization results revealed that the active hydroxyl groups originated from the dealumination in the acid treatment play a key role in the HCHO oxidation reaction. The deduced reaction mechanism suggests that bridging hydroxyl groups may oxidize HCHO to dioxymethylene (DOM) species and terminal hydroxyl groups are responsible for the transformation of DOM groups to formate (HCOO) species.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Wang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences, Ningbo Urban Environment Observation and Research Station-NUEORS, Ningbo 315800, China
| | - Yumin Chen
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China.
| | - Qi Qin
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences, Ningbo Urban Environment Observation and Research Station-NUEORS, Ningbo 315800, China; Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China.
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences, Ningbo Urban Environment Observation and Research Station-NUEORS, Ningbo 315800, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
14
|
Esmaeilzadeh A, Heshmatpour F. Design, Synthesis and Characterization of Strontium and Cerium-Co-Doped TiO 2-HAp as an Efficient Nanocomposite: Investigation of Its Photocatalytic and Catalytic Applications. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2164017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alireza Esmaeilzadeh
- Department of Inorganic Chemistry, Faculty of Chemistry, Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran
| | - Felora Heshmatpour
- Department of Inorganic Chemistry, Faculty of Chemistry, Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran
| |
Collapse
|
15
|
Shi L, Zhou X, Guo Y, Li Y, Yan C, Han Q, Zhang L, Zhang W. Designing of 3D MnO 2-graphene catalyst on sponge for abatement temperature removal of formaldehyde. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129836. [PMID: 36088878 DOI: 10.1016/j.jhazmat.2022.129836] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The Mn-based catalysts, with low cost and high activity, are believed to be the effective composites for eliminating in-door formaldehyde (HCHO), while the powdered form nanosized catalysts are hardly to apply for practical application. Herein, hetero-structure of nanosheets manganese oxide (MnO2) encapsulating N-doping graphene sphere (GS) were deposited in network-like sponge for constructing 3D catalyst. The prepared MnO2-GS-Sponge composite catalyst exhibited excellent performance for removing HCHO at room temperature compared with GS and commercial MnO2. The MnO2-GS with larger specific surface area (209.1 m2·g-1) was dispersed evenly in 3D network of sponge, which facilitated exposing more activate sites and achieving fast transport kinetics accelerating catalytic reaction for converting 97.1 % of 100 ppm of HCHO continuously to CO2 for 120 h. Moreover, rely on the chemisorption of amino groups on N-doping GS surface, HCHO could be enriched even at low concentrations and efficient elimination (from 1000 ppb to12 ppb, at 35 ℃ in 48 h). The average oxidation state and infrared spectra analysis suggested that abundant oxygen vacancies on MnO2-GS-Sponge could be identified as surface-active sites of converting HCHO into the intermediates of dioxymethylene and formate. This work might inspire the designing 3D composite material for potential application in other fields of environmental engineering or energy industrial.
Collapse
Affiliation(s)
- Lei Shi
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Centre, Institute of Applied Chemistry, East China University of Science and Technology, No.130 Meilong Road, Shanghai 200237, PR China
| | - Xudong Zhou
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yujie Guo
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yunyu Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Centre, Institute of Applied Chemistry, East China University of Science and Technology, No.130 Meilong Road, Shanghai 200237, PR China
| | - Qifeng Han
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lingfan Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Wenqing Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
16
|
