1
|
Zhang X, Feng Y, Hua Y, Zhang C, Fang B, Long X, Pan Y, Gao B, Zhang JZH, Li L, Ni H, Zhang L. Biosynthesis of eriodictyol in citrus waster by endowing P450BM3 activity of naringenin hydroxylation. Appl Microbiol Biotechnol 2024; 108:84. [PMID: 38189953 PMCID: PMC10787690 DOI: 10.1007/s00253-023-12867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 01/09/2024]
Abstract
The flavonoid naringenin is abundantly present in pomelo peels, and the unprocessed naringenin in wastes is not friendly for the environment once discarded directly. Fortunately, the hydroxylated product of eriodictyol from naringenin exhibits remarkable antioxidant and anticancer properties. The P450s was suggested promising for the bioconversion of the flavonoids, but less naturally existed P450s show hydroxylation activity to C3' of the naringenin. By well analyzing the catalytic mechanism and the conformations of the naringenin in P450, we proposed that the intermediate Cmpd I ((porphyrin)Fe = O) is more reasonable as key conformation for the hydrolyzation, and the distance between C3'/C5' of naringenin to the O atom of CmpdI determines the hydroxylating activity for the naringenin. Thus, the "flying kite model" that gradually drags the C-H bond of the substrate to the O atom of CmpdI was put forward for rational design. With ab initio design, we successfully endowed the self-sufficient P450-BM3 hydroxylic activity to naringenin and obtained mutant M5-5, with kcat, Km, and kcat/Km values of 230.45 min-1, 310.48 µM, and 0.742 min-1 µM-1, respectively. Furthermore, the mutant M4186 was screened with kcat/Km of 4.28-fold highly improved than the reported M13. The M4186 also exhibited 62.57% yield of eriodictyol, more suitable for the industrial application. This study provided a theoretical guide for the rational design of P450s to the nonnative compounds. KEY POINTS: •The compound I is proposed as the starting point for the rational design of the P450BM3 •"Flying kite model" is proposed based on the distance between O of Cmpd I and C3'/C5' of naringenin •Mutant M15-5 with 1.6-fold of activity than M13 was obtained by ab initio modification.
Collapse
Affiliation(s)
- Xingyi Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yinghui Feng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuanzhe Hua
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Chuanxi Zhang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bohuan Fang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Long
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yue Pan
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Bei Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
| |
Collapse
|
2
|
Harding-Larsen D, Funk J, Madsen NG, Gharabli H, Acevedo-Rocha CG, Mazurenko S, Welner DH. Protein representations: Encoding biological information for machine learning in biocatalysis. Biotechnol Adv 2024; 77:108459. [PMID: 39366493 DOI: 10.1016/j.biotechadv.2024.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Enzymes offer a more environmentally friendly and low-impact solution to conventional chemistry, but they often require additional engineering for their application in industrial settings, an endeavour that is challenging and laborious. To address this issue, the power of machine learning can be harnessed to produce predictive models that enable the in silico study and engineering of improved enzymatic properties. Such machine learning models, however, require the conversion of the complex biological information to a numerical input, also called protein representations. These inputs demand special attention to ensure the training of accurate and precise models, and, in this review, we therefore examine the critical step of encoding protein information to numeric representations for use in machine learning. We selected the most important approaches for encoding the three distinct biological protein representations - primary sequence, 3D structure, and dynamics - to explore their requirements for employment and inductive biases. Combined representations of proteins and substrates are also introduced as emergent tools in biocatalysis. We propose the division of fixed representations, a collection of rule-based encoding strategies, and learned representations extracted from the latent spaces of large neural networks. To select the most suitable protein representation, we propose two main factors to consider. The first one is the model setup, which is influenced by the size of the training dataset and the choice of architecture. The second factor is the model objectives such as consideration about the assayed property, the difference between wild-type models and mutant predictors, and requirements for explainability. This review is aimed at serving as a source of information and guidance for properly representing enzymes in future machine learning models for biocatalysis.
Collapse
Affiliation(s)
- David Harding-Larsen
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Jonathan Funk
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Niklas Gesmar Madsen
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Hani Gharabli
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Carlos G Acevedo-Rocha
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Bygning 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Soler J, Gergel S, Hammer SC, Garcia-Borràs M. Molecular Basis for Chemoselectivity Control in Oxidations of Internal Aryl-Alkenes Catalyzed by Laboratory Evolved P450s. Chembiochem 2024; 25:e202400066. [PMID: 38567500 DOI: 10.1002/cbic.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/04/2024]
Abstract
P450 enzymes naturally perform selective hydroxylations and epoxidations of unfunctionalized hydrocarbon substrates, among other reactions. The adaptation of P450 enzymes to a particular oxidative reaction involving alkenes is of great interest for the design of new synthetically useful biocatalysts. However, the mechanism that these enzymes utilize to precisely modulate the chemoselectivity and distinguishing between competing alkene double bond epoxidations and allylic C-H hydroxylations is sometimes not clear, which hampers the rational design of specific biocatalysts. In a previous work, a P450 from Labrenzia aggregata (P450LA1) was engineered in the laboratory using directed evolution to catalyze the direct oxidation of trans-β-methylstyrene to phenylacetone. The final variant, KS, was able to overcome the intrinsic preference for alkene epoxidation to directly generate a ketone product via the formation of a highly reactive carbocation intermediate. Here, additional library screening along this evolutionary lineage permitted to serendipitously detect a mutation that overcomes epoxidation and carbonyl formation by exhibiting a large selectivity of 94 % towards allylic C-H hydroxylation. A multiscalar computational methodology was applied to reveal the molecular basis towards this hydroxylation preference. Enzyme modelling suggests that introduction of a bulky substitution dramatically changes the accessible conformations of the substrate in the active site, thus modifying the enzymatic selectivity towards terminal hydroxylation and avoiding the competing epoxidation pathway, which is sterically hindered.
Collapse
Affiliation(s)
- Jordi Soler
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Sebastian Gergel
- Organic Chemistry and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Stephan C Hammer
- Organic Chemistry and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| |
Collapse
|
4
|
Wang H, Abe I. Recent developments in the enzymatic modifications of steroid scaffolds. Org Biomol Chem 2024; 22:3559-3583. [PMID: 38639195 DOI: 10.1039/d4ob00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
6
|
Ma B, Niu J, Zhu H, Chi H, Lu Z, Lu F, Zhu P. Engineering substrate specificity of quinone-dependent dehydrogenases for efficient oxidation of deoxynivalenol to 3-keto-deoxynivalenol. Int J Biol Macromol 2024; 264:130484. [PMID: 38431002 DOI: 10.1016/j.ijbiomac.2024.130484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The oxidative reaction of Fusarium mycotoxin deoxynivalenol (DON) using the dehydrogenase is a desirable strategy and environmentally friendly to mitigate its toxicity. However, a critical issue for these dehydrogenases shows widespread substrate promiscuity. In this study, we conducted pocket reshaping of Devosia strain A6-243 pyrroloquinoline quinone (PQQ)-dependent dehydrogenase (DADH) on the basis of protein structure and kinetic analysis of substrate libraries to improve preference for particular substrate DON (10a). The variant presented an increased preference for substrate 10a and enhanced catalytic efficiency. A 4.7-fold increase in preference for substrate 10a was observed. Kinetic profiling and molecular dynamics (MD) simulations provided insights into the enhanced substrate specificity and activity. Moreover, the variant exhibited stronger conversion of substrate 10a to 3-keto-DON compared to the wild DADH. Overall, this study provides a feasible protocol for the redesign of PQQ-dependent dehydrogenases with favourable substrate specificity and catalytic activity, which is desperately needed for DON antidote development.
