1
|
Zhao JW, Li Y, Luan D, Lou XWD. Structural evolution and catalytic mechanisms of perovskite oxides in electrocatalysis. SCIENCE ADVANCES 2024; 10:eadq4696. [PMID: 39321283 DOI: 10.1126/sciadv.adq4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Electrocatalysis plays a pivotal role in driving the progress of modern technologies and industrial processes such as energy conversion and emission reduction. Perovskite oxides, an important family of electrocatalysts, have garnered substantial attention in diverse catalytic reactions because of their highly tunable composition and structure, as well as their considerable activity and stability. This review delves into the mechanisms of electrocatalytic reactions that use perovskite oxides as electrocatalysts, while also providing a comprehensive summary of the potential key factors that influence catalytic activity across various reactions. Furthermore, this review offers an overview of advanced characterizations used for studying catalytic mechanisms and proposes approaches to designing highly efficient perovskite oxide electrocatalysts.
Collapse
Affiliation(s)
- Jia-Wei Zhao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| |
Collapse
|
2
|
Dey S, Saravanan R, Hati S, Goswami S, Suresh A, Jaiswal-Nagar D, Ghosh M, Paul S, Bhattacharya A, Mukhopadhyay M, Mukhopadhyay J. Influence of intrinsic spin ordering in La 0.6Sr 0.4Co 0.8Fe 0.2O 3-δ and Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3-δ towards electrocatalysis of oxygen redox reaction in solid oxide cell. RSC Adv 2024; 14:30590-30605. [PMID: 39324039 PMCID: PMC11422708 DOI: 10.1039/d4ra05191b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
The redox reaction of oxygen (OER & ORR) forms the rate determining step of important processes like cellular respiration and water splitting. Being a spin relaxed process governed by quantum spin exchange interaction, QSEI (the ground triplet state in O2 is associated with singlet oxygen in H2O/OH-), its kinetics is sluggish and requires inclusion of selective catalyst. Functionality and sustainability of solid oxide cell involving fuel cell (FC) and electrolyzer cell (EC) are also controlled by ORR (oxygen redox reaction) and OER (oxygen evolution reaction). We suggest that, presence of inherent spin polarization within La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF6482) (15.86 emu g-1) and Ba0.6Sr0.4Co0.8Fe0.2O3-δ (BSCF6482) (3.64 emu g-1) accounts for the excellent selective electrocatalysis towards ORR and OER. QSEI forms the atomic level basis for OER/ORR which is directly proportional to spin ordering (non-zero magnetization) of the active electrocatalyst. LSCF6482 exhibits (21.5 kJ mol-1@0.8 V for ORR compared to 61 kJ mol-1@0.8 V for OER) improved ORR kinetics whereas BSCF6482 (18.79 kJ mol-1@0.8 V for OER compared to 32.19 kJ mol-1 for ORR@-0.8 V) is best suited for OER under the present stoichiometry. The findings establish the presence of inherent spin polarization of catalyst to be an effective descriptor for OER and ORR kinetics in solid oxide cell (SOC).
Collapse
Affiliation(s)
- Shoroshi Dey
- Energy Materials & Devices Division, CSIR-Central Glass and Ceramic Research Institute Kolkata 700032 India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad 201002 India
| | - Rajasekar Saravanan
- Energy Materials & Devices Division, CSIR-Central Glass and Ceramic Research Institute Kolkata 700032 India
| | - Suprita Hati
- Energy Materials & Devices Division, CSIR-Central Glass and Ceramic Research Institute Kolkata 700032 India
| | - Soumyabrata Goswami
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Kolkata 700135 India
| | - Athira Suresh
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Deepshikha Jaiswal-Nagar
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Moupiya Ghosh
- Department of Physics, Basic Science & Humanities, Institute of Engineering and Management (IEM), University of Engineering and Management Newtown Kolkata West Bengal 700160 India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College Kolkata 700009 West Bengal India
| | - Abir Bhattacharya
- Department of Physics, The Bhawanipur Education Society College, University of Calcutta 700020 Kolkata India
| | | | - Jayanta Mukhopadhyay
- Energy Materials & Devices Division, CSIR-Central Glass and Ceramic Research Institute Kolkata 700032 India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad 201002 India
| |
Collapse
|
3
|
García-Rodríguez M, Cazorla-Amorós D, Morallón E. Eco-Friendly Mechanochemical Synthesis of Bifunctional Metal Oxide Electrocatalysts for Zn-Air Batteries. CHEMSUSCHEM 2024; 17:e202401055. [PMID: 38924618 DOI: 10.1002/cssc.202401055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The development of green and environmentally friendly synthesis methods of electrocatalysts is a crucial aspect in decarbonizing energy generation. In this study, eco-friendly mechanochemical synthesis of perovskite metal oxide-carbon black composites is proposed using different conditions and additives such as KOH. Furthermore, the optimization of ball milling conditions, including time and rotational speed, is studied. The mechanochemical synthesis in solid-state conditions without additives produces electrocatalysts that exhibit the highest bifunctional electrochemical activity towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Moreover, this synthesis demonstrates a lower Environmental Impact Factor (E-factor), indicating its greener nature, and due to its simplicity, it has a great potential for scalability. The obtained bifunctional electrocatalysts have been tested in a rechargeable zinc-air battery (ZAB) for 22 h with similar performance compared to the commercial catalyst (Pt/C) at significantly lower cost. These promising findings are attributed to the enhanced interaction between the perovskite metal oxide and carbon material and the improved dispersion of the perovskite metal oxide on the carbon materials.
Collapse
Affiliation(s)
- M García-Rodríguez
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - D Cazorla-Amorós
- Dept. Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - E Morallón
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| |
Collapse
|
4
|
Beall CE, Fabbri E, Clark AH, Meier V, Yüzbasi NS, Graule T, Takahashi S, Shirase Y, Uchida M, Schmidt TJ. Designing bifunctional perovskite catalysts for the oxygen reduction and evolution reactions. EES CATALYSIS 2024; 2:1152-1163. [PMID: 39246681 PMCID: PMC11375951 DOI: 10.1039/d4ey00084f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/07/2024] [Indexed: 09/10/2024]
Abstract
The development of unified regenerative fuel cells (URFCs) necessitates an active and stable bifunctional oxygen electrocatalyst. The unique challenge of possessing high activity for both the oxygen reduction (ORR) and oxygen evolution (OER) reactions, while maintaining stability over a wide potential window impedes the design of bifunctional oxygen electrocatalysts. Herein, two design strategies are explored to optimize their performance. The first incorporates active sites for the ORR and OER, Mn and Co, into a single perovskite structure, which is achieved with the perovskites Ba0.5Sr0.5Co0.8Mn0.2O3-δ (BSCM) and La0.5Ba0.25Sr0.25Co0.5Mn0.5O3-δ (LBSCM). The second combines an active ORR perovskite catalyst (La0.4Sr0.6MnO3-δ (LSM)) with an OER active perovskite catalyst (Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)) in a physical mixed composite (BSCF/LSM). The success of the two strategies is investigated by measuring the catalysts' catalytic performance and response to alternating reducing and oxidizing potentials to mimic the dynamic conditions experienced during the operation of URFCs. Additionally, the continuous, potentiodynamic change in Mn, Co, and Fe oxidation states during the ORR and OER is elucidated with operando X-ray absorption spectroscopy (XAS) measurements, revealing key insights into the nature of the active sites. The results reveal important catalyst physiochemical properties and provide a guide for future research and design principles for bifunctional oxygen electrocatalysts.
Collapse
Affiliation(s)
- Casey E Beall
- Paul Scherrer Institute (PSI) 5232 Villigen PSI Switzerland
| | | | - Adam H Clark
- Paul Scherrer Institute (PSI) 5232 Villigen PSI Switzerland
| | - Vivian Meier
- Paul Scherrer Institute (PSI) 5232 Villigen PSI Switzerland
- Institute for Physical Molecular Science, ETH Zürich 8093 Zürich Switzerland
| | | | | | - Sayaka Takahashi
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi 400-0021 Kofu Japan
| | - Yuto Shirase
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi 400-0021 Kofu Japan
| | - Makoto Uchida
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi 400-0021 Kofu Japan
| | - Thomas J Schmidt
- Paul Scherrer Institute (PSI) 5232 Villigen PSI Switzerland
- Institute for Physical Molecular Science, ETH Zürich 8093 Zürich Switzerland
| |
Collapse
|
5
|
Kim NI, Lee J, Jin S, Park J, Jeong JY, Lee J, Kim Y, Kim C, Choi SM. Synergistic Effects in LaNiO 3 Perovskites between Nickel and Iron Heterostructures for Improving Durability in Oxygen Evolution Reaction for AEMWE. SMALL METHODS 2024; 8:e2400284. [PMID: 38651527 DOI: 10.1002/smtd.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Perovskite materials that aren't stable during the oxygen evolution reaction (OER) are unsuitable for anion-exchange membrane water electrolyzers (AEMWE). But through manipulating their electronic structures, their performance can further increase. Among the first-row transition metals, nickel and iron are widely recognized as prominent electrocatalysts; thus, the researchers are looking into how combining them can improve the OER. Recent research has actively explored the design and study of heterostructures in this field, showcasing the dynamic exploration of innovative catalyst configurations. In this study, a heterostructure is used to manipulate the electronic structure of LaNiO3 (LNO) to improve both OER properties and durability. Through adsorbing iron onto the LNO (LNO@Fe) as γ iron oxyhydroxide (γ-FeOOH), the binding energy of nickel in the LNO exhibited negative shifts, inferring nickel movement toward the metallic state. Consequently, the electrochemical properties of LNO@Fe are further improved. LNO@Fe showed excellent performance (1.98 A cm-2, 1 m KOH, 50 °C at 1.85 V) with 84.1% cell efficiency in AEMWE single cells, demonstrating great improvement relative to LNO. The degradation for the 850 h durability analysis of LNO@Fe is ≈68 mV kh-1, which is ≈58 times less than that of LNO.