Gu H, Lan J, Liu Y, Ling C, Wei K, Zhan G, Guo F, Jia F, Ai Z, Zhang L, Liu X. Water Enables Lattice Oxygen Activation of Transition Metal Oxides for Volatile Organic Compound Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huayu Gu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jintong Lan
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yi Liu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Cancan Ling
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Kai Wei
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guangming Zhan
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiao Liu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
17
|
Constructing synergy of sufficient hydroxyl and oxygen in
PtNi
/
Al
2
O
3
enables room‐temperature catalytic
HCHO
oxidation. AIChE J 2022. [DOI: 10.1002/aic.17895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Wei T, Zhao X, Li L, Wang L, Lv S, Gao L, Yuan G, Li L. Enhanced Formaldehyde Oxidation Performance of the Mesoporous TiO 2(B)-Supported Pt Catalyst: The Role of Hydroxyls. ACS OMEGA 2022; 7:25491-25501. [PMID: 35910119 PMCID: PMC9330097 DOI: 10.1021/acsomega.2c02490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
As one of the crystal phases of titania, TiO2(B) was first utilized as a catalyst carrier for the oxidation of formaldehyde (HCHO). The mesoporous TiO2(B) loaded with Pt nanoparticles enhanced the HCHO oxidation reaction whose reaction rate was 4.5-8.4 times those of other crystalline TiO2-supported Pt catalysts. Simultaneously, Pt/TiO2(B) exhibited long-term stable HCHO oxidation performance. The structural characterization results showed that in comparison with Pt/anatase, Pt/TiO2(B) had more abundant hydroxyls, facilitating increasing the content of oxygen species. Studies on the role of hydroxyls in HCHO oxidation of Pt/TiO2(B) illustrated that synergistic involvement of terminally bound hydroxyls and bridging hydroxyls in HCHO oxidation accelerated the transformation from HCHO to formate via dioxymethylene. Moreover, hydroxyls could avoid the accumulation of excessive formate on Pt/TiO2(B) and promote the rapid oxidation of CO. Accordingly, the hydroxyl groups could accelerate each substep of formaldehyde oxidation, which enabled Pt/TiO2(B) to exhibit excellent formaldehyde oxidation performance.
Collapse
Affiliation(s)
- Tongtong Wei
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xuejuan Zhao
- School
of Materials Science and Engineering, Nanjing
Institute of Technology, Nanjing 211167, P. R. China
| | - Long Li
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Lei Wang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Shenjie Lv
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Lei Gao
- Jiangsu
Architectural Decoration Integrated Installation Engineering Technology
Research Center, Nanjing Guohao Decoration
& Installation Engineering Co., Ltd., Nanjing, 210012, P. R. China
| | - Gaosong Yuan
- Jiangsu
Architectural Decoration Integrated Installation Engineering Technology
Research Center, Nanjing Guohao Decoration
& Installation Engineering Co., Ltd., Nanjing, 210012, P. R. China
| | - Licheng Li
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
19
|
Zhang L, Bao Q, Zhang B, Zhang Y, Wan S, Wang S, Lin J, Xiong H, Mei D, Wang Y. Distinct Role of Surface Hydroxyls in Single-Atom Pt 1/CeO 2 Catalyst for Room-Temperature Formaldehyde Oxidation: Acid-Base Versus Redox. JACS AU 2022; 2:1651-1660. [PMID: 35911462 PMCID: PMC9327081 DOI: 10.1021/jacsau.2c00215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The development of highly efficient catalysts for room-temperature formaldehyde (HCHO) oxidation is of great interest for indoor air purification. In this work, it was found that the single-atom Pt1/CeO2 catalyst exhibits a remarkable activity with complete removal of HCHO even at 288 K. Combining density functional theory calculations and in situ DRIFTS experiments, it was revealed that the active OlatticeH site generated on CeO2 in the vicinity of Pt2+ via steam treatment plays a key role in the oxidation of HCHO to formate and its further oxidation to CO2. Such involvement of hydroxyls is fundamentally different from that of cofeeding water which dissociates on metal oxide and catalyzes the acid-base-related chemistry. This study provides an important implication for the design and synthesis of supported Pt catalysts with atom efficiency for a very important practical application-room-temperature HCHO oxidation.