Collapse
Affiliation(s)
- Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Sun C, Hu B, Li Y, Wu Z, Zhou J, Li J, Chen J, Du G, Zhao X. Efficient stereoselective hydroxylation of deoxycholic acid by the robust whole-cell cytochrome P450 CYP107D1 biocatalyst. Synth Syst Biotechnol 2023; 8:741-748. [PMID: 38107826 PMCID: PMC10722395 DOI: 10.1016/j.synbio.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Deoxycholic acid (DCA) has been authorized by the Federal Drug Agency for cosmetic reduction of redundant submental fat. The hydroxylated product (6β-OH DCA) was developed to improve the solubility and pharmaceutic properties of DCA for further applications. Herein, a combinatorial catalytic strategy was applied to construct a powerful Cytochrome P450 biocatalyst (CYP107D1, OleP) to convert DCA to 6β-OH DCA. Firstly, the weak expression of OleP was significantly improved using pRSFDuet-1 plasmid in the E. coli C41 (DE3) strain. Next, the supply of heme was enhanced by the moderate overexpression of crucial genes in the heme biosynthetic pathway. In addition, a new biosensor was developed to select the appropriate redox partner. Furthermore, a cost-effective whole-cell catalytic system was constructed, resulting in the highest reported conversion rate of 6β-OH DCA (from 4.8% to 99.1%). The combinatorial catalytic strategies applied in this study provide an efficient method to synthesize high-value-added hydroxylated compounds by P450s.
Collapse
Affiliation(s)
- Chixiang Sun
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Baodong Hu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yanchun Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhimeng Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
8
|
Yu H, Zhang X, Acevedo-Rocha CG, Li A, Reetz MT. Protein engineering using mutability landscapes: Controlling site-selectivity of P450-catalyzed steroid hydroxylation. Methods Enzymol 2023; 693:191-229. [PMID: 37977731 DOI: 10.1016/bs.mie.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Directed evolution and rational design have been used widely in engineering enzymes for their application in synthetic organic chemistry and biotechnology. With stereoselectivity playing a crucial role in catalysis for the synthesis of valuable chemical and pharmaceutical compounds, rational design has not achieved such wide success in this specific area compared to directed evolution. Nevertheless, one bottleneck of directed evolution is the laborious screening efforts and the observed trade-offs in catalytic profiles. This has motivated researchers to develop more efficient protein engineering methods. As a prime approach, mutability landscaping avoids such trade-offs by providing more information of sequence-function relationships. Here, we describe an application of this efficient protein engineering method to improve the regio-/stereoselectivity and activity of P450BM3 for steroid hydroxylation, while keeping the mutagenesis libraries small so that they will require only minimal screening.
Collapse
Affiliation(s)
- Huili Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China
| | - Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China
| | - Carlos G Acevedo-Rocha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China.
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Muelheim, Germany; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, P. R. China.
| |
Collapse
|
9
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
10
|
Stanfield JK, Onoda H, Ariyasu S, Kasai C, Burfoot EM, Sugimoto H, Shoji O. Investigating the applicability of the CYP102A1-decoy-molecule system to other members of the CYP102A subfamily. J Inorg Biochem 2023; 245:112235. [PMID: 37167731 DOI: 10.1016/j.jinorgbio.2023.112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/13/2023]
Abstract
Cytochrome P450 enzymes (CYPs) have attracted much promise as biocatalysts in a push for cleaner and more environmentally friendly catalytic systems. However, changing the substrate specificity of CYPs, such as CYP102A1, can be a challenging task, requiring laborious mutagenesis. An alternative approach is the use of decoy molecules that "trick" the enzyme into becoming active by impersonating the native substrate. Whilst the decoy molecule system has been extensively developed for CYP102A1, its general applicability for other CYP102-family enzymes has yet to be shown. Herein, we demonstrate that decoy molecules can "trick" CYP102A5 and A7 into becoming active and hydroxylating non-native substrates. Furthermore, significant differences in decoy molecule selectivity as well as decoy molecule binding were observed. The X-ray crystal structure of the CYP102A5 haem domain was solved at 2.8 Å, delivering insight into a potential substate-binding site that differs significantly from CYP102A1.
Collapse
Affiliation(s)
- Joshua Kyle Stanfield
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroki Onoda
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Shinya Ariyasu
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Chie Kasai
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Eleanor Mary Burfoot
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Hiroshi Sugimoto
- SR Life Science Instrumentation Team, RIKEN SPring-8 Centre, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Osami Shoji
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
11
|
Zeng C, Xu S, Yin Z, Cui Y, Xu X, Li N. Optimization and Impurity Control Strategy for Lithocholic Acid Production Using Commercially Plant-Sourced Bisnoralcohol. ACS OMEGA 2023; 8:23130-23141. [PMID: 37396276 PMCID: PMC10308411 DOI: 10.1021/acsomega.3c02548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
In this study, lithocholic acid (LCA) was prepared using commercially available plant-sourced bisnoralcohol (BA), and the overall yield of the product was 70.6% for five steps. To prevent process-related impurities, the isomerizations of catalytic hydrogenation in the C4-C5 double bond and reduction of the 3-keto group were optimized. The double bond reduction isomerization was improved (5β-H:5α-H = 97:3) using palladium-copper nanowires (Pd-Cu NWs) instead of Pd/C. The reduction of the 3-keto group was 100% converted to a 3α-OH product by 3α-hydroxysteroid dehydrogenase/carbonyl reductase catalysis. Moreover, the impurities during the optimization process were comprehensively studied. Compared with the reported synthesis methods, our developed method significantly improved the isomer ratio and overall yield, affording ICH-grade quality of LCA, and it is more cost-effective and suitable for large-scale production of LCA.
Collapse
Affiliation(s)
- Chunling Zeng
- College
of Chemistry and Chemical Engineering, Hunan
University, Changsha 410082, China
| | - Shitang Xu
- College
of Chemistry and Chemical Engineering, Hunan
University, Changsha 410082, China
| | - Zhenlong Yin
- College
of Chemistry and Chemical Engineering, Hunan
University, Changsha 410082, China
| | - Yue Cui
- College
of Chemistry and Chemical Engineering, Hunan
University, Changsha 410082, China
| | - Xinhua Xu
- College
of Chemistry and Chemical Engineering, Hunan
University, Changsha 410082, China
| | - Ningbo Li
- School
of Basic Medical Sciences, Shanxi Medical
University, Taiyuan 030001, China
| |
Collapse
|
12
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
13
|
Peng S, Chu Z, Lu J, Li D, Wang Y, Yang S, Zhang Y. Overexpression of chaperones GroEL/ES from Escherichia coli enhances indigo biotransformation production of cytochrome P450 BM3 mutant. Biotechnol Lett 2023:10.1007/s10529-023-03397-5. [PMID: 37243776 DOI: 10.1007/s10529-023-03397-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 04/08/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
The self-sufficient cytochrome P450 BM3 mutant (A74G/F87V/D168H/L188Q) can serve as a biocatalyst for whole-cell catalysis process of indigo. Nevertheless, the bioconversion yield of indigo is generally low under normal cultivation conditions (37 °C, 250 rpm). In this study, a recombinant E. coli BL21(DE3) strain was constructed to co-express the P450 BM3 mutant gene and GroEL/ES genes to investigate whether GroEL/ES can promote the indigo bioconversion yield in E. coli. The results revealed that the GroEL/ES system could significantly increase the indigo bioconversion yield, and the indigo bioconversion yield of the strain co-expressing P450 BM3 mutant and GroEL/ES was about 21-fold that of the strain only expressing the P450 BM3 mutant. In addition, the P450 BM3 enzyme content and in vitro indigo bioconversion yield were determined to explore the underlying mechanism for the improvement of indigo bioconversion yield. The results revealed that GroEL/ES did not increase indigo bioconversion yield by increasing the content of P450 BM3 enzyme and its enzymatic transformation efficiency. Moreover, GroEL/ES could improve the intracellular nicotinamide adenine dinucleotide phosphate (NADPH)/NADP+ ratio. Given that NADPH is an important coenzyme in the catalytic process of indigo, the underlying mechanism for the improvement of indigo bioconversion yield is probably related to an increase in the intracellular NADPH/NADP+ ratio.