Collapse
Affiliation(s)
- Nam In Kim
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
- Department of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehun Lee
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Song Jin
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Junyoung Park
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Jae-Yeop Jeong
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Jooyoung Lee
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Yangdo Kim
- Department of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Chiho Kim
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Sung Mook Choi
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
- Advanced Materials Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
6
|
Saad I, El-Dek SI, Eissa MF, Assaud L, Amin RM. LaCo 0.2Fe 0.8O 3 perovskites doped with natural Ca 2+ as bifunctional electrocatalysts for oxygen evolution and reduction reactions. RSC Adv 2024; 14:27488-27503. [PMID: 39221128 PMCID: PMC11360433 DOI: 10.1039/d4ra04105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Perovskite oxides are promising electrocatalysts for various energy applications due to their exceptional catalytic activity, flexible architecture, and low cost. In this study, LCFO was doped with different ratios of Ca2+ from eggshells, resulting in dual-purpose electrocatalysts for oxygen reduction and evolution processes. The nanoparticles were characterized using various techniques, including Brunauer-Emmett-Teller analysis and XRD. Results clarified the relative surface area and roughness, increasing with Ca2+ doping. LCFO also demonstrated highly magnetic properties, improved charge transfer, catalytic activity, and long-term durability. The results demonstrated the perovskite's cost-effectiveness as a bifunctional electrocatalyst, and the role of Ca2+ in enhancing its properties. La0.6Ca0.4Co0.2Fe0.8O3(LCCFO-0.4) showed higher magnetic properties (M s = 13.36 emu g-1 and M r = 2.54 emu g-1). The LCFO sample showed a current density of 5.13 mA cm-2 and 3 mA cm-2 for OER and ORR respectively, at E onset 1.7 V and 0.57 V (vs. RHE). The LCFO electrochemical active surface area is 0.033 cm2.
Collapse
Affiliation(s)
- Islam Saad
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - S I El-Dek
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - M F Eissa
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - Loïc Assaud
- ICMMO-ERIEE, Université Paris-Saclay, UMR CNRS 8182 17 Avenue des Sciences 91400 Orsay France
| | - Rafat M Amin
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
7
|
Halba D, Pakhira S. Unraveling the O 2 Reduction Reaction on 2D Monolayer LaNiO 3 Perovskite. ACS OMEGA 2024; 9:35614-35626. [PMID: 39184458 PMCID: PMC11339991 DOI: 10.1021/acsomega.4c03544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 08/27/2024]
Abstract
The O2 reduction reaction (ORR) occurring at cathodes is a critical reaction in many electrochemical energy-converting devices such as fuel cells. The reaction kinematics of the ORR is generally very slow with high overpotentials and needs to be enhanced by using an efficient electrocatalyst. The highly recognized Pt-based electrocatalyst needs to be replaced with a low-cost non-noble metal-based electrocatalyst for catalyzing the ORR. We theoretically studied the structural and electronic properties of 3D bulk LaNiO3 perovskite. We have cleaved the (0 0 1) surface from 3D LaNiO3, which has a zero band gap (E g), to create 2D monolayer LaNiO3 computationally and studied its electronic properties. Our study demonstrates that the 2D monolayer LaNiO3 is a suitable candidate for catalyzing the ORR because of its high catalytic activity with a tiny electronic band gap of 0.25 eV. We explored the ORR mechanism on the 2D monolayer LaNiO3 perovskite by inspecting each intermediate. Our present findings show that the 2D monolayer LaNiO3 can efficiently catalyze the ORR through a four-electron (4e-) reduction reaction due to the excellent catalytic activity of its basal plane, which accords with the experimental findings. The change in Gibbs free energy (ΔG) calculations of various intermediate steps of the ORR demonstrates that all reaction steps are spontaneous and thermodynamically favorable. The 2D monolayer LaNiO3 perovskite can be a potential candidate for catalyzing the ORR efficiently. This study helps to enable the development of high-activity, stable 2D perovskites for use in future solid oxide fuel cells and related applications in green energy technologies.
Collapse
Affiliation(s)
- Dikeshwar Halba
- Theoretical
Condensed Matter Physics and Advanced Computational Materials Science
Laboratory, Department of Physics, Indian
Institute of Technology Indore (IIT Indore), Simrol, Khandwa Road, Indore, Madhya Pradesh, 453552, India
| | - Srimanta Pakhira
- Theoretical
Condensed Matter Physics and Advanced Computational Materials Science
Laboratory, Department of Physics, Indian
Institute of Technology Indore (IIT Indore), Simrol, Khandwa Road, Indore, Madhya Pradesh, 453552, India
- Theoretical
Condensed Matter Physics and Advanced Computational Materials Science
Laboratory, Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
8
|
Sarkar S, Ali SA, Sarkar S, Raihan A, Banerjee S, Patra AK. Hierarchical Bifunctional NiO Electrocatalyst: Highly Porous Structure Boosting the Water Splitting Activity. Chem Asian J 2024:e202400630. [PMID: 39152731 DOI: 10.1002/asia.202400630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/21/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
The development of an efficient, low-cost and earth-abundant electrocatalyst for water splitting is crucial for the production of sustainable hydrogen energy. However their practical applications are largely restricted by their limited synthesis methods, large overpotential and low surface area. Hierarchical materials with a highly porous three-dimensional nanostructure have garnered significant attention due to their exceptional electrocatalytic properties. These hierarchical porous frameworks enable the fast electron transfer, rapid mass transport, and high density of unsaturated metal sites and maximize product selectivity. Here the process involved obtaining monodispersed microrod-shaped Ni(OH)2 through a hydrothermal reaction, followed by a heat treatment to convert it into hierarchical microrod-shaped NiO materials. N2 sorption analysis revealed that the BET surface area increased from 9 to 89 m2/g as a result of the heat treatment. The hierarchical microrod-shaped NiO materials demonstrated outstanding bifunctional electrocatalytic water splitting capabilities, excelling in both HER and OER in basic solution. Overpotential of 347 mV is achieved at 10 mA/cm2 for OER activity, with a Tafel slope of 77 mV/dec. Similarly, overpotential of 488 mV is achieved at 10 mA/cm2 for HER activity, with a Tafel slope of 62 mV/dec.
Collapse
Affiliation(s)
- Sunny Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sk Afsar Ali
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Soumita Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Abu Raihan
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Soumalya Banerjee
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Astam K Patra
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, 741235, India
| |
Collapse
|
9
|
Wyss V, Dinu IA, Marot L, Palivan CG, Delley MF. Thermocatalytic epoxidation by cobalt sulfide inspired by the material's electrocatalytic activity for oxygen evolution reaction. Catal Sci Technol 2024; 14:4550-4565. [PMID: 39139589 PMCID: PMC11318377 DOI: 10.1039/d4cy00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
New discoveries in catalysis by earth-abundant materials can be guided by leveraging knowledge across two sub-disciplines of heterogeneous catalysis: electrocatalysis and thermocatalysis. Cobalt sulfide has been reported to be a highly active electrocatalyst for the oxygen evolution reaction (OER). Under these oxidative conditions, cobalt sulfide forms oxidized surfaces that outperform directly prepared cobalt oxide in OER catalysis. We postulated that the catalytic activity of oxidized cobalt sulfide for OER could reflect a more general ability to catalyze O-transfer reactions. Herein, we show that cobalt sulfide (CoS x ) indeed catalyzes the epoxidation of cyclooctene, a thermal O-transfer reaction. Similarly to OER, the surface-oxidized CoS x formed under reaction conditions outperformed the directly prepared cobalt oxide, hydroxide, and oxyhydroxide for epoxidation catalysis. Another notable phenomenological parallel to OER was revealed by the electron paramagnetic resonance (EPR) analysis of all spent Co-based catalysts that showed significant structural changes and the formation of paramagnetic Co(ii) and Co(iv) species. Mechanistic investigations suggest that a higher density of Co(ii) and/or an easier formation of high-valent Co species in the case of surface-oxidized cobalt sulfide is responsible for its high activity as an epoxidation catalyst. Our results provide important insight into the surface chemistry of Co-based catalysts and show the potential of oxidized CoS x as an earth-abundant catalyst for O-transfer reactivity beyond OER. This work highlights the utility of bridging electrocatalysis and thermocatalysis for the development of more sustainable chemical processes.
Collapse
Affiliation(s)
- Vanessa Wyss
- Department of Chemistry, University of Basel 4058 Basel Switzerland
| | | | - Laurent Marot
- Department of Physics, University of Basel 4056 Basel Switzerland
| | | | | |
Collapse
|
10
|
Ma Y, Ha Y, Chen L, An Z, Xing L, Wang Z, Li Z. Electrochemically Induced Ru/CoOOH Synergistic Catalyst as Bifunctional Electrode Materials for Alkaline Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311884. [PMID: 38412403 DOI: 10.1002/smll.202311884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Efficient and affordable price bifunctional electrocatalysts based on transition metal oxides for oxygen and hydrogen evolution reactions have a balanced efficiency, but it remains a significant challenge to control their activity and durability. Herein, a trace Ru (0.74 wt.%) decorated ultrathin CoOOH nanosheets (≈4 nm) supported on the surface of nickel foam (Ru/CoOOH@NF) is rationally designed via an electrochemically induced strategy to effectively drive the electrolysis of alkaline overall water splitting. The as-synthesized Ru/CoOOH@NF electrocatalysts integrate the advantages of a large number of different HER (Ru nanoclusters) and OER (CoOOH nanosheets) active sites as well as strong in-suit structure stability, thereby exhibiting exceptional catalytic activity. In particular, the ultra-low overpotential of the HER (36 mV) and the OER (264 mV) are implemented to achieve 10 mA cm-2. Experimental and theoretical calculations also reveal that Ru/CoOOH@NF possesses high intrinsic conductivity, which facilitates electron release from H2O and H-OH bond breakage and accelerates electron/mass transfer by regulating the charge distribution. This work provides a new avenue for the rational design of low-cost and high-activity bifunctional electrocatalysts for large-scale water-splitting technology and expects to help contribute to the creation of various hybrid electrocatalysts.