Collapse
Affiliation(s)
- Lina Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qianqian Bao
- State
Key Laboratory of Separation Membranes and Membrane Processes, School
of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Bangjie Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanbao Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shaolong Wan
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuai Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingdong Lin
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haifeng Xiong
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Mei
- State
Key Laboratory of Separation Membranes and Membrane Processes, School
of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Yong Wang
- Voiland
School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
20
|
Vikrant K, Kim KH, Dong F, Heynderickx PM, Boukhvalov DW. Low-temperature oxidative removal of gaseous formaldehyde by an eggshell waste supported silver-manganese dioxide bimetallic catalyst with ultralow noble metal content. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128857. [PMID: 35429758 DOI: 10.1016/j.jhazmat.2022.128857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Under dark/low temperature (DLT) conditions, the oxidative removal of gaseous formaldehyde (FA) was studied using eggshell waste supported silver (Ag)-manganese dioxide (MnO2) bimetallic catalysts. To assess the synergistic effects between the two different metals, 0.03%-Ag-(0.5-5%)-MnO2/Eggshell catalysts were prepared and employed for DLT-oxidation of FA. The steady-state FA oxidation reaction rate (mmol g-1 h-1), when measured using 100 ppm FA at 80 °C (gas hourly space velocity (GHSV) of 5308 h-1), varied as follows: Ag-1.5%-MnO2/Eggshell-R (9.4) > Ag-3%-MnO2/Eggshell-R (8.1) > Ag-1.5%-MnO2/Eggshell (7.5) > Ag-5%-MnO2/Eggshell-R (7.2) > Ag-1.5%-MnO2/CaCO3-R (6.8) > MnO2-R (6) > Ag-0.5%-MnO2/Eggshell-R (3.2) > Ag/Eggshell-R (2.6). (Here, 'R' denotes hydrogen-based thermochemical reduction pretreatment.) The temperature required for 90% FA conversion (T90) at the same GHSV exhibited a contrary ordering: Ag/Eggshell-R (175 °C) > Ag-0.5%-MnO2/Eggshell-R (123 °C) > Ag-5%-MnO2/Eggshell-R (113 °C) > MnO2-R (99 °C) > Ag-1.5%-MnO2/Eggshell (96 °C) > Ag-3%-MnO2/Eggshell-R (93 °C) > Ag-1.5%-MnO2/Eggshell-R (77 °C). The eggshell catalyst outperformed the ones made of commercial calcium carbonate due to the presence of defects in the former. The MnO2 co-catalyst enhances the catalytic activities through the capture and activation of atmospheric oxygen (O2) with rapid catalytic regeneration. Also, MnO2 favorably captures the hydrogen of the adsorbed FA molecules to make the oxidation pathway thermodynamically more favorable.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou) & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Philippe M Heynderickx
- Center for Environmental and Energy Research (CEER), Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium.
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, Yekaterinburg 620002, Russia
| |
Collapse
|
21
|
Fu C, Li F, Yang J, Xie J, Zhang Y, Sun X, Zheng X, Liu Y, Zhu J, Tang J, Gong XQ, Huang W. Spontaneous Bulk-Surface Charge Separation of TiO 2-{001} Nanocrystals Leads to High Activity in Photocatalytic Methane Combustion. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cong Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fei Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jianlong Yang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Jijia Xie
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Yunshang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuanxu Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
22
|
|
23
|
Liu X, Wang C, Li Y, He H. Acid pretreatment of support promotes Pd/SiO 2 activity for formaldehyde oxidation at room temperature. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyl groups on SiO2 produced by acid pretreatment favored the anchoring of Pd particles and increased their dispersion, which induced more oxygen vacancies on the surface of catalysts and further enhanced H2O activation.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Wang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
24
|
Xin S, Zhu S, Zheng J, Nie L. One-step fabrication of electrospun flexible and hierarchically porous Pt/γ-Al 2O 3 nanofiber membranes for HCHO and particulate removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj03080b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A flexible Pt/γ-Al2O3 nanofiber membrane with optimal 2 wt% Pt content can effectively decompose HCHO into CO2 at room temperature.
Collapse
Affiliation(s)
- Sitian Xin
- Hubei Provincial Key Laboratory of Green Materials for Light Industry. Hubei University of Technology, Wuhan 430068, China
- Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
| | - Silong Zhu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry. Hubei University of Technology, Wuhan 430068, China
- Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
| | - Jianfei Zheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry. Hubei University of Technology, Wuhan 430068, China
- Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
| | - Longhui Nie
- Hubei Provincial Key Laboratory of Green Materials for Light Industry. Hubei University of Technology, Wuhan 430068, China
- Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
25
|
Peng S, Rao Y, Huang Y, Li T, Li R, Cao JJ, Lee S. N-Coordinated Ir single atoms anchored on carbon octahedrons for catalytic oxidation of formaldehyde under ambient conditions. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00743f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
N-Coordinated Ir single atoms using N-doped carbon as a non-oxide support for formaldehyde removal under ambient conditions for the first time.