Collapse
Affiliation(s)
- Shuaiying Peng
- Department of Biological Sciences and Biotechnology, Jiangxi Agricultural University, NO.1101 Fangzhimin Avenue, Nanchang, 330045, China.
| | - Zhongmei Chu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, NO.500 Caobao Road, Shanghai, 200233, China
| | - Jianfeng Lu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, NO.500 Caobao Road, Shanghai, 200233, China
| | - Dongxiao Li
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, NO.500 Caobao Road, Shanghai, 200233, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengli Yang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, NO.500 Caobao Road, Shanghai, 200233, China
| | - Yi Zhang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, NO.500 Caobao Road, Shanghai, 200233, China.
| |
Collapse
|
14
|
Permana D, Kitaoka T, Ichinose H. Conversion and synthesis of chemicals catalyzed by fungal cytochrome P450 monooxygenases: A review. Biotechnol Bioeng 2023. [PMID: 37139574 DOI: 10.1002/bit.28411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Cytochrome P450s (also called CYPs or P450s) are a superfamily of heme-containing monooxygenases. They are distributed in all biological kingdoms. Most fungi have at least two P450-encoding genes, CYP51 and CYP61, which are housekeeping genes that play important roles in the synthesis of sterols. However, the kingdom fungi is an interesting source of numerous P450s. Here, we review reports on fungal P450s and their applications in the bioconversion and biosynthesis of chemicals. We highlight their history, availability, and versatility. We describe their involvement in hydroxylation, dealkylation, oxygenation, C═C epoxidation, C-C cleavage, C-C ring formation and expansion, C-C ring contraction, and uncommon reactions in bioconversion and/or biosynthesis pathways. The ability of P450s to catalyze these reactions makes them promising enzymes for many applications. Thus, we also discuss future prospects in this field. We hope that this review will stimulate further study and exploitation of fungal P450s for specific reactions and applications.
Collapse
Affiliation(s)
- Dani Permana
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Research Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia (Badan Riset dan Inovasi Nasional (BRIN)), Bandung Advanced Science and Creative Engineering Space (BASICS), Kawasan Sains dan Teknologi (KST) Prof. Dr. Samaun Samadikun, Bandung, Indonesia
| | - Takuya Kitaoka
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
15
|
Gao Q, Ma B, Wang Q, Zhang H, Fushinobu S, Yang J, Lin S, Sun K, Han BN, Xu LH. Improved 2α-Hydroxylation Efficiency of Steroids by CYP154C2 Using Structure-Guided Rational Design. Appl Environ Microbiol 2023; 89:e0218622. [PMID: 36847541 PMCID: PMC10056965 DOI: 10.1128/aem.02186-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023] Open
Abstract
Cytochrome P450 enzymes are promising biocatalysts for industrial use because they catalyze site-selective C-H oxidation and have diverse catalytic reactions and a broad substrate range. In this study, the 2α-hydroxylation activity of CYP154C2 from Streptomyces avermitilis MA-4680T toward androstenedione (ASD) was identified by an in vitro conversion assay. The testosterone (TES)-bound structure of CYP154C2 was solved at 1.42 Å, and this structure was used to design eight mutants, including single, double, and triple mutants, to improve the conversion efficiency. Mutants L88F/M191F and M191F/V285L were found to enhance the conversion rates significantly (i.e., 8.9-fold and 7.4-fold for TES, 46.5-fold and 19.5-fold for ASD, respectively) compared with the wild-type (WT) enzyme while retaining high 2α-position selectivity. The substrate binding affinity of the L88F/M191F mutant toward TES and ASD was enhanced compared with that of WT CYP154C2, supporting the measured increase in the conversion efficiencies. Moreover, the total turnover number and kcat/Km of the L88F/M191F and M191F/V285L mutants increased significantly. Interestingly, all mutants containing L88F generated 16α-hydroxylation products, suggesting that L88 in CYP154C2 plays a vital role in substrate selectivity and that the amino acid corresponding to L88 in the 154C subfamily affects the orientation of steroid binding and substrate selectivity. IMPORTANCE Hydroxylated derivatives of steroids play essential roles in medicine. Cytochrome P450 enzymes selectively hydroxylate methyne groups on steroids, which can dramatically change their polarity, biological activity and toxicity. There is a paucity of reports on the 2α-hydroxylation of steroids, and documented 2α-hydroxylate P450s show extremely low conversion efficiency and/or low regio- and stereoselectivity. This study conducted crystal structure analysis and structure-guided rational engineering of CYP154C2 and efficiently enhanced the conversion efficiency of TES and ASD with high regio- and stereoselectivity. Our results provide an effective strategy and theoretical basis for the 2α-hydroxylation of steroids, and the structure-guided rational design of P450s should facilitate P450 applications in the biosynthesis of steroid drugs.
Collapse
Affiliation(s)
- Qilin Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bingbing Ma
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qianwen Wang
- Ocean College, Zhejiang University, Zhoushan, China
| | - Hao Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Jian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Susu Lin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Keke Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bing-Nan Han
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lian-Hua Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
16
|
Eom H, Cao Y, Kim H, de Visser SP, Song WJ. Underlying Role of Hydrophobic Environments in Tuning Metal Elements for Efficient Enzyme Catalysis. J Am Chem Soc 2023; 145:5880-5887. [PMID: 36853654 DOI: 10.1021/jacs.2c13337] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The catalytic functions of metalloenzymes are often strongly correlated with metal elements in the active sites. However, dioxygen-activating nonheme quercetin dioxygenases (QueD) are found with various first-row transition-metal ions when metal swapping inactivates their innate catalytic activity. To unveil the molecular basis of this seemingly promiscuous yet metal-specific enzyme, we transformed manganese-dependent QueD into a nickel-dependent enzyme by sequence- and structure-based directed evolution. Although the net effect of acquired mutations was primarily to rearrange hydrophobic residues in the active site pocket, biochemical, kinetic, X-ray crystallographic, spectroscopic, and computational studies suggest that these modifications in the secondary coordination spheres can adjust the electronic structure of the enzyme-substrate complex to counteract the effects induced by the metal substitution. These results explicitly demonstrate that such noncovalent interactions encrypt metal specificity in a finely modulated manner, revealing the underestimated chemical power of the hydrophobic sequence network in enzyme catalysis.
Collapse
Affiliation(s)
- Hyunuk Eom
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Yuanxin Cao
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, U.K.,Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Hyunsoo Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, U.K.,Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Woon Ju Song
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
17
|
Li Y, Lin Y, Wang F, Wang J, Shoji O, Xu J. Construction of Biocatalysts Using the P450 Scaffold for the Synthesis of Indigo from Indole. Int J Mol Sci 2023; 24:ijms24032395. [PMID: 36768714 PMCID: PMC9917246 DOI: 10.3390/ijms24032395] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
With the increasing demand for blue dyes, it is of vital importance to develop a green and efficient biocatalyst to produce indigo. This study constructed a hydrogen peroxide-dependent catalytic system for the direct conversion of indole to indigo using P450BM3 with the assistance of dual-functional small molecules (DFSM). The arrangements of amino acids at 78, 87, and 268 positions influenced the catalytic activity. F87G/T268V mutant gave the highest catalytic activity with kcat of 1402 min-1 and with a yield of 73%. F87A/T268V mutant was found to produce the indigo product with chemoselectivity as high as 80%. Moreover, F87G/T268A mutant was found to efficiently catalyze indole oxidation with higher activity (kcat/Km = 1388 mM-1 min-1) than other enzymes, such as the NADPH-dependent P450BM3 (2.4-fold), the Ngb (32-fold) and the Mb (117-fold). Computer simulation results indicate that the arrangements of amino acid residues in the active site can significantly affect the catalytic activity of the protein. The DFSM-facilitated P450BM3 peroxygenase system provides an alternative, simple approach for a key step in the bioproduction of indigo.