Collapse
Affiliation(s)
- Yingyan Ma
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| | - Yuan Ha
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| | - Liangqiang Chen
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| | - Ziqi An
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| | - Linzhuang Xing
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| | - Zhenni Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| | - Zhimin Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| |
Collapse
|
11
|
Ferriday TB, Nuggehalli Sampathkumar S, Mensi MD, Middleton PH, Van Herle J, Kolhe ML. Tuning Stainless Steel Oxide Layers through Potential Cycling─AEM Water Electrolysis Free of Critical Raw Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29963-29978. [PMID: 38809814 PMCID: PMC11181284 DOI: 10.1021/acsami.4c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Anion exchange membrane water electrolyzers (AEMWEs) have an intrinsic advantage over acidic proton exchange membrane water electrolyzers through their ability to use inexpensive, stable materials such as stainless steel (SS) to catalyze the sluggish oxygen evolution reaction (OER). As such, the study of active oxide layers on SS has garnered great interest. Potential cycling is a means to create such active oxide layers in situ as they are readily formed in alkaline solutions when exposed to elevated potentials. Cycling conditions in the literature are rife with unexplained variations, and a complete account of how these variations affect the activity and constitution of SS oxide layers remains unreported, along with their influence on AEMWE performance. In this paper, we seek to fill this gap in the literature by strategically cycling SS felt (SSF) electrodes under different scan rates and ranges. The SSF anodes were rapidly activated within the first 50 cycles, as shown by the 10-fold decline in charge transfer resistance, and the subsequent 1000 cycles tuned the metal oxide surface composition. Cycling the Ni redox couple (RC) increases Ni content, which is further enhanced by lowering the cycling rate, while cycling the Fe RC increases Cr content. Fair OER activity was uncovered through cycling the Ni RC, while Fe cycling produced SSF electrodes active toward both the OER and the hydrogen evolution reaction (HER). This indicates that inert SSF electrodes can be activated to become efficient OER and HER electrodes. To this effect, a single-cell AEMWE without any traditional catalyst or ionomer generated 1.0 A cm-2 at 1.94 V ± 13.3 mV with an SSF anode, showing a fair performance for a cell free of critical raw materials.
Collapse
Affiliation(s)
- Thomas Benjamin Ferriday
- Department
of Engineering, University of Agder, Jon Lilletuns vei 9, Grimstad, 4879 Agder, Norway
- Group
of Energy Materials, Swiss Federal Institute
of Technology, Lausanne, Rue de l’Industrie
17, Sion, 1951 Valais, Switzerland
| | - Suhas Nuggehalli Sampathkumar
- Department
of Engineering, University of Agder, Jon Lilletuns vei 9, Grimstad, 4879 Agder, Norway
- Group
of Energy Materials, Swiss Federal Institute
of Technology, Lausanne, Rue de l’Industrie
17, Sion, 1951 Valais, Switzerland
| | - Mounir Driss Mensi
- X-Ray
Diffraction and Surface Analytics Facility, Swiss Federal Institute of Technology, Lausanne, Rue de l’Industrie 17, Sion, 1951 Valais, Switzerland
| | - Peter Hugh Middleton
- Department
of Engineering, University of Agder, Jon Lilletuns vei 9, Grimstad, 4879 Agder, Norway
- Group
of Energy Materials, Swiss Federal Institute
of Technology, Lausanne, Rue de l’Industrie
17, Sion, 1951 Valais, Switzerland
| | - Jan Van Herle
- Department
of Engineering, University of Agder, Jon Lilletuns vei 9, Grimstad, 4879 Agder, Norway
- Group
of Energy Materials, Swiss Federal Institute
of Technology, Lausanne, Rue de l’Industrie
17, Sion, 1951 Valais, Switzerland
| | - Mohan Lal Kolhe
- Department
of Engineering, University of Agder, Jon Lilletuns vei 9, Grimstad, 4879 Agder, Norway
| |
Collapse
|
12
|
Fu G, Zhang L, Wei R, Liu H, Hou R, Zhang Z, Yang K, Zhang S. P-Incorporation Induced Enhancement of Lattice Oxygen Participation in Double Perovskite Oxides to Boost Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309091. [PMID: 38247184 DOI: 10.1002/smll.202309091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Activating the lattice oxygen in the catalysts to participate in the oxygen evolution reaction (OER), which can break the scaling relation-induced overpotential limitation (> 0.37 V) of the adsorbate evolution mechanism, has emerged as a new and highly effective guide to accelerate the OER. However, how to increase the lattice oxygen participation of catalysts during OER remains a major challenge. Herein, P-incorporation induced enhancement of lattice oxygen participation in double perovskite LaNi0.58Fe0.38P0.07O3-σ (PLNFO) is studied. P-incorporation is found to be crucial for enhancing the OER activity. The current density reaches 1.35 mA cmECSA -2 at 1.63 V (vs RHE), achieving a sixfold increase in intrinsic activity. Experimental evidences confirm the dominant lattice oxygen participation mechanism (LOM) for OER pathway on PLNFO. Further electronic structures reveal that P-incorporation shifts the O p-band center by 0.7 eV toward the Fermi level, making the states near the Fermi level more O p character, thus facilitating LOM and fast OER kinetics. This work offers a possible method to develop high-performance double perovskite OER catalysts for electrochemical water splitting.
Collapse
Affiliation(s)
- Gaoliang Fu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| | - Leilei Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Huili Liu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| | - Ruipeng Hou
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| | - Zheng Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Kun Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| | - Shouren Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| |
Collapse
|
13
|
García-Rodríguez M, Flores-Lasluisa JX, Cazorla-Amorós D, Morallón E. Enhancing Interaction between Lanthanum Manganese Cobalt Oxide and Carbon Black through Different Approaches for Primary Zn-Air Batteries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2309. [PMID: 38793376 PMCID: PMC11123494 DOI: 10.3390/ma17102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Due to the need for decarbonization in energy generation, it is necessary to develop electrocatalysts for the oxygen reduction reaction (ORR), a key process in energy generation systems such as fuel cells and metal-air batteries. Perovskite-carbon material composites have emerged as active and stable electrocatalysts for the ORR, and the interaction between both components is a crucial aspect for electrocatalytic activity. This work explores different mixing methods for composite preparation, including mortar mixing, ball milling, and hydrothermal and thermal treatments. Hydrothermal treatment combined with ball milling resulted in the most favorable electrocatalytic performance, promoting intimate and extensive contact between the perovskite and carbon material and improving electrocatalytic activity. Employing X-ray photoelectron spectroscopy (XPS), an increase in the number of M-O-C species was observed, indicating enhanced interaction between the perovskite and the carbon material due to the adopted mixing methods. This finding was further corroborated by temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD) techniques. Interestingly, the ball milling method results in similar performance to the hydrothermal method in the zinc-air battery and, thus, is preferable because of the ease and straightforward scalability of the preparation process.
Collapse
Affiliation(s)
- Mario García-Rodríguez
- Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.-R.)
| | - Jhony X. Flores-Lasluisa
- Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.-R.)
| | - Diego Cazorla-Amorós
- Departamento Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain;
| | - Emilia Morallón
- Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.-R.)
| |
Collapse
|
14
|
Qu X, Yan Y, Zhang Z, Tian B, Yin S, Cheng X, Huang R, Jiang Y, Sun S. Regulation Strategies for Fe-N-C and Co-N-C Catalysts for the Oxygen Reduction Reaction. Chemistry 2024:e202304003. [PMID: 38573800 DOI: 10.1002/chem.202304003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs) and alkaline membrane fuel cells (AEMFCs) have received great attention as energy devices of the next generation. Accelerating oxygen reduction reaction (ORR) kinetics is the key to improve PEMFC and AEMFC performance. Platinum-based catalysts are the most widely used catalysts for the ORR, but their high price and low abundance limit the commercialization of fuel cells. Non-noble metal-nitrogen-carbon (M-N-C) is considered to be the most likely material class to replace Pt-based catalysts, among which Fe-N-C and Co-N-C have been widely studied due to their excellent intrinsic ORR performance and have made great progress in the past decades. With the improvement of synthesis technology and a deeper understanding of the ORR mechanism, some reported Fe-N-C and Co-N-C catalysts have shown excellent ORR activity close to that of commercial Pt/C catalysts. Inspired by the progress, regulation strategies for Fe-N-C and Co-N-C catalysts are summarized in this Review from 5 perspectives: (1) coordinated atoms, (2) environmental heteroatoms and defects, (3) dual-metal active sites, (4) metal-based particle promoters, and (5) curved carbon layers. We also make suggestions on some challenges facing Fe-N-C and Co-N-C research.
Collapse
Affiliation(s)
- Ximing Qu
- State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Zijin Mining Group Co., Ltd, 361000, Xiamen, China
| | - Yani Yan
- State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Zijin Mining Group Co., Ltd, 361000, Xiamen, China
| | - Zeling Zhang
- State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Zijin Mining Group Co., Ltd, 361000, Xiamen, China
| | - Benjun Tian
- State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Zijin Mining Group Co., Ltd, 361000, Xiamen, China
| | - Shuhu Yin
- Department State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming south Road, 361005, Xiamen, PR China
| | - Xiaoyang Cheng
- Department State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming south Road, 361005, Xiamen, PR China
| | - Rui Huang
- Department State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming south Road, 361005, Xiamen, PR China
| | - Yanxia Jiang
- Department State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming south Road, 361005, Xiamen, PR China
| | - Shigang Sun
- Department State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming south Road, 361005, Xiamen, PR China
| |
Collapse
|
15
|
Jiang F, Li Y, Pan Y. Design Principles of Single-Atom Catalysts for Oxygen Evolution Reaction: From Targeted Structures to Active Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306309. [PMID: 37704213 DOI: 10.1002/adma.202306309] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Indexed: 09/15/2023]
Abstract
Hydrogen production from electrolytic water electrolysis is considered a viable method for hydrogen production with significant social value due to its clean and pollution-free nature, high hydrogen production efficiency, and purity, but the anode oxygen evolution reaction (OER) process is complex and kinetically slow. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites often exhibit high catalytic activity and are expected to be extensively applied. The catalytic performance of OER can be further improved by precise regulation of the structure through electronic effects, coordination environment, heteroatomic doping, and so on. In this review, the mechanisms of OER under different conditions are introduced, the latest research progress of SACs in the field of OER is systematically summarized, and then the effects of various structural regulation strategies on catalytic performance are discussed, and principles and ideas for the design of SACs for OER are proposed. In the end, the outstanding issues and current challenges in this field are summarized.
Collapse
Affiliation(s)
- Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yichuan Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
16
|
Dhakar S, Mukhopadhyay S, Ottakam Thotiyl M, Sharma S. Methanol assisted water electrooxidation on noble metal free perovskite: RRDE insight into the catalyst's behaviour. J Colloid Interface Sci 2024; 654:688-697. [PMID: 37864873 DOI: 10.1016/j.jcis.2023.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
In this work, we have hypothesized that noble metal-free perovskites are an essential class of oxygen evolution reaction (OER) catalysts in an alkaline medium and thus, they are a suitable candidate for the assisted water oxidation catalysts. Herein, we demonstrate that the origin of the methanol-assisted OER activity at near thermodynamic potential on perovskite electrode arises due to the involvement of additional hydroxyls as a result of dissociative chemisorption of methanol. When the perovskite electrode is screened for methanol electrooxidation reaction in 0.5 M KOH + 0.5 M methanol electrolyte, it delivers a two times higher current density. This imparts an 82 % increase in the evolution of oxygen gas moles with complete oxidation of methanol to carbon dioxide. Along with the electrochemical characterization to understand the electrocatalyst property, Rotating ring disk electrode (RRDE) technique is explored for the first time in literature to validate the catalyst's involvement during OER. RRDE is effective in understanding the lattice oxygen behaviour and methanol-assisted water electrooxidation during OER. Our results suggest new insights and ideas towards the oxygen evolution reaction process and the mechanistic insight into the elevated OER due to assisted methanol electrooxidation.