Collapse
Affiliation(s)
- Shiqi Peng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China
| | - Yongfang Rao
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Tan Li
- School of Environment and Energy, South China University of Technology, Guangzhou 51006, China
| | - Rong Li
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Jun-ji Cao
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Shuncheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
26
|
Zhang Z, Ma J, He H. A simple method to regulate surface hydroxy groups on Al 2O 3 for improving catalytic oxidation performance for HCHO on Pt/Al 2O 3. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01275h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For supported noble metal catalysts, the properties of the support had great influence on the state of noble metals. Herein, we chose Al2O3 as model to find a simple method...
Collapse
|
27
|
Zhang J, Qin X, Chu X, Chen M, Chen X, Chen J, He H, Zhang C. Tuning Metal-Support Interaction of Pt-CeO 2 Catalysts for Enhanced Oxidation Reactivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16687-16698. [PMID: 34847319 DOI: 10.1021/acs.est.1c06400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-support interaction (MSI) has been widely recognized to be playing a pivotal role in regulating the catalytic activity of various reactions. In this work, the degree of MSI between Pt and CeO2 support was finely tuned by adjusting the activation condition, and the obtained catalysts were tested for the oxidative abatement of CO and HCHO under ambient conditions. The characterization of catalysts shows that activation of strongly interacting Pt-CeO2 at higher temperatures by H2 leads to a weaker MSI with increased electron density of Pt, and this modification of local electronic properties is demonstrated to result in enhanced O2 adsorption/activation to prevent the CO self-poisoning effect, while it abates the activity of CO adsorption/activation and oxidation of adsorbed CO. The Pt-CeO2 catalyst with a moderate MSI, which is able to balance each step in the catalytic cycle over Pt and Pt-CeO2 interface domains, displays the highest activity for CO/HCHO oxidation under ambient conditions.
Collapse
Affiliation(s)
- Jianghao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxiao Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Min Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueyan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
The Effect of Pretreatment on the Reactivity of Pd/Al
2
O
3
in Room Temperature Formaldehyde Oxidation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Chen Y, Wang F, Huang Z, Chen J, Han C, Li Q, Cao Y, Zhou Y. Dual-Function Reaction Center for Simultaneous Activation of CH 4 and O 2 via Oxygen Vacancies during Direct Selective Oxidation of CH 4 into CH 3OH. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46694-46702. [PMID: 34559508 DOI: 10.1021/acsami.1c13661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The direct oxidation of methane (CH4) to methanol (CH3OH) has been a focus of global concern and is quite challenging due to the thermodynamically stable CH4 and uncontrolled overoxidation of the products. Here, we provided a new viewpoint on the role of oxygen vacancies that induce a dual-function center in enhancing the adsorption and activation of both CH4 and O2 reactants for the subsequent selective formation of a CH3OH liquid fuel on two-dimensional BiOCl photocatalysts at atmospheric pressure. The key for the favorable activity lies in the simultaneous ability of the electron-trapped Bi atom in activating CH4 and the formation of •O2- radicals due to the activation of O2 at the adjacent oxygen vacancy site, which immediately attack the activated CH4 to directly produce CH3OH, in initiating the oxidation reaction. What is more, the relatively low reaction barriers and the easy desorption of CH3OH concertedly facilitate the highly selective conversion of CH4 up to 85 μmol of CH3OH, with a small amount of CO2 and CO as the byproducts over the BiOCl nanosheets with an oxygen vacancy concentration of 2.4%. This work could broaden the avenue toward the application of oxygen-defective metal oxides in the photocatalytic selective conversion of CH4 to CH3OH and offer a disparate perspective on the role of oxygen vacancy acting as the surface electron transfer channel in enhancing the photocatalytic performance.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China
- Institute of Carbon Neutrality, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Fang Wang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China
- Institute of Carbon Neutrality, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Zeai Huang
- Institute of Carbon Neutrality, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Jiahao Chen
- Institute of Carbon Neutrality, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Chunqiu Han
- Institute of Carbon Neutrality, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Qilin Li
- Institute of Carbon Neutrality, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Yuehan Cao
- Institute of Carbon Neutrality, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China
- Institute of Carbon Neutrality, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| |