Collapse
Affiliation(s)
- Yanqing Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Yingwu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Fang Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Jinghan Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Correspondence: (O.S.); (J.X.)
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
- Correspondence: (O.S.); (J.X.)
| |
Collapse
|
18
|
Chen J, Dong S, Fang W, Jiang Y, Chen Z, Qin X, Wang C, Zhou H, Jin L, Feng Y, Wang B, Cong Z. Regiodivergent and Enantioselective Hydroxylation of C-H bonds by Synergistic Use of Protein Engineering and Exogenous Dual-Functional Small Molecules. Angew Chem Int Ed Engl 2023; 62:e202215088. [PMID: 36417593 DOI: 10.1002/anie.202215088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
It is a great challenge to optionally access diverse hydroxylation products from a given substrate bearing multiple reaction sites of sp3 and sp2 C-H bonds. Herein, we report the highly selective divergent hydroxylation of alkylbenzenes by an engineered P450 peroxygenase driven by a dual-functional small molecule (DFSM). Using combinations of various P450BM3 variants with DFSMs enabled access to more than half of all possible hydroxylated products from each substrate with excellent regioselectivity (up to >99 %), enantioselectivity (up to >99 % ee), and high total turnover numbers (up to 80963). Crystal structure analysis, molecular dynamic simulations, and theoretical calculations revealed that synergistic effects between exogenous DFSMs and the protein environment controlled regio- and enantioselectivity. This work has implications for exogenous-molecule-modulated enzymatic regiodivergent and enantioselective hydroxylation with potential applications in synthetic chemistry.
Collapse
Affiliation(s)
- Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Wenhan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Zhifeng Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Department of Chemistry, Yanbian University, 133002, Yanji, China
| | - Cong Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Haifeng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Longyi Jin
- Department of Chemistry, Yanbian University, 133002, Yanji, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| |
Collapse
|
19
|
Reetz MT. Dyotropic Rearrangements in Organic Solvents, in the Gas Phase, and in Enzyme Catalysis. Isr J Chem 2023. [DOI: 10.1002/ijch.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 China
| |
Collapse
|
20
|
Zheng W, Pu Z, Xiao L, Xu G, Yang L, Yu H, Wu J. Mutability-Landscape-Guided Engineering of l-Threonine Aldolase Revealing the Prelog Rule in Mediating Diastereoselectivity of C-C Bond Formation. Angew Chem Int Ed Engl 2023; 62:e202213855. [PMID: 36367520 DOI: 10.1002/anie.202213855] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/13/2022]
Abstract
l-threonine aldolase (LTA) catalyzes C-C bond synthesis with moderate diastereoselectivity. In this study, with LTA from Cellulosilyticum sp (CpLTA) as an object, a mutability landscape was first constructed by performing saturation mutagenesis at substrate access tunnel amino acids. The combinatorial active-site saturation test/iterative saturation mutation (CAST/ISM) strategy was then used to tune diastereoselectivity. As a result, the diastereoselectivity of mutant H305L/Y8H/V143R was improved from 37.2 %syn to 99.4 %syn . Furthermore, the diastereoselectivity of mutant H305Y/Y8I/W307E was inverted to 97.2 %anti . Based on insight provided by molecular dynamics simulations and coevolution analysis, the Prelog rule was employed to illustrate the diastereoselectivity regulation mechanism of LTA, holding that the asymmetric formation of the C-C bond was caused by electrons attacking the carbonyl carbon atom of the substrate aldehyde from the re or si face. The study would be useful to expand LTA applications and guide engineering of other C-C bond-forming enzymes.
Collapse
Affiliation(s)
- Wenlong Zheng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, Zhejiang, China
| | - Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, Zhejiang, China
| | - Lanxin Xiao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, Zhejiang, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, Zhejiang, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, Zhejiang, China
| |
Collapse
|
21
|
Zhang X, Shen P, Zhao J, Chen Y, Li X, Huang JW, Zhang L, Li Q, Gao C, Xing Q, Chen CC, Guo RT, Li A. Rationally Controlling Selective Steroid Hydroxylation via Scaffold Sampling of a P450 Family. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Panpan Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Yueyue Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Xian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Qian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Chenghua Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| |
Collapse
|
22
|
Cui L, Cui A, Li Q, Yang L, Liu H, Shao W, Feng Y. Molecular Evolution of an Aminotransferase Based on Substrate–Enzyme Binding Energy Analysis for Efficient Valienamine Synthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Anqi Cui
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qitong Li
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lezhou Yang
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenguang Shao
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Thomson RES, D'Cunha SA, Hayes MA, Gillam EMJ. Use of engineered cytochromes P450 for accelerating drug discovery and development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:195-252. [PMID: 35953156 DOI: 10.1016/bs.apha.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous steps in drug development, including the generation of authentic metabolites and late-stage functionalization of candidates, necessitate the modification of often complex molecules, such as natural products. While it can be challenging to make the required regio- and stereoselective alterations to a molecule using purely chemical catalysis, enzymes can introduce changes to complex molecules with a high degree of stereo- and regioselectivity. Cytochrome P450 enzymes are biocatalysts of unequalled versatility, capable of regio- and stereoselective functionalization of unactivated CH bonds by monooxygenation. Collectively they catalyze over 60 different biotransformations on structurally and functionally diverse organic molecules, including natural products, drugs, steroids, organic acids and other lipophilic molecules. This catalytic versatility and substrate range makes them likely candidates for application as potential biocatalysts for industrial chemistry. However, several aspects of the P450 catalytic cycle and other characteristics have limited their implementation to date in industry, including: their lability at elevated temperature, in the presence of solvents, and over lengthy incubation times; the typically low efficiency with which they metabolize non-natural substrates; and their lack of specificity for a single metabolic pathway. Protein engineering by rational design or directed evolution provides a way to engineer P450s for industrial use. Here we review the progress made to date toward engineering the properties of P450s, especially eukaryotic forms, for industrial application, and including the recent expansion of their catalytic repertoire to include non-natural reactions.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephlina A D'Cunha
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D AstraZeneca, Mölndal, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
24
|
Zhao Y, Zhang B, Sun ZQ, Zhang H, Wang W, Wang ZR, Guo ZK, Yu S, Tan RX, Ge HM. Biocatalytic C14-Hydroxylation on Androstenedione Enabled Modular Synthesis of Cardiotonic Steroids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zi Qian Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zi Ru Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhi Kai Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Bio-technology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Reetz M. Making Enzymes Suitable for Organic Chemistry by Rational Protein Design. Chembiochem 2022; 23:e202200049. [PMID: 35389556 PMCID: PMC9401064 DOI: 10.1002/cbic.202200049] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/07/2022] [Indexed: 11/25/2022]
Abstract
This review outlines recent developments in protein engineering of stereo- and regioselective enzymes, which are of prime interest in organic and pharmaceutical chemistry as well as biotechnology. The widespread application of enzymes was hampered for decades due to limited enantio-, diastereo- and regioselectivity, which was the reason why most organic chemists were not interested in biocatalysis. This attitude began to change with the advent of semi-rational directed evolution methods based on focused saturation mutagenesis at sites lining the binding pocket. Screening constitutes the labor-intensive step (bottleneck), which is the reason why various research groups are continuing to develop techniques for the generation of small and smart mutant libraries. Rational enzyme design, traditionally an alternative to directed evolution, provides small collections of mutants which require minimal screening. This approach first focused on thermostabilization, and did not enter the field of stereoselectivity until later. Computational guides such as the Rosetta algorithms, HotSpot Wizard metric, and machine learning (ML) contribute significantly to decision making. The newest advancements show that semi-rational directed evolution such as CAST/ISM and rational enzyme design no longer develop on separate tracks, instead, they have started to merge. Indeed, researchers utilizing the two approaches have learned from each other. Today, the toolbox of organic chemists includes enzymes, primarily because the possibility of controlling stereoselectivity by protein engineering has ensured reliability when facing synthetic challenges. This review was also written with the hope that undergraduate and graduate education will include enzymes more so than in the past.