Collapse
Affiliation(s)
- Shikha Dhakar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar 382355
| | - Sanchayita Mukhopadhyay
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Musthafa Ottakam Thotiyl
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Sudhanshu Sharma
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar 382355.
| |
Collapse
|
17
|
Marelli E, Lyu J, Morin M, Leménager M, Shang T, Yüzbasi NS, Aegerter D, Huang J, Daffé ND, Clark AH, Sheptyakov D, Graule T, Nachtegaal M, Pomjakushina E, Schmidt TJ, Krack M, Fabbri E, Medarde M. Cobalt-free layered perovskites RBaCuFeO 5+δ (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reaction. EES CATALYSIS 2024; 2:335-350. [PMID: 38222064 PMCID: PMC10782807 DOI: 10.1039/d3ey00142c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/30/2023] [Indexed: 01/16/2024]
Abstract
Co-based perovskite oxides are intensively studied as promising catalysts for electrochemical water splitting in an alkaline environment. However, the increasing Co demand by the battery industry is pushing the search for Co-free alternatives. Here we report a systematic study of the Co-free layered perovskite family RBaCuFeO5+δ (R = 4f lanthanide), where we uncover the existence of clear correlations between electrochemical properties and several physicochemical descriptors. Using a combination of advanced neutron and X-ray synchrotron techniques with ab initio DFT calculations we demonstrate and rationalize the positive impact of a large R ionic radius in their oxygen evolution reaction (OER) activity. We also reveal that, in these materials, Fe3+ is the transition metal cation the most prone to donate electrons. We also show that similar R3+/Ba2+ ionic radii favor the incorporation and mobility of oxygen in the layered perovskite structure and increase the number of available O diffusion paths, which have an additional, positive impact on both, the electric conductivity and the OER process. An unexpected result is the observation of a clear surface reconstruction exclusively in oxygen-rich samples (δ > 0), a fact that could be related to their superior OER activity. The encouraging intrinsic OER values obtained for the most active electrocatalyst (LaBaCuFeO5.49), together with the possibility of industrially producing this material in nanocrystalline form should inspire the design of other Co-free oxide catalysts with optimal properties for electrochemical water splitting.
Collapse
Affiliation(s)
- Elena Marelli
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
- Electrochemistry Laboratory, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Jike Lyu
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Mickaël Morin
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
- Excelsus Structural Solutions (Swiss) AG, PARK InnovAARE CH-5234 Villigen PSI Switzerland
| | - Maxime Leménager
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Tian Shang
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University Shanghai China
| | - N Sena Yüzbasi
- High Performance Ceramics, EMPA, Swiss Federal Laboratories for Materials Science and Technology CH-8600 Dübendorf Switzerland
| | - Dino Aegerter
- Electrochemistry Laboratory, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Jinzhen Huang
- Electrochemistry Laboratory, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Niéli D Daffé
- Laboratory for Condensed Matter, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Adam H Clark
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Denis Sheptyakov
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Thomas Graule
- High Performance Ceramics, EMPA, Swiss Federal Laboratories for Materials Science and Technology CH-8600 Dübendorf Switzerland
| | - Maarten Nachtegaal
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Ekaterina Pomjakushina
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Thomas J Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
- Laboratory of Physical Chemistry, ETH Zürich CH-8093 Zürich Switzerland
| | - Matthias Krack
- Laboratory for Materials Simulations, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Emiliana Fabbri
- Electrochemistry Laboratory, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Marisa Medarde
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| |
Collapse
|
18
|
Islam S, Nayem SMA, Anjum A, Shaheen Shah S, Ahammad AJS, Aziz MA. A Mechanistic Overview of the Current Status and Future Challenges in Air Cathode for Aluminum Air Batteries. CHEM REC 2024; 24:e202300017. [PMID: 37010435 DOI: 10.1002/tcr.202300017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Aluminum air batteries (AABs) are a desirable option for portable electronic devices and electric vehicles (EVs) due to their high theoretical energy density (8100 Wh K-1 ), low cost, and high safety compared to state-of-the-art lithium-ion batteries (LIBs). However, numerous unresolved technological and scientific issues are preventing AABs from expanding further. One of the key issues is the catalytic reaction kinetics of the air cathode as the fuel (oxygen) for AAB is reduced there. Additionally, the performance and price of an AAB are directly influenced by an air electrode integrated with an oxygen electrocatalyst, which is thought to be the most crucial element. In this study, we covered the oxygen chemistry of the air cathode as well as a brief discussion of the mechanistic insights of active catalysts and how they catalyze and enhance oxygen chemistry reactions. There is also extensive discussion of research into electrocatalytic materials that outperform Pt/C such as nonprecious metal catalysts, metal oxide, perovskites, metal-organic framework, carbonaceous materials, and their composites. Finally, we provide an overview of the present state, and possible future direction for air cathodes in AABs.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Ahtisham Anjum
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM, Box 5047, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
19
|
Weng Z, Liu L, Hu Y, Wei Y, Da P, Wu Z, Mu Z, Xi P, Yan CH. Significance of Engineering the MnO 6 Octahedral Units to Promote the Oxygen Reduction Reaction of Perovskite Oxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311102. [PMID: 38100677 DOI: 10.1002/adma.202311102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The electronic structure and geometric configuration of catalysts play a crucial role to design novel perovskite-type catalysts for oxygen reduction reaction (ORR). Nowadays, many studies are more concerned with the influence of electronic structure and ignore the geometric effect, which plays a nonnegligible role in enhancing catalytic performances. Herein, this work regulates the MnO6 octahedral tilting degree of LaMnO3 by modulating the concentration of Y3+ , excluding the electronic effect from the valence state of manganese. Plotting the MnO6 octahedral tilting degree as a function of concentration of Y3+ produces a volcano-shaped plot. The octahedral tilting can reduce the Mn-O covalency, generating more highly active Mn3+ and oxygen vacancies during ORR process. The specific activity has a positive correlation with octahedral tilting degree. Meanwhile, the octahedral tilting stabilizes Mn-O interactions during ORR process and promote stability. Based on experimental results and DFT calculations, octahedral tilting alters the rate-determining step (RDS) and decrease the energy barrier. Subsequent extended experiment confirms that octahedral tilting is the key factor to affect the catalytic performances.
Collapse
Affiliation(s)
- Zheng Weng
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Luohua Liu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yicheng Wei
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zelong Wu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhaori Mu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
20
|
Wang Y, Qian J, Li J, Xing J, Liu L. Facile Fabrication of Nickel Supported on Reduced Graphene Oxide Composite for Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3087. [PMID: 38132985 PMCID: PMC10745967 DOI: 10.3390/nano13243087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Due to the depletion of fossil fuels, the demand for renewable energy has increased, thus stimulating the development of novel materials for energy conversion devices such as fuel cells. In this work, nickel nanoparticles loaded on reduced graphene oxide (Ni/rGO) with small size and good dispersibility were successfully prepared by controlling the pyrolysis temperature of the precursor at 450 °C, assisted by a microwave-assisted hydrothermal method, and exhibited enhanced electrocatalytic activity towards oxygen reduction reaction (ORR). Additionally, the electron enrichment on Ni NPs was due to charge transfer from the rGO support to metal nickel, as evidenced by both experimental and theoretical studies. Metal-support interactions between nickel and the rGO support also facilitated charge transfer, contributing to the enhanced ORR performance of the composite material. DFT calculations revealed that the first step (from O2 to HOO*) was the rate-determining step with an RDS energy barrier lower than that of the Pt(111), indicating favorable ORR kinetics. The HOO* intermediates can be transferred onto rGO by the solid-phase spillover effect, which reduces the chemical adsorption on the nickel surface, thereby allowing continuous regeneration of active nickel sites. The HO2- intermediates generated on the surface of rGO by 2e- reduction can also efficiently diffuse towards the nearby Ni surface or the interface of Ni/rGO, where they can be further rapidly reduced to OH-. This mechanism acts as the pseudo-four-electron path on the RRDE. Furthermore, Ni/rGO-450 demonstrated superior stability, methanol tolerance, and durability compared to a 20 wt% Pt/C catalyst, making it a cost-effective alternative to conventional noble metal ORR catalysts for fuel cells or metal-air batteries.
Collapse
Affiliation(s)
- Yanan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China;
| | - Jianhua Qian
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Junhua Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Jinjuan Xing
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Lin Liu
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
21
|
Tamboli AM, Jung Y, Sim J, Kim B, Kim WS, Kim M, Lee C, Kim K, Lim C, Kim K, Cho HS, Kim CH. Boosting oxygen evolution reaction activity with Mo incorporated NiFe-LDH electrocatalyst for efficient water electrolysis. CHEMOSPHERE 2023; 344:140314. [PMID: 37769914 DOI: 10.1016/j.chemosphere.2023.140314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
This work demonstrates a simple and scalable methodology for the binder-free direct growth of Mo-doped NiFe-layered double hydroxides on a nickel substrate via an electrodeposition route at room temperature. A three-dimensional (3D) nanosheet array morphology of the electrocatalyst provides immense electrochemical surface area as well as abundant catalytically active sites. Mo incorporation in the NiFe-LDH plays a crucial role in regulating the catalytic activity of oxygen evolution reaction (OER). The prepared electrocatalyst exhibited low overpotential (i.e., 230 mV) at 30 mA cm-2 for OER in an alkaline electrolyte (i.e., 1 M KOH). Furthermore, the optimized Mo-doped NiFe-LDH electrode was used as an anode in a laboratory-scale in situ single cell test system for alkaline water electrolysis at 80 °C with a continuous flow of 30 wt% KOH, and it shows the efficient electrochemical performance with a lower cell voltage of 1.80 V at a current density of 400 mA cm-2. In addition, an admirable long-term cell durability is also demonstrated by the cell for 24 h. This work encourages new designs and further development of electrode material for alkaline water electrolysis on a commercial scale.