Collapse
|
30
|
Wang W, Yu H, Li K, Lin F, Huang C, Yan B, Cheng Z, Li X, Chen G, Hou LA. Insoluble matrix proteins from shell waste for synthesis of visible-light response photocatalyst to mineralize indoor gaseous formaldehyde. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125649. [PMID: 33743377 DOI: 10.1016/j.jhazmat.2021.125649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
HCHO is the most concerned indoor air pollutant that photocatalytic degradation is a feasible approach. To achieve efficient and complete degradation of HCHO under visible light irradiation, heteroatoms are usually doped in TiO2. But using natural materials as a dopant instead of expensive and toxic chemicals to fertilize TiO2 remains challenging. This paper proposes a sustainable and green approach to synthesize an efficient N, Ca co-doped TiO2 photocatalyst (TIMP) by using the insoluble matrix proteins (IMPs) extracted from abalone shell. TIMP-0.8 achieves near completely degradation HCHO within 45 min under visible light at ambient temperature and exhibits superior stability after 7 cycles. TIMP-0.8 has monodispersity with smaller diameter, high porosity, abundant defects and high adsorption affinity for surface hydroxyls compared with pure TiO2. With the assistance of IMPs, the rate-determining step of HCHO degradation changes from -COOH oxidation to spontaneous decomposition of HCO3-, significantly facilitating the elimination and mineralization of HCHO. Overall, IMPs from abalone shell are natural surfactant, bio-templet, and dopant for TiO2 modification, contributing to desirable visible-light photocatalytic performance for HCHO degradation. This paper provides new insight for high-value utilization of waste shell and photocatalytic indoor purification.
Collapse
Affiliation(s)
- Wenjun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Hongdi Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Kai Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Fawei Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Cheng Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xiaoqing Li
- Qingdao Junrong Institute of Innovation Engineering Co., Ltd, Qingdao 266000, PR China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Li-An Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Xi'an High-Tech Institute, Xi'an 710025, PR China.
| |
Collapse
|
31
|
Catalytic performance and intermediates identification of trichloroethylene deep oxidation over Ru/3DOM SnO2 catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Fu C, Li F, Zhang J, Li D, Qian K, Liu Y, Tang J, Fan F, Zhang Q, Gong XQ, Huang W. Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO 2 Nanocrystals. Angew Chem Int Ed Engl 2021; 60:6160-6169. [PMID: 33289198 DOI: 10.1002/anie.202014037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 11/10/2022]
Abstract
Photocatalytic oxidation of methanol on various anatase TiO2 nanocrystals was studied by in situ and time-resolved characterizations and DFT calculations. Surface site and resulting surface adsorbates affect the surface band bending/bulk-to-surface charge migration processes and interfacial electronic structure/interfacial charge transfer processes. TiO2 nanocrystals predominantly enclosed by the {001} facets expose a high density of reactive fourfold-coordinated Ti sites (Ti4c ) at which CH3 OH molecules dissociate to form the CH3 O adsorbate (CH3 O(a)Ti4c ). CH3 O(a)Ti4c localized density of states are almost at the valence band maximum of TiO2 surface, facilitating the interfacial hole transfer process; CH3 O(a)Ti4c with a high coverage promotes upward surface band bending, facilitating bulk-to-surface hole migration. CH3 O(a)Ti4c exhibits the highest photocatalytic oxidation rate constant. TiO2 nanocrystals enclosed by the {001} facets are most active in photocatalytic methanol oxidation.
Collapse
Affiliation(s)
- Cong Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Fei Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Dan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Yong Liu
- State Key Laboratory of Catalysis, Dalian Institute of, Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of, Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| |
Collapse
|
33
|
Fu C, Li F, Zhang J, Li D, Qian K, Liu Y, Tang J, Fan F, Zhang Q, Gong X, Huang W. Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO
2
Nanocrystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cong Fu
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Fei Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Dan Li
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Yong Liu
- State Key Laboratory of Catalysis Dalian Institute of, Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Junwang Tang
- Department of Chemical Engineering University College London London WC1E 7JE UK
| | - Fengtao Fan
- State Key Laboratory of Catalysis Dalian Institute of, Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Xue‐Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis East China University of Science and Technology Shanghai 200237 P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics University of Science and Technology of China Heifei 230026 P. R. China
- Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| |
Collapse
|