Collapse
Affiliation(s)
- Manfred Reetz
- Max-Planck-Institut fur KohlenforschungMülheim an der RuhrGermany
| |
Collapse
|
26
|
Zhu R, Liu Y, Yang Y, Min Q, Li H, Chen L. Cytochrome P450 Monooxygenases Catalyse Steroid Nucleus Hydroxylation with Regio‐ and Stereo‐selectivity. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Evolution of plasmid-construction. Int J Biol Macromol 2022; 209:1319-1326. [PMID: 35452702 DOI: 10.1016/j.ijbiomac.2022.04.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
Abstract
Developing for almost half a century, plasmid-construction has explored more than 37 methods. Some methods have evolved into new versions. From a global and evolutionary viewpoint, a review will make a clear understand and an easy practice for plasmid-construction. The 37 methods employ three principles as creating single-strand overhang, recombining homology arms, or serving amplified insert as mega-primer, and are classified into three groups as single strand overhang cloning, homologous recombination cloning, and mega-primer cloning. The methods evolve along a route for easy, efficient, or/and seamless cloning. Mechanism of plasmid-construction is primer annealing or/and primer invasion. Scar junction is a must-be faced scientific problem in plasmid-construction.
Collapse
|
28
|
Pan Y, Bao J, Zhang X, Ni H, Zhao Y, Zhi F, Fang B, He X, Zhang JZH, Zhang L. Rational Design of P450 aMOx for Improving Anti-Markovnikov Selectivity Based on the “Butterfly” Model. Front Mol Biosci 2022; 9:888721. [PMID: 35677881 PMCID: PMC9168652 DOI: 10.3389/fmolb.2022.888721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aromatic aldehydes are important industrial raw materials mainly synthesized by anti-Markovnikov (AM) oxidation of corresponding aromatic olefins. The AM product selectivity remains a big challenge. P450 aMOx is the first reported enzyme that could catalyze AM oxidation of aromatic olefins. Here, we reported a rational design strategy based on the “butterfly” model of the active site of P450 aMOx. Constrained molecular dynamic simulations and a binding energy analysis of key residuals combined with an experimental alanine scan were applied. As a result, the mutant A275G showed high AM selectivity of >99%. The results also proved that the “butterfly” model is an effective design strategy for enzymes.
Collapse
Affiliation(s)
- Yue Pan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jinxiao Bao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xingyi Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yue Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Fengdong Zhi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Bohuan Fang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
- *Correspondence: Xiao He, ; John Z. H. Zhang, ; Lujia Zhang,
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
- Department of Chemistry, New York University, New York, NY, United States
- *Correspondence: Xiao He, ; John Z. H. Zhang, ; Lujia Zhang,
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
- *Correspondence: Xiao He, ; John Z. H. Zhang, ; Lujia Zhang,
| |
Collapse
|
29
|
Feng J, Wu Q, Zhu D, Ma Y. Biotransformation Enables Innovations Toward Green Synthesis of Steroidal Pharmaceuticals. CHEMSUSCHEM 2022; 15:e202102399. [PMID: 35089653 DOI: 10.1002/cssc.202102399] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Steroids have been widely used in birth-control, prevention, and treatment of various diseases, representing the largest sector after antibiotics in the global pharmaceutical market. The steroidal active pharmaceutical ingredients (APIs) have been produced via partial synthetic processes first mainly from sapogenins, which was converted into 16-dehydropregnenolone by the famous "Marker Degradation". Traditional mutation and screening, and process engineering have resulted in the industrial production of 4-androstene-3,17-dione (AD), androst-1,4-diene-3,17-dione (ADD), 9α-hydroxy-androsta-4-ene-3,17-dione (9α-OH-AD), and so on, which serve as the key intermediates for the synthesis of steroidal APIs. Recently, genetic and metabolic engineering have generated highly efficient microbial strains for the production of these precursors, leading to the replacement of sapogenins with phytosterols as the starting materials. Further advances in synthetic biology hold promise in the design and construction of microbial cell factories for the industrial production of steroidal intermediates and/or APIs from simple carbon sources such as glucose. Integration of biotransformation into the synthesis of steroidal APIs can greatly reduce the number of reaction steps, achieve lower waste discharge and higher production efficiency, thus enabling a greener steroidal pharmaceutical industry.
Collapse
Affiliation(s)
- Jinhui Feng
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Yanhe Ma
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| |
Collapse
|
30
|
Li RJ, Tian K, Li X, Gaikaiwari AR, Li Z. Engineering P450 Monooxygenases for Highly Regioselective and Active p-Hydroxylation of m-Alkylphenols. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ren-Jie Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Kaiyuan Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xirui Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Anand Raghavendra Gaikaiwari
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
31
|
Permana D, Niesel K, Ford MJ, Ichinose H. Latent Functions and Applications of Cytochrome P450 Monooxygenases from Thamnidium elegans: A Novel Biocatalyst for 14α-Hydroxylation of Testosterone. ACS OMEGA 2022; 7:13932-13941. [PMID: 35559141 PMCID: PMC9088945 DOI: 10.1021/acsomega.2c00430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/05/2022] [Indexed: 05/21/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are ubiquitous enzymes with high availability and diversity in nature. Fungi provide a diverse and complex array of P450s, and these enzymes play essential roles in various secondary metabolic processes. Besides the physiological impacts of P450s on fungal life, their versatile functions are attractive for use in advanced applications of the biotechnology sector. Herein, we report gene identification and functional characterization of P450s from the zygomycetous fungus Thamnidium elegans (TeCYPs). We identified 48 TeCYP genes, including two putative pseudogenes, from the whole-genome sequence of T. elegans. Furthermore, we constructed a functional library of TeCYPs and heterologously expressed 46 TeCYPs in Saccharomyces cerevisiae. Recombinants of S. cerevisiae were then used as whole-cell biocatalysts for bioconversion of various compounds. Catalytic potentials of various TeCYPs were demonstrated through a functionomic survey to convert a series of compounds, including steroidal substrates. Notably, CYP5312A4 was found to be highly active against testosterone. Based on nuclear magnetic resonance analysis, enzymatic conversion of testosterone to 14α-hydroxytestosterone by CYP5312A4 was demonstrated. This is the first report to identify a novel fungal P450 that catalyzes the 14α-hydroxylation of testosterone. In addition, we explored the latent potentials of TeCYPs using various substrates. This study provides a platform to further study the potential use of TeCYPs as catalysts in pharmaceutical and agricultural industries and biotechnology.
Collapse
Affiliation(s)
- Dani Permana
- Faculty
of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Research
Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia
(BRIN), Bandung Advanced Science and Creative Engineering Space (BASICS), Jl. Cisitu, Bandung 40135, Indonesia
| | - Ksenia Niesel
- Bayer
AG, Industriepark Höchst, Frankfurt am Main 65926, Germany
| | | | - Hirofumi Ichinose
- Faculty
of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
32
|
Li F, Deng H, Renata H. Remote B-Ring Oxidation of Sclareol with an Engineered P450 Facilitates Divergent Access to Complex Terpenoids. J Am Chem Soc 2022; 144:7616-7621. [PMID: 35452234 DOI: 10.1021/jacs.2c02958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Though chiral pool synthesis is widely accepted as a powerful strategy in complex molecule synthesis, the effectiveness of the approach is intimately linked to the range of available chiral building blocks and the functional groups they possess. To date, there is still a pressing need for new remote functionalization methods that would allow the installation of useful chemical handles on these building blocks to enable a broader spectrum of synthetic manipulations. Herein, we report the engineering of a P450BM3 variant for the regioselective C-H oxidation of sclareol at C6. The synthetic utility of the resulting product was demonstrated in a formal synthesis of ansellone B, the first total synthesis of the 2,3-seco-labdane excolide B, and a model study toward (+)-pallavicinin.