Collapse
Affiliation(s)
- Asiya M Tamboli
- School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea
| | - Younghan Jung
- School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea
| | - Junseok Sim
- School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea
| | - Bonghyun Kim
- School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea
| | - Wan Sik Kim
- School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea
| | - MinJoong Kim
- Hydrogen Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Changsoo Lee
- Hydrogen Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Kilwon Kim
- Korea Research Institute of Ships and Ocean Engineering, 32, Yuseong-daero 1312 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - ChangHyuck Lim
- Korea Research Institute of Ships and Ocean Engineering, 32, Yuseong-daero 1312 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - KyongHwan Kim
- Korea Research Institute of Ships and Ocean Engineering, 32, Yuseong-daero 1312 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun-Seok Cho
- Hydrogen Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea.
| | - Chang-Hee Kim
- School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea.
| |
Collapse
|
22
|
Wang Y, Ge X, Lu Q, Bai W, Ye C, Shao Z, Bu Y. Accelerated deprotonation with a hydroxy-silicon alkali solid for rechargeable zinc-air batteries. Nat Commun 2023; 14:6968. [PMID: 37907458 PMCID: PMC10618233 DOI: 10.1038/s41467-023-42728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Transition metal oxides are promising electrocatalysts for zinc-air batteries, yet surface reconstruction caused by the adsorbate evolution mechanism, which induces zinc-ion battery behavior in the oxygen evolution reaction, leads to poor cycling performance. In this study, we propose a lattice oxygen mechanism involving proton acceptors to overcome the poor performance of the battery in the OER process. We introduce a stable solid base, hydroxy BaCaSiO4, onto the surfaces of PrBa0.5Ca0.5Co2O5+δ perovskite nanofibers with a one-step exsolution strategy. The HO-Si sites on the hydroxy BaCaSiO4 significantly accelerate proton transfer from the OH* adsorbed on PrBa0.5Ca0.5Co2O5+δ during the OER process. As a proof of concept, a rechargeable zinc-air battery assembled with this composite electrocatalyst is stable in an alkaline environment for over 150 hours at 5 mA cm-2 during galvanostatic charge/discharge tests. Our findings open new avenues for designing efficient OER electrocatalysts for rechargeable zinc-air batteries.
Collapse
Affiliation(s)
- Yaobin Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, UNIST-NUIST Energy and Environment Jointed Lab, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu, Nanjing, 210044, P. R. China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, UNIST-NUIST Energy and Environment Jointed Lab, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu, Nanjing, 210044, P. R. China
| | - Qian Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, UNIST-NUIST Energy and Environment Jointed Lab, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu, Nanjing, 210044, P. R. China.
| | - Wenjun Bai
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia.
| | - Yunfei Bu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, UNIST-NUIST Energy and Environment Jointed Lab, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu, Nanjing, 210044, P. R. China.
| |
Collapse
|
23
|
Kuchipudi A, Madhu R, Arunmuthukumar P, Sundarravalli S, Sreedhar G, Kundu S. Decoration of Au Nanoparticles over LaFeO 3: A High Performance Electrocatalyst for Total Water Splitting. Inorg Chem 2023; 62:14448-14458. [PMID: 37610340 DOI: 10.1021/acs.inorgchem.3c02407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Electrocatalytic water splitting has emerged as a promising approach for clean and sustainable hydrogen production. The LaFeO3 perovskite structure exhibits intriguing properties such as mixed ionic-electronic conductivity, high stability, and abundant active sites for electrocatalysis. However, its OER and HER activities are limited by the sluggish kinetics of these reactions. To overcome this limitation, Au nanoparticles (NPs) are decorated onto the surface of LaFeO3 through a facile synthesis method. The Au NPs on the LaFeO3 surface provide additional active sites for water splitting reactions, promoting the adsorption and activation of water molecules. The presence of Au enhances the charge transfer kinetics via the heterostructure between Au NPs and LaFeO3 and facilitates electron transport during the OER and HER process. The catalyst requires only 318 and 199 mV as overpotential to attain a 50 mA cm-2 current density in 1 M KOH solution. Our results demonstrate that the Au@LaFeO3 catalyst exhibits significantly improved electrocatalytic activity compared to pure LaFeO3 and other catalysts reported in the literature. The enhanced performance is attributed due to the synergistic effects between Au NPs and LaFeO3, including an increased surface area, improved conductivity, and optimized surface energetics. Overall, the Au-decorated LaFeO3 catalyst presents a promising candidate for efficient electrocatalytic water splitting, providing a pathway for sustainable hydrogen production. The insights gained from this study contribute to the development of advanced catalysts for renewable energy technologies and pave the way for future research in the field of electrochemical water splitting.
Collapse
Affiliation(s)
- Anup Kuchipudi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electroplating and Metal Finishing (EMF) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Pugalendhi Arunmuthukumar
- Electroplating and Metal Finishing (EMF) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Swaminathan Sundarravalli
- Electroplating and Metal Finishing (EMF) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Gosipathala Sreedhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electroplating and Metal Finishing (EMF) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| |
Collapse
|
24
|
Han N, Zhang W, Guo W, Pan H, Jiang B, Xing L, Tian H, Wang G, Zhang X, Fransaer J. Designing Oxide Catalysts for Oxygen Electrocatalysis: Insights from Mechanism to Application. NANO-MICRO LETTERS 2023; 15:185. [PMID: 37515746 PMCID: PMC10387042 DOI: 10.1007/s40820-023-01152-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/17/2023] [Indexed: 07/31/2023]
Abstract
The electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal-air batteries. ORR and OER both have significant activation barriers, which severely limit the overall performance of energy conversion devices that utilize ORR/OER. Meanwhile, ORR is another very important electrochemical reaction involving oxygen that has been widely investigated. ORR occurs in aqueous solutions via two pathways: the direct 4-electron reduction or 2-electron reduction pathways from O2 to water (H2O) or from O2 to hydrogen peroxide (H2O2). Noble metal electrocatalysts are often used to catalyze OER and ORR, despite the fact that noble metal electrocatalysts have certain intrinsic limitations, such as low storage. Thus, it is urgent to develop more active and stable low-cost electrocatalysts, especially for severe environments (e.g., acidic media). Theoretically, an ideal oxygen electrocatalyst should provide adequate binding to oxygen species. Transition metals not belonging to the platinum group metal-based oxides are a low-cost substance that could give a d orbital for oxygen species binding. As a result, transition metal oxides are regarded as a substitute for typical precious metal oxygen electrocatalysts. However, the development of oxide catalysts for oxygen reduction and oxygen evolution reactions still faces significant challenges, e.g., catalytic activity, stability, cost, and reaction mechanism. We discuss the fundamental principles underlying the design of oxide catalysts, including the influence of crystal structure, and electronic structure on their performance. We also discuss the challenges associated with developing oxide catalysts and the potential strategies to overcome these challenges.
Collapse
Affiliation(s)
- Ning Han
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Wei Guo
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Hui Pan
- Department of Physics and Astronomy, KU Leuven, 3001, Leuven, Belgium
| | - Bo Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, People's Republic of China
| | - Lingbao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Hao Tian
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, PO Box 123, Ultimo, NSW, 2007, Australia.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, PO Box 123, Ultimo, NSW, 2007, Australia
| | - Xuan Zhang
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, People's Republic of China.
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
25
|
Lu Z, Zhou Z, Li S, Tan G, Chen H, Ge Z, Chen C, Wang G. Binary Ni-Co-Based Layered Double Hydroxide Nanoneedle Arrays for High Performance of Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1941. [PMID: 37446457 DOI: 10.3390/nano13131941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/17/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
Low-cost and high-performance electrocatalysts are crucial for water-splitting reactions. Some non-precious metal electrocatalysts are proved to be good replacements for noble metal due to the unique electronic structure features and excellent performance. In this work, binary Ni-Co-based layered double hydroxide nanoneedle arrays electrocatalysts are synthesized on Ni foam (NF) via a hydrothermal process. The microstructure and the catalytic performance of the catalyst changes significantly by regulating the molar ratio of Ni/Co. The theoretical analysis confirmed that the as-prepared NiCo-LDH nanoneedle arrays reveal a potential behavior in oxygen evolution reaction (OER) at a lower overpotential of 305 mV at 10.0 mA cm-2 and a Tafel slope of 110.38 mV dec-1. The double-layer capacitance (Cdl) is 776 mF cm-2, which indicates that there are many active sites that are exposed on the surface for the electrocatalytic reaction. The results provide an obvious reference value to other types of LDH catalysts for the development of water electrolysis.