Collapse
Affiliation(s)
- Fuzhuo Li
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Heping Deng
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hans Renata
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
33
|
Zhao YQ, Liu YJ, Ji WT, Liu K, Gao B, Tao XY, Zhao M, Wang FQ, Wei DZ. One-pot biosynthesis of 7β-hydroxyandrost-4-ene-3,17-dione from phytosterols by cofactor regeneration system in engineered mycolicibacterium neoaurum. Microb Cell Fact 2022; 21:59. [PMID: 35397581 PMCID: PMC8994266 DOI: 10.1186/s12934-022-01786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background 7β-hydroxylated steroids (7β-OHSt) possess significant activities in anti-inflammatory and neuroprotection, and some of them have been widely used in clinics. However, the production of 7β-OHSt is still a challenge due to the lack of cheap 7β-hydroxy precursor and the difficulty in regio- and stereo-selectively hydroxylation at the inert C7 site of steroids in industry. The conversion of phytosterols by Mycolicibacterium species to the commercial precursor, androst-4-ene-3,17-dione (AD), is one of the basic ways to produce different steroids. This study presents a way to produce a basic 7β-hydroxy precursor, 7β-hydroxyandrost-4-ene-3,17-dione (7β-OH-AD) in Mycolicibacterium, for 7β-OHSt synthesis. Results A mutant of P450-BM3, mP450-BM3, was mutated and engineered into an AD producing strain for the efficient production of 7β-OH-AD. The enzyme activity of mP450-BM3 was then increased by 1.38 times through protein engineering and the yield of 7β-OH-AD was increased from 34.24 mg L− 1 to 66.25 mg L− 1. To further enhance the performance of 7β-OH-AD producing strain, the regeneration of nicotinamide adenine dinucleotide phosphate (NADPH) for the activity of mP450-BM3-0 was optimized by introducing an NAD kinase (NADK) and a glucose-6-phosphate dehydrogenase (G6PDH). Finally, the engineered strain could produce 164.52 mg L− 1 7β-OH-AD in the cofactor recycling and regeneration system. Conclusions This was the first report on the one-pot biosynthesis of 7β-OH-AD from the conversion of cheap phytosterols by an engineered microorganism, and the yield was significantly increased through the mutation of mP450-BM3 combined with overexpression of NADK and G6PDH. The present strategy may be developed as a basic industrial pathway for the commercial production of high value products from cheap raw materials. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01786-5.
Collapse
|
34
|
Di S, Fan S, Jiang F, Cong Z. A Unique P450 Peroxygenase System Facilitated by a Dual-Functional Small Molecule: Concept, Application, and Perspective. Antioxidants (Basel) 2022; 11:antiox11030529. [PMID: 35326179 PMCID: PMC8944620 DOI: 10.3390/antiox11030529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are promising versatile oxidative biocatalysts. However, the practical use of P450s in vitro is limited by their dependence on the co-enzyme NAD(P)H and the complex electron transport system. Using H2O2 simplifies the catalytic cycle of P450s; however, most P450s are inactive in the presence of H2O2. By mimicking the molecular structure and catalytic mechanism of natural peroxygenases and peroxidases, an artificial P450 peroxygenase system has been designed with the assistance of a dual-functional small molecule (DFSM). DFSMs, such as N-(ω-imidazolyl fatty acyl)-l-amino acids, use an acyl amino acid as an anchoring group to bind the enzyme, and the imidazolyl group at the other end functions as a general acid-base catalyst in the activation of H2O2. In combination with protein engineering, the DFSM-facilitated P450 peroxygenase system has been used in various oxidation reactions of non-native substrates, such as alkene epoxidation, thioanisole sulfoxidation, and alkanes and aromatic hydroxylation, which showed unique activities and selectivity. Moreover, the DFSM-facilitated P450 peroxygenase system can switch to the peroxidase mode by mechanism-guided protein engineering. In this short review, the design, mechanism, evolution, application, and perspective of these novel non-natural P450 peroxygenases for the oxidation of non-native substrates are discussed.
Collapse
Affiliation(s)
- Siyu Di
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxian Fan
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjie Jiang
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-80662758
| |
Collapse
|
35
|
Dong Y, Li T, Zhang S, Sanchis J, Yin H, Ren J, Sheng X, Li G, Reetz MT. Biocatalytic Baeyer–Villiger Reactions: Uncovering the Source of Regioselectivity at Each Evolutionary Stage of a Mutant with Scrutiny of Fleeting Chiral Intermediates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yijie Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Key Laboratory of Agricultural Microbiomics and Precision Application − Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tang Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Shiqing Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P.R. China
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P.R. China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim 45470, Germany
| |
Collapse
|
36
|
Hu D, Hu BC, Hou XD, Zhang D, Lei YQ, Rao YJ, Wu MC. Structure-Guided Regulation in the Enantioselectivity of an Epoxide Hydrolase to Produce Enantiomeric Monosubstituted Epoxides and Vicinal Diols via Kinetic Resolution. Org Lett 2022; 24:1757-1761. [PMID: 35229602 DOI: 10.1021/acs.orglett.1c04348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure-guided microtuning of an Aspergillus usamii epoxide hydrolase was executed. One mutant, A214C/A250I, displayed a 12.6-fold enhanced enantiomeric ratio (E = 202) toward rac-styrene oxide, achieving its nearly perfect kinetic resolution at 0.8 M in pure water or 1.6 M in n-hexanol/water. Several other beneficial mutants also displayed significantly improved E values, offering promising biocatalysts to access 19 structurally diverse chiral monosubstituted epoxides (97.1 - ≥ 99% ees) and vicinal diols (56.2-98.0% eep) with high yields.
Collapse
Affiliation(s)
- Die Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China.,National-local Joint Engineering Research Center of Biomass Refining and High Quality Utilization, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Bo-Chun Hu
- Food and Pharmacy College, Xuchang University, Xuchang 46100, P.R. China
| | - Xiao-Dong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Dong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Yu-Qing Lei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Yi-Jian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Min-Chen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| |
Collapse
|
37
|
Peng Y, Gao C, Zhang Z, Wu S, Zhao J, Li A. A Chemoenzymatic Strategy for the Synthesis of Steroid Drugs Enabled by P450 Monooxygenase-Mediated Steroidal Core Modification. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05776] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yaqin Peng
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, #368 Youyi Road, Wuhan 430062, P.R. China
| | - Chenghua Gao
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, #368 Youyi Road, Wuhan 430062, P.R. China
| | - Zili Zhang
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, #368 Youyi Road, Wuhan 430062, P.R. China
| | - Shijie Wu
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, #368 Youyi Road, Wuhan 430062, P.R. China
| | - Jing Zhao
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, #368 Youyi Road, Wuhan 430062, P.R. China
| | - Aitao Li
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, #368 Youyi Road, Wuhan 430062, P.R. China
| |
Collapse
|
38
|
Xu G, Kunzendorf A, Crotti M, Rozeboom HJ, Thunnissen AWH, Poelarends GJ. Gene Fusion and Directed Evolution to Break Structural Symmetry and Boost Catalysis by an Oligomeric C−C Bond‐Forming Enzyme. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guangcai Xu
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Andreas Kunzendorf
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Michele Crotti
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Henriëtte J. Rozeboom
- Molecular Enzymology Group Groningen Institute of Biomolecular Sciences and Biotechnology University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Andy‐Mark W. H. Thunnissen
- Molecular Enzymology Group Groningen Institute of Biomolecular Sciences and Biotechnology University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
39
|
Cadet XF, Gelly JC, van Noord A, Cadet F, Acevedo-Rocha CG. Learning Strategies in Protein Directed Evolution. Methods Mol Biol 2022; 2461:225-275. [PMID: 35727454 DOI: 10.1007/978-1-0716-2152-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic biology is a fast-evolving research field that combines biology and engineering principles to develop new biological systems for medical, pharmacological, and industrial applications. Synthetic biologists use iterative "design, build, test, and learn" cycles to efficiently engineer genetic systems that are reliable, reproducible, and predictable. Protein engineering by directed evolution can benefit from such a systematic engineering approach for various reasons. Learning can be carried out before starting, throughout or after finalizing a directed evolution project. Computational tools, bioinformatics, and scanning mutagenesis methods can be excellent starting points, while molecular dynamics simulations and other strategies can guide engineering efforts. Similarly, studying protein intermediates along evolutionary pathways offers fascinating insights into the molecular mechanisms shaped by evolution. The learning step of the cycle is not only crucial for proteins or enzymes that are not suitable for high-throughput screening or selection systems, but it is also valuable for any platform that can generate a large amount of data that can be aided by machine learning algorithms. The main challenge in protein engineering is to predict the effect of a single mutation on one functional parameter-to say nothing of several mutations on multiple parameters. This is largely due to nonadditive mutational interactions, known as epistatic effects-beneficial mutations present in a genetic background may not be beneficial in another genetic background. In this work, we provide an overview of experimental and computational strategies that can guide the user to learn protein function at different stages in a directed evolution project. We also discuss how epistatic effects can influence the success of directed evolution projects. Since machine learning is gaining momentum in protein engineering and the field is becoming more interdisciplinary thanks to collaboration between mathematicians, computational scientists, engineers, molecular biologists, and chemists, we provide a general workflow that familiarizes nonexperts with the basic concepts, dataset requirements, learning approaches, model capabilities and performance metrics of this intriguing area. Finally, we also provide some practical recommendations on how machine learning can harness epistatic effects for engineering proteins in an "outside-the-box" way.
Collapse
Affiliation(s)
- Xavier F Cadet
- PEACCEL, Artificial Intelligence Department, Paris, France
| | - Jean Christophe Gelly
- Laboratoire d'Excellence GR-Ex, Paris, France
- BIGR, DSIMB, UMR_S1134, INSERM, University of Paris & University of Reunion, Paris, France
| | | | - Frédéric Cadet
- Laboratoire d'Excellence GR-Ex, Paris, France
- BIGR, DSIMB, UMR_S1134, INSERM, University of Paris & University of Reunion, Paris, France
| | | |
Collapse
|
40
|
Wan NW, Cui HB, Zhao L, Shan J, Chen K, Wang ZQ, Zhou XJ, Cui BD, Han WY, Chen YZ. Directed evolution of cytochrome P450DA hydroxylase activity for stereoselective biohydroxylation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric high throughput screening method was developed based on a dual-enzyme cascade and used for the directed evolution of cytochrome P450 hydroxylase activity.
Collapse
Affiliation(s)
- Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Hai-Bo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ling Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jing Shan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ke Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Zhong-Qiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Xiao-Jian Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| |
Collapse
|
41
|
Huang Q, Zhang X, Chen Q, Tian S, Tong W, Zhang W, Chen Y, Ma M, Chen B, Wang B, Wang JB. Discovery of a P450-Catalyzed Oxidative Defluorination Mechanism toward Chiral Organofluorines: Uncovering a Hidden Pathway. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Shaixiao Tian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Tong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Jian-bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| |
Collapse
|
42
|
Xu G, Kunzendorf A, Crotti M, Rozeboom HJ, Thunnissen AMWH, Poelarends GJ. Gene Fusion and Directed Evolution to Break Structural Symmetry and Boost Catalysis by an Oligomeric C-C Bond-Forming Enzyme. Angew Chem Int Ed Engl 2021; 61:e202113970. [PMID: 34890491 PMCID: PMC9306753 DOI: 10.1002/anie.202113970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Gene duplication and fusion are among the primary natural processes that generate new proteins from simpler ancestors. Here we adopted this strategy to evolve a promiscuous homohexameric 4-oxalocrotonate tautomerase (4-OT) into an efficient biocatalyst for enantioselective Michael reactions. We first designed a tandem-fused 4-OT to allow independent sequence diversification of adjacent subunits by directed evolution. This fused 4-OT was then subjected to eleven rounds of directed evolution to give variant 4-OT(F11), which showed an up to 320-fold enhanced activity for the Michael addition of nitromethane to cinnamaldehydes. Crystallographic analysis revealed that 4-OT(F11) has an unusual asymmetric trimeric architecture in which one of the monomers is flipped 180° relative to the others. This gene duplication and fusion strategy to break structural symmetry is likely to become an indispensable asset of the enzyme engineering toolbox, finding wide use in engineering oligomeric proteins.
Collapse
Affiliation(s)
- Guangcai Xu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Andreas Kunzendorf
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Michele Crotti
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henriëtte J Rozeboom
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Andy-Mark W H Thunnissen
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
43
|
Stanfield JK, Shoji O. The Power of Deception: Using Decoy Molecules to Manipulate P450BM3 Biotransformations. CHEM LETT 2021. [DOI: 10.1246/cl.210584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Joshua Kyle Stanfield
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 461-8602, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 461-8602, Japan
| |
Collapse
|
44
|
The important role of P450 monooxygenase for the biosynthesis of new benzophenones from Cytospora rhizophorae. Appl Microbiol Biotechnol 2021; 105:9219-9230. [PMID: 34807300 DOI: 10.1007/s00253-021-11648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
Benzophenones are polyketides with diverse biological activities. Novel cytotoxic benzophenones cytosporaphenones A-C and cytorhizins A-D, which contain a new skeleton, were previously extracted from endophytic fungus Cytospora rhizophorae A761. However, the mechanism for the biosynthesis of these compounds remains unknown. Cytosporaphenone A was assumed to be the precursor for the biosynthesis of cytorhizins A-D. In this study, we sequenced the genome of C. rhizophorae A761 and characterized a benzoate 4-monooxygenase cytochrome P450(BAM). CRISPR/Cas9-mediated gene knockout and overexpression studies in C. rhizophorae confirmed the vital function of BAM in the biosynthesis of cytosporaphenones and cytorhizins. Overexpression of BAM also enhanced the yield of cytosporaphenone A by 1.868 folds. The in vitro function and enzymatic properties of BAM were also described. This study demonstrates the important role of BAM for the biosynthesis of cytosporaphenone A and cytorhizins and is also the first to provide approaches for the CRISPR-Cas9-mediated gene deletion and gene overexpression studies in C. rhizophoarae, thus laying a foundation for the elucidation of the biosynthetic mechanism of cytorhizins and the discovery of new benzophenones mediated by BAM.Key points• The novel bam gene encoding BAM protein in C. rhizophorae was firstly deleted using CRIPSR/Cas9 system.• The in vitro oxidation function of novel BAM protein and enzymatic properties was characterized.• The over expression of bam gene enhanced the yield of cytosporaphone A in C. rhizophorae significantly.
Collapse
|
45
|
Guo J, Li F, Cheng F, Ma L, Liu X, Durairaj P, Zhang G, Tang D, Long X, Zhang W, Du L, Zhang X, Li S. Bacterial Biosynthetic P450 Enzyme PikC D50N: A Potential Biocatalyst for the Preparation of Human Drug Metabolites. J Org Chem 2021; 86:14563-14571. [PMID: 34662127 DOI: 10.1021/acs.joc.1c01407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human drug metabolites (HDMs) are important chemicals widely used in drug-related studies. However, acquiring these enzyme-derived and regio-/stereo-selectively modified compounds through chemical approaches is complicated. PikC is a biosynthetic P450 enzyme involved in pikromycin biosynthesis from the bacterium Streptomyces venezuelae. Here, we identify the mutant PikCD50N as a potential biocatalyst, with a broad substrate scope, diversified product profile, and high catalytic efficiency, for preparation of HDMs. Remarkably, PikCD50N can mediate the drug-metabolizing reactions using the low-cost H2O2 as a direct electron and oxygen donor.