Collapse
Affiliation(s)
- Zhi Lu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
- Henan Engineering Research Center for High Purity Materials and Sputtering Targets, Luoyang 471003, China
- Luoyang Key Laboratory of High Purity Materials and Sputtering Targets, Luoyang 471003, China
| | - Zhihao Zhou
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
- Henan Engineering Research Center for High Purity Materials and Sputtering Targets, Luoyang 471003, China
- Luoyang Key Laboratory of High Purity Materials and Sputtering Targets, Luoyang 471003, China
| | - Shilin Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
- Henan Engineering Research Center for High Purity Materials and Sputtering Targets, Luoyang 471003, China
- Luoyang Key Laboratory of High Purity Materials and Sputtering Targets, Luoyang 471003, China
| | - Gongliang Tan
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Hangtian Chen
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Zishuo Ge
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Chong Chen
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Guangxin Wang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
- Henan Engineering Research Center for High Purity Materials and Sputtering Targets, Luoyang 471003, China
- Luoyang Key Laboratory of High Purity Materials and Sputtering Targets, Luoyang 471003, China
| |
Collapse
|
26
|
Beglau THY, Rademacher L, Oestreich R, Janiak C. Synthesis of Ketjenblack Decorated Pillared Ni(Fe) Metal-Organic Frameworks as Precursor Electrocatalysts for Enhancing the Oxygen Evolution Reaction. Molecules 2023; 28:4464. [PMID: 37298940 PMCID: PMC10254712 DOI: 10.3390/molecules28114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Metal-organic frameworks (MOFs) have been investigated with regard to the oxygen evolution reaction (OER) due to their structure diversity, high specific surface area, adjustable pore size, and abundant active sites. However, the poor conductivity of most MOFs restricts this application. Herein, through a facile one-step solvothermal method, the Ni-based pillared metal-organic framework [Ni2(BDC)2DABCO] (BDC = 1,4-benzenedicarboxylate, DABCO = 1,4-diazabicyclo[2.2.2]octane), its bimetallic nickel-iron form [Ni(Fe)(BDC)2DABCO], and their modified Ketjenblack (mKB) composites were synthesized and tested toward OER in an alkaline medium (KOH 1 mol L-1). A synergistic effect of the bimetallic nickel-iron MOF and the conductive mKB additive enhanced the catalytic activity of the MOF/mKB composites. All MOF/mKB composite samples (7, 14, 22, and 34 wt.% mKB) indicated much higher OER performances than the MOFs and mKB alone. The Ni-MOF/mKB14 composite (14 wt.% of mKB) demonstrated an overpotential of 294 mV at a current density of 10 mA cm-2 and a Tafel slope of 32 mV dec-1, which is comparable with commercial RuO2, commonly used as a benchmark material for OER. The catalytic performance of Ni(Fe)MOF/mKB14 (0.57 wt.% Fe) was further improved to an overpotential of 279 mV at a current density of 10 mA cm-2. The low Tafel slope of 25 mV dec-1 as well as a low reaction resistance due to the electrochemical impedance spectroscopy (EIS) measurement confirmed the excellent OER performance of the Ni(Fe)MOF/mKB14 composite. For practical applications, the Ni(Fe)MOF/mKB14 electrocatalyst was impregnated into commercial nickel foam (NF), where overpotentials of 247 and 291 mV at current densities of 10 and 50 mA cm-2, respectively, were realized. The activity was maintained for 30 h at the applied current density of 50 mA cm-2. More importantly, this work adds to the fundamental understanding of the in situ transformation of Ni(Fe)DMOF into OER-active α/β-Ni(OH)2, β/γ-NiOOH, and FeOOH with residual porosity inherited from the MOF structure, as seen by powder X-ray diffractometry and N2 sorption analysis. Benefitting from the porosity structure of the MOF precursor, the nickel-iron catalysts outperformed the solely Ni-based catalysts due to their synergistic effects and exhibited superior catalytic activity and long-term stability in OER. In addition, by introducing mKB as a conductive carbon additive in the MOF structure, a homogeneous conductive network was constructed to improve the electronic conductivity of the MOF/mKB composites. The electrocatalytic system consisting of earth-abundant Ni and Fe metals only is attractive for the development of efficient, practical, and economical energy conversion materials for efficient OER activity.
Collapse
Affiliation(s)
| | | | | | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany; (T.H.Y.B.); (L.R.); (R.O.)
| |
Collapse
|
27
|
Kiens EM, Choi MJ, Wei L, Lu Q, Wang L, Baeumer C. Deeper mechanistic insights into epitaxial nickelate electrocatalysts for the oxygen evolution reaction. Chem Commun (Camb) 2023; 59:4562-4577. [PMID: 36920360 PMCID: PMC10100650 DOI: 10.1039/d3cc00325f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Mass production of green hydrogen via water electrolysis requires advancements in the performance of electrocatalysts, especially for the oxygen evolution reaction. In this feature article, we highlight how epitaxial nickelates act as model systems to identify atomic-level composition-structure-property-activity relationships, capture dynamic changes under operating conditions, and reveal reaction and failure mechanisms. These insights guide advanced electrocatalyst design with tailored functionality and superior performance. We conclude with an outlook for future developments via operando characterization and multilayer electrocatalyst design.
Collapse
Affiliation(s)
- Ellen M Kiens
- MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Min-Ju Choi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Luhan Wei
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China.
| | - Qiyang Lu
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China.
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, P. R. China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Christoph Baeumer
- MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| |
Collapse
|
28
|
Dias GDS, Costa JM, Almeida Neto AFD. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: An updated review. Adv Colloid Interface Sci 2023; 315:102891. [PMID: 37058836 DOI: 10.1016/j.cis.2023.102891] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
The rechargeable alkaline aqueous zinc-air batteries (ZABs) are prospective candidates to supply the energy demand for their high theoretical energy density, inherent safety, and environmental friendliness. However, their practical application is mainly restricted by the unsatisfactory efficiency of the air electrode, leading to an intense search for high-efficient oxygen electrocatalysts. In recent years, the composites of carbon materials and transition metal chalcogenides (TMC/C) have emerged as promising alternatives because of the unique properties of these single compounds and the synergistic effect between them. In this sense, this review presented the electrochemical properties of these composites and their effects on the ZAB performance. The operational fundamentals of the ZABs were described. After elucidating the role of the carbon matrix in the hybrid material, the latest developments in the ZAB performance of the monometallic structure and spinel of TMC/C were detailed. In addition, we report topics on doping and heterostructure due to the large number of studies involving these specific defects. Finally, a critical conclusion and a brief overview sought to contribute to the advancement of TMC/C in the ZABs.
Collapse
Affiliation(s)
- Giancarlo de Souza Dias
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Product and Process Design, School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., 500, 13083-852 Campinas, São Paulo, Brazil
| | - Josiel Martins Costa
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato St., 80, 13083-862 Campinas, São Paulo, Brazil.
| | - Ambrósio Florêncio de Almeida Neto
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Product and Process Design, School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., 500, 13083-852 Campinas, São Paulo, Brazil
| |
Collapse
|
29
|
Kante M, Weber ML, Ni S, van den Bosch ICG, van der Minne E, Heymann L, Falling LJ, Gauquelin N, Tsvetanova M, Cunha DM, Koster G, Gunkel F, Nemšák S, Hahn H, Velasco Estrada L, Baeumer C. A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidation. ACS NANO 2023; 17:5329-5339. [PMID: 36913300 PMCID: PMC10061923 DOI: 10.1021/acsnano.2c08096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-δ with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides.
Collapse
Affiliation(s)
- Mohana
V. Kante
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Moritz L. Weber
- Peter
Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shu Ni
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Iris C. G. van den Bosch
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Emma van der Minne
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Lisa Heymann
- Peter
Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
| | - Lorenz J. Falling
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicolas Gauquelin
- Electron
Microscopy for Materials Research (EMAT), Department of Physics, University of Antwerp, Antwerpen BE-2020, Belgium
- NANOlab Center
of Excellence, University of Antwerp, Antwerpen BE-2020, Belgium
| | - Martina Tsvetanova
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Daniel M. Cunha
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Gertjan Koster
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Felix Gunkel
- Peter
Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
| | - Slavomír Nemšák
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Physics and Astronomy, University of
California Davis, Davis, California 95616, United States
| | - Horst Hahn
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Eggenstein-Leopoldshafen 76344, Germany
- Department
of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Leonardo Velasco Estrada
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Eggenstein-Leopoldshafen 76344, Germany
- Department
of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
- Universidad
Nacional de Colombia sede de La Paz, La Paz, Cesar 202010, Colombia
| | - Christoph Baeumer
- Peter
Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| |
Collapse
|
30
|
Angel S, Braun M, Alkan B, Landers J, Salamon S, Wende H, Andronescu C, Schulz C, Wiggers H. Spray-Flame Synthesis of LaFe xCo 1-xO 3 ( x = 0.2, 0.3) Perovskite Nanoparticles for Oxygen Evolution Reaction in Water Splitting: Effect of Precursor Chemistry (Acetates and Nitrates). J Phys Chem A 2023; 127:2564-2576. [PMID: 36896577 DOI: 10.1021/acs.jpca.2c06601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The product properties of mixed oxide nanoparticles generated via spray-flame synthesis depend on an intricate interplay of solvent and precursor chemistries in the processed solution. The effect of two different sets of metal precursors, acetates and nitrates, dissolved in a mixture of ethanol (35 Vol.%) and 2-ethylhexanoic acid (2-EHA, 65 Vol.%) was investigated for the synthesis of LaFexCo1-xO3 (x = 0.2, 0.3) perovskites. Regardless of the set of precursors, similar particle-size distributions (dp = 8-11 nm) were obtained and a few particles with sizes above 20 nm were identified with transmission electron microscopy (TEM) measurements. Using acetates as precursors, inhomogeneous La, Fe, and Co elemental distributions were obtained for all particle sizes according to energy dispersive X-ray (EDX) mappings, connected to the formation of multiple secondary phases such as oxygen-deficient La3(FexCo1-x)3O8 brownmillerite or La4(FexCo1-x)3O10 Ruddlesden-Popper (RP) structures besides the main trigonal perovskite phase. For samples synthesized from nitrates, inhomogeneous elemental distributions were observed for large particles only where La and Fe enrichment occurred in combination with the formation of a secondary La2(FexCo1-x)O4 RP phase. Such variations can be attributed to reactions in the solution prior to injection in the flame as well as precursor-dependent variations in in-flame reactions. Therefore, the precursor solutions were analyzed by temperature-dependent attenuated total reflection Fourier-transform infrared (ATR-FTIR) measurements. The acetate-based precursor solutions indicated the partial conversion of, mainly La and Fe, acetates to metal 2-ethylhexanoates. In the nitrate-based solutions, esterification of ethanol and 2-EHA played the most important role. The synthesized nanoparticle samples were characterized by BET (Brunauer, Emmett, Teller), FTIR, Mössbauer, and X-ray photoelectron spectroscopy (XPS). All samples were tested as oxygen evolution reaction (OER) catalysts, and similar electrocatalytic activities were recorded when evaluating the potential required to reach 10 mA/cm2 current density (∼1.61 V vs reversible hydrogen electrode (RHE)).