Collapse
Affiliation(s)
- Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Fengwei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaohui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Pradeepraj Durairaj
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Gang Zhang
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiangtian Long
- Tianjin Hankang Pharmaceutical Biotechnology Co. Ltd., Tianjin 300409, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
46
|
A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism. Int J Mol Sci 2021; 22:ijms222111380. [PMID: 34768811 PMCID: PMC8583553 DOI: 10.3390/ijms222111380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from Bacillus megaterium, which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3's high catalytic efficiency, ease of production and malleable active site makes the enzyme a desirable tool in the production of small molecule metabolites, especially for compounds that exhibit drug-like chemical properties. The engineering of select key residues within the BM3 active site vastly expands the catalytic repertoire, generating variants which can perform a range of modifications. This provides an attractive alternative route to the production of valuable compounds that are often laborious to synthesize via traditional organic means. Extensive studies have been conducted with the aim of engineering BM3 to expand metabolite production towards a comprehensive range of drug-like compounds, with many key examples found both in the literature and in the wider industrial bioproduction setting of desirable oxy-metabolite production by both wild-type BM3 and related variants. This review covers the past and current research on the engineering of BM3 to produce drug metabolites and highlights its crucial role in the future of biosynthetic pharmaceutical production.
Collapse
|
47
|
Ikebe J, Suzuki M, Komori A, Kobayashi K, Kameda T. Enzyme modification using mutation site prediction method for enhancing the regioselectivity of substrate reaction sites. Sci Rep 2021; 11:19004. [PMID: 34602611 PMCID: PMC8488038 DOI: 10.1038/s41598-021-98433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Enzymes with low regioselectivity of substrate reaction sites may produce multiple products from a single substrate. When a target product is produced industrially using these enzymes, the production of non-target products (byproducts) causes adverse effects such as increased processing costs for purification and the amount of raw material. Thus it is required the development of modified enzymes to reduce the amount of byproducts’ production. In this paper, we report a method called mutation site prediction for enhancing the regioselectivity of substrate reaction sites (MSPER). MSPER takes conformational data for docking poses of an enzyme and a substrate as input and automatically generates a ranked list of mutation sites to destabilize docking poses for byproducts while maintaining those for target products in silico. We applied MSPER to the enzyme cytochrome P450 CYP102A1 (BM3) and the two substrates to enhance the regioselectivity for four target products with different reaction sites. The 13 of the total 14 top-ranked mutation sites predicted by MSPER for the four target products succeeded in selectively enhancing the regioselectivity up to 6.4-fold. The results indicate that MSPER can distinguish differences of substrate structures and the reaction sites, and can accurately predict mutation sites to enhance regioselectivity without selection by directed evolution screening.
Collapse
Affiliation(s)
- Jinzen Ikebe
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Munenori Suzuki
- KNC Bio-Research Center, KNC Laboratories Co., Ltd., 1-1-1 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| | - Aya Komori
- KNC Bio-Research Center, KNC Laboratories Co., Ltd., 1-1-1 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
48
|
Ren X, Fasan R. Engineered and Artificial Metalloenzymes for Selective C-H Functionalization. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2021; 31:100494. [PMID: 34395950 PMCID: PMC8357270 DOI: 10.1016/j.cogsc.2021.100494] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The direct functionalization of C-H bonds constitutes a powerful strategy to construct and diversify organic molecules. However, controlling the chemo- and site-selectivity of this transformation in particularly complex molecular settings represents a significant challenge. Metalloenzymes are ideal platforms for achieving catalyst-controlled selective C-H bond functionalization as their reactivities can be tuned by protein engineering and/or redesign of their cofactor environment. In this review, we highlight recent progress in the development of engineered and artificial metalloenzymes for C-H functionalization, with a focus on biocatalytic strategies for selective C-H oxyfunctionalization and halogenation as well as C-H amination and C-H carbene insertion via abiological nitrene and carbene transfer chemistries. Engineered heme- and non-heme iron dependent enzymes have emerged as promising scaffolds for executing these transformations with high chemo-, regio- and stereocontrol as well as tunable selectivity. These emerging systems and methodologies have expanded the toolbox of sustainable strategies for organic synthesis and created new opportunities for the generation of chiral building blocks, the late-stage C-H functionalization of complex molecules, and the total synthesis of natural products.
Collapse
Affiliation(s)
- Xinkun Ren
- Department of Chemistry, University of Rochester, Hutchison Hall, 120 Trustee Rd, Rochester NY 14627, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Hutchison Hall, 120 Trustee Rd, Rochester NY 14627, USA
| |
Collapse
|
49
|
Grogan G. Hemoprotein Catalyzed Oxygenations: P450s, UPOs, and Progress toward Scalable Reactions. JACS AU 2021; 1:1312-1329. [PMID: 34604841 PMCID: PMC8479775 DOI: 10.1021/jacsau.1c00251] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/15/2023]
Abstract
The selective oxygenation of nonactivated carbon atoms is an ongoing synthetic challenge, and biocatalysts, particularly hemoprotein oxygenases, continue to be investigated for their potential, given both their sustainable chemistry credentials and also their superior selectivity. However, issues of stability, activity, and complex reaction requirements often render these biocatalytic oxygenations problematic with respect to scalable industrial processes. A continuing focus on Cytochromes P450 (P450s), which require a reduced nicotinamide cofactor and redox protein partners for electron transport, has now led to better catalysts and processes with a greater understanding of process requirements and limitations for both in vitro and whole-cell systems. However, the discovery and development of unspecific peroxygenases (UPOs) has also recently provided valuable complementary technology to P450-catalyzed reactions. UPOs need only hydrogen peroxide to effect oxygenations but are hampered by their sensitivity to peroxide and also by limited selectivity. In this Perspective, we survey recent developments in the engineering of proteins, cells, and processes for oxygenations by these two groups of hemoproteins and evaluate their potential and relative merits for scalable reactions.
Collapse
|
50
|
Le TK, Kim J, Anh Nguyen N, Huong Ha Nguyen T, Sun EG, Yee SM, Kang HS, Yeom SJ, Beum Park C, Yun CH. Solar-Powered Whole-Cell P450 Catalytic Platform for C-Hydroxylation Reactions. CHEMSUSCHEM 2021; 14:3054-3058. [PMID: 34085413 DOI: 10.1002/cssc.202100944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Photobiocatalysis is a green platform for driving redox enzymatic reactions using solar energy, not needing high-cost cofactors and redox partners. Here, a visible light-driven whole-cell platform for human cytochrome P450 (CYP) photobiocatalysis was developed using natural flavins as a photosensitizer. Photoexcited flavins mediate NADPH/reductase-free, light-driven biocatalysis by human CYP2E1 both in vitro and in the whole-cell systems. In vitro tests demonstrated that the photobiocatalytic activity of CYP2E1 is dependent on the substrate type, the presence of catalase, and the acid type used as a sacificial electron donor. A protective effect of catalase was found against the inactivation of CYP2E1 heme by H2 O2 and the direct transfer of photo-induced electrons to the heme iron not by peroxide shunt. Furthermore, the P450 photobiocatalysis in whole cells containing human CYPs 1A1, 1A2, 1B1, and 3A4 demonstrated the general applicability of the solar-powered, flavin-mediated P450 photobiocatalytic system.
Collapse
Affiliation(s)
- Thien-Kim Le
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 34141, Republic of Korea
| | - Ngoc Anh Nguyen
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Thi Huong Ha Nguyen
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eun-Gene Sun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Su-Min Yee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 34141, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|