Collapse
Affiliation(s)
- Steven Angel
- EMPI, Institute for Energy and Materials Processes - Reactive Fluids, University of Duisburg-Essen, 47048 Duisburg, Germany
| | - Michael Braun
- Chemical Technology III, University of Duisburg-Essen, 47048 Duisburg, Germany
| | - Baris Alkan
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| | - Joachim Landers
- Experimental Physics, Faculty of Physics, University of Duisburg-Essen, 47048 Duisburg, Germany
| | - Soma Salamon
- Experimental Physics, Faculty of Physics, University of Duisburg-Essen, 47048 Duisburg, Germany
| | - Heiko Wende
- Experimental Physics, Faculty of Physics, University of Duisburg-Essen, 47048 Duisburg, Germany
- CENIDE, Center for Nanointegration, University of Duisburg-Essen, 47048 Duisburg, Germany
| | - Corina Andronescu
- Chemical Technology III, University of Duisburg-Essen, 47048 Duisburg, Germany
- CENIDE, Center for Nanointegration, University of Duisburg-Essen, 47048 Duisburg, Germany
| | - Christof Schulz
- EMPI, Institute for Energy and Materials Processes - Reactive Fluids, University of Duisburg-Essen, 47048 Duisburg, Germany
- CENIDE, Center for Nanointegration, University of Duisburg-Essen, 47048 Duisburg, Germany
| | - Hartmut Wiggers
- EMPI, Institute for Energy and Materials Processes - Reactive Fluids, University of Duisburg-Essen, 47048 Duisburg, Germany
- CENIDE, Center for Nanointegration, University of Duisburg-Essen, 47048 Duisburg, Germany
| |
Collapse
|
31
|
Li X, Liu Y, Xu H, Zhou Y, Chen X, An Z, Chen Y, Chen P. Tuning active sites for highly efficient bifunctional oxygen electrocatalysts of rechargeable zinc-air battery. J Colloid Interface Sci 2023; 640:549-557. [PMID: 36878072 DOI: 10.1016/j.jcis.2023.02.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
High activity, excellent durability, and low-cost oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional catalysts are highly required for rechargeable zinc (Zn)-air batteries. Herein, we designed an electrocatalyst by integrating the ORR active species of ferroferric oxide (Fe3O4) and the OER active species of cobaltous oxide (CoO) into the carbon nanoflower. By well regulating and controlling the synthesis parameters, Fe3O4 and CoO nanoparticles were uniformly inserted into the porous carbon nanoflower. This electrocatalyst can reduce the potential gap between the ORR and OER to 0.79 V. The Zn-air battery assembled with it exhibited an open-circuit voltage of 1.457 V, a stable discharge of 98 h, a high specific capacity of 740 mA h g-1, a large power density of 137 mW cm-2, as well as good charge/discharge cycling performance, exceeding the performance of platinum/carbon (Pt/C). This work provides references for exploring highly efficient non-noble metal oxygen electrocatalysts by tuning ORR/OER active sites.
Collapse
Affiliation(s)
- Xuhui Li
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Yanpin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Haifei Xu
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Yangfan Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Xinbing Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Yu Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Pei Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| |
Collapse
|
32
|
Shuai Y, Liu S, Wang Y, Zhou W, Qi X, Liu Y. The influence of MOF modification on oxygen evolution and reduction reaction of Fe-doped GdBaCo2O5+δ perovskite. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2022.106584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
Duraisamy V, Arumugam N, Almansour AI, Wang Y, Liu TX, Kumar SMS. In situ decoration of Co3O4 on N-doped hollow carbon sphere as an effective bifunctional oxygen electrocatalyst for oxygen evolution and oxygen reduction reactions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Kreider ME, Burke Stevens M. Material Changes in Electrocatalysis: An In Situ/Operando Focus on the Dynamics of Cobalt‐Based Oxygen Reduction and Evolution Catalysts. ChemElectroChem 2022. [DOI: 10.1002/celc.202200958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Melissa E. Kreider
- Department of Chemical Engineering Stanford University 443 Via Ortega, Stanford California 94305 United States
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park California 94025 United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park California 94025 United States
| |
Collapse
|
35
|
Gong W, Li J, Ma J, Liu D, Long R, Xiong Y. Highly efficient electrocatalytic biomass valorization over a perovskite-derived nickel phosphide catalyst. NANOSCALE HORIZONS 2022; 8:69-74. [PMID: 36408584 DOI: 10.1039/d2nh00391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, we successfully develop a binder-free phosphorus-engineered perovskite-based catalyst grown on nickel foam via a hydrothermal-phosphorization strategy. For the first time, an as-synthesized perovskite-based nickel phosphide catalyst exhibits excellent electrocatalytic oxidation (ECO) performance for biomass valorization to supersede the competitive oxygen evolution reaction (OER).
Collapse
Affiliation(s)
- Wanbing Gong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jiayi Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jun Ma
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Dong Liu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
36
|
Han L, Zhang J, Zou M, Tong JJ. Toward Superb Perovskite Oxide Electrocatalysts: Engineering of Coupled Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204784. [PMID: 36300911 DOI: 10.1002/smll.202204784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
A significant issue that bedeviled the commercialization of renewable energy technologies, ranging from low-temperature water electrolyzers to high-temperature solid oxide cells, is the lack of high-performance catalysts. Among various candidates that could tackle such a challenge, perovskite oxides are rising-star materials because of their unique structural and compositional flexibility. However, single-phase perovskite oxides are challenging to satisfy all the requirements of electrocatalysts concurrently for practical applications, such as high catalytic activity, excellent stability, good ionic and electronic conductivities, and superior chemical/thermo-mechanical robustness. Impressively, perovskite oxides with coupled nanocomposites are emerging as a novel form offering multifunctionality due to their intrinsic features, including infinite interfaces with solid interaction, tunable compositions, flexible configurations, and maximum synergistic effects between assorted components. Considering this new configuration has attracted great attention owing to its promising performances in various energy-related applications, this review timely summarizes the leading-edge development of perovskite oxide-based coupled nanocomposites. Their state-of-art synthetic strategies are surveyed and highlighted, their unique structural advantages are highlighted and illustrated through the typical oxygen reduction reaction and oxygen evolution reactions in both high and low-temperature applications. Opinions on the current critical scientific issues and opportunities in this burgeoning research field are all provided.
Collapse
Affiliation(s)
- Liang Han
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jiawei Zhang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Minda Zou
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jianhua Joshua Tong
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
37
|
Shi G, Tano T, Tryk DA, Yamaguchi M, Iiyama A, Uchida M, Iida K, Arata C, Watanabe S, Kakinuma K. Temperature Dependence of Oxygen Evolution Reaction Activity in Alkaline Solution at Ni–Co Oxide Catalysts with Amorphous/Crystalline Surfaces. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guoyu Shi
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| | - Tetsuro Tano
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| | - Donald A. Tryk
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| | - Miho Yamaguchi
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| | - Akihiro Iiyama
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| | - Makoto Uchida
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| | - Kazuo Iida
- R&D Center, Nihon Kagaku Sangyo Co., Ltd., Nakane 1-28-13, Soka, Saitama340-0005, Japan
| | - Chisato Arata
- R&D Center, Nihon Kagaku Sangyo Co., Ltd., Nakane 1-28-13, Soka, Saitama340-0005, Japan
| | - Sumitaka Watanabe
- R&D Center, Nihon Kagaku Sangyo Co., Ltd., Nakane 1-28-13, Soka, Saitama340-0005, Japan
| | - Katsuyoshi Kakinuma
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| |
Collapse
|
38
|
Lei Y, Elias Y, Han Y, Xiao D, Lu J, Ni J, Zhang Y, Zhang C, Aurbach D, Xiao Q. Mitigation of Oxygen Evolution and Phase Transition of Li-Rich Mn-Based Layered Oxide Cathodes by Coating with Oxygen-Deficient Perovskite Compounds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49709-49718. [PMID: 36268653 DOI: 10.1021/acsami.2c12739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Li-rich Mn-based layered oxide cathodes with a high discharge capacity hold great promise for high energy density lithium-ion batteries. However, application is hampered by voltage and capacity decay and gas evolution during cycling due to interfacial side reactions. Here, we report coating by oxygen-deficient perovskite La0.9Sr0.1CoO3 using the Pechini process. X-ray photoelectron spectroscopy and scanning transmission electron microscopy both exhibit a uniform coating layer with a high oxygen vacancy concentration. The coating effectively mitigates the first cycle irreversible capacity loss and voltage decay while increasing cyclability. Optimized coating improves capacity retention from 55.6% to 84.8% after 400 cycles at 2 C. Operando differential electrochemical mass spectroscopy shows that such a coating can significantly mitigate the release of oxygen and carbon dioxide. Electrochemical impedance spectroscopy and post-mortem analysis indicate that the coating layer forms a stable interface and restricts structure evolution and cation mixing during cycling, conferring these cathode materials with better cycling and voltage stability. The perovskite can be applied to other cathodes with high voltage and capacity to suppress interfacial side reactions toward developing stable high energy density batteries.
Collapse
Affiliation(s)
- Yike Lei
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai201804, P. R. China
| | - Yuval Elias
- Department of Chemistry, Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Yongkang Han
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai201804, P. R. China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, P. R. China
| | - Jie Ni
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai201804, P. R. China
| | - Yingchuan Zhang
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai201804, P. R. China
| | - Cunman Zhang
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai201804, P. R. China
| | - Doron Aurbach
- Department of Chemistry, Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Qiangfeng Xiao
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai201804, P. R. China
| |
Collapse
|
39
|
Li K, Dong Z, Lü Z. Study of the bifunctional catalytic activity on Sr and Mn co-doped PrFeO3-δ Zinc-Air batteries cathode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Hong S, Díez AM, Adeyemi AN, Sousa JPS, Salonen LM, Lebedev OI, Kolen’ko YV, Zaikina JV. Deep Eutectic Solvent Synthesis of Perovskite Electrocatalysts for Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23277-23284. [PMID: 35545871 PMCID: PMC9136838 DOI: 10.1021/acsami.1c24223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/15/2022] [Indexed: 05/26/2023]
Abstract
Oxide perovskites have attracted great interest as materials for energy conversion due to their stability and structural tunability. La-based perovskites of 3d-transition metals have demonstrated excellent activities as electrocatalysts in water oxidation. Herein, we report the synthesis route to La-based perovskites using an environmentally friendly deep eutectic solvent (DES) consisting of choline chloride and malonic acid. The DES route affords phase-pure crystalline materials on a gram scale and results in perovskites with high electrocatalytic activity for oxygen evolution reaction. A convenient, fast, and scalable synthesis proceeds via assisted metathesis at a lower temperature as compared to traditional solid-state methods. Among LaCoO3, LaMn0.5Ni0.5O3, and LaMnO3 perovskites prepared via the DES route, LaCoO3 was established to be the best-performing electrocatalyst for water oxidation in alkaline medium at 0.25 mg cm-2 mass loading. LaCoO3 exhibits current densities of 10, 50, and 100 mA cm-2 at respective overpotentials of approximately 390, 430, and 470 mV, respectively, and features a Tafel slope of 55.8 mV dec-1. The high activity of LaCoO3 as compared to the other prepared perovskites is attributed to the high concentration of oxygen vacancies in the LaCoO3 lattice, as observed by high-resolution transmission electron microscopy. An intrinsically high concentration of O vacancies in the LaCoO3 synthesized via the DES route is ascribed to the reducing atmosphere attained upon thermal decomposition of the DES components. These findings will contribute to the preparation of highly active perovskites for various energy applications.
Collapse
Affiliation(s)
- Sangki Hong
- Department
of Chemistry, Iowa State University, Ames, 50011 Iowa, United States
| | - Aida M. Díez
- Nanochemistry
Research Group, International Iberian Nanotechnology
Laboratory, Braga 4715-330, Portugal
| | - Adedoyin N. Adeyemi
- Department
of Chemistry, Iowa State University, Ames, 50011 Iowa, United States
| | - Juliana P. S. Sousa
- Nanochemistry
Research Group, International Iberian Nanotechnology
Laboratory, Braga 4715-330, Portugal
| | - Laura M. Salonen
- Nanochemistry
Research Group, International Iberian Nanotechnology
Laboratory, Braga 4715-330, Portugal
| | - Oleg I. Lebedev
- Laboratoire
CRISMAT, UMR 6508, CNRS-ENSICAEN, Caen 14050, France
| | - Yury V. Kolen’ko
- Nanochemistry
Research Group, International Iberian Nanotechnology
Laboratory, Braga 4715-330, Portugal
| | - Julia V. Zaikina
- Department
of Chemistry, Iowa State University, Ames, 50011 Iowa, United States
| |
Collapse
|
41
|
Zhang A, Liu Y, Wu J, Xue L, Tang Y, Yan X, Zeng S. Weakening O O binding on Au-Cu2O/carbon nanotube catalysts with local misfit dislocation by interfacial coupling interaction for oxygen reduction reaction. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
|
43
|
Thundiyil S, Pandikassala A, Kurungot S, Devi RN. Tuning of Oxygen Reduction Pathways through Structural Variation in Transition Metal‐Doped Ba
2
In
2
O
5. ChemElectroChem 2022. [DOI: 10.1002/celc.202101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shibin Thundiyil
- Catalysis and Inorganic Chemistry Division CSIR-National Chemical Laboratory Pune 411008 India
- Academy of Innovative and Scientific Research (AcSIR) Ghaziabad 201002 India
| | - Ajmal Pandikassala
- Physical and Material Chemistry Division CSIR-National Chemical Laboratory Pune 411008 India
- Academy of Innovative and Scientific Research (AcSIR) Ghaziabad 201002 India
| | - Sreekumar Kurungot
- Physical and Material Chemistry Division CSIR-National Chemical Laboratory Pune 411008 India
- Academy of Innovative and Scientific Research (AcSIR) Ghaziabad 201002 India
| | - R. Nandini Devi
- Catalysis and Inorganic Chemistry Division CSIR-National Chemical Laboratory Pune 411008 India
- Academy of Innovative and Scientific Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
44
|
Selvakumar K, Duraisamy V, Venkateshwaran S, Arumugam N, Almansour AI, Wang Y, Xiaoteng Liu T, Murugesan Senthil Kumar S. Development of α‐MnO
2
Nanowire with Ni‐ and (Ni, Co)‐Cation Doping as an Efficient Bifunctional Oxygen Evolution and Oxygen Reduction Reaction Catalyst. ChemElectroChem 2022. [DOI: 10.1002/celc.202101303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Karuppiah Selvakumar
- Electroorganic and Materials Electrochemistry (EME) Division CSIR-Central Electrochemical Research Institute (CECRI) Karaikudi-630 003 Tamil Nadu India
| | - Velu Duraisamy
- Electroorganic and Materials Electrochemistry (EME) Division CSIR-Central Electrochemical Research Institute (CECRI) Karaikudi-630 003 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Selvaraj Venkateshwaran
- Electroorganic and Materials Electrochemistry (EME) Division CSIR-Central Electrochemical Research Institute (CECRI) Karaikudi-630 003 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Yucheng Wang
- Faculty of Engineering and Environment Northumbria University Newcastle Upon Tyne NE1 8ST United Kingdom
| | - Terence Xiaoteng Liu
- Faculty of Engineering and Environment Northumbria University Newcastle Upon Tyne NE1 8ST United Kingdom
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry (EME) Division CSIR-Central Electrochemical Research Institute (CECRI) Karaikudi-630 003 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
45
|
Zeng H, Zeng Y, Qi J, Gu L, Hong E, Si R, Yang C. The role of proton dynamics on the catalyst-electrolyte interface in the oxygen evolution reaction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Perovskite-Based Nanocomposite Electrocatalysts: An Alternative to Platinum ORR Catalyst in Microbial Fuel Cell Cathodes. ENERGIES 2021. [DOI: 10.3390/en15010272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbial fuel cells (MFCs) are biochemical systems having the benefit of producing green energy through the microbial degradation of organic contaminants in wastewater. The efficiency of MFCs largely depends on the cathode oxygen reduction reaction (ORR). A preferable ORR catalyst must have good oxygen reduction kinetics, high conductivity and durability, together with cost-effectiveness. Platinum-based electrodes are considered a state-of-the-art ORR catalyst. However, the scarcity and higher cost of Pt are the main challenges for the commercialization of MFCs; therefore, in search of alternative, cost-effective catalysts, those such as doped carbons and transition-metal-based electrocatalysts have been researched for more than a decade. Recently, perovskite-oxide-based nanocomposites have emerged as a potential ORR catalyst due to their versatile elemental composition, molecular mechanism and the scope of nanoengineering for further developments. In this article, we discuss various studies conducted and opportunities associated with perovskite-based catalysts for ORR in MFCs. Special focus is given to a basic understanding of the ORR reaction mechanism through oxygen vacancy, modification of its microstructure by introducing alkaline earth metals, electron transfer pathways and the synergistic effect of perovskite and carbon. At the end, we also propose various challenges and prospects to further improve the ORR activity of perovskite-based catalysts.
Collapse
|
47
|
Boonlha S, Chakthranont P, Kityakarn S. 3DOM Cerium Doped LaCoO
3
Bifunctional Electrocatalysts for the Oxygen Evolution and Reduction Reactions. ChemCatChem 2021. [DOI: 10.1002/cctc.202101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sukit Boonlha
- Department of Chemistry Faculty of Science Kasetsart University 10900 Bangkok Thailand
| | - Pongkarn Chakthranont
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) 12120 Pathum Thani Thailand
| | - Sutasinee Kityakarn
- Department of Chemistry Faculty of Science Kasetsart University 10900 Bangkok Thailand
| |
Collapse
|
48
|
Samira S, Hong J, Camayang JCA, Sun K, Hoffman AS, Bare SR, Nikolla E. Dynamic Surface Reconstruction Unifies the Electrocatalytic Oxygen Evolution Performance of Nonstoichiometric Mixed Metal Oxides. JACS AU 2021; 1:2224-2241. [PMID: 34977894 PMCID: PMC8715492 DOI: 10.1021/jacsau.1c00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 05/26/2023]
Abstract
Compositionally versatile, nonstoichiometric, mixed ionic-electronic conducting metal oxides of the form A n+1B n O3n+1 (n = 1 → ∞; A = rare-earth-/alkaline-earth-metal cation; B = transition-metal (TM) cation) remain a highly attractive class of electrocatalysts for catalyzing the energy-intensive oxygen evolution reaction (OER). The current design strategies for describing their OER activities are largely derived assuming a static, unchanged view of their surfaces, despite reports of dynamic structural changes to 3d TM-based perovskites during OER. Herein, through variations in the A- and B-site compositions of A n+1B n O3n+1 oxides (n = 1 (A2BO4) or n = ∞ (ABO3); A = La, Sr, Ca; B = Mn, Fe, Co, Ni), we show that, in the absence of electrolyte impurities, surface restructuring is universally the source of high OER activity in these oxides and is dependent on the initial oxide composition. Oxide surface restructuring is induced by irreversible A-site cation dissolution, resulting in in situ formation of a TM oxyhydroxide shell on top of the parent oxide core that serves as the active surface for OER. The rate of surface restructuring is found to depend on (i) composition of A-site cations, with alkaline-earth-metal cations dominating lanthanide cation dissolution, (ii) oxide crystal phase, with n = 1 A2BO4 oxides exhibiting higher rates of A-site dissolution in comparison to n = ∞ ABO3 perovskites, (iii) lattice strain in the oxide induced by mixed rare-earth- and alkaline-earth-metal cations in the A-site, and (iv) oxide reducibility. Among the in situ generated 3d TM oxyhydroxide structures from A n+1B n O3n+1 oxides, Co-based structures are characterized by superior OER activity and stability, even in comparison to as-synthesized Co-oxyhydroxide, pointing to the generation of high active surface area structures through oxide restructuring. These insights are critical toward the development of revised design criteria to include surface dynamics for effectively describing the OER activity of nonstoichiometric mixed-metal oxides.
Collapse
Affiliation(s)
- Samji Samira
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Jiyun Hong
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - John Carl A. Camayang
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Kai Sun
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adam S. Hoffman
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Simon R. Bare
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Eranda Nikolla
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
49
|
Yadav P, Yadav S, Atri S, Tomar R. A Brief Review on Key Role of Perovskite Oxides as Catalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202102292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pinky Yadav
- Department of Chemistry Faculty of Science SGT University Gurugram Haryana 122505 India
| | - Sangeeta Yadav
- Department of Chemistry Faculty of Science SGT University Gurugram Haryana 122505 India
| | - Shalu Atri
- Department of Chemistry Faculty of Science SGT University Gurugram Haryana 122505 India
| | - Ravi Tomar
- Department of Chemistry Faculty of Science SGT University Gurugram Haryana 122505 India
| |
Collapse
|
50
|
Marelli E, Gazquez J, Poghosyan E, Müller E, Gawryluk DJ, Pomjakushina E, Sheptyakov D, Piamonteze C, Aegerter D, Schmidt TJ, Medarde M, Fabbri E. Correlation between Oxygen Vacancies and Oxygen Evolution Reaction Activity for a Model Electrode: PrBaCo
2
O
5+
δ
. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elena Marelli
- Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Jaume Gazquez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB, Bellaterra 08193 Barcelona Spain
| | - Emiliya Poghosyan
- Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Elisabeth Müller
- Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | | | | | - Denis Sheptyakov
- Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Cinthia Piamonteze
- Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Dino Aegerter
- Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Thomas J. Schmidt
- Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
- Laboratory of Physical Chemistry ETH Zurich 8093 Zurich Switzerland
| | - Marisa Medarde
- Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Emiliana Fabbri
- Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| |
Collapse